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Abstract

Let 0 be a free noncommutative group with free generating setA+. Let¼ ∈ `1.0/ be real, symmetric,
nonnegative and suppose that supp.¼/ = A+ ∪ A−1

+ . Let½ be an endpoint of the spectrum of¼ considered
as a convolver oǹ2.0/. Then½−¼ is in the left kernel of exactly one pure state of the reducedC∗

reg.0/;
in particular, Paschke’s conjecture holds for½− ¼.
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1. Introduction

Let 0 be a noncommutative free group on finitely many generators. Choose a basis
for 0 and denote by|·| the length with respect to this basis. LetA consist of the basis
elements and of their inverses. Eachx ∈ 0 can be uniquely represented as a reduced
word, that is, a producta1a2 · · · an of elements ofA with aj aj +1 6= e. Letq +1 = |A|.

The reducedC∗-algebra of0 is theC∗-algebra generated by the left regular repre-
sentation³reg, that is, the completion of the convolution algebra of finitely supported
functions with respect to the norm

‖ f ‖2
C∗

reg.0/
= ‖³reg. f /‖2 = sup

‖g‖
`2.0/=1

〈 f ∗ g; f ∗ g〉:

A unitary representation³ of 0 is weakly contained in³reg if for every finitely
supported functionf on 0 one has‖³. f /‖ ≤ ‖³reg. f /‖, where‖ · ‖ denotes the
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operator norm of³. f /; in other words³ is weakly contained in³reg if and only if
³ extends to a representation ofC∗

reg.0/. In our case, using Power’s result [8] that
C∗

reg.0/ is simple, the above condition is equivalent to saying‖³. f /‖ = ‖³reg. f /‖.
From this point on every representation is assumed to be unitary and weakly contained
in ³reg.

Fix a nonzero, finitely supported function¼′ ∈ `2.0/. In [6] Paschke conjectures
that¼′ lies in the left kernel of at most finitely many pure states ofC∗

reg.0/. In terms
of representations this means that

(a) there are only finitely many equivalence classes of irreducible representations
³ , weakly contained in³reg, such that³.¼′/ has nontrivial kernel, and
(b) for any such³ , dim ker³.¼′/ = 1.

It is convenient for our exposition to fix¼ ∈ `2.0/ and let¼′ = ½− ¼ = ½Že −¼ for
½ ∈ C.

Let A+ j A be a set of free generators of0. Letn = ].A+/ = .q +1/=2. Paschke
treats the case¼ = 1A+ = ∑

a∈A+ Ža. For each½, 0 ≤ ½ ≤ √
n, he constructs an

irreducible representation³½ so that dim ker³½.½− ¼/ = 1. No such representation
can occur for½ >

√
n because

√
n is the spectral radius of¼. In the case½ = √

n,
but only in that case, he proves that³½ is, up to equivalence, the unique irreducible
representation such that³.½ − ¼/ has nontrivial kernel. Thus, for½ = √

n, the
conjecture is proved. In [7] Paschke extends his results to the analogous anisotropic
situation.

In this paper we shall prove that the conjecture is true in the case

¼ =
∑
a∈A

paŽa; ½ = ¼0

wherepa (a ∈ A) are positive numbers withpa = pa−1,
∑

a∈A pa = 1 and¼0 is the
right endpoint of thè 2.0/ spectrum of¼. The case of the left endpoint,−¼0, reduces
trivially to the case of+¼0 by taking tensor products with the character�0 such that
�0.a/ = −1 for each generatora ∈ A. For analogous reasons, Paschke’s results hold
not only for½ = √

n, but also for½ = √
nei �.

In fact we shall prove a stronger result, like Paschke’s— there is, up to equivalence,
only oneirreducible representation for which³.¼/v = ¼0v for some nonzero vector
v, namely the one in theanisotropic principal seriesof Figà-Talamanca and Steger [2].
The casepa = 1=.q + 1/ for all a ∈ A corresponds to theisotropic principal series
of Figà-Talamanca and Picardello [1].

