A NOTE ON MULTIPLIERS OF *L ^p(G, A)*

SERAP OZTOP ¨

(Received 18 December 2000; revised 25 October 2001)

Communicated by A. H. Dooley

Abstract

Let *G* be a locally compact abelian group, $1 < p < \infty$, and *A* be a commutative Banach algebra. In this paper, we study the space of multipliers on $L^p(G, A)$ and characterize it as the space of multipliers of certain Banach algebra. We also study the mul[tipliers](http://www.austms.org.au/Publ/JAustMS/V74P1/q99.html) [spa](http://www.austms.org.au/Publ/JAustMS/V74P1/q99.html)ce on $L^1(G, A) \cap L^p(G, A)$.

2000 *Mathematics subject classification*: primary 43A22.

1. Introduction and preliminaries

Let *G* be a locally compact abelian group with Haar measure, *A* be a commutative Banach algebra with identity of norm 1. Denote by $L^1(G, A)$ the space of all Bochner integrable *A*-valued functions defined on *G*. It is a commutative Banach algebra under convolution and has an approximate identity in $C_c(G, A)$ of norm 1, $L^p(G, A)$ is the set of all strong measurable functions $f : G \to A$ such that $|| f(x)||_A^p$ is integrable for $1 \leq p < \infty$, that is, $|| f(x) ||_A^p \in L^1(G)$. The norm of a function f in $L^p(G, A)$ is defined as

$$
\|f\|_{L^p(G,A)} = \left(\int_G \|f(x)\|_A^p dx\right)^{1/p} \quad 1 \le p < \infty.
$$

It follows that $L^p(G, A)$ is a Banach space for $1 \leq p < \infty$ and $L^p(G, A)$ is an essential $L^1(G, A)$ -module under convolution such that for $f \in L^1(G, A)$ and $g \in L^p(G, A)$, we have

$$
|| f * g ||_{L^p(G,A)} \leq || f ||_{L^1(G,A)} || g ||_{L^p(G,A)}.
$$

This work was supported by the Research Fund of Istanbul University. Project No. B–966/10052001. c 2003 Australian Mathematical Society 1446-8107/03 \$A2:00 + 0:00

Denote by $C_c(G, A)$ the space of all *A*-valued continuous functions with compact support. $C_c(G, A)$ is dense in $L^p(G, A)$ (for more details see [2, 6, 7]).

For each $f \in L^1(G, A)$, define the mapping T_f by $T_f(g) = f * g$ whenever $g \in L^p(G, A)$. T_f is an element of $\ell(L^p(G, A))$, Banach algebra of all continuous linear operators from $L^p(G, A)$ to $L^p(G, A)$, and $||T_f|| \leq ||f||_{L^1(G, A)}$. Identifying *f* with T_f , we get an embedding of $L^1(G, A)$ $L^1(G, A)$ in $\ell(L^p(G, A))$. [Let](#page-8-0) $H_{L^1(G, A)}(L^p(G, A))$ $H_{L^1(G, A)}(L^p(G, A))$ denote the space of all module homomorphisms of $L^1(G, A)$ -module $L^p(G, A)$, that is, an operator *T* ∈ $\ell(L^p(G, A))$ satisfies $T(f * g) = f * T(g)$ for each $f \in L^1(G, A)$, $g \in L^p(G, A)$.

The module homomorphisms space, called the *multipliers space*

$$
H_{L^1(G,A)}(L^p(G,A)),
$$

is an essential $L^1(G, A)$ -module by $(f \circ T)(g) = f * T(g) = T(f * g)$ for all $g \in L^p(G, A)$.

Let *A* be a Banach algebra without order, for all $x \in A$, $xA = Ax = \{0\}$ implies $x = 0$. Obviously if *A* has an identity or an approximate identity then it is without order. A multiplier of *A* is a mapping $T : A \rightarrow A$ such that

$$
T(fg) = fT(g) = (Tf)g, \quad (f, g \in A).
$$

By *M*.*A*/ we denote the collection of all multipliers of *A*. Every multiplier turns out to be a bounded linear operator on *A*. If *A* is a commutative Banach algebra without order, $M(A)$ is a commutative operator algebra and $M(A)$ is called the multiplier algebra of *A* [15].

