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Abstract

In this paper we obtain some normality criteria of families of meromorphic functions, which improve and
generalize the related results of Gu and Bergweiler, respectively. Some examples are given to show the
sharpness of our results.
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1. Introduction

Let D be a domain inC, and.Z be a family of meromorphic functions definedn
Z is said to be normal i, in the sense of Montel, if for any sequenfzec .# there
exists a subsequendg , such thatf,, converges spherically locally uniformly iD,
to a meromorphic function aso.

In 1979, Gu p] proved the following well-known normality criterion, which was a
conjecture of Haymargj.

THEOREMG. Let.Z be a family of meromorphic functions definedDn and let
k be a positive integer. If, for every functiohe Z, f £ 0, f® £ 1, thenZ is
normal.

Recently, Bergweilerd] improved the above result for the cadse- 1, by allowing
f to have zeros, but restricting the valuEscan take at the zeros df.

THEOREMB. Let K and ¢ be positive numbers, and | be the family of all
functions meromorphic i which satisfy the following conditions
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(i) Ifze D,thenf’(z) # 1L
(i) Ifze D,andf(2) =0,then0 < |f'(2)| < K.
(i) If AisadiskinD and if f hasm > 2 zerosz, 2, ... , z, € A, then there
existsk € {—1}J{1,... ,m— 2} such that| >, f'(z)* — mH*| > e.

Then.Z is normal inD.

A natural problem arisesvhat can we say if ' is replaced by-th derivative f ©
in TheoremB? In this paper, we obtain the following results, which improve and
generalize Theorel® and Theoren.

For the cas& > 3, we have

THEOREM1. Let k be a positive integer such th&t > 3 and K be a positive
number. LetZ be a family of meromorphic functions in a domdnanda(z) be a
non-vanishing analytic function iB. Suppose that, for every functidne .Z, f has
only zeros of multiplicity at least and satisfies the following conditians

(@) If ze D, thenf®(2) £ a(2).
(b) Ifze Dandf(z) =0,then0 < |f®(2)] < K.
Then.Z is normal inD.

REMARK 1. Theoreml shows that fok > 3 the conclusion of Theoref is still
valid without the condition such as (iii).

The following example shows that condition (b) cannot be omitted in Thedrem

ExampLE 1 (seell]]). Letn,k e N, D = {z: |z < 1}, anda,(n = 1,2,...)
satisfy(k!a*!)/n = 1. Set

(anz + l)k+l

7
nz

,n=12...,z¢ D}.

Then for eachf,(z) € Z, f,(2) = (a,z+ 1)*'/(n2), we have

(1) the zeros off,(z) are of multiplicity at leask + 1;

@ f¥@#1

But .Z is not normal inD. In fact, for eachf,(z) € .#, by a simple computation,

we deduce thaf *(0) = n — oo, asn — co. By Marty’s criterion,.Z is not normal
in D.

Fork = 2, Theoreni is not valid. But we have the following two results.

THEOREM 2. Let K be a positive number. Le# be a family of meromorphic
functions in a domai anda(z) be a non-vanishing analytic function . Suppose
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that, for every functiorf € .#, f has only zeros of multiplicity at lea®tand satisfies
the following conditions

(@) If ze D, thenf”(2) # a(2).

(b) Ifze Dand f(2) =0, then|f"(2)] < K.

(c) All poles of f are of multiplicity at leas8.
ThenZ is normal inD.

The following example shows that condition (c) in Theor2ia necessary and the
number 3 is sharp.

ExAMPLE 2. LetD ={z: |z| < 1} and

25 2
P UL VL M Ry Y
2n2z2

Then for eachf,(2) € Z, f,(2) = (nz+ 1)*(z— 1/n)?/(2n?*Z?), we have

(1) f/(2) =1+ 3/(n*z%, thenf/(z) # 1.

(2) zz = 1/n, Z = —1/n are the zeros off,(z) of multiplicity 2 in D, and
Ify (@) =401=12).

However,Z is not normal inD. In fact, for eachf,(z) € .#, we have

2 384
f# ) - = 3
n <n> 145n — 00,

asn — oo. Then by Marty’s criterion,Z is not normal inD.

THEOREM 3. Let K be a positive number. Le# be a family of meromorphic
functions in a domai anda(z) be a non-vanishing analytic function . Suppose
that, for every functiorf € .#, f has only zeros of multiplicity at lea®tand satisfies
the following conditions

(1) Ifze D, thenf”(2) # a(2).

