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Abstract

In this paper we obtain some normality criteria of families of meromorphic functions, which improve and
generalize the related results of Gu and Bergweiler, respectively. Some examples are given to show the
sharpness of our results.
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1. Introduction

Let D be a domain inC, andF be a family of meromorphic functions defined inD.
F is said to be normal inD, in the sense of Montel, if for any sequencefn ∈ F there
exists a subsequencefn j

, such thatfn j
converges spherically locally uniformly inD,

to a meromorphic function or∞.
In 1979, Gu [5] proved the following well-known normality criterion, which was a

conjecture of Hayman [8].

THEOREM G. LetF be a family of meromorphic functions defined inD, and let
k be a positive integer. If, for every functionf ∈ F , f 6= 0; f .k/ 6= 1, thenF is
normal.

Recently, Bergweiler [2] improved the above result for the casek = 1, by allowing
f to have zeros, but restricting the valuesf ′ can take at the zeros off .

THEOREM B. Let K and " be positive numbers, and letF be the family of all
functions meromorphic inD which satisfy the following conditions:
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.i/ If z ∈ D, then f ′.z/ 6= 1.
.ii/ If z ∈ D, and f .z/ = 0, then0< | f ′.z/| ≤ K :
.iii / If 1 is a disk inD and if f hasm ≥ 2 zerosz1; z2; : : : ; zm ∈ 1, then there

existsk ∈ {−1}⋃{1; : : : ;m − 2} such that
∣∣∑m

i =1 f ′.zi /
k − mk+1

∣∣ ≥ ".

ThenF is normal inD.

A natural problem arises:what can we say iff ′ is replaced byk-th derivative f .k/

in TheoremB? In this paper, we obtain the following results, which improve and
generalize TheoremG and TheoremB.

For the casek ≥ 3, we have

THEOREM 1. Let k be a positive integer such thatk ≥ 3 and K be a positive
number. LetF be a family of meromorphic functions in a domainD anda.z/ be a
non-vanishing analytic function inD. Suppose that, for every functionf ∈ F , f has
only zeros of multiplicity at leastk and satisfies the following conditions:

(a) If z ∈ D, then f .k/.z/ 6= a.z/.
(b) If z ∈ D and f .z/ = 0, then0< | f .k/.z/| ≤ K .

ThenF is normal inD.

REMARK 1. Theorem1 shows that fork ≥ 3 the conclusion of TheoremB is still
valid without the condition such as (iii).

The following example shows that condition (b) cannot be omitted in Theorem1.

EXAMPLE 1 (see [11]). Let n; k ∈ N; D = {z : |z| < 1}, andan.n = 1;2; : : : /
satisfy.k!ak+1

n /=n = 1. Set

F =
{
.anz + 1/k+1

nz
;n = 1;2; : : : ; z ∈ D

}
:

Then for eachfn.z/ ∈F , fn.z/ = .anz + 1/k+1=.nz/, we have

(1) the zeros offn.z/ are of multiplicity at leastk + 1;
(2) f .k/n .z/ 6= 1:

But F is not normal inD. In fact, for eachfn.z/ ∈ F , by a simple computation,
we deduce thatf #

n .0/ = n → ∞, asn → ∞: By Marty’s criterion,F is not normal
in D.

For k = 2, Theorem1 is not valid. But we have the following two results.

THEOREM 2. Let K be a positive number. LetF be a family of meromorphic
functions in a domainD anda.z/ be a non-vanishing analytic function inD. Suppose
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that, for every functionf ∈ F , f has only zeros of multiplicity at least2 and satisfies
the following conditions:

(a) If z ∈ D, then f ′′.z/ 6= a.z/.
(b) If z ∈ D and f .z/ = 0, then| f ′′.z/| ≤ K .
(c) All poles of f are of multiplicity at least3.

ThenF is normal inD.

The following example shows that condition (c) in Theorem2 is necessary and the
number 3 is sharp.

