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Abstract

We characterize the pairs of weiglits v) for which the maximal operator

Xx—R
M, f(x) = supR*H‘/ [f(s)|(x—R—9)%ds —-l<a <0,
R>0 Xx—2R

is of weak and restricted weak type, p) with respect tau(x) dx andv(x) dx. As a consequence we
obtain analogous results for

M. f (x) = supR~*~* / I WIUx —yl = R dy.
R>0 R<|x—Yy|<2R
We apply the results to the study of the @esa convergence of singular integrals.

2000Mathematics subject classificatioprimary 42B25; secondary: 42B20, 42B08.
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1. Introduction

Let M, be the maximal operator defined at a measurable fundtimmthe real line by

M, f(X) = sup

R>0 R+

/ FWIIx =yl = R*dy, —-l<a<0.
R<|x—y|<2R

This operator occurs in a natural way when one studies tharGesconvergence of
singular integralsg]. Alternatively,

M, f(x) = iugl | % pr(X),
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wherepr(x) = R1p(R™*x) andg(s) = (Is| —1)* xw.2 (|S|). From this point of view,

M, is a particular case of the operator studiedsh |t follows from [5, Theorem 1]

that M,, is of restricted weak typ€l/(1 + «), 1/(1 + «)) and that it is not of weak
type(l/(1+ ), 1/(1+«)) with respect to the Lebesgue measure wiaen 0 (notice

that M, is equivalent to the Hardy-Littlewood maximal operator).

Weighted inequalities foM, were studied in4] and [3]. In [3] we obtained
a characterization of weighted inequalities for a single weight. The doubling condition
plays an essential role in the proof of this characterization; it was also the key reason
why we were not able to study the two-weight casedin [

In this paper we develop a different approach to the study of weighted inequalities
for M, which enables us to obtain a characterization of the two-weighted weak and
restricted weak type inequalities ftM,. This new method consists of the study of
one-sided versions d¥l,

1 X—R
M~ f(x) =su f Xx—R—-y)¥d
o T(X) R>(E)Rl+a/x2R| WI( y)“dy

and

1 X+2R
M*f(x) =su / f — X — R)*dy.
o T(X) R>(E)R1+“ ;. [TYICY ) dy

These operators are of interest because they naturally appear in the investigation o
the Cearow convergence of singular integrals with kernels supporte@®.ino) and
in (—oo, 0).

The paperis organized as follows. In Sectime state and prove a characterization
of two-weighted weak and restricted weak type inequalitiedMgr, M_" andM,; in
Section3 we apply these results to the study of the existence of the singular integrals
in the Ceatrow sense.

Throughoutthe papeu, v andw are weights, that is, positive measurable functions,
u(A) denotes the integraf, u(s)ds, p’ denotes the conjugate exponentmfl <
p < oo, and the lette€ means a positive constant that may change from one line to
another.

2. Two-weighted inequalities

We start with the results favl - (analogous results hold fov ).

THEOREM2.1. Letu andv be weights oR and let—1 < o« < 0. If 1 < p < o0,
then the following are equivalent

(i) M, is of weak typ&p, p) with respect tau(x) dx andv(x) dx, that is, there
existsC such thau({M_; f > 1}) <CaP [|f|Pv,forall A > 0and all f € LP(v).



[3] Two weighted inequalities 113

(i) (u,v) satisfiesA ,, that is, there exist€ such that for any three numbers
a<b<c,

c 1/p b 1/p
(/ u(s) ds) (/ vIP(s)(b — s)*P ds) < C(c—a)t*.
b a

REMARK. Observe that ifx < 0 and essinfp v (x) > 0 for some inter-
val (a, b) then the two-weighted weak typ@, p) inequality is not possible for
1 < p <1/(1+ «) since (ii) does not hold in this case. However the operitpris
of restricted weak typél/(1+ «), 1/(1+ «)) with respect to the Lebesgue measure.
Therefore it is interesting to study the restricted weak type inequalities for pairs of
weights.

THEOREM2.2. Letu andv be weights orR and let—1 < o < 0. If 1 < p < o0,
then the following are equivalent

(i) M, is of restricted weak typgp, p) with respect tai(x) dx andv(x) dx, that
is, there exist€ such thatu({x : M_ xg(X) > A}) < CA~Pv(E) forall A > Oand all
measurableE C R.