In this paper we are interested in the relationship between the multipliers $L^1(G, A)$ module and the multipliers on a certain normed (or Banach) algebra. The multipliers of type (p, p) and multipliers of the group L^p -algebras were studied and developed by many aut[hors](#page-9-0). Let us mention McKennon [10, 11] Griffin [5], Feichtinger [3] and Fisher [4]. In these studies, a multiplier is defined to be an invariant operator (a bounded linear operator *T* commutes with translation). In the case of a scalar function space on *G*, the multipliers are identified with the translation invariant operators. However, in the Banach-valued function spaces, [an](#page-8-3) [inva](#page-9-1)riant ope[ra](#page-8-4)tor does not ne[ed](#page-8-5) to be a mul[tip](#page-8-6)lier [8, 14]. Dutry [1] gave a new proof of the identification theorem concerning multipliers of $L^1(G)$ -module and of Banach algebra. His ideas are used in this paper for the generalization of the results of McKennon concerning multipliers of type (p, p) to the Banach-valued function spaces.

We briefly desc[rib](#page-8-7)[e](#page-9-2) [th](#page-9-2)e conten[t](#page-8-8) [o](#page-8-8)f this paper. In Section 2 we construct the *p*temperate functions space for the Banach-valued function spaces whenever $1 < p <$ ∞ and study their basic properties. In Section 3 we characterize the multipliers spac[e](#page-2-0) of $L^p(G, A)$ as a ce[r](#page-2-0)tain Banach algebra and extend the results of McKennon to Banach-valued space. In Section 4 we study the multipliers space of $L^1(G, A) \cap$ $L^p(G, A)$.

2. The $L_p^t(G, A)$ [sp](#page-6-0)ace and its basic properties

Let *G* be a locally compact abelian group with Haar measure, *A* a commutative Banach algebra with identity of norm 1.

DEFINITION 2.1. An element $f \in L^p(G, A)$ is called *p*-temperate function if

$$
||f||_{L^p(G,A)}^t = \sup{||g * f||_{L^p(G,A)} | g \in L^p(G,A), ||g||_{L^p(G,A)} \le 1} < \infty
$$

or

$$
||f||_{L^p(G,A)}^t = \sup{||g * f||_{L^p(G,A)} | g \in C_c(G,A), ||g||_{L^p(G,A)} \le 1} < \infty.
$$

The space of all such *f* is denoted by $L_p^t(G, A)$. It is easy to see that

$$
\left(L^t_p(G,A),\|\cdot\|_{_{L^p(G,A)}}^t\right)
$$

is a normed space. For each $f \in L_p^{\prime}(G, A)$, there is precisely one bounded linear operator on $L^p(G, A)$, denoted by W_f , such that

(2.1) $W_f(g) = g * f$ and $||W_f|| = ||f||_{L^p(G,A)}^t$.

It is easy to check that $W_f \in H_{L^1(G,A)}(L^p(G,A)).$

PROPOSITION 2.2. $L^t_p(G, A)$ *is a dense subspace of* $L^p(G, A)$ *.*

PROOF. Since each $f \in C_c(G, A)$ belongs to $L_p^t(G, A)$ and $C_c(G, A)$ is dense in $L^p(G, A)$, the proof is completed. \Box

LEMMA 2.3. *The space* $L_p^t(G, A)$ *is a normed algebra under the convolution.*

