J. Aust. Math. Soc.  74 (2003), 35-42
On the geometry of $L^p(\mu)$ with applications to infinite variance processes

R. Cheng
  ECI Systems and Engineering
  596 Lynnhaven Parkway
  Virginia Beach, VA 23452
  USA
  rayc@ecihq.com
A. G. Miamee
  Department of Mathematics
  Hampton University
  Hampton, VA 23668
  USA
  abolghassem.miamee@hamptonu.edu
and
M. Pourahmadi
  Division of Statistics
  Northern Illinois University
  DeKalb, Ill. 60115
  USA
  pourahm@math.niu.edu


Abstract
Some geometric properties of $L^p$ spaces are studied which shed light on the prediction of infinite variance processes. In particular, a Pythagorean theorem for $L^p$ is derived. Improved growth rates for the moving average parameters are obtained.
Download the article in PDF format (size 70 Kb)

TeXAdel Scientific Publishing ©  Australian MS