In the present case, as in Paschke’s case, the conjecture is proved only for the
extreme value of½. Referring to our paper [5] for the definition ofperfect boundary
realization, observe that Paschke’s representation³½ for ½ = √

n admits exactly one
boundary realization, which is perfect. The same holds for the anisotropic principal
series representation corresponding to the endpoint,½ = ¼0. In neither case does this
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remain true as one passes to the interior of the spectrum. In spite of these notable
points in common, our techniques are quite different from Paschke’s. Ours definitely
don’t apply to his case, and it is not clear how his might apply to our case.

The techniques developed here are based on the growth of the matrix coefficients of
³ and give a positive answer to the question every time that matrix coefficients grow
as fast as they can. This happens for the endpoint representations of the isotropic or
anisotropic principal series. A central role is played by Haagerup’s inequality [3].

THEOREM 1.1. Let .³; H / be a unitary representation of0. Suppose thatv ∈ H
is cyclic for³ and consider the positive definite function�.x/ = 〈³.x/v; v〉. The
following conditions are equivalent

(a) ³ is weakly contained in the regular representation.
(b)

∑
|x|=n |�.x/|2 ≤ .n + 1/2‖v‖4.

(c) For every positivež the functionx → �.x/e−ž|x| belongs tò 2.0/.

Observe first that, by polarization, every matrix coefficient².x/ = 〈³.x/v; v′〉 can
be written as a finite linear combination of positive definite functions so that if we
replace�.x/ with 〈³.x/v; v′〉 (c) remains true while (with the same arguments used
in [3]) (b) becomes ∑

|x|=n

|〈³.x/v; v′〉|2 ≤ C.n + 1/2‖v‖2‖v′‖2:

Let .³1; H1/, .³2; H2/ be two irreducible representations of0 weakly contained in
the regular representation. Fix vectorsv in H1 andw in H2 with ‖v‖ = ‖w‖ = 1.
Define a sesquilinear form onH2 × H1 by letting

Bž.w
′; v′/ =

∑
x∈0

〈³1.x/v; v
′〉〈³2.x/w;w′〉e−ž|x|:

By the Cauchy-Schwartz inequality∑
|x|=n

|〈³1.x/v; v
′〉〈³2.x/w;w′〉|e−ž|x|

≤
(∑

|x|=n

|〈³1.x/v; v
′〉|2e−ž|x|

)1=2(∑
|x|=n

|〈³2.x/w;w
′ 〉|2e−ž|x|

)1=2

≤ C.n + 1/2e−žn‖v′‖ ‖w′‖:
ThusBž is well defined.

Moreover, since
∑∞

n=0.n + 1/2xn = .1 + x/=.1− x/3 for |x| < 1 we have

|Bž.w′; v′/| ≤ C
∞∑

n=0

.n + 1/2e−žn‖v′‖ ‖w′‖ = C.1 + e−ž/
‖v′‖ ‖w′‖
.1 − e−ž/3

:
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Hencež3Bž is bounded asž goes to 0. See Corollary3.2below for a proof that if

lim sup
ž→0

ž3 |Bž.w′; v′/| > 0;(1)

then the two representations are equivalent and moreover a version of Schur orthogo-
nality holds for limits of normalized sums of products of matrix coefficients.

The problem is that in many known cases the limit in (1) is zero. For example,
using the most natural choices for the vectors,Bž grows like 1=ž in the case of a non-
endpoint isotropic ([1]) or anisotropic ([2]) spherical series representation. Growth
like 1=ž2 is to be found for Paschke’s endpoint representation (½ = √

n) and for the
representations of our 1996 paper [4].

There are a few known cases in which the growth of the quantityBž.v′;w′/ is of
the magnitude of 1=ž3, leading to a nonzero limit forž3 Bž . These cases are

• when³ = ³z0 is an endpoint representation of the isotropic spherical series
(corresponding to the valuez0 = 1=2 + ik³ in the notation of [1])

• when³ = ³±¼0 is an endpoint representation of the anisotropic principal series
of [2].

