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(Received 5 September 2001; revised 4 February 2002)

Communicated by S. Gradde

Abstract

Let G be a finite group of even order,k be a field of characteristic 2, andM be a finitely generated
kG-module. IfM is realized by a compactG-Moore spaceX, then the Betti numbers of the fixed point
setXCn and the multiplicities of indecomposable summands ofM considered as akCn-module are related
via a localization theorem in equivariant cohomology, whereCn is a cyclic subgroup ofG of ordern.
Explicit formulas are given forn = 2 andn = 4.
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0. Introduction

Throughout the paperG denotes a finite group of order divisible by a primep, A a
subgroup ofG, k a field of characteristicp, J the Jacobson radical of the group algebra
kG, M a finitely generatedkG-module,X a G-space, andXA the fixed point set ofA
in X. Topological spaces with aG-action give rise toG-modules; for example, the
cohomology groupH i .X; k/ with k-coefficients is a finitely generatedkG-module for
i ≥ 0 provided thatX is a compactG-space. Equivariant cohomologyH ∗

G.X; k/ of X
is defined as the cohomologyH ∗.XG ; k/ of the Borel constructionXG = .X×EG/=G
of X. WhenX is a point, we simply writeH∗

G for H ∗
G.X; k/ which is the same as

H ∗.G; k/. The constant map fromX to a one-point space induces anH∗
G-module

structure onH ∗
G.X; k/. WhenG is an elementary abelianp-group andX is finite-

dimensional, the inclusion mapj : .XG; x0/ ,→ .X; x0/ induces an isomorphism in
the localized equivariant cohomology ofH ∗

G-modules ([Qu]). A simply connected
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G-spaceX is called aG-Moore spaceif Hi .X; x0; k/ = 0 for all i except for some
fixed n ≥ 2. A kG-moduleM is calledrealizable(in dimensionn) if there exists a
G-Moore spaceX whose cohomology in dimensionn is M for somen ≥ 2.

Suppose thatM is a kG-module realized byX in dimensionn. Then M↓k A,
M considered as ak A-module, is also realized byX, and H∗.A; M/ is isomorphic
to the equivariant cohomology ringH ∗+n

A .X; x0; k/. Combining this with the above
isomorphism obtained by localization, of course for a ‘nice’A or a ‘nice’ A-action
(for exampleA actingsemi-freelyon X, that is, the isotropy subgroups being eitherA
or {1}), we observe that the multiplicities of the indecomposable modules appearing
in the decomposition ofM↓k A have a geometric interpretation in terms of the total
Betti numberþ of the fixed point setXA.

THEOREM. LetG be a finite group of order divisible by2, andC be a cyclic subgroup
of G. Suppose thatM is realized in dimensionn by a compact spaceX. Then the
following can be stated for the total Betti numberþ and the Euler characteristic� of
the fixed point setXC of C:

(a) If C ∼= Z2, thenþ.XC/ = �1 + 1, whereM↓kC
∼= .k/�1 ⊕ .kC/�2.

(b) If C ∼= Z4 andC acts semi-freely onX, then

.i/ þodd.XC/ is �1 or �3 if n is odd or if n is even, respectively, andþ.XC / =
�1 + �3 + 1,

.ii/ �.XC / = .−1/n.�1 − �3/ + 1,

whereM↓kC
∼= .k/�1 ⊕ .J2/�2 ⊕ .J/�3 ⊕ .kC/�4 .

The restriction on the order of the cyclic subgroupC to be 2 or 4 in the theorem
is due to the fact that for large orders that are powers of a primep ≥ 2, one could
still obtain an isomorphismH ∗

C.X
C ; x0; k/[1=t] ∼= H ∗.C; M↓kC/[1=t]. However,

interpreting the right hand side of the isomorphism to obtain a similar formula is not
possible without such restrictions.

A corollary of the theorem is given in the discussion section.

1. Proof of Theorem

DEFINITION. Let Sbe a multiplicative subset of the polynomial part ofH ∗
G contain-

ing 1 ∈ H ∗
G, andGx be the isotropy subgroup consisting of allg ∈ G with gx = x.

DefineXS = {x ∈ X : ker{res: H ∗
G → H ∗

Gx
} ∩ S= ∅} following [Hs].

In some casesXS turns out to be the same as the fixed point setXA for someA ≤ G;
see [DW].
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PROPOSITION1. Let G be a compact Lie group,X be a compactG-space, and
Y ⊆ X be aG-invariant subspace. LetS ⊂ H ∗

G be a multiplicative system. Then the
localized homomorphism

²−1 = S−1i ∗ : S−1H ∗
G.X;Y/ → S−1H ∗

G.X
S;YS/

is an isomorphism, wherei ∗ is the induced map inG-equivariant cohomology by the
inclusion mapi : .XS;YS/ ,→ .X;Y/.

PROOF. Recall that localization is an exact functor, and² = S−1i ∗
G : S−1H ∗

G.X/ →
S−1H ∗

G.X
S/ is an isomorphism, wherei ∗

G is the map induced by the inclusioni :
XS ,→ X in G-equivariant cohomology. Apply [Hs, Theorem III.1] to the long exact
sequence of a pair in cohomology. The result then follows by the Five-Lemma.

