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Abstract

Let G be a finite group of even ordek, be a field of characteristic 2, arld be a finitely generated
kG-module. IfM is realized by a compa&-Moore spaceX, then the Betti numbers of the fixed point
setX® and the multiplicities of indecomposable summandslafonsidered asleC,-module are related
via a localization theorem in equivariant cohomology, whegds a cyclic subgroup o6 of ordern.
Explicit formulas are given fon = 2 andn = 4.
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0. Introduction

Throughout the papds denotes a finite group of order divisible by a pripgA a
subgroup of5, k a field of characteristip, J the Jacobson radical of the group algebra
kG, M a finitely generate G-module,X a G-space, an&K” the fixed point set oA
in X. Topological spaces with @-action give rise tdG-modules; for example, the
cohomology grougH' (X; k) with k-coefficients is a finitely generatée-module for

i > 0 provided thai is a compacG-space. Equivariant cohomologif (X; k) of X

is defined as the cohomolod* (X ; k) of the Borel constructioXg = (Xx EG)/G
of X. WhenX is a point, we simply writeH% for HZ(X; k) which is the same as
H*(G; k). The constant map fronX to a one-point space induces &-module
structure onHZ (X; k). WhenG is an elementary abeliap-group andX is finite-
dimensional, the inclusion map: (X€, xo) < (X, Xo) induces an isomorphism in
the localized equivariant conomology 6f;-modules (Ru]). A simply connected
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G-spaceX is called aG-Moore spacédf H' (X, Xo;k) = 0 for all i except for some
fixedn > 2. A kG-moduleM is calledrealizable(in dimensionn) if there exists a
G-Moore spaceX whose cohomology in dimensionis M for somen > 2.

Suppose thaM is a kG-module realized byX in dimensionn. Then M |, ,,
M considered as BA-module, is also realized b}, andH*(A; M) is isomorphic
to the equivariant cohomology rinlg x""(X, Xo; k). Combining this with the above
isomorphism obtained by localization, of course for a ‘niéebr a ‘nice’ A-action
(for exampleA actingsemi-freelyon X, that is, the isotropy subgroups being eitier
or {1}), we observe that the multiplicities of the indecomposable modules appearing
in the decomposition oM |, , have a geometric interpretation in terms of the total
Betti numbers of the fixed point seX”.

THEOREM. LetG be afinite group of order divisible (8;andC be a cyclic subgroup
of G. Suppose thaM is realized in dimension by a compact spac¥. Then the
following can be stated for the total Betti numbfeand the Euler characteristig of
the fixed point seX® of C:

(@) If C =17, thenp(X®) = n1 + 1, whereM |, = (k)" @ (KC)™.
(b) If C = 7Z,andC acts semi-freely oX, then
(i) B°U(XC)is ny or ns if nis odd or ifn is even, respectively, ang X°) =
m+mn+1

(i) x(X®) = (=D"(n —ng) +1,

whereM | c = (K™ @ (32" @ (J)" @ (KC)™.

The restriction on the order of the cyclic subgrago be 2 or 4 in the theorem
is due to the fact that for large orders that are powers of a ppme 2, one could
still obtain an isomorphismHz(X®, xo; K)[1/t] = H*(C; M|, o)[1/t]. However,
interpreting the right hand side of the isomorphism to obtain a similar formula is not
possible without such restrictions.

A corollary of the theorem is given in the discussion section.

1. Proof of Theorem

DEFINITION. Let Sbe a multiplicative subset of the polynomial partdy contain-
ing 1 € HE, andG, be the isotropy subgroup consisting of gle G with gx = x.
DefineX® = {x € X : kerfres: H5 — Hg } N S= ¢} following [Hs].

In some caseXS turns out to be the same as the fixed poinbétfor someA < G;

see PW].
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ProPOSITIONL. Let G be a compact Lie groupX be a compact-space, and
Y € X be aG-invariant subspace. Led C H; be a multiplicative system. Then the
localized homomorphism

pt=SN" STTHE(X,Y) — STTHE(XS, Y9)

is an isomorphism, wheté is the induced map is-equivariant conomology by the
inclusion mag : (X5, YS) < (X,Y).