(2) Ifze Dand f(2 =0, then|f"(2)] < K.

(3) If AisadiskinD and if f hasm > 3zerosz, z, ... , z, € A, then there exists
he{l2...,m—2suchthal >", f"(z)" — m"*?| > &.

ThenZ is normal inD.

RemMARK 2. If f has only zeros of multiplicity at least 3 in Theoréhand The-
orem 3, it is obvious that condition (b) can be omitted. In fact, Wang and Fang
[11] proved that: Let# be a family of meromorphic functions definedh If for
every functionf € .Z, f has only zeros of multiplicity at least 3 and only poles of
multiplicity atleast 2 andf” # 1, thenZ is normal.
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Fork = 1, we obtain the following result, which is a generalization of ThedBem

THEOREMA4. LetK, ¢ be positive numberg,(z) be a non-vanishing analytic func-
tion in D, and let.# be the family of all functions meromorphic B which satisfy
the following conditions

(i) Ifze D,thenf’(z) # a(2).

(i) Ifze D,andf(2) =0,then0 < |f'(2)| < K.

(i) If AisadiskinD and if f hasm > 2 zerosz, 2, ... , z, € A, then there
existsk € {—1} J{1,... ,m— 2} such that| >, f/(z)* — m*| > &.
ThenZ is normal inD.

2. Some lemmas

To prove our results, we need some lemmas.

LEMMA 1 ([3]). Let f be meromorphic i€ and of finite order. Iff has only finitely
many critical values, theri has only finitely many asymptotic values.

The following lemma is due to Rippon and Stallari(]f see also I]).

LEMMA 2. Let f be meromorphic ir€ and suppose that the set of all finite critical
and asymptotic values df is bounded. Then there exiggs> 0 such that ifiz] > R
and|f(2)| > R, then

|f(@]log|f(2)]

f/
12| = 16717

LEMMA 3 ([11)). Let f(2) = a,2" + a,1Z" 1 + --- + & + q(2)/p(2), where
a,a, ... ,a, are constants,p(z) and q(z) are two coprime polynomials with
degq(z) < degp(z), and letk be a positive integer. 1f ®¥(z) # 1, then

1
f(z)=E2k+"'+a°+(z—c)m’

whereb (# 0), c are two constants anagh € N.

We denote the residue of a meromorphic functioat a pointz by reg f, z). By
an elementary computation, we have

LEMMA 4 (see also]]). Let f(z) =z+a+b/(z—c) witha,b,ce C,b #0,
|l e N,andletpe {0, 1,...,l}. Then

res<(ff/)p, —c) =1-—(+ D"
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LEmMMA 5. Let f be meromorphic i and of finite order, and lek > 2 be a positive
integer andK be a positive number. Suppose tHahas only zeros of multiplicity at
leastk, | f ¥ (z)| < K whereverf (z) =0, and f ©¥(z) # 1. Then one of the following
two cases must occur

()
) f(2) = a(z— B,

whereqa, 8 € C, andak! # 1.
(i) Ifk =2, then

(z—c)i(z—)?

@ o= T
or
_ (z- c)®
If kK > 3, then
. 1(z—cyktt
(4) f(2) = K (z-o

Herecy, ¢, andc are distinct complex numbers.

PrROOF. If g(z2) = z— f*(2), theng(z) =1— f®(z2) £ 0forallze C. First,
we prove thatf is not transcendental. Suppose tHais transcendental, thegis
also transcendental. By Hayman's inequaliy] (ee alsoT]), f has infinitely many
zerosz,(n = 1,2,...). Sincef has only zeros of multiplicity at lea&;, we have
0(z,) = z,. Sinceg’(2) # 0, by Lemmal, g has only finitely many asymptotic values,
and then satisfies the hypotheses of Len#fiar someR > 0. We get

/ log |z
19'(z)] = BTN
forlargen. Thusg'(z,) — oo, asn — oco. Onthe other hand, we know® (z,)| < K
and thugg'(z,)| < 1+ K for all n, a contradiction.