PROPOSITION2. Let M be a kG-module realized byX in dimensionn. Then
H ∗+n

G .X; x0; k/ ∼= H ∗.G; M/.

PROOF. Consider the Serre spectral sequence for the fibration.X; x0/G = ..X; x0/×
EG/=G → EG=G = BG with fiber .X; x0/. HereEG is a contractible space on
which G acts (fixed-point) freely. The spectral sequence hasEp;q

2 -term equal to
H p.G; Hq.X; x0; k//. For q 6= n, we haveHq.X; x0; k/ = 0; then Ep;q

2 = 0 for
q 6= n. Hence the sequence contains only one line and collapses. It follows thatE p;n

2 =
H p.G; Hn.X; x0; k// ∼= H p.G; M/. ThereforeH∗+n

G .X; x0/ := H ∗+n..X; x0/G; k/ ∼=
H ∗.G; M/.

PROOF OFTHEOREM. Without loss of generality we may assume thatXG is non-
empty; so letx0 be in XG ⊆ XK for K ≤ G. Also X is a K -Moore space with
H ∗.X; x0/ ∼= M↓kK for K ≤ G. HenceH ∗+n

K .X; x0/ ∼= H ∗.K ; M↓kK / by Proposi-
tion 2.

(a) Let H ∗
C = H ∗.C; k/ = k[t]. By Proposition1, localization with respect

to S = {t i : i ≥ 0} gives H ∗
C.X; x0/[1=t] ∼= H ∗

C.X
C; x0/[1=t]. Since resC;{1}.t/ =

0, we havek[1=t] = 0. Hence�2 disappears after localization and we obtain
dimk H ∗.XC; x0; k/ = þ.XC/− 1 = �1, that is,þ.XC/ = �1 + 1.

(b) It is sufficient to prove only (i) since�.XC/ = þeven.XC/−þodd.XC/. LetC2 ≤
C andC2

∼= Z2; let alsoH ∗
C = k[− ′]⊗∧.v′/ andH ∗

C2
= k[t]. Thus resC;C2

.− ′/ = t2. We
haveH ∗.C; M↓kC/

∼= .H ∗
C/

�1⊕.H ∗
C2
/�2 ⊕.H ∗.C; J//�3 ⊕.k/�4 sinceJ2 ∼= k[C=C2] ∼=

k↑kC
kC2

and Shapiro’s Lemma impliesH ∗
C2

∼= H ∗.C; J2/. Applying Proposition1 with
the multiplicative setS = {.− ′/i : i ≥ 0} givesH ∗

C.X
C2 ; x0/[1=− ′] ∼= H ∗

C.X; x0/[1=− ′].
The term with�4 disappears after localization as in part (a). Hence

H ∗
C.X

C2 ; x0/

[
1

− ′

]
∼=

(
H ∗

C

[
1

− ′

])�1

⊕
(

H ∗
C2

[
1

t2

])�2

⊕
(

H ∗.C; J/

[
1

− ′

])�3

:



168 SemräOztürk Kaptanŏglu [4]

The hypothesis thatC acts semi-freely onX impliesXC = XC2 . Write Ĥ ∗
C = H ∗

C

[
1=− ′]

andĤ ∗
C2

[
1=t

]
. Then

.Ĥ ∗−n
C /�1 ⊕ .Ĥ ∗−n

C2
/�2 ⊕

(
H ∗−n.C; J/

[
1

− ′

])�3 ∼= H ∗.XC; x0/⊗ Ĥ ∗
C:(∗)

Since H i .C; J/ ∼= H i −1.C; k/ = Hi −1
C for i ≥ 2 and H odd

C = v′ H even
C , we get

H i .C; J/ · v′ = 0 for i even. AlsoH ∗
C2

· v′ = H ∗
C2

· res
C;C2
.v′/ = H ∗

C2
· 0 = 0. Then (∗)

becomes

.Ĥ l−n
C · v′/�1 ⊕ .Ĥ l−n−1

C · v′/�3 ∼=
l∑

i ≥0;i even

Hl−i .XC; x0/⊗ Ĥ i
C · v′:

In particular,
l∑

j ≥0; j even

Hl− j .XC; x0/⊗ Ĥ j
C · v′ ∼=

{
.k/�3; if l − n is odd;

.k/�1; if l − n is even.

Choose an integerl > Hom dim.XC/. For l even andl odd, we respectively obtain
that

þeven.XC/ =
{
�3 + 1; if n is odd;

�1 + 1; if n is even;

and

þodd.XC/ =
{
�1; if n is odd;

�3; if n is even.

This completes the proof of the theorem.