EXAMPLE 2. Let D = {z : |z| < 1} and

F =
{
.nz+ 1/2.z − 1=n/2

2n2z2
;n = 2;3; : : : ; z ∈ D

}
:

Then for eachfn.z/ ∈F ; fn.z/ = .nz+ 1/2.z − 1=n/2=.2n2z2/, we have

(1) f ′′
n .z/ = 1 + 3=.n4z4/, thenf ′′

n .z/ 6= 1.
(2) z1 = 1=n, z2 = −1=n are the zeros offn.z/ of multiplicity 2 in D, and

| f ′′
n .zi /| = 4 (i = 1;2).

However,F is not normal inD. In fact, for eachfn.z/ ∈ F , we have

f #
n

(
2

n

)
= 384

145
n3 → ∞;

asn → ∞: Then by Marty’s criterion,F is not normal inD.

THEOREM 3. Let K be a positive number. LetF be a family of meromorphic
functions in a domainD anda.z/ be a non-vanishing analytic function inD. Suppose
that, for every functionf ∈ F , f has only zeros of multiplicity at least2 and satisfies
the following conditions:

(1) If z ∈ D, then f ′′.z/ 6= a.z/.
(2) If z ∈ D and f .z/ = 0, then| f ′′.z/| ≤ K .
(3) If 1 is a disk inD and if f hasm ≥ 3 zerosz1; z2; : : : ; zm ∈ 1, then there exists

h ∈ {1;2; : : : ;m − 2} such that
∣∣ ∑m

i =1 f ′′.zi /
h − mh+1

∣∣ ≥ ".

ThenF is normal inD.

REMARK 2. If f has only zeros of multiplicity at least 3 in Theorem2 and The-
orem 3, it is obvious that condition (b) can be omitted. In fact, Wang and Fang
[11] proved that: LetF be a family of meromorphic functions defined inD. If for
every function f ∈ F , f has only zeros of multiplicity at least 3 and only poles of
multiplicity at least 2 andf ′′ 6= 1, thenF is normal.
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For k = 1, we obtain the following result, which is a generalization of TheoremB.

THEOREM 4. Let K , " be positive numbers,a.z/ be a non-vanishing analytic func-
tion in D, and letF be the family of all functions meromorphic inD which satisfy
the following conditions:

.i/ If z ∈ D, then f ′.z/ 6= a.z/.
.ii/ If z ∈ D, and f .z/ = 0, then0< | f ′.z/| ≤ K :
.iii / If 1 is a disk inD and if f hasm ≥ 2 zerosz1; z2; : : : ; zm ∈ 1, then there

existsk ∈ {−1}⋃{1; : : : ;m − 2} such that
∣∣∑m

i =1 f ′.zi /
k − mk+1

∣∣ ≥ ".

ThenF is normal inD.

2. Some lemmas

To prove our results, we need some lemmas.

LEMMA 1 ([3]). Let f be meromorphic inC and of finite order. Iff has only finitely
many critical values, thenf has only finitely many asymptotic values.

The following lemma is due to Rippon and Stallard ([10]; see also [1]).

LEMMA 2. Let f be meromorphic inC and suppose that the set of all finite critical
and asymptotic values off is bounded. Then there existsR > 0 such that if|z| > R
and| f .z/| > R, then

| f ′.z/| ≥ | f .z/| log | f .z/|
16³ |z| :

LEMMA 3 ([11]). Let f .z/ = anzn + an−1zn−1 + · · · + a0 + q.z/=p.z/, where
a0;a1; : : : ;an are constants,p.z/ and q.z/ are two coprime polynomials with
degq.z/ < degp.z/, and letk be a positive integer. Iff .k/.z/ 6= 1, then

f .z/ = 1

k!zk + · · · + a0 + b

.z − c/m
;

whereb .6= 0/, c are two constants andm ∈ N.

