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Abstract

We characterize the pairs of weights.u; v/ for which the maximal operator

M−
Þ f .x/ = sup

R>0
R−1−Þ

∫ x−R

x−2R
| f .s/|.x − R − s/Þ ds; −1< Þ < 0;

is of weak and restricted weak type.p; p/ with respect tou.x/ dx andv.x/ dx. As a consequence we
obtain analogous results for

MÞ f .x/ = sup
R>0

R−1−Þ
∫

R<|x−y|<2R
| f .y/|.|x − y| − R/Þ dy:

We apply the results to the study of the Cesàro-Þ convergence of singular integrals.
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1. Introduction

Let MÞ be the maximal operator defined at a measurable functionf on the real line by

MÞ f .x/ = sup
R>0

1

R1+Þ

∫
R<|x−y|<2R

| f .y/|.|x − y| − R/Þ dy; −1< Þ < 0:

This operator occurs in a natural way when one studies the Ces`aro-Þ convergence of
singular integrals [2]. Alternatively,

MÞ f .x/ = sup
R>0

| f | ∗ 'R.x/;

The first author was supported by CONICET, Prog. CAI+D - UNL and PICT 98 (Código 03-04186).
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where'R.x/ = R−1'.R−1x/ and'.s/ = .|s|−1/Þ�.1;2/.|s|/. From this point of view,
MÞ is a particular case of the operator studied in [5]. It follows from [5, Theorem 1]
that MÞ is of restricted weak type.1=.1 + Þ/;1=.1 + Þ// and that it is not of weak
type.1=.1+Þ/;1=.1+Þ// with respect to the Lebesgue measure whenÞ < 0 (notice
that M0 is equivalent to the Hardy-Littlewood maximal operator).

Weighted inequalities forMÞ were studied in [2] and [3]. In [3] we obtained
a characterizationof weighted inequalities for a single weight. The doubling condition
plays an essential role in the proof of this characterization; it was also the key reason
why we were not able to study the two-weight case in [3].

In this paper we develop a different approach to the study of weighted inequalities
for MÞ which enables us to obtain a characterization of the two-weighted weak and
restricted weak type inequalities forMÞ. This new method consists of the study of
one-sided versions ofMÞ

M−
Þ f .x/ = sup

R>0

1

R1+Þ

∫ x−R

x−2R

| f .y/|.x − R − y/Þ dy

and

M+
Þ f .x/ = sup

R>0

1

R1+Þ

∫ x+2R

x+R

| f .y/|.y − x − R/Þ dy:

These operators are of interest because they naturally appear in the investigation of
the Ces`aro-Þ convergence of singular integrals with kernels supported in.0;∞/ and
in .−∞;0/.

The paper is organizedas follows. In Section2we state and prove a characterization
of two-weighted weak and restricted weak type inequalities forM−

Þ , M+
Þ andMÞ; in

Section3 we apply these results to the study of the existence of the singular integrals
in the Ces`aro-Þ sense.

Throughout the paper,u, v andw are weights, that is, positive measurable functions,
u.A/ denotes the integral

∫
A u.s/ds, p′ denotes the conjugate exponent ofp, 1 <

p < ∞, and the letterC means a positive constant that may change from one line to
another.

2. Two-weighted inequalities

We start with the results forM−
Þ (analogous results hold forM+

Þ ).

THEOREM 2.1. Let u andv be weights onR and let−1 < Þ < 0. If 1 < p < ∞,
then the following are equivalent:

.i/ M−
Þ is of weak type.p; p/ with respect tou.x/dx andv.x/dx, that is, there

existsC such thatu.{M−
Þ f > ½}/ ≤ C½−p

∫ | f |pv, for all ½ > 0 and all f ∈ L p.v/.
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.ii/ .u; v/ satisfiesA−
p;Þ, that is, there existsC such that for any three numbers

a < b < c,

(∫ c

b

u.s/ds

)1=p (∫ b

a

v1−p′
.s/.b − s/Þp′

ds

)1=p′

≤ C.c − a/1+Þ:

REMARK. Observe that ifÞ < 0 and ess infx∈.a;b/ v1−p′
.x/ > 0 for some inter-

val .a;b/ then the two-weighted weak type.p; p/ inequality is not possible for
1 < p ≤ 1=.1 + Þ/ since (ii) does not hold in this case. However the operatorM−

Þ is
of restricted weak type.1=.1+ Þ/;1=.1+ Þ// with respect to the Lebesgue measure.
Therefore it is interesting to study the restricted weak type inequalities for pairs of
weights.