PROOF. By (2.1) we get

$$
\|f * g\|_{L^{p}(G,A)}^{t} = \sup_{\|h\|_{L^{p}(G,A)} \leq 1} \|h * (f * g)\|_{L^{p}(G,A)} = \sup_{\|h\|_{L^{p}(G,A)} \leq 1} \|W_{g}(h * f)\|_{L^{p}(G,A)}
$$

$$
\leq \|W_{g}\| \sup_{\|h\| \leq 1} \|h * f\|_{L^{p}(G,A)} = \|g\|_{L^{p}(G,A)}^{t} \|f\|_{L^{p}(G,A)}^{t}
$$

for all *f* and *g* in $L_p^t(G, A)$. Hence $(L_p^t(G, A), \| \cdot \|_{L^p(G, A)}^t)$ is a normed algebra. Let us notice that

$$
(2.2) \t W_{f*g} = W_f \circ W_g = W_g \circ W_f
$$

for all *f* and *g* in $L_p^t(G, A)$. Moreover, the closed linear subspace of $\ell(L^p(G, A))$ spanned by $\{W_{f*g} \mid f \in L_p^t(G, A), g \in C_c(G, A)\}$ is denoted by $\Lambda_{L^p(G, A)}$. \Box

THEOREM 2.4. *The space* $\Lambda_{L^p(G,A)}$ *is a complete subalgebra of* $H_{L^1(G,A)}(L^p(G,A))$ *and it has a minimal approximate identity, that is, a net* (T_α) *such that* $\overline{\lim}_\alpha ||T_\alpha|| \leq 1$ *and* $\lim_{\alpha} \|T_{\alpha} \circ T - T\| = 0$ *for all* $T \in \Lambda_{L^p(G,A)}$ *.*

PROOF. Let $f \in L_p^{\prime}(G, A)$, then $W_f \in \ell(L^p(G, A))$. Since $L^p(G, A)$ is a $L^1(G, A)$ -module we have

$$
W_f(g * h) = g * h * f = g * W_f(h)
$$

for all $g \in L^1(G, A)$ and $h \in L^p(G, A)$.

Thus W_f belongs to $H_{L^1(G,A)}(L^p(G,A))$. Since $H_{L^1(G,A)}(L^p(G,A))$ is a Banach algebra under the usual operator norm, $\Lambda_{L^p(G,A)}$ is a complete subalgebra of $H_{L^1(G,A)}(L^p(G,A)).$

Now we only need to prove the existence of minimal approximate identity of $\Lambda_{L^p(G,A)}$. Let (Φ_{U_α}) be a minimal approximate identity for $L^1(G,A)$ [2]. If (Φ_α) denotes the product net of $(\Phi_{U_{\alpha}})$ with itself, then (Φ_{α}) is again minimal approximate identity for $L^1(G, A)$. It is easy to see that the net $W_{\Phi_{\alpha}}$ is in $\Lambda_{L^p(G, A)}$ and lim_{α} $\|W_{\Phi_{\alpha}}\| \leq 1$.

Let $f \in L_p^{\prime}(G, A)$ [a](#page-8-0)nd $g \in C_c(G, A)$. Since (2.2) and (Φ_{α}) i[s](#page-8-0) a minimal approximate identity for $L^1(G, A)$, we get

$$
\overline{\lim_{\alpha}} \| W_{\phi_{\alpha}} \circ W_{f*g} - W_{f*g} \| = \overline{\lim_{\alpha}} \| (W_{\phi_{\alpha}} \circ W_g - W_g) \circ W_f \| \le \overline{\lim_{\alpha}} \| W_{g*\phi_{\alpha} - g} \| \| W_f \|
$$

$$
\le \overline{\lim_{\alpha}} \| g * \Phi_{\alpha} - g \|_{L^1(G,A)} \| W_f \| = 0.
$$

Consequently, we have $\overline{\lim}_{\alpha} ||W_{\phi_{\alpha}} \circ T - T|| = 0$ for all $T \in \Lambda_{L^p(G,A)}$.