We denote the residue of a meromorphic functionf at a pointz by res. f; z/. By
an elementary computation, we have

LEMMA 4 (see also [2]). Let f .z/ = z + a + b=.z − c/l with a;b; c ∈ C, b 6= 0,
l ∈ N, and letp ∈ {0;1; : : : ; l }. Then

res
(
. f ′/p

f
;−c

)
= 1 − .l + 1/p:
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LEMMA 5. Let f be meromorphic inC and of finite order, and letk ≥ 2be a positive
integer andK be a positive number. Suppose thatf has only zeros of multiplicity at
leastk, | f .k/.z/| < K whereverf .z/ = 0, and f .k/.z/ 6= 1. Then one of the following
two cases must occur:

.i/

f .z/ = Þ.z − þ/k;(1)

whereÞ; þ ∈ C, andÞk! 6= 1:
.ii/ If k = 2, then

f .z/ = .z − c1/
2.z − c2/

2

2.z − c/2
;(2)

or

f .z/ = .z − c1/
3

2.z− c/
:(3)

If k ≥ 3, then

f .z/ = 1

k!
.z − c1/

k+1

.z − c/
:(4)

Herec1, c2 andc are distinct complex numbers.

PROOF. If g.z/ = z − f .k−1/.z/, theng′.z/ = 1 − f .k/.z/ 6= 0 for all z ∈ C. First,
we prove thatf is not transcendental. Suppose thatf is transcendental, theng is
also transcendental. By Hayman’s inequality ([6], see also [7]), f has infinitely many
zeroszn.n = 1;2; : : : /. Since f has only zeros of multiplicity at leastk, we have
g.zn/ = zn. Sinceg′.z/ 6= 0, by Lemma1, g has only finitely many asymptotic values,
and then satisfies the hypotheses of Lemma2 for someR> 0. We get

|g′.zn/| ≥ log |zn|
16³

for largen. Thusg′.zn/ → ∞, asn → ∞:On the other hand, we know| f .k/.zn/| < K
and thus|g′.zn/| ≤ 1 + K for all n, a contradiction.

Thus f is rational. If f is a polynomial, then sincef .k/.z/ 6= 1 and f has only
zeros of multiplicity at leastk, f has the form (1). If f is not a polynomial, we can
write f = R + P=Q with polynomialsP;Q; R satisfying degP < degQ. Since
f .k/.z/ 6= 1, from Lemma3, we have

f .z/ = 1

k!zk + · · · + a0 + b

.z − c/m
;
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whereb .6= 0/, c are two constants andm ∈ N. Set

pk.z/ = 1

k!z
k + · · · + a0;

so that

f .z/ = pk.z/.z − c/m + b

.z − c/m
:

Obviously, f .z/ and pk.z/.z − c/m + b have the same zeros. Ifc1; c2; : : : ; cq are
the zeros ofpk.z/.z − c/m + b, with multiplicity n1;n2; : : : ;nq, thenni ≥ k (i =
1;2; : : : ;q). Hencec1 is a zero of[pk.z/.z−c/m+b]′ with multiplicity n1−1 .≥ k−1/.
Since

[pk.z/.z − c/m + b]′ = .z − c/m−1[p′
k.z/.z − c/+ mpk.z/];

and it is easy to see thatc1 6= c, thenc1 is a zero ofp′
k.z/.z − c/ + mpk.z/ with

multiplicity n1 − 1 .≥ k − 1/. Note that deg[p′
k.z/.z − c/+ mpk.z/] = k. If k = 2;

we deduce thatp2.z/.z − c/m + b has two zerosc1; c2 with multiplicity 2 or only
one zeroc1 with multiplicity 3, wherec1, c2 andc are three distinct constants. Thus
p2.z/.z − c/m + b = 1

2
.z − c1/

2.z − c2/
2 or p2.z/.z − c/m + b = 1

2
.z − c1/

3. It
follows thatm = 2 and f has the form (2) or m = 1 and f has the form (3). If
k ≥ 3, thenc1 is the only zero ofpk.z/.z − c/m + b, with multiplicity k + 1. Thus
pk.z/.z − c/m + b = .z − c1/

k+1=k!, and hencef has the form (4). This completes
the proof of the lemma.

The following result is a generalization of the well-known Zalcman’s lemma, which
is due to Pang and Zalcman [9].