THEOREM 2.2. Let u andv be weights onR and let−1 < Þ < 0. If 1 ≤ p < ∞,
then the following are equivalent:

.i/ M−
Þ is of restricted weak type.p; p/ with respect tou.x/dx andv.x/dx, that

is, there existsC such thatu.{x : M−
Þ �E.x/ > ½}/ ≤ C½−pv.E/ for all ½ > 0 and all

measurableE ⊂ R.
.ii/ .u; v/ satisfiesR A−

p;Þ, that is, there existsC such that for any three numbers
a < b < c and all measurableE ⊂ R(∫ c

b

u.s/ds

)(∫ b

a

�E.s/.b − s/Þds

)p

≤ C.c − a/.1+Þ/p
∫ b

a

�E.s/v.s/ds:

The corresponding results forMÞ are obtained immediately from Theorem2.1and
Theorem2.2and from the analogous ones forM+

Þ .
Now we shall state the results forMÞ which generalize the weak and restricted

weak type inequalities from [3] to the two-weight case.

THEOREM 2.3. Let u andv be weights onR and let−1 < Þ < 0. If 1 < p < ∞,
then the following are equivalent:

.i/ MÞ is of weak type.p; p/ with respect tou.x/dx andv.x/dx.
.ii/ .u; v/ satisfiesAp;Þ, that is, there existsC such that for any intervalI

(∫
I

u.s/ds

)1=p (∫
2I \ I

v1−p′
.s/d.s; I /Þp′

ds

)1=p′

≤ C|I |1+Þ ;

where2I is the interval with the same center and double length asI andd.s; I / is
the Euclidean distance froms to I .

THEOREM 2.4. Let u andv be weights onR and let−1 < Þ < 0. If 1 ≤ p < ∞,
then the following are equivalent:
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.i/ MÞ is of restricted weak type.p; p/ with respect tou.x/dx andv.x/dx.
.ii/ .u; v/ satisfiesR Ap;Þ, that is, there existsC such that for every intervalI and

all measurableE ⊂ R

(∫
I

u.s/ds

)(∫
2I \ I

�E.s/d.s; I /Þds

)p

≤ C|I |.1+Þ/p
∫

2I \ I

�E.s/v.s/ds:

The proofs of Theorem2.3and Theorem2.4are omitted since they are immediate
corollaries of the previous results.

In order to prove Theorem2.1 and Theorem2.2 we use a noncentred maximal
operator which is pointwise equivalent toM−

Þ . In what follows we define this operator
and state the pointwise equivalence.

DEFINITION 2.5. For eachx ∈ R, let us consider the family of intervalsA x =
{.a;b/ : b < x and b− a ≥ x − b}. We define the noncentred maximal operatorN−

Þ

associated withM−
Þ as

N−
Þ f .x/ = sup

.a;b/∈Ax

1

.b − a/1+Þ

∫ b

a

| f .s/|.b − s/Þ ds:

PROPOSITION2.6. Let −1 < Þ < 0. There exists a constantC depending only on
Þ such thatM−

Þ f ≤ N−
Þ f ≤ C M−

Þ f , for all measurable functionsf .

PROOF. The first inequality is obvious. Let.a;b/ ∈ Ax, R = x − a and letN be
the natural number such thatx − 2−N R ≤ b < x − 2−N−1R. Then

∫ b

a

| f .s/|.b − s/Þ ds

=
N−1∑
i =0

∫ x−R=2i+1

x−R=2i

| f .s/|
(

x − R

2i +1
− s

)Þ ( b − s

x − .R=2i +1/− s

)Þ
ds

+
∫ b

x−R=2N

| f .s/|.b − s/Þ ds = I + II :

Since.a;b/ ∈ Ax,

II ≤
∫ b

x−2.x−b/

| f .s/|.b − s/Þ ds ≤ .x − b/1+ÞM−
Þ f .x/ ≤ .b − a/1+ÞM−

Þ f .x/:

On the other hand, since the functions → [.b − s/=.x − 2−i −1R − s/]Þ is decreasing
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on .x − 2−i R; x − 2−i −1R/, 0 ≤ i ≤ N − 1,

I ≤
(

N−1∑
i =0

(
b −

(
x − R

2i

))Þ R

2i +1

)
M−
Þ f .x/

≤ M−
Þ f .x/

N−1∑
i =0

∫ x−R=2i+1

x−R=2i

.b − s/Þ ds ≤ C.b − a/1+ÞM−
Þ f .x/;

and we are done.