PROPOSITION 2.5. *The space* $\Lambda_{L^p(G,A)}$ *is an essential* $L^1(G, A)$ *-module.*

PROOF. Let $g \in L^1(G, A)$, $W_f \in \Lambda_{L^p(G, A)}$. Define $g \circ W_f : L^p(G, A) \to L^p(G, A)$ $\text{by letting } (g \circ W_f)(h) = W_f(h * g) = W_f(g * h) \text{ for each } h \in L^p(G, A).$

$$
\|g \circ W_f\| = \sup_{\|h\|_{L^p(G,A)} \le 1} \|W_f(g*h)\|_{L^p(G,A)} \le \|f\|_{L^p(G,A)}^t \|g\|_{L^1(G,A)}.
$$

Consequently, $\Lambda_{L^p(G,A)}$ is a $L^1(G,A)$ -module. On the other hand, since $L^1(G,A)$ has a minimal approximate identity (Φ_{α}) , $(\Phi_{\alpha} \ge 0)$ with a compact support such that it is also an approximate identity in $L^p(G, A)$, [2].

For any $W_f \in \Lambda_{L^p(G,A)}$, we have

$$
\begin{aligned} \|\Phi_{\alpha} \circ W_f - W_f\| &= \sup_{\|h\|_{L^p(G,A)} \le 1} \|(\Phi_{\alpha} \circ W_f - W_f)(h)\|_{L^p(G,A)} \\ &= \sup_{\|g\|_{L^p(G,A)} \le 1} \|W_f(\Phi_{\alpha} * h - h)\|_{L^p(G,A)} \\ &\le \|f\|_{L^p(G,A)}^t \|\Phi_{\alpha} * h - h\|_{L^p(G,A)} = 0 \end{aligned}
$$

for all $h \in L^p(G, A)$. Using [13, Proposition 3.4] we have that $\Lambda_{L^p(G, A)}$ is an essential $L^1(G, A)$ -module. Moreover, $\Lambda_{L^p(G, A)}$ contains $L^1(G, A)$. \Box

3. Identification for th[e m](#page-9-3)ultipliers spaces of $L^1(G, A)$ **-module with the multipliers space of certain normed algebra**

In this section, we obtain the generalization of the results of McKennon [10, 11, 12] to the Banach-valued spaces.

PROPOSITION 3.1. *Let T be in* $H_{L^1(G,A)}(L^p(G,A))$ *and* $f, g \in L^p(G, A)$ *. Then,*

- (i) *if* $f \in L_p^t(G, A), T(f) \in L_p^t(G, A);$
- (ii) *if* $g \in L_p^t(G, A)$, $T(f * g) = f * T(g)$.

PROOF. (i) Let *f* be in $L_p^t(G, A)$. By the definition $T \in H_{L^1(G, A)}(L^p(G, A)),$

$$
\begin{aligned} \|T(f)\|_{L^p(G,A)}^t &= \sup\{\|h * T(f)\|_{L^p(G,A)} \mid h \in C_c(G,A), \|h\|_{L^p(G,A)} \le 1\} \\ &= \sup\{\|T(h * f)\|_{L^p(G,A)} \mid h \in C_c(G,A), \|h\|_{L^p(G,A)} \le 1\} \\ &\le \|T\| \|f\|_{L^p(G,A)}^t < \infty. \end{aligned}
$$

Hence we get $T(f) \in L_p^t(G, A)$.

To prove (ii), let *g* be in $L_p^t(G, A)$. Since $C_c(G, A)$ is dense in $L^p(G, A)$, for each $f \in L^p(G, A)$ there exists $(f_n) \subset C_c(G, A)$ such that $\lim_n ||f_n - f||_{L^p(G, A)} = 0$. From (2.1) we get $\lim_{n} || f_n * g - f * g ||_{L^p(G,A)} = 0$. By (i) we have

$$
\lim_{n} \|f_{n} * T(g) - f * T(g)\|_{L^{p}(G,A)} = 0
$$

and $f * T(g) = \lim_{n} f_n * T(g) = \lim_{n} T(f_n * g) = T(f * g)$ $f * T(g) = \lim_{n} f_n * T(g) = \lim_{n} T(f_n * g) = T(f * g)$ $f * T(g) = \lim_{n} f_n * T(g) = \lim_{n} T(f_n * g) = T(f * g)$.