LEMMA 6. Letk be a positive integer and letF be a family of functions meromor-
phic in a domainD, such that each functionf ∈ F has only zeros of multiplicity
at leastk, and suppose that there existsA ≥ 1 such that| f .k/.z/| ≤ A whenever
f .z/ = 0; f ∈ F . IfF is not normal atz0 ∈ D, then, for each0 ≤ Þ ≤ k, there exist
a sequence of pointszn ∈ D, zn → z0, a sequence of positive numbers²n → 0, and a
sequence of functionsfn ∈ F such that

gn.� / = ²−Þ
n fn.zn + ²n� / → g.� /

locally uniformly with respect to the spherical metric, whereg is a nonconstant
meromorphic function onC such thatg#.� / ≤ g#.0/ = k A+1. Moreover,g has finite
order.

REMARK 3. The above result improves the result of Chen and Gu [4].
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3. Proof of theorems

PROOF OFTHEOREM 1. Suppose thatF is not normal at a pointz0 ∈ D. Then
by Lemma6, for Þ = k, there exist a sequence of functionsfn ∈ F , a sequence of
complex numberszn → z0 and a sequence of positive numbers²n → 0, such that

gn.� / = ²−k
n fn.zn + ²n� /

converges locally uniformly to a non-constant functiong.� /, which is meromorphic
in C and of finite order. Moreover,g#.� / ≤ g#.0/ = k.K + 1/ + 1 for all � ∈ C.
Sincegn.� / has only zeros of multiplicity at leastk, by Hurwitz’s theorem, the zeros
of g.� / are of multiplicity at leastk.

Let �1 be a zero ofg.� /. Then there exist�n; �n → �1, such thatgn.�n/ =
²−k

n fn.zn + ²n�n/ = 0 for n sufficiently large. Thusfn.zn + ²n�n/ = 0 for sufficiently
largen. Since

g.k/n .�n/ = f .k/n .zn + ²n�n/ → g.k/.�1/;

we deduce from condition (b) that|g.k/.�1/| ≤ K .
Obviously,a.z0/ 6= 0;∞: Now we distinguish two cases.

Case 1.There exists�0 such thatg.k/.�0/ = a.z0/.
Then there existsŽ > 0, such thatg.� / is analytic onD2Ž = {� : |� − �0| < 2Ž}.

Henceg.k/n .� / are analytic onDŽ = {� : |� − �0| < Ž} for sufficiently largen. Since

g.k/n .� / − a.zn + ²n� / = f .k/n .zn + ²n� /− a.zn + ²n� / 6= 0;

and g.k/n .� / − a.zn + ²n� / converges uniformly tog.k/.� / − a.z0/ on DŽ=2 = {� :
|� − �0| < Ž=2}, we conclude thatg.k/.� /− a.z0/ ≡ 0 on DŽ=2 = {� : |� − �0| < Ž=2},
and then

g.k/.� /− a.z0/ ≡ 0

for all � ∈ C. Note thatg.� / has only zeros of multiplicity at leastk, so we have

g.� / = a.z0/

k! .z − Þ/k; .Þ ∈ C/;

and|g.k/.� /| = |a.z0/| ≤ K (if |a.z0/| > K , we have already obtain a contradiction).
A simple calculation shows that

g#.0/ ≤
{

k=2 if |Þ| ≥ 1;

|a.z0/| if |Þ| < 1:
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This contradictsg#.0/ = k.K + 1/ + 1.
Case 2.g.k/.� / 6= a.z0/.

Without loss of generality, we may assumea.z0/ = 1. Then by Lemma5, we know
thatg has the the form (1) or (4) in Lemma5. Similarly as in Case 1, we exclude the
case thatg has the form (1). Then

g.� / = 1

k!
.� − c1/

k+1

.� − c/
;

wherec1 and c are two distinct constants. Thusg.� / has only one zeroc1 with
multiplicity k + 1. On the other hand, by the assumption of Theorem1 and Hurwitz’s
theorem,gn.� / has only zeros of multiplicityk. We arrive at a contradiction. This
completes the proof of Theorem1.