In these cases the spherical functions〈³.x/v; v〉 grow as fast as Haagerup’s results
allow them to and we can get precise and interesting information about the eigenspace
of the operator³.¼ − ½0/.

2. The spherical functions

Fix once and for all a free setA+ of generators and letA = A+ ∪ A− consist of
the generators and of their inverses. The Cayley graph of0 with respect toA is a
homogeneous tree of degreeq+1 = |A|. Each vertex is labelled with a group element
and the (unoriented) edges are given by the pairs{x; xa} wherea ∈ A.

The anisotropic series representations were defined by Fig`a-Talamanca and Steger
in the memoir [2] for all discrete groups whose Cayley graph is a tree. Those groups
are free product ofM copies ofZ andN copies ofZ2, where 2M + N = q +1. In the
paper mentioned above, the caseN = q + 1 was considered in detail. Nonetheless,
formulas and results hold unchanged if we pass from a free product ofq + 1 copies
of Z2 to a free group on.q + 1/=2 generators.

Choose positive numberspa (a ∈ A) with
∑

a∈A pa = 1 and pa = pa−1. Let
¼ = ∑

a∈A paŽa. Consider the operator of right convolution by¼ acting oǹ 2.0/. Its
spectrum is a real interval[−¼0; ¼0] and, for½ =∈ [−¼0; ¼0], the resolvent is given by
right convolution with the Green functiong½.x/ = .½−¼/−1.x/ which is positive for
½ real and greater than¼0.
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Let x = a1a2 · · · an be the reduced word expression forx. Set

g½.e/ = 1

2w.½/
:

Then

g½.x/ = 1

2w.½/
¾a1.½/¾a2.½/ · · · ¾an

.½/(2)

where{¾aj
.½/}q+1

j =1 andw.½/ are algebraic functions of½ which are positive for½ real
and greater than¼0 and where¾aj

= ¾a−1
j

.
It is more convenient to turnw.½/ and¾aj

.½/ into functions ofw: the formulas
below can be found in [2, page 10] and are valid for large positive values ofw.

½ = −.q − 1/w +
∑
a∈A

√
w2 + pa

¾a =
(√
w2 + pa −w

)
=pa

There is a unique positivew0 for which we haved½=dw|w0 = 0. The point
½.w0/ = ¼0 is the (right) endpoint of the spectrum of¼ and it is also a branch point
for the analytic functionw.½/ (see the discussion in [2, pages 22–27]).

At this point we also haved2½=dw2|w0 = L > 0 so that

½ = ¼0 + L

2
.w −w0/

2 + · · · :
Set

√
½− ¼0 = ž and usež as a parameter for the formulae in [2]. In a neighbour-

hood of½ = ¼0 we have

w is an analytic function ofž, w.¼0/ > 0, dw=dž|¼0 = l > 0,(3)

¾a is an analytic function ofž, ¾a.¼0/ > 0, d¾a=dž|¼0 = −ka < 0,(4)

g2
½.e/ = .½ − ¼/−2.e/ = −d.½ − ¼/−1

d½
.e/ = −d

d½

1

2w.½/
(5)

= l

2.w.¼0//
2

1

2ž
+ O.1/:

Let ³½ be the representation of the anisotropic principal series for¼ which corre-
sponds to some½ ∈ [−¼0; ¼0]. Note that³½ is irreducible. There is a special vector1
in the representation space of³½. Actually, 1 is the function identically 1 in the real-
ization of³½ acting onL2.�;d¹/ given in [2]. One has³½.¼/1 = ½1. The spherical
functions are first defined as usual by�½.x/ = 〈³½.x/1;1〉 for ½ ∈ .−¼0; ¼0/. When
½ = ¼0 the spherical function can be computed as a limit, see [2, page 30]

�¼0.x/ = lim
½→¼0

〈³½.x/1;1〉 =
d

dž
|½=¼0.½− ¼/−1.x/

d
dž |½=¼0.½− ¼/−1.e/

and analogously for½ = −¼0.
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3. The results

In order to prove our results we need to modify a little bit the factore−ž|x| which
guarantees the convergence of

∑
x∈0〈³1.x/v; v′〉〈³2.x/w;w′〉e−ž|x|. In the case of the

isotropicprincipal series, no modification is necessary.