Thus f is rational. If f is a polynomial, then sincé ®(z) # 1 and f has only
zeros of multiplicity at leask, f has the formJ). If f is not a polynomial, we can
write f = R+ P/Q with polynomialsP, Q, R satisfying ded® < degQ. Since
f®(z) # 1, from LemmaB, we have

b

@)= =24 gt ——
Tk % (z—cm’
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whereb (# 0), c are two constants and € N. Set

1
pk(Z)=EZ + -+ a0,

so that
f(z) = p(2)(z—0)" + b'
(z—om
Obviously, f(z) and p«(z)(z — ¢)™ + b have the same zeros. df, c,,... ,cq are
the zeros ofpk(2)(z — ©)™ + b, with multiplicity ny, n,, ..., ng, thenn; > k (i =

1,2,...,q). Hencec,is azero of p(z) (z—c)™+b] with multiplicity n;—1 (> k—1).
Since

[k(2)(z—0)"+b] = (z— )" [ p(2)(z — ) + Mp(2)],

and it is easy to see that # c, thenc, is a zero ofp,(2)(z — ¢) + mp(2) with
multiplicity n; — 1 (> k — 1). Note that depp,(2)(z — ¢) + mp(2)] = k. If k =2,
we deduce thap,(z)(z — ¢)™ + b has two zeros,, ¢, with multiplicity 2 or only
one zerac; with multiplicity 3, wherec,, ¢, andc are three distinct constants. Thus
P — 0" +b = 3(2Z-c)Z— )’ or Dz - O+ b= 3z—c’ It
follows thatm = 2 and f has the formZ) orm = 1 and f has the form §). If

k > 3, thenc; is the only zero ofpc(2)(z — ©)™ + b, with multiplicity k + 1. Thus
P(2)(z — o)™+ b = (z — c)¥*t/k!, and hencef has the form4). This completes
the proof of the lemma. O

The following resultis a generalization of the well-known Zalcman’s lemma, which
is due to Pang and Zalcma®i[

LEMMA 6. Letk be a positive integer and I be a family of functions meromor-
phic in a domainD, such that each functioi € .Z has only zeros of multiplicity
at leastk, and suppose that there exists> 1 such that|f®(z)] < A whenever
f(zy =0, f ¢ Z. If Zis not normal atzy € D, then, for eacl) < a < k, there exist
a sequence of pointg € D, z, — 7, a sequence of positive numbegrs— 0, and a
sequence of functionk, € .Z such that

On(¢) = p;a fa(zo + png) — ()

locally uniformly with respect to the spherical metric, wheyds a nonconstant
meromorphic function oft such thag”(¢) < g#(0) = k A+ 1. Moreoverg has finite
order.

REMARK 3. The above result improves the result of Chen and Gu |
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3. Proof of theorems

PrROOF OFTHEOREM 1. Suppose tha## is not normal at a poingy € D. Then
by Lemmas, for o = k, there exist a sequence of functiofise .#, a sequence of
complex numberg, — 7, and a sequence of positive numbggs— 0, such that

Oh(¢) = p;k fn(Z) + ond)

converges locally uniformly to a non-constant functip ), which is meromorphic
in C and of finite order. Moreoveg®(¢) < g#*(0) = k(K + 1) +1forall¢ € C.
Sinceg,(¢) has only zeros of multiplicity at leak{ by Hurwitz's theorem, the zeros
of g(¢) are of multiplicity at leask.

Let ¢; be a zero ofg(¢). Then there exist,, ¢, — &1, such thatg,(¢,) =
o7 ¥ fo(z0 + pngn) = 0 for n sufficiently large. Thus,(z, + pn&,) = O for sufficiently
largen. Since

g &) = F®@ + pntn) — 9% (),

we deduce from condition (b) thed® (&,)| < K.

Obviously,a(z) # 0, co. Now we distinguish two cases.
Case 1.There exists, such thag® (&) = a(z).

Then there exist8 > 0, such thag(¢) is analytic onD,; = {¢ : [ — &o| < 26}.
Henceg®(¢) are analytic orD; = {¢ : [ — &l < 8} for sufficiently largen. Since

g¥ (&) —a@z, + pug) = TRz + pug) — Az, + pug) # 0,

andgi (&) — a(z + pag) converges uniformly t@® (&) — a(z) on D;, = {¢ :
1& —&ol < 8/2}, we conclude thag™® ;) —a(z) = 00nD;;, = {£ : 1§ —&ol < 8/2),
and then

9“¢) —a@) =0
for all ¢ € C. Note thatg(¢) has only zeros of multiplicity at leakt so we have

_aw)

9¢) = —~Z- k. (@e0).

and|g® ()| = la(z)| < K (if |a(z)| > K, we have already obtain a contradiction).
A simple calculation shows that

k/2 i la| > 1;

(0) < .
’ LN@IWIM<1
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This contradictg(0) = k(K + 1) + 1.
Case 2.g%(¢) # a(z).