PrOOF. Recall that localization is an exact functor, gne= S™1i% : STHE(X) —
S tHE(X5) is an isomorphism, wherg;, is the map induced by the inclusion:
X% < X in G-equivariant cohomology. ApplyHs, Theorem II1.1] to the long exact
sequence of a pair in cohomology. The result then follows by the Five-Lemma.

PrROPOSITION2. Let M be a kG-module realized byX in dimensionn. Then
HE™ (X, 01 k) = H*(G; M).

ProOOF. Considerthe Serre spectral sequence for the fibradoRy)c = ((X, Xg) x
EG)/G — EG/G = BG with fiber (X, X;). HereEG is a contractible space on
which G acts (fixed-point) freely. The spectral sequence B&S-term equal to
HP(G; HI(X, X0; k)). Forqg # n, we haveH9(X, Xo;k) = 0; thenE})® = 0 for
q # n. Hence the sequence contains only one line and collapses. It follovisithat
HP(G; H"(X, Xo; k)) = HP(G; M). ThereforeH:™"(X, Xo) := H*™M((X, Xo)s; k) =
H*(G; M). O

PROOF OFTHEOREM. Without loss of generality we may assume ti¥t is non-
empty; so letxy be in X¢ < XK for K < G. Also X is a K-Moore space with
H*(X;X) = M|,k for K < G. HenceH;™"(X, %) = H*(K; M |,«) by Proposi-
tion 2.

(a) Let H: = H*(C;k) = K[t]. By Propositionl, localization with respect
to S={t' : i > 0} gives HZ(X, Xo)[1/t] = HE(X®, xo)[1/t]. Since res, (t) =
0, we havek[1/t] = 0. Hencen, disappears after localization and we obtain
dimg H*(XC, xo; k) = B(X®) — 1 = ny, thatis,8(X®) = n, + 1.

(b) Itis sufficient to prove only (i) sincg (X®) = B&e(X€) — godd(XC®). LetC, <
C andC, = 7y, letalsoH¢ = k[r']|® A(v)) andHE, = k[t]. Thusreg_ (7') = t>. We
haveH*(C; M) = (HO™®(HE)" @ (H*(C; J))= @ (k)™ sinceJ? = k[C/C,] =
thgz and Shapiro’s Lemma impligd, = H*(C; J%). Applying Propositiori with
the multiplicative seS = {(z)' : i > 0} givesHg (X%, xo)[1/7'] = HZ(X, Xo)[1/7'].
The term withn, disappears after localization as in part (a). Hence

(2]) e (e [3]) "o (e [2])"

12

HE (X2, Xo) [ 1}
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The hypothesis tha acts semi-freely oXimpliesX® = X%. Write Hz = HZ[1/7]
andHg [1/t]. Then

n3
() HZH™ @ (HE™™ @ (H*”(C; J) [%D = H*(XC, Xo) ® H¢.

Since H(C; J) = HI"Y(C;k) = H ' fori > 2 and H = v'HE"®", we get
H'(C; J)-v = 0fori even. AlsoH¢, - v' = Hg -res . (v') = Hg, -0 = 0. Then §)
becomes

|
(HE™vyme@ (HE" oy = 3 HIT(XC x) @ HE v

i>0,i even
In particular,
| . .
i i k), if | —n isodd,
> H"(XC,XO)®Hg-v/z{() _ _
j=0,] even (k)n, if 1 —n iseven.

Choose an integer> Hom dim(X©). Forl even and odd, we respectively obtain
that

'Beven(xc) _ ns+1, if nisodd,
n.+ 1, if niseven;
and
BO%(XC) = ny, if n isodd;
ns, if niseven.
This completes the proof of the theorem. 0