DEFINITION 3.2. For the space $\Lambda_{L^p(G,A)}$, the space $(\Lambda_{L^p(G,A)})$ is defined by

 $(\Lambda_{L^p(G,A)}) = \{T \in H_{L^1(G,A)}(L^p(G,A)) \mid T \circ W \in \Lambda_{L^p(G,A)}, \text{ for all } W \in \Lambda_{L^p(G,A)}\}.$

LEMMA 3.3. *The space* $(\Lambda_{L^p(G,A)})$ *is equal to the space* $H_{L^1(G,A)}(L^p(G,A)).$

PROOF. Let $T \in H_{L^1(G,A)}(L^p(G,A))$. For any $S \in \Lambda_{L^p(G,A)}$, we have $S = W_{f *g}$, for each $f \in L_p^t(G, A)$, $g \in C_c(G, A)$. By Proposition 3.1 we get

$$
(T \circ W_{f*g})(h) = T(h * f * g) = h * T(f * g) = W_{T(f * g)}(h) = W_{g * T(f)}(h)
$$

for all $h \in L^p(G, A)$. Thus $T \circ S \in \Lambda_{L^p(G, A)}$. Consequ[ently](#page-4-0),

$$
(\Lambda_{L^p(G,A)}) = H_{L^1(G,A)}(L^p(G,A)).
$$

Let us note that we have the inclusion $M(\Lambda_{L^p(G,A)}) \subset H_{L^1(G,A)}(\Lambda_{L^p(G,A)}).$

THEOREM 3.4. Let G be a locally compact abelian group, $1 < p < \infty$, and A *be a commutative Banach algebra with identity of norm* 1*. The space of multipliers on Banach algebra* $\Lambda_{L^p(G,A)}, M(\Lambda_{L^p(G,A)})$ *, is isometrically isomorphic to the space* $(\Lambda_{L^p(G,A)}).$

PROOF. Define the mapping $F : \Lambda_{L^p(G,A)} \to M(\Lambda_{L^p(G,A)})$ by letting $F(T) = \rho_T$ for each $T \in \Lambda_{L^p(G,A)}$, where $\rho_T(S) = T \circ S$ for all $S \in \Lambda_{L^p(G,A)}$. Note that F is well defined and moreover if $\rho_T(S \circ K) = T \circ S \circ K = \rho_T(S) \circ K$ for all $S, K \in \Lambda_{L^p(G,A)}$, $\rho_T \in M(\Lambda_{L^p(G,A)}).$

It is obvious that the mapping $T \to \rho_T$ is linear. We now show that it is an isometry. We obtain easily $||T|| \ge ||\rho_T||$. Since $W_{\Phi_{\alpha}}$ is a minimal approximate identity for the space $\Lambda_{L^p(G,A)}$, we have

$$
\|\rho_T\| = \sup_{S \in \Lambda_{L^p(G,A)}} \frac{\|T \circ S\|}{\|S\|} \ge \sup_{\alpha} \frac{\|T \circ W_{\Phi_{\alpha}}\|}{\|W_{\Phi_{\alpha}}\|} \ge \|T\|.
$$

Therefore, $\|\rho_T\|=\|T\|.$

Finally, we show that the mapping $T \to \rho_T$ is onto. It is sufficient to show that if ρ is an element of $M(\Lambda_{L^p(G,A)})$, the limit of $\rho \Phi_\alpha$ exists for the strong operator topology and this limit *T* satisfies $\rho_T = \rho$. Let ρ be in $M(\Lambda_{L^p(G,A)})$ and $(\Phi_\alpha) \subset L^1(G,A)$. By $\rho \Phi_{\alpha}(f * g) = \rho (\Phi_{\alpha} * f)g$, we have

(3.1)
$$
\lim_{\alpha} (\rho \Phi_{\alpha})(f * g) = \rho f(g)
$$

for all $f \in L^1(G, A)$, $g \in L^p(G, A)$. Since $L^p(G, A)$ is an essential $L^1(G, A)$ module, the limit of $(\rho \Phi_{\alpha})(f * g)$ exists in $L^p(G, A)$ and is denoted by Tg , and *T g* ∈ *H*_{*L*¹(*G*,*A*)(*L^p*(*G*, *A*)). From (3.1) we get, for all *f* ∈ *L*¹(*G*, *A*),}

$$
(3.2) \t\t f \circ T = \rho f.
$$

So for all $W \in \Lambda_{L^p(G,A)}$ we have

(3.3)
$$
T \circ \Phi_{\alpha} \circ W = (\rho \Phi_{\alpha}) \circ W = \rho (\Phi_{\alpha} \circ W).
$$

