J. Aust. Math. Soc.  74 (2003), 69-86
Generalized quasilinear hyperbolic equations and Yosida approximations

Jong Yeoul Park
  Department of Mathematics
  Pusan National University
  Pusan 609-735
  Korea
  jyepark@pusan.ac.kr
Il Hyo Jung
  Department of Mathematics
  Pusan National University
  Pusan 609-735
  Korea
  ilhjung@pusan.ac.kr
and
Yong Han Kang
  Department of Mathematics
  Pusan National University
  Pusan 609-735
  Korea
 


Abstract
We will show the existence, uniqueness and regularity of global solutions for the Cauchy problem for nonlinear evolution equations with the damping term
\[u''(t) + M(|A^{1/2} u(t)|^2)Au(t)
 + \delta u'(t) = f(t) \quad (\delta > 0).\]
As an application of our results, we give the global solvability and regularity of the mixed problem with Dirichlet boundary conditions:
\[ u''(x,t) +(-1)^k M\left(
\int_{\Omega} |\nabla^k u(x,t)|^2\,dx\right) \Delta^k u(x,t)
 + \delta u'(x,t) =f(x,t).\]
Download the article in PDF format (size 179 Kb)

TeXAdel Scientific Publishing ©  Australian MS