(i) (u,v) satisfiesR A ,, that is, there exist€ such that for any three numbers
a < b < cand all measurabl&e C R

c b p b
(/ u(s)ds) (/ XE(s)(b—s)“ds) 5C(c—a)<1+“”’/ xe(s)v(s)ds.
b a a

The corresponding results f, are obtained immediately from Theoréniand
TheorenR.2and from the analogous ones fidr’.

Now we shall state the results fdd, which generalize the weak and restricted
weak type inequalities frong] to the two-weight case.

THEOREM2.3. Letu andv be weights oR and let—1 < o« < 0. If 1 < p < o0,
then the following are equivalent

(i) M, is of weak type p, p) with respect tai(x) dx andv(x) dx.
(i) (u,v) satisfiesA, ,, that is, there exist€ such that for any interval

1/p 1/p
(/ u(s)ds) (/ v P (s)d(s, I)“”ds) < C|I |+,
I 21\1

where?2l is the interval with the same center and double length asdd(s, |) is
the Euclidean distance frosito | .

THEOREM 2.4. Letu andv be weights orR and let—1 < o < 0. If 1 < p < o0,
then the following are equivalent
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(i) M, is of restricted weak typéep, p) with respect tau(x) dx andv(x) dx.
(i) (u,v) satisfiesR A, ,, that is, there exist€ such that for every intervdl and
all measurableE C R

P
(/u(s)ds) (/ xe(9)d(s, I)“ds) <CJl |<1+“>P/ xe(s)v(s)ds.
I 21\ 21\

The proofs of Theorerd.3and Theoren2.4 are omitted since they are immediate
corollaries of the previous results.

In order to prove Theorer.1 and Theoren®.2 we use a noncentred maximal
operator which is pointwise equivalentid, . In what follows we define this operator
and state the pointwise equivalence.

DEFINITION 2.5. For eachx € R, let us consider the family of intervale’, =
{(a,b) : b < x and b—a > x —b}. We define the noncentred maximal operaigr
associated wittM_ as

1 b
Nif X) = SuU - f S b_sads
o 100 <a,b>£¢x (b—a)1+a/a [T(9)I( )

PROPOSITION2.6. Let—1 < o < 0. There exists a consta@ depending only on
a suchthatM_f < N f <CM_ f, for all measurable functions$.

PrOOF. The first inequality is obvious. Le&g, b) € <, R = x —a and letN be
the natural number such that- 2-"R < b < x — 2-N-1R. Then

b
/ [f(s)|(b—s)*ds

N-1 x—R/2\+1 R a b_ s a
=ZO// 'f(s)'<x_ﬁ_s> (x—(R/ZiH)—s) ds

b
+/ [f(S)|(b—s)*ds=1+1l.

—R/2N

Since(a, b) € 4,

b
I < / [f(9)|(b—s)*ds< (x — )M, f(x) < (b—a'*M, f(x).

—2(x—b)

On the other hand, since the function> [(b —s)/(Xx — 27'"IR — s)]% is decreasing
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on(x—2"R x—27""1R),0<i <N-1,

N-1 o
| < (Z (b— (x— ;)) 2—31) M, f(x)
i=0
N-1 X—R/Zi“

< Maf(x)Z/ (b—s)*ds<Cb—a**M, f(x),
i=0 vX

,R/Zi

and we are done. O

PrROOF OFTHEOREM 2.1 By Propositior2.6, (i) is equivalent to the weighted weak
type(p, p) inequality forN, . Leta < b < candleta < abe suchthadb—a =c—a.
If we consider the functiorfi (S) = v P (s)(b—S)*P V. (S), thenforallx e (b, c)

B 1 L. ol
wa(X)Zm\/av vl p(S)(b—S)pdSE)\..
This means thatb,c) ¢ {N, f > A}. Then (ii) follows from (i) (with N;) by
a standard argument. O

The implication (ii) implies (i) follows from the following proposition and the fact
that the maximal operatdvl, g(x) = sup,_, (fhx lglu/ N u) is of weak type(1, 1)
with respect to the measuuéx) dx.

PROPOSITION2.7. Let—1 < o« < Oand p > 1. If (u, v) satisfiesA; ,, then there
existsC > 0 such that for every measurable functién

N, f < C[M, (| f[PouH]¥P.