Without loss of generality, we may assuaig,) = 1. Then by Lemm&, we know
thatg has the the form1() or (4) in Lemmab5. Similarly as in Case 1, we exclude the
case thag has the form ). Then

1@ - cy)<tt
kIl (¢—-0

wherec; andc are two distinct constants. Thggs) has only one zera; with
multiplicity k 4+ 1. On the other hand, by the assumption of Theoteand Hurwitz's
theorem,g,(¢) has only zeros of multiplicitk. We arrive at a contradiction. This
completes the proof of Theorein O

g¢) =

’

PROOF OFTHEOREM 2. Suppose tha## is not normal at a poingy € D. Then
by Lemmas, for o = 2, there exist a sequence of functiofjse .#, a sequence of
complex numberg, — 7, and a sequence of positive numbggs— 0, such that

Oh(¢) = pr;z fn(Z) + ond)

converges locally uniformly to a non-constant meromorphic funai@gn. Moreover,
g(¢) is of finite order, andy(¢) < g*(0) = k(K +1)+1 forall¢ € C. By Hurwitz's
theorem,g(¢) has only zeros of multiplicity at least 2. Similarly as in the proof of
Theoreml, we know thaig”(¢)| < K whereverg(¢) = 0.

We consider two cases.
Case 1.There existg, such that such thaf’ (&) = a(z).

Using the same argument as in the proof of Theotewe arrive at a contradiction.
Case 2.9"(¢) # a(z).

Without loss of generality, we may assuaig,) = 1. Then by Lemm&, we know
that g has the the form1) (herek = 2), (2) or (3) in Lemmab. As in the proof of
Theoreml (Case 1), we exclude the case thdtas the formZ1). Then

(& —C?( —Cp)?

9@) = 20 _oF
or
G-
9@) = 200"

wherec,, ¢,, andc are distinct constants. Thux¢) has only one pole with
multiplicity 1 or 2. However, since all poles @ (¢) are of multiplicity at least 3,
Hurwitz's theorem guarantees thgi ) has only poles with multiplicity at least 3, a
contradiction. This completes the proof of Theorgm O
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PROOF OFTHEOREM 3. Suppose tha# is not normal at a poing, € D. The first
part of the proof is almost the same as the proof of Thedeldere we only need
to consider Case 2. Suppose tga;) # a(z). Without loss of generality, we may
assume(z)) = 1. Then by Lemm®,

b
¢ -0
wherea,, ag, b (% 0), c are constants arld= 1 or 2. (The form {) can be excluded
as in the proof of Theorerh) Thus

1
9¢) = 552+a1<: +a +

b
g@)=¢+a+ @_—t:)m (by = —hl).

Letm =142. Theng'(¢) hasm zeros;y, &, ... , &m, counted according to nitiplic-
ity. ChooseR such that max-n 4| < R. By Hurwitz's theorem, for large, there
existm distinct zerog,,; — & asn — ocoforl <i <m. Thusf(z, + pnéni) =0
forl <i <m. SetA, := D(z,, pnR), thenz, + pngni € An(L<i <m),A, CD
(for sufficiently largen), and f, has no further zeros in,,.

Forhe {1,2,..., m— 2}, we have

m m m \h+1
(1,4 potd)" = (&) = 3 res<(g"; ,;n,i>
=1 i=1

i i=1 n

7yh+1
— Z res(%,;)

se(@)~ O

asn — oo, where in the last sum multiple zerpf g’ occur only once. Obviously,

/" h+1
CRN _1+O<1>

g@) ¢ &2
as¢ — oo, SO res((g”)h”/g/, o0) = —1. By the residue theorem and Lemrhave
have
/7yh+1 /7yh+1
Z res<(g )/ ,;) =1- res<(g )/ ,c) =( + DMt = mm?,
se(@)0 9 9
Thus

m

> o (f@+ pni) — M,

i=1

This contradicts condition (c) and completes the proof of Thed@em O

PROOF OFTHEOREM 4. Using the same argument as in this paper &hdye can
prove Theorerd. We omit the detalils. O
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