2. Discussion

The theorem of the paper is more meaningful when put in the context of the
realization problem referred to in the literature as Steenrod’s Problem, and/or in
the classification problem of some category ofkG-modules whenG contains cyclic
subgroups of order 2 and/or 4. (See the corollary below.) WhenG is a cyclic p-
group of orderpn, all indecomposablekG-modules (up to isomorphism) are given
by the powers of the Jacobson radical, namely, the idealsJ pn−i of k-dimensioni
for i = 1; : : : ; pn. However, whenG containsZp × Zp there are infinitely many
indecomposablekG-modules ([Hi]). Due to the lack of a classification forkG-
modules whenG ⊇ Zp×Zp except forG = Z2×Z2, considering the restrictionsM↓k A

for various subgroupsA in G to obtain information onM is a fundamental technique
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in modular representation theory. For example, the complexity of akG-module,
in particular, the cohomologyH ∗.G; k/ of the trivial kG-module k is ‘detected’
on maximal elementary abelian subgroups ofG by theorems due to Quillen [Qu],
Chouinard [Ch], and Alperin-Evens [AlEv]. See [Ka] for another detection theorem
whenG = Z2 ×Z4. Furthermore, it is possible to obtain information on ak E-module
M by consideringM↓k〈1+x〉 for x ∈ J\J2 of k E, whereE is an elementary abelian
p-group [Ca]. See also [W].

Some partial results on Steenrod’s Problem are as follows. AllkZpm -modules are
realizable (see [Ar]) and all realizablekZ2 × Z2-modules are described in [BeHa].
WhenZ2 × Z2 is a normal Sylow subgroup of a finite groupG, a kG-moduleM is
realizable if and only ifM↓kZ2×Z2

is realizable ([Cn]). WhenG containsZp×Zp, there
arekG-modules that are not realizable (see [Vo, Cs, As1, As2, BeHa]). Compare our
theorem with [As3, Theorem 2.2], which states that the total Betti numberþ.XA/ of a
‘nice’ Moore spaceX realizing ak E-moduleM is equal to the rank.FA/, whereFA is
the characteristic sheaf ofX andA is a subgroup of the elementary abelianp-groupE.

The simplest group for which one can attack the classification problem or the
realization problem forkG-modules isG = Z2 × Z4 due to the fact that it contains
Z2×Z2 as its unique maximal elementary abelian subgroup and that the classification of
kZ2 × Z2-modules is known. As mentioned above, a ‘detection’ theorem supporting
the first expectation is given in [Ka]. For the latter, we can only give a necessary
condition for akZ2 × Z4-moduleM to be realizable by combining [Cs, Proposition
II] and [Se, Proposition 1]: LetM be akZ2 × Z4-module. If M↓kZ2×Z2

is realizable
by X, then the rank varietyVr

Z2×Z2
.M↓kZ2×Z2

/ (see [Ca]) is a union ofF2-rational lines
in k2. Therefore for a realizablekZ2 × Z4-moduleM , we obtain thatM↓kS is free for
every shifted cyclic subgroupS of kZ2 × Z4 except possibly for cyclic subgroups of
Z2 × Z4. This can be used to construct non-realizable modules. Consider the induced
kZ2×Z4-moduleMÞ = k⊗k〈uÞ 〉 kZ2×Z4 for Þ ∈ k2. It can be seen easily by Mackey’s
formula thatVr

Z2×Z2
.MÞ↓kZ2×Z2

/ = k{Þ} for Þ ∈ k2. Therefore,MÞ is not realizable if
Þ is not anF2-rational point.

The Theorem of this paper and the necessary condition mentioned above gives the
following.

COROLLARY. Let G = 〈e; f : e2 = f 4 = e f e f3 = 1〉 ⊃ E = 〈e; f 2〉. If M
is a non-free indecomposablekG-module realized byX, then M is a periodickG-
module, andM↓k〈1+Þ1.e−1/+Þ2. f 2−1/〉 is a freek〈1+Þ1.e−1/+Þ2. f 2 −1/〉-module for
.Þ1; Þ2/ ∈ k2 except possibly for.Þ1; Þ2/ ∈ k{.1;0/}∪k{.0;1/}∪k{.1;1/}. Moreover,
if M↓k〈g〉 is a freek〈g〉-module forg ∈ {e; f 2;e f2}, thenX〈g〉 is homotopic to a point.

PROOF. The necessary condition given above for the realizability of a moduleM
implies thatV = Vr

E.M↓kE/ ⊆ k{.1;0/} ∪ k{.0;1/} ∪ k{.1;1/}. This forcesM to
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be periodic as it is indecomposable and non-free. In addition, sincek〈1 + Þ1.e −
1/+ Þ2. f 2 − 1/〉 for Þ ∈ {.1;0/} ∪ k{.0;1/} ∪ k{.1;1/} corresponds tok〈g〉 for some
g ∈ {e; f 2;e f2}, it follows that M↓〈g〉 is not free for at most oneg ∈ {e; f 2;e f2}.
SupposeM↓〈g〉 is a freek〈g〉-module withg ∈ {e; f 2;e f 2}. Then it has no trivial
summands, that is,�1 = 0. Henceþ.X〈g〉/ = 1 by the theorem, and this implies that
X〈g〉 is homotopic to a point.

CONJECTURE. If M is a finitely generated periodickZ2 × Z4-module, thenM is
realizable.
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