PROOF OFTHEOREM 2.1. By Proposition2.6, (i) is equivalent to the weighted weak
type.p; p/ inequality forN−

Þ . Leta < b < c and letā < a be such thatb−ā = c−a.
If we consider the functionf .s/ = v1−p′

.s/.b−s/Þ.p
′ −1/�.a;b/.s/, then for allx ∈ .b; c/

N−
Þ f .x/ ≥ 1

.b − ā/1+Þ

∫ b

a

v1−p′
.s/.b − s/Þp′

ds ≡ ½:

This means that.b; c/ ⊂ {N−
Þ f ≥ ½}. Then (ii) follows from (i) (with N−

Þ ) by
a standard argument.

The implication (ii) implies (i) follows from the following proposition and the fact
that the maximal operatorM−

u g.x/ = suph<x

(∫ x

h |g|u/∫ x

h u
)

is of weak type.1;1/
with respect to the measureu.x/dx.

PROPOSITION2.7. Let −1 < Þ < 0 and p > 1. If .u; v/ satisfiesA−
p;Þ, then there

existsC > 0 such that for every measurable functionf

N−
Þ f ≤ C[M−

u .| f |pvu−1/]1=p:

PROOF. Let x ∈ R and.a;b/ ∈ Ax. First, let us assume that 4
∫ x

b u >
∫ x

a u. Since
the pair.u; v/ satisfiesA−

p;Þ, we have

∫ b

a

| f .s/|.b − s/Þ ds ≤
(∫ b

a

| f |p.s/v.s/ds

)1=p (∫ b

a

v−p′=p.s/.b − s/Þp′
ds

)1=p′

≤ C

(∫ x

a

| f |p.s/v.s/ds

)1=p(∫ x

b

u.s/ds

)−1=p

.x − a/1+Þ

≤ C[M−
u .| f |pvu−1/]1=p.x/.b − a/1+Þ:

Assume now that 4
∫ x

b u ≤ ∫ x

a u. Let {xi } be the increasing sequence in[a; x] defined
by x0 = a and

∫ x

xi+1
u = ∫ xi+1

xi
u = 1

2

∫ x

xi
u. Let N be such thatxN ≤ b < xN+1 (observe
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that N ≥ 2). Then we have

∫ b

a

| f .s/|.b − s/Þ ds =
N−2∑
i =0

∫ xi+1

xi

| f .s/|.b − s/Þ ds+
∫ b

xN−1

| f .s/|.b − s/Þ ds

= I + II :

By the A−
p;Þ condition and the fact that

∫ x

xN−1
u ≤ 4

∫ x

b u, we have

II ≤
(∫ b

xN−1

| f |p.s/v.s/ds

)1=p (∫ b

xN−1

v−p′=p.s/.b − s/Þp′
ds

)1=p′

≤ C[M−
u .| f |pvu−1/]1=p.x/.b − a/1+Þ:

On the other hand, since the functions → [.b − s/=.xi +1 − s/]Þ is decreasing in the
interval.xi ; xi +1/, 0 ≤ i ≤ N − 2, we obtain

∫ xi+1

xi

| f .s/|.b − s/Þ ds ≤
(

b − xi

xi +1 − xi

)Þ ∫ xi+1

xi

| f .s/|.xi +1 − s/Þ ds

≤
(

b − xi

xi +1 − xi

)Þ (∫ xi+1

xi

| f |p.s/v.s/ds

)1=p(∫ xi+1

xi

v−p′=p.s/.xi +1 − s/Þp′
ds

)1=p′

≤ C

(
b − xi

xi +1 − xi

)Þ (∫ xi+1

xi

| f |p.s/v.s/ds

)1=p (∫ xi+2

xi+1

u.s/ds

)−1=p

.xi +2 − xi /
1+Þ

≤ C.b − xi /
Þ.xi +2 − xi /

(∫ x

xi
| f |p.s/v.s/ds∫ x

xi
u.s/ds

)1=p

≤ C[M−
u .| f |pvu−1/]1=p.x/

∫ xi+2

xi

.b − s/Þ ds:

Now, summing up ini , we get

I ≤ C[M−
u .| f |pvu−1/]1=p.x/

∫ xN

a

.b − s/Þ ds ≤ C[M−
u .| f |pvu−1/]1=p.x/.b − a/1+Þ:

Finally, putting together the estimates of I and II, we are done.