LEMMA 3.1. Let  ž.x/ be any family of complex functions having the proper-
ties:

(a) | ž.x/| ≤ Ce−cž|x| for some positive constantsC andc.
(b) | ž.x/−  ž.xa/| ≤ K .ž/e−cž|x| for eacha ∈ A whereK .ž/ → 0 asž → 0+.

Assume that.³1; H1/ and.³2; H2/ are representations weakly contained in the regular
representation. Suppose that for somev1;w1 ∈ H1 andv2;w2 ∈ H2 we have that

lim sup
ž→0

ž3

∣∣∣∣∣
∑
x∈0

〈³1.x/v1;w1〉〈³2.x/v2;w2〉 ž.x/
∣∣∣∣∣ > 0:(6)

Then there is a0-intertwiner J : H2 → H1 so that〈Jw2;w1〉 6= 0.

PROOF. We prove first that lim supž→0+ ž3
∣∣∑

x∈0〈³1.x/v1; v
′
1〉〈³2.x/v2; v

′
2〉 ž.x/

∣∣
is finite and that we can form the analogue ofBž.w′; v′/ by replacinge−ž|x| with ž.x/.
In fact condition (a) together with Haagerup’s inequality says that for any³1 and³2

weakly contained in³reg we have∑
|x|=n

∣∣∣〈³1.x/v1; v
′
1〉〈³2.x/v2; v

′
2〉 ž.x/

∣∣∣
≤
(∑

|x|=n

|〈³1.x/v1; v
′
1〉|2| ž.x/|

)1=2(∑
|x|=n

|〈³2.x/v2; v
′
2〉|2| ž.x/|

)1=2

≤ C.n + 1/2e−cžn‖v′
1‖ ‖v′

2‖ ‖v1‖ ‖v2‖:
Adding up overn we get∣∣∣∣∣

∑
x∈0

〈³1.x/v1; v
′
1〉〈³2.x/v2; v

′
2〉 ž.x/

∣∣∣∣∣ ≤ 2C
‖v′

1‖ ‖v′
2‖ ‖v1‖ ‖v2‖

.1 − e−cž/3
:(7)

Considerv1 andv2 from (6) to be fixed. For everyž > 0, defineJž : H2 → H1

by letting〈Jžv′
2; v

′
1〉 = ž3

∑
x∈0〈³1.x/v1; v

′
1〉〈³2.x/v2; v

′
2〉 ž.x/.

The inequality (7) bounds the operator norm ofJž asž → 0. Choose a sequence
{ž j } tending to zero such that〈Jž j

w2;w1〉 has a nonzero limit, then extract a weak
operator convergent subsequence of{Jž j

} with limit J. This is possible since norm
closed balls are compact in the weak operator topology andHi are separable.
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For some suitable sequence{ž j }, we have

〈J.v′
2/; v

′
1〉 = lim

j
ž3

j

∑
x∈0

〈³1.x/v1; v
′
1〉〈³2.x/v2; v

′
2〉 ž j

.x/:

By a construction〈Jw2;w1〉 6= 0. Now we show thatJ intertwines³2 to ³1. It is
enough to check thatJ³2.a/ = ³1.a/J whena is a generator of0. Let us compute
〈J.³2.a/v′