Since $\Lambda_{L^p(G,A)}$ is an essential $L^1(G,A)$ -module, we have $T \circ W = \rho(W)$ and also $\rho_T(W) = \rho(W)$ for all $W \in \Lambda_{L^p(G,A)}$. So $\rho_T = \rho$. \Box

COROLLARY 3.5. *The following spaces of multipliers are isometrically isomorphic*: $M(\Lambda_{L^p(G,A)}) \cong H_{L^1(G,A)}(L^p(G,A)).$

REMARK 3.6. (i) Let $p = 1$. Since $L_1^t(G, A)$ is a Banach algebra, it follows that $L_1^t(G, A) = L^1(G, A)$ and $\Lambda_{L^p(G, A)}$ is isomorphic to $L^1(G, A)$ as a Banach algebra. Thus by [14] we get $H_{L^1(G,A)}(L^p(G,A)) = M(L^1(G,A)) = M(G,A)$. Here $M(G, A)$ denotes A-valued bounded measure space.

(ii) If $A = \emptyset$ we have the case of the scalar valued function space in [10, 11].

4. The identification for the space $L^1(G, A) \cap L^p(G, A)$

Before starting the identification, let us mention some properties of the space $L^1(G, A) \cap L^p(G, A)$.

If $1 < p < \infty$, then the space $L^1(G, A) \cap L^p(G, A)$ is a Banach space with the $\lim_{h \to \infty} \|f\| = \|f\|_{L^1(G,A)} + \|f\|_{L^p(G,A)}$ for $f \in L^1(G,A) \cap L^p(G,A).$

LEMMA 4.1. *For* $L^1(G, A) ∩ L^p(G, A)$,

(i) $L^1(G, A) \cap L^p(G, A)$ is dense in $L^1(G, A)$ with respect to the norm $\|\cdot\|_{L^1(G, A)}$. (ii) *For every* $f \in L^1(G, A) \cap L^p(G, A)$ and $x \in G$, $x \to L_x f$ is continuous, *where* $L_x f(y) = f(x^{-1}y)$ *for all* $y \in G$.

PROOF. (i) Since $C_c(G, A)$ is dense in $L^1(G, A)$ with respect to the norm $\|\cdot\|_{L^1(G, A)}$ and $C_c(G, A) \subset L^1(G, A) \cap L^p(G, A) \subset L^1(G, A)$ it is obtained.

(ii) Let $f \in L^1(G, A) \cap L^p(G, A)$. It is easy to see that $||L_x f|| = ||f||$. By [2] the function $x \to L_x f$ is continuous, $G \to L^p(G, A)$, where $1 \leq p < \infty$. Therefore for any $x_{\circ} \in G$ and $\epsilon > 0$, there exists $U_1 \in \vartheta_{(x_{\circ})}$ and $U_2 \in \vartheta_{(x_{\circ})}$ such that for every $x \in U_1$

$$
||L_x f - L_{x_{\circ}} f||_{L^p(G, A)} < \epsilon/2
$$

and for every $x \in U_2$

$$
||L_x f - L_{x} f||_{L^1(G,A)} < \epsilon/2.
$$

Set $V = U_1 \cap U_2$, then for all $x \in V$, we have $||L_x f - L_x f|| < \epsilon$.