PROOF OFTHEOREM 2.2. The proof is similar to that of Theorem2.1. We give just
a sketch. First, (ii) follows from (i) on applying the standard argument to�E∩.a;b/. The
converse follows from the fact that (ii) impliesN−

Þ �E.x/ ≤ C[M−
u .�Ev u−1/]1=p.x/,

for some constantC independent of the measurable subsetE. To prove the above
inequality, letx ∈ R, .a;b/ ∈ Ax and assume first that 4

∫ x

b u >
∫ x

a u. Since.u; v/
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satisfiesR A−
p;Þ we obtain

∫ b

a

�E.s/.b − s/Þ ds ≤ C.x − a/1+Þ
(∫ b

a

�E.s/v.s/ds

)1=p(∫ x

b

u.s/ds

)−1=p

≤ C.b − a/1+Þ
(∫ x

a

�E.s/v.s/ds

)1=p(∫ x

a

u

)−1=p

≤ C.b − a/1+Þ[M−
u .�Evu−1/]1=p.x/:

If 4
∫ x

b u ≤ ∫ x

a u, we proceed as in the proof of Proposition 2.7.

3. Singular integrals in the Cesàro sense

Let K be a Calder´on-Zygmund kernel onR, that is, a functionK ∈ L1
loc.R \ {0}/

such that

.1/ |K .x/| ≤ C|x|−1, |x| > 0;

.2/ |K .x − y/− K .x/| ≤ C|y||x|−2, if |x| > 2|y| > 0;

.3/
∣∣ ∫

ž<|x|<N K .x/dx
∣∣ ≤ C for all ž and allN with 0< ž < N.

If the limit lim ž→0+
∫
ž<|y|<1 K .y/dy exists, then the principal-value singular integral

T f .x/ = lim
ž→0+

∫
|x−y|>ž

K .x − y/ f .y/ dy

exists for f ∈ L p.wdx/ with w in the Muckenhoupt classAp (see for instance [4]).
When the kernelK has support in.0;∞/ (or in .−∞;0/), then, as proved in [1],
the same result holds for a wider class of weights, more precisely for weights in the
Sawyer classA−

p ≡ A−
p;0 ([7]).

Recently, in [2], we studied the existence in the Ces`aro-Þ sense of the singular
integral associated withK for −1 < Þ < 0, that is, the existence of the limit

lim
ž→0+

Tž;Þ f .x/ = lim
ž→0+

∫
|x−y|>ž

f .y/K .x − y/

(
1 − ž

|x − y|
)Þ

dy;

in the setting of weightedL p-spaces. The aim in this section is to obtain sharper
results on singular integrals in the Ces`aro-Þ sense for kernels with support in.0;∞/

(or in .−∞;0/). We shall show, using the results of Section2, that, for these kernels,
the results in [2] are true for a wider class of weights.

One of the key steps in [2] is the pointwise estimate from above of the maximal
operatorT∗

Þ f = supž>0 |Tž;Þ f | by C.MÞ f + T ∗
0 f /. If the support ofK is contained in

.0;∞/, then we can improve this estimate by replacingMÞwith a smaller operatorM−
Þ .
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PROPOSITION3.1. Let−1< Þ < 0 and letK be a Caldeŕon-Zygmund kernel with
support contained in.0;∞/. If f is a measurable function such thatTž;Þ f .x/ is
defined for everyž > 0, then there existsC > 0 independent off such that

T∗
Þ f .x/ ≤ C

[
M−
Þ f .x/+ T∗

0 f .x/
]
:

The proof is similar to that of [2, Proposition 2.5], and is therefore omitted. This
proposition together with Theorem2.1 in this paper and [1, Theorem 2.1] enables us
to prove the following result.

THEOREM 3.2. Let −1 < Þ < 0 and let K be a Caldeŕon-Zygmund kernel with
support contained in.0;∞/ such that the limit

lim
ž→0+

∫ 1

ž

K .y/

(
1 − ž

y

)Þ
dy

exists. Then the singular integral exists a.e. in the Cesàro-Þ sense if f ∈ L p.w dx/
with p.1 + Þ/ > 1 andw ∈ A−

p;Þ (the pair.w;w/ satisfiesA−
p;Þ).