PROOF OFTHEOREM 2. Suppose thatF is not normal at a pointz0 ∈ D. Then
by Lemma6, for Þ = 2, there exist a sequence of functionsfn ∈ F , a sequence of
complex numberszn → z0 and a sequence of positive numbers²n → 0, such that

gn.� / = ²−2
n fn.zn + ²n� /

converges locally uniformly to a non-constant meromorphic functiong.� /. Moreover,
g.� / is of finite order, andg#.� / ≤ g#.0/ = k.K +1/+1 for all � ∈ C. By Hurwitz’s
theorem,g.� / has only zeros of multiplicity at least 2. Similarly as in the proof of
Theorem1, we know that|g′′.� /| ≤ K whereverg.� / = 0.

We consider two cases.
Case 1.There exists�0 such that such thatg′′.�0/ = a.z0/.

Using the same argument as in the proof of Theorem1, we arrive at a contradiction.
Case 2.g′′.� / 6= a.z0/.

Without loss of generality, we may assumea.z0/ = 1. Then by Lemma5, we know
that g has the the form (1) (herek = 2), (2) or (3) in Lemma5. As in the proof of
Theorem1 (Case 1), we exclude the case thatg has the form (1). Then

g.� / = .� − c1/
2.� − c2/

2

2.� − c/2
;

or

g.� / = .� − c1/
3

2.� − c/
;

where c1, c2, and c are distinct constants. Thusg.� / has only one polec with
multiplicity 1 or 2. However, since all poles ofgn.� / are of multiplicity at least 3,
Hurwitz’s theorem guarantees thatg.� / has only poles with multiplicity at least 3, a
contradiction. This completes the proof of Theorem2.
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PROOF OFTHEOREM 3. Suppose thatF is not normal at a pointz0 ∈ D. The first
part of the proof is almost the same as the proof of Theorem2. Here we only need
to consider Case 2. Suppose thatg′′.� / 6= a.z0/. Without loss of generality, we may
assumea.z0/ = 1. Then by Lemma5,

g.� / = 1

2
� 2 + a1� + a0 + b

.� − c/l
;

wherea1, a0, b .6= 0/, c are constants andl = 1 or 2. (The form (1) can be excluded
as in the proof of Theorem1.) Thus

g′.� / = � + a0 + b1

.� − c/l+1
; .b1 = −bl/:

Let m = l +2. Theng′.� / hasm zeros�1; �2; : : : ; �m, counted according to multiplic-
ity. ChooseR such that max1≤i ≤m |�i | < R. By Hurwitz’s theorem, for largen, there
existm distinct zeros�n;i → �i asn → ∞ for 1 ≤ i ≤ m. Thus f ′

n.zn + ²n�n;i / = 0
for 1 ≤ i ≤ m. Set1n := D.zn; ²n R/, thenzn + ²n�n;i ∈ 1n (1 ≤ i ≤ m), 1n ⊂ D
(for sufficiently largen), and f ′

n has no further zeros in1n.
For h ∈ {1;2; : : : ;m − 2}, we have

m∑
i =1

(
f ′′

n .zn + ²n�n;i /
)h =

m∑
i =1

(
g′′

n.�n;i /
)h =

m∑
i =1

res

(
.g′′

n/
h+1

g′
n

; �n;i

)

→
∑

�∈.g′/−1.0/

res
(
.g′′/h+1

g′ ; �

)

asn → ∞, where in the last sum multiple zeros� of g′ occur only once. Obviously,

.g′′.� //h+1

g′.� /
= 1

�
+ O

(
1

� 2

)

as� → ∞, so res
(
.g′′/h+1=g′;∞) = −1. By the residue theorem and Lemma4, we

have ∑
�∈.g′/−1.0/

res

(
.g′′/h+1

g′ ; �

)
= 1 − res

(
.g′′/h+1

g′ ; c

)
= .l + 1/h+1 = mh+1:

Thus
m∑

i =1

(
f ′′

n .zn + ²n�n;i /
)h → mh+1:

This contradicts condition (c) and completes the proof of Theorem3.

PROOF OFTHEOREM 4. Using the same argument as in this paper and [2], we can
prove Theorem4. We omit the details.
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