PROPOSITION 4.2. *The space* $L^1(G, A) \cap L^p(G, A)$ *has a minimal approximate identitiy in* $L^1(G, A)$ *.*

LEMMA 4.3. *The space* $L^1(G, A) \cap L^p(G, A)$ *is an essential* $L^1(G, A)$ *-module.*

PROOF. Let $f \in L^1(G, A)$ and $g \in L^1(G, A) \cap L^p(G, A)$. Since $L^p(G, A)$ is an $L^1(G, A)$ -module, we have

 $|| f * g || = || f * g ||_{L^1(G,A)} + || f * g ||_{L^p(G,A)} \leq || f || || g ||.$

By [13, Proposition 3.4] we get that $L^1(G, A) \cap L^p(G, A)$ is an essential $L^1(G, A)$ module. \Box

PROPOSITION 4.4. $L^1(G, A) \cap L^p(G, A)$ *is a Banach ideal in* $L^1(G, A)$ *.*

PROPOSITION 4.5. $L^1(G, A) \cap L^p(G, A)$ *is a Banach algebra with the norm* $\| \cdot \|$ *.*

PROOF. For any $f, g \in L^1(G, A) \cap L^p(G, A)$, using the inequality

 $\|\cdot\|_{L^1(G,A)} \leq \|\cdot\|,$

we get that $|| f * g || \le || f || ||g||$.

COROLLARY 4.6. *The space* $L^1(G, A) \cap L^p(G, A)$ *is a Segal algebra.*

PROOF. By Lemma 4.1 and Proposition 4.5 we obtain that $L^1(G, A) \cap L^p(G, A)$ is a Segal algebra. \Box

We now return to Section 3 to mention the multipliers of $L^1(G, A) \cap L^p(G, A)$. Since $L^1(G, A) \cap L^p(G, A)$ $L^1(G, A) \cap L^p(G, A)$ $L^1(G, A) \cap L^p(G, A)$ is an $L^1(G, A)$ [-m](#page-7-0)odule and a Banach algebra, then we get easily $M(L^1(G, A) \cap L^p(G, A)) \cong H_{L^1(G, A)}(L^1(G, A) \cap L^p(G, A)).$

PROPOSITION 4.7. $H_{L^1(G,A)}(L^1(G,A) \cap L^p(G,A))$ $H_{L^1(G,A)}(L^1(G,A) \cap L^p(G,A))$ $H_{L^1(G,A)}(L^1(G,A) \cap L^p(G,A))$ *is an essential Banach module over* $L^1(G, A)$ *.*

PROOF. Let $f \in L^1(G, A)$ and $T \in H_{L^1(G, A)}(L^1(G, A) \cap L^p(G, A))$. Define the operator *f T* on $L^1(G, A) \cap L^p(G, A)$ by $(fT)(g) = T(f * g)$ for all $f \in L^1(G, A) \cap L^p(G, A)$ $L^p(G, A)$. By Proposition 4.5 *T* is well defined. Then $H_{L^1(G, A)}(L^1(G, A) \cap L^p(G, A))$ is an $L^1(G, A)$ -module. Let (Φ_{α}) be a minimal approximate identity for $L^1(G, A)$ and *T* be in $H_{L^1(G,A)}(L^1(G,A) \cap L^p(G,A))$. We have

$$
\lim_{\alpha} \|\Phi_{\alpha} \circ T - T\| = 0.
$$

By [13, Proposition 3.4], we have that $H_{L^1(G,A)}(L^1(G,A) \cap L^p(G,A))$ is an essential Banach module over $L^1(G, A)$. \Box

Define \wp to be the closure of $L^1(G, A)$ in $H_{L^1(G, A)}(L^1(G, A) \cap L^p(G, A))$ for the ope[rato](#page-9-3)r norm. Evidently,

 $H_{L^1(G,A)}(L^1(G,A)\cap L^p(G,A))=(H_{L^1(G,A)}(L^1(G,A)\cap L^p(G,A)))_e=\wp=(\wp)_e,$

where $\langle \cdot \rangle_e$ denotes the essential part and we have

$$
H_{L^1(G,A)}(L^1(G,A)\cap L^p(G,A))=(\wp).
$$

Here (\wp) is defined as the space of the elements $T \in H_{L^1(G,A)}(L^1(G,A) \cap L^p(G,A))$ such that $T \circ \wp \subset \wp$.

Using the same method as in Theorem 3.4 we get the following lemma.