To prove the theorem we have to show first that the truncationsTž;Þ f are well
defined for f ∈ L p.wdx/, w ∈ A−

p;Þ, p.1 + Þ/ > 1. This can be proved as in
[2, Theorem 2.7]. The rest of the proof is a consequence of the following facts:
(i) the existence of the limit limž→0+ Tž;Þ f for f in a dense class and (ii) the weak
type .p; p/ boundedness with respect tow.x/dx of the maximal operatorT∗

Þ . The
former is clear sinceL p.wdx/ ∩ L p.dx/ is dense inL p.wdx/ and the convergence
holds for f ∈ L p.wdx/ ∩ L p.dx/ by [2, Theorem 2.7]. The latter immediately
follows from Proposition3.1, Theorem2.1, [1, Theorem 2.1] and the easy implication
w ∈ A−

p;Þ ⇒ w ∈ A−
p;0 ≡ A−

p .

REMARK. In particular, the result holds ifwbelongs to the Sawyer’s class [7] A−
p.1+Þ/

sinceA−
p.1+Þ/ ⊂ A−

p;Þ. This inclusion follows fromA−
r ⊂ A−

p;Þ, 1 < r < p.1 + Þ/,
which is true by H¨older’s inequality and the implicationw ∈ A−

p.1+Þ/ ⇒ w ∈ A−
r for

somer < p.1 + Þ/ (see [7] or [6]).

We do not know whetherA−
p.1+Þ/ is equal toA−

p;Þ for Þ < 0 andp > 1=.1 + Þ/

but in the endpointp = 1=.1 + Þ/ it is possible to see thatR A−
1=.1+Þ/;Þ equals the

Sawyer’s classA−
1 . The proof of this fact is similar to the proof of [3, Proposition 6.5].

Then, following the steps in the proof of [2, Theorem 2.7] and using the corresponding
results in this paper and in [1] we have our next result.

THEOREM 3.3. LetÞ andK be as in Theorem3.2. If f belongs to the Lorentz space
L1=.1+Þ/;1.! dx/ = { f : ∫ ∞

0 [!.{x : | f .x/| > t}/]1+Þ dt < ∞} and! ∈ A−
1 , then the

singular integral exists a.e. in the Cesàro-Þ sense.
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EXAMPLE. Observe that the Calder´on-Zygmund kernel

K .x/ = 1

x

sin.log x/

logx
�.0;∞/.x/

given in [1] satisfies the condition in Theorem3.2, that is,

lim
ž→0+

∫ 1

ž

K .y/

(
1− ž

y

)Þ
dy

exists. In fact, for any 0< ž < 1=2, if �.x/ = sinx=x, then

∫ 1

ž

K .y/

(
1− ž

y

)Þ
dy =

∫ 1

ž

�.log y/

y

(
1− ž

y

)Þ
dy

=
∫ 2ž

ž

· · · dy +
∫ 1

2ž

· · · dy = I + II :

Applying the Hölder inequality toI with p > 1=.1 + Þ/ and changing variables we
obtain

| I | ≤
(∫ 2ž

ž

|�.log y/|p

y
dy

)1=p
(∫ 2ž

ž

(
1 − ž

y

)Þp′
1

y
dy

)1=p′

≤ C

(∫ log 2ž

logž

|�.t/|p dt

)1=p

≤ C

(∫ log 2ž

logž

1

|t |p
dt

)1=p

and therefore limž→0+ I = 0. On the other hand,

II =
∫ 1

2ž

�.log y/

y

[(
1− ž

y

)Þ
− 1

]
dy +

∫ 1

2ž

�.log y/

y
dy = III + IV :

Clearly, by changing the variables, we see that limž→0+ IV exists. In order to estimate
III, we apply the mean value theorem to get

| III | ≤ |Þ|
∫ 1

2ž

|�.log y/|
(

1 − ž

y

)Þ−1
ž

y2
dy:

Changing variables again, we obtain

| III | ≤ |Þ|
∫ 1=2

ž

|�.log.ž=t//| .1 − t/Þ−1 dt:

Finally, limž→0+ III = 0, applying the dominated convergence theorem and the facts
that� is bounded and limž→0+ �.log.ž=t// = 0.
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REMARK. If we do not assume anything about the support ofK , then Theorem3.2
is valid for weightsw in Ap;Þ. The proof is similar to the proof of [2, Theorem 2.7]
but using Theorem2.3 instead of [2, Theorem 2.6].

An analogous comment can be written about Theorem3.3, that is, Theorem3.3 is
valid for Calderón-Zygmund kernels and weightsw in the Muckenhoupt ClassA1 (in
fact, notice that this result is contained in [2, Theorem 2.7]).
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