2. Discussion

The theorem of the paper is more meaningful when put in the context of the
realization problem referred to in the literature as Steenrod’s Problem, and/or in
the classification problem of some categornk@-modules wher contains cyclic
subgroups of order 2 and/or 4. (See the corollary below.) Wa&e&s a cyclic p-
group of orderp", all indecomposabl&G-modules (up to isomorphism) are given
by the powers of the Jacobson radical, namely, the id@&ls of k-dimensioni
fori =1,...,p". However, whenG containsZ, x Z, there are infinitely many
indecomposabl&G-modules (Hi]). Due to the lack of a classification fd«G-
modules whe® 2 Z,xZ, exceptfoiG = Z,xZ,, considering the restrictiord |, o
for various subgroup# in G to obtain information orM is a fundamental technique
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in modular representation theory. For example, the complexity kb€Ganodule,
in particular, the cohomologyH*(G;k) of the trivial kG-modulek is ‘detected’
on maximal elementary abelian subgroupsGby theorems due to Quilleru],
Chouinard Ch], and Alperin-EvensAIEv]. See Ka] for another detection theorem
whenG = 7, x Z,. Furthermore, it is possible to obtain information odkErmodule
M by consideringV | ,.,, for x € J\J? of KE, whereE is an elementary abelian
p-group [Cd]. See also\lV].

Some partial results on Steenrod’s Problem are as followskZAH-modules are
realizable (seeAr]) and all realizablekZ, x Z,-modules are described iBEH4.
WhenZ, x 7, is a normal Sylow subgroup of a finite gro@ akG-moduleM is
realizable if and only iM |, ..,, is realizable (Cn]). WhenG containsZ, x Z,,, there
arekG-modules that are not realizable (s&b,[Cs Asl, As2, BeHd). Compare our
theorem with As3, Theorem 2.2], which states that the total Betti numpxet”) of a
‘nice’ Moore spaceX realizing &k E-moduleM is equal to the rank# ), whereZ, is
the characteristic sheaf 8f andA is a subgroup of the elementary abeljagroupE.

The simplest group for which one can attack the classification problem or the
realization problem fok G-modules isG = 7, x Z, due to the fact that it contains
7, x 7, asits unigue maximal elementary abelian subgroup and that the classification of
kZ, x Z,-modules is known. As mentioned above, a ‘detection’ theorem supporting
the first expectation is given irKp]. For the latter, we can only give a necessary
condition for akZ, x Z,-moduleM to be realizable by combiningfs, Proposition
[l] and [Se Proposition 1]: LetM be akZ, x Z,-module. I1fM|,;,,,, is realizable
by X, then the rank variety; , (M|,z,.7,) (see Cd) is a union offF,-rational lines
in k2. Therefore for a realizabkZ, x Z,-moduleM, we obtain that |, s is free for
every shifted cyclic subgrou$ of kZ, x 7, except possibly for cyclic subgroups of
Z, x Z,. This can be used to construct non-realizable modules. Consider the induced
kZ, x Z,-moduleM, = k®y,,, kZ, x Z, for a € k2. It can be seen easily by Mackey’s
formula thatVy, , (M liz,.2,) = Kla} fora € k2. Therefore M, is not realizable if
« is not anf,-rational point.

The Theorem of this paper and the necessary condition mentioned above gives the
following.

COROLLARY. LetG = (g, f : €2 = f* = efeff =1) D E = (g f?). If M
is a non-free indecomposablkeG-module realized by, thenM is a periodick G-
module, anaV |y 1. 4, e-1)1ay(f2-1y) IS & freek(1+ oy (e— 1) + oo (£ 2 — 1))-module for
(a1, ap) € k2 exceptpossibly faio,, a,) € k{(1, 0)}Uk{(0, 1)}Uk{(1, 1)}. Moreover,
if M is afreek(g)-module forg € {e, f2, ef?}, thenX? is homotopic to a point.

PrOOF. The necessary condition given above for the realizability of a molule
implies thatV = VL(M|,p) € k{(1,0} Uk{(0, 1} Uk{(1,1)}. This forcesM to
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be periodic as it is indecomposable and non-free. In addition, #fite oy (e —

1) +ay(f2—1)) fora € {(1,0)} Uk{(0, 1)} Uk{(1, 1)} corresponds t&(g) for some

g € {e f? ef?}, it follows thatM |, is not free for at most ong € {e, f? ef?}.
SupposeM |, is a freek(g)-module withg < {e, f? ef?}. Then it has no trivial
summands, that is;; = 0. Henceg(X@) = 1 by the theorem, and this implies that
X9 is homotopic to a point. O

CoNJECTURE If M is a finitely generated periodikZ, x Z,-module, therM is
realizable.
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