PROOF. Letx € R and(a, b) € @. First, letus assume thatf4 u > [ u. Since

the pair(u, v) satisfiesA; ,, we have

b b 1/p b 1p
/ ()b —9)"ds =< (/ Ifl”(S)v(S)ds> (/ v”//”(s)(b—s)“"/ds>
) p X 1/p ) X -1/p
<C (/ [ fIP(s)v(S) dS) (/ u(s) d3> (x — a)t+e
a b

< CIM; (| fIPou™H 7P (b — &)™,

Assume now that 5(; u< fax u. Let{x;} be the increasing sequencd# x] defined
by X, = a andfx’i‘+1 u= [u= %fx" u. LetN be such thaxy < b < Xy (Observe

Xi
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thatN > 2). Then we have

b N-2 Xit1 b
/ |f(s)|(b—s)“ds=2/ |f(s)|(b—s)“ds+/ [ f(s)|(b—s)*ds
a i=0 Xi XN—1
=1+Il.

By the A, , condition and the factthaff u <4 /" u, we have

b 1/p b 1/p
||5</ |f|”(s)v(s)ds> (/ v”//”(s)(b—s)“”/ds>

< CIM (I FIPou™H 7P (b — )t

On the other hand, since the functisn~> [(b — s)/(X+1 — S)]* is decreasing in the
interval (X;, Xi;1), 0<i < N — 2, we obtain

/Xm|f<s>|<b—s)“dss< b-X% ) /Xm|f(s)|<xi+1—s)“ds

Xit1 — X

b — X o Xit1 1/p Xit1 1y
< () ([T itrensss) ([ rrrem - s as)
iv1— X % y
b—x \” X1 1/p Xi+2 -1/p
<C (X- 1—X-> (/ |f|p(s)v(S)dS> (/ U(S)dS) (Xi+2_Xi)l+a
i+ i % -

[P v ds) P
[, us)ds

< C[Mu(lfl”vul)]l/”(x)/ M(b—S)“ ds.

<C—x)"Xiy2 — %) (

Now, summing up in, we get
I < C[M,(l flpvul)]l/”(x)/ (b—9)*ds < C[M, (| f[Pou™)]"P(x)(b — a)**.
a
Finally, putting together the estimates of | and I, we are done. O

PrROOF OFTHEOREM 2.2, The proof is similar to that of Theorethl We give just
a sketch. First, (ii) follows from (i) on applying the standard argumegtt, . The
converse follows from the fact that (i) implie$; x(x) < C[M; (xgv u™H]YP(x),
for some constan€ independent of the measurable subsetTo prove the above
inequality, letx € R, (a, b) € & and assume first that4 u > [*u. Since(u, v)
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satisfiesR A; , we obtain

b b 1/p X -1/p
/XE(S)(b—S)“dssC(X—a)”“ (/ xE(S)v(S)dS> (/ U(S)d8>
a a b

X 1/p X -1/p
<Cb—a)™ (/ XE(S)v(S)dS) (/ u)

< C(b—a)"**[M, (xgvu H]"P(x).

If4 [“u < [*u, we proceed as in the proof of Projtam 2.7. O

3. Singular integrals in the Cegro sense

Let K be a Caldewh-Zygmund kernel ofR, that is, a functiork € L (R \ {0})
such that
D IKX)| =< CIxI™h x| >0,
(2 IK(x—y)— K| < ClylIx|7%if x| > 2]y| > 0,
3) | [._yn KOO dx| < Cforalle andallN with 0 < ¢ < N.

If the limit lim_ ¢+ K (y) dy exists, then the principal-value singular integral

e<|y|<1

Tf(X) = lim / KX —y)f(y) dy
T Jix—yl>e

exists for f e LP(wdx) with w in the Muckenhoupt clasd, (see for instanced]).
When the kerneK has support if0, co) (or in (—oo, 0)), then, as proved inl],
the same result holds for a wider class of weights, more precisely for weights in the
Sawyer clas\; = A, ([7]).

Recently, in P], we studied the existence in the @esw sense of the singular
integral associated witk for —1 < o < 0, that is, the existence of the limit

Iimwax=Iim/ f(y)K (X — (1— € )d,
fm Toteo=lim | foKe-y (1o 5= ) dy

€—>

in the setting of weighted.P-spaces. The aim in this section is to obtain sharper
results on singular integrals in the @esw sense for kernels with support (A, co)
(orin (—o0, 0)). We shall show, using the results of Sectiyithat, for these kernels,
the results in2] are true for a wider class of weights.

One of the key steps ir2] is the pointwise estimate from above of the maximal
operatolT f =sup_q|T.. f|byC(M, f +T; f). Ifthe support oK is contained in
(0, 00), then we can improve this estimate by repladihgwith a smaller operatdvl .
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PrOPOSITION3.1. Let—1 < & < O and letK be a Caldedon-Zygmund kernel with
support contained in0, co). If f is a measurable function such th@t, f (x) is
defined for every > 0, then there exist€ > 0independent of such that

T f(x) < C[M, f(x)+ T f(x)].