LEMMA 4.8. *The multipliers space of Banach algebra*} *is isometrically isomorphic to the space* (\wp) *.*

We also get the following corollary.

 C OROLLARY 4.9. $H_{L^1(G,A)}(L^1(G,A) \cap L^p(G,A)) \cong M(\wp).$

So the multipliers space of $L^1(G, A) \cap L^p(G, A)$ can be identified with the multipliers space of the closure of $L^1(G, A)$ in $H_{L^1(G, A)}(L^1(G, A) \cap L^p(G, A))$.

REMARK 4.10. (i) It is evident that every measure $\mu \in M(G, A)$ defines multiplier for $L^1(G, A) \cap L^p(G, A)$, $1 \lt p \lt \infty$. This is obvious from the fact that $\|\mu * f\| \le \|\mu\| \|f\|, f \in L^1(G, A) \cap L^p(G, A).$

On the other hand, for $\mu \in M(G, A)$, we have $\mu \circ L^1(G, A) \subset L^1(G, A)$, the inclusion in the space $H_{L^1(G,A)}(L^1(G,A) \cap L^p(G,A)).$

Hence, $\mu \circ \wp \subset \wp$, thus $M(G, A)$ can be embeded into (\wp) .

(ii) If $A = \mathcal{L}$ and *G* is a noncompact locally compact abelian, we have the more general result than the Corollary 3.5.1 in Larsen [9].

References

- [1] C. Datry, *Multiplicateurs d'un L*¹.*G*/*-module de Banach consideres comme multiplicateurs d'une certaine algebre de Banach `* (Groupe de travail d'Analyse Harmonique, Institut Fourier, Grenoble, 1981).
- [2] N. Dinculeanu, *Integration on locally compact spaces* (Nordhoff, The Netherlands, 1974).
- [3] H. Feichtinger, 'Multipliers of Banach spaces of functions on groups', *Math. Z.* **152** (1976), 47–58.
- [4] M. J. Fisher, 'Properties of three algebras related to *L ^p*-multipliers', *Bull. Amer. Math. Soc.* **80** (1974), 262–265.
- [5] J. Griffin and K. McKennon, 'Multipliers and group L^p algebras', *Pacific J. Math.* **49** (1973), 365–370.
- [6] G. P. Johnson, 'Spaces of functions with values in a Banach algebra', *Trans. Amer. Math. Soc.* **92** (1959), 411–429.
- [7] H. C. Lai, 'Multipliers of Banach-valued function spaces', *J. Austral. Math. Soc. (Ser. A)* **39** (1985), 51–62.
- [8] H. C. Lai and T. K. Chang, 'Multipliers and translation invariant operators', *Tohoku Math. J.* **41** (1989), 31–41.
- [9] R. Larsen, *An introduction to the theory of multipliers* (Springer, Berlin, 1971).
- [10] K. McKennon, 'Multipliers of type (p, p) ', *Pacific J. Math.* **43** (1972), 429–436.
- $[11]$ \longrightarrow , 'Multipliers of type (p, p) and multipliers of group L^p algebras', *Pacific J. Math.* 45 (1972), 297–302.
- [12] , 'Corrections to [10, 11] and [5]', *Pacific J. Math.* **61** (1975), 603–606.
- [13] M. Rieffel, 'Induced Banach representations of Banach algebras and locally compact groups', *J. Funct. Anal.* **1** (1967), 443–491.
- [14] U. B. Tewari, M. Dutta and D. P. Vaidya, 'Multipliers of group algebra of vector-valued functions', *Proc. Amer. Math. Soc.* **81** ([198](#page-9-1)1), 2[23–](#page-8-4)229.
- [15] J. K. Wang, 'Multipliers [of](#page-8-3) [c](#page-8-3)ommutative Banach algebras', *Pacific J. Math.* **11** (1961), 1131–1149.

Istanbul University

Faculty of Sciences

Department of Mathematics

34459 Vezneciler/Istanbul

Turkey

e-mail: serapoztop@hotmail.com, oztops@istanbul.edu.tr