The proof is similar to that of7, Proposition 2.5], and is therefore omitted. This
proposition together with Theoregnlin this paper andl, Theorem 2.1] enables us
to prove the following result.

THEOREM3.2. Let —1 < @ < 0 and letK be a Caldedn-Zygmund kernel with
support contained ifi0, co) such that the limit

. ! e\”
JL”&/S K(y)(l—;) dy

exists. Then the singular integral exists a.e. in thedBe& sense iff € LP(w dx)
with p(1 + ) > Landw € A, (the pair(w, w) satisfiesA; ).

To prove the theorem we have to show first that the truncatipps are well
defined forf e LP(wdx), w € A,, p(1 +«) > 1. This can be proved as in
[2, Theorem 2.7]. The rest of the proof is a consequence of the following facts:
(i) the existence of the limit lim.o- T, f for f in a dense class and (ii) the weak
type (p, p) boundedness with respectigx) dx of the maximal operatof*. The
former is clear sincé.?(wdx) N LP(dx) is dense inLP(wdx) and the convergence
holds for f € LP(wdx) N LP(dx) by [2, Theorem 2.7]. The latter immediately
follows from Propositior8.1, Theoren?.1, [1, Theorem 2.1] and the easy implication
weA,=>weA =A,.

REMARK. Inparticular, the resultholdsif belongs to the Sawyer'sclas§ A,
smceAp(Ha) C A, This inclusion follows fromA” C Aj ., 1 <1 < p(1+ @),
which is true by Hblders inequality and the implication € A, ,, = w € A for
somer < p(l+ «) (see[] or [6]).

We do not know whetheA,, ,, is equal toA; , fora < 0 andp > 1/(1+ «)
but in the endpoinpp = 1/(1+ «) it is p035|ble to see tha&R A, ., , €quals the
Sawyer’s clas#\;. The proof of this factis similar to the proof di[Proposition 6.5].
Then, following the steps in the proof df,[Theorem 2.7] and using the corresponding
results in this paper and ii]we have our next result.

THEOREM 3.3. Leta andK be asin Theorerf.2. If f belongs to the Lorentz space
Lyaroi(@dx) = {f : [Tlo({x : 1 f()] > th]**dt < oo} andw € A7, then the
singular integral exists a.e. in the Gae-« sense.
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ExamMPLE. Observe that the Caldem-Zygmund kernel

1 sin(log x)

K(X) = ;WX(O,OO)(X)

given in [1] satisfies the condition in Theore®?2, that is,

. ! e\”
EIL%/S K (y) (1—;) dy
exists. Infact, forany 6< € < 1/2, if Q(x) = sinx/x, then
! e\” 1 Q(logy) e\”
K()(l——) d :/ —<1——> d
/e Y y Y e y y Y
2¢ 1
:/ ...dy+/ ody =141
€ 2¢

Applying the Hilder inequality tol with p > 1/(1 + «) and changing variables we

obtain
0 < (/26 |Q(|Ogy)|p dy>1/p /Ze (1 E>ap/ ldy p
- \Je y e y y
log 2¢ 1/p log2e 1 1/p
§C</ |Q(t)|”dt> §C</ —dt)
loge loge |t|p

and therefore lim.q: | = 0. On the other hand,

1 o 1
”:/ le_E) _1} dy+/ £2099Y) 4o 1 41y
2 y y 2 y

€ €

Clearly, by changing the variables, we see that lign IV exists. In order to estimate
I, we apply the mean value theorem to get

1 e\t e
| < Qo 1—— —dy.
| |_|a|f2€| ( gy)|( y) Sy

Changing variables again, we obtain

12
i < o / i log(e/t)] (1 - H* dt.

Finally, lim._q: Il = 0O, applying the dominated convergence theorem and the facts
thatQ is bounded and lim, - 2 (log(e/t)) = 0.
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ReEMARK. If we do not assume anything about the suppottothen Theoren3.2
is valid for weightsw in A, ,. The proof is similar to the proof o[ Theorem 2.7]
but using Theorer.3instead of B, Theorem 2.6].

An analogous comment can be written about TheoBednthat is, Theoren3.3is
valid for Caldepn-Zygmund kernels and weightsin the Muckenhoupt Clasa; (in
fact, notice that this result is contained &) Theorem 2.7]).
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