2/; v
′
1〉 − 〈³1.a/J.v′

2/; v
′
1〉:

|〈J³2.a/.v
′
2/; v

′
1〉 − 〈³1.a/J.v

′
2/; v

′
1〉|

= |〈J³2.a/.v
′
2/; v

′
1〉 − 〈J.v′

2/; ³1.a
−1/v′

1〉|

= lim
j
ž3

j

∣∣∣∣∣
∑
x∈0

〈³1.x/v1; v
′
1〉〈³2.x/v2; ³2.a/v′

2〉 ž j
.x/

−
∑
x∈0

〈³1.x/v1; ³1.a
−1/v′

1〉〈³2.x/v2; v
′
2〉 ž j

.x/

∣∣∣∣∣
= lim

j
ž3

j

∣∣∣∣∣
∑
x∈0

〈³1.ax/v1; v
′
1〉〈³2.x/v2; v

′
2〉 ž j

.ax/

−
∑
x∈0

〈³1.ax/v1; v
′
1〉〈³2.x/v2; v

′
2〉 ž j

.x/

∣∣∣∣∣
≤ lim sup

j
ž j

3K .ž j /
∑
x∈0

∣∣∣〈³1.x/v1; ³1.a
−1/v′

1〉〈³2.x/v2; v
′
2〉
∣∣∣ e−cž j |x| = 0:

COROLLARY 3.2. Let ž be a family of functions satisfying conditions(a) and(b) of
Lemma3.1. Let.³; H / be an irreducible representation. Then there exist a sequence
ž j → 0 and a constantC0 ≥ 0 so that for anyv1; v

′
1; v2; v

′
2 ∈ H

lim
j
ž3

j

∑
x∈0

〈³1.x/v1; v
′
1〉〈³2.x/v2; v

′
2〉 ž j

.x/ = C0〈v1; v2〉〈v′
1; v

′
2〉:

PROOF. This is a corollary to the demonstration rather than to the statement of
Lemma3.1. If the lim sup of (6) is zero for all choices of the vectors, then Corollary3.2
is true withC0 = 0. Otherwise, we fix somev1 andv2 and constructJ : H → H
as in the proof of Lemma3.1. Since³ is irreducible,J is necessarily scalar, say
J = C′

0 = C′
0.v1; v2/. Then for allv′

1 andv′
2 we have

C′
0.v1; v2/〈v′

1; v
′
2〉 = 〈Jv′

2; v
′
1〉 = lim

j
ž3

j

∑
x∈0

〈³1.x/v1; v
′
1〉〈³2.x/v2; v

′
2〉 ž j

.x/:

The rest of the proof proceeds as for the usual Schur orthogonality relations.
Exchanging the roles of.v1; v2/ and.v′

1; v
′
2/ we find thatC′

0 is proportional to〈v1; v2〉,
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sayC′
0.v1; v2/ = 〈v1; v2〉C0. Then for allv1; v2; v

′
1; v

′
2 ∈ H

C0〈v1; v2〉〈v′
1; v

′
2〉 = lim

j
ž3

j

∑
x∈0

〈³1.x/v1; v
′
1〉〈³2.x/v2; v

′
2〉 ž j

.x/:

Takingv1 = v′
1, v2 = v′

2 we find thatC0 > 0.

THEOREM 3.3. Suppose that.³; H / is an irreducible representation weakly con-
tained in³reg. Assume that there exists a nonzero vectorv ∈ H such that³.¼/v = ¼0.
Then³ is equivalent to the representation.³¼0; H¼0/ corresponding to the endpoint
of the anisotropic principal series of[2]. Moreoverdim ker³¼0.¼0 − ¼/ = 1.

PROOF. Fix any nonzero eigenvectorv of ³.¼/ corresponding to the eigenvalue
¼0. Let 1 be the nonzero¼0 eigenvector of³¼0.¼/ as described previously. We shall
construct a function ž satisfying (a) and (b) of Lemma3.1for which

lim
ž→0

ž3
∑
x∈0

〈³¼0.x/1;1〉〈³.x/v; v〉 ž.x/ 6= 0:

Let g½.x/ = .½ − ¼/−1.x/ be the resolvent of¼. Choose½ positive and greater
than¼0 and setž = √

½− ¼0 . Define

 ž.x/ = .½ − ¼/−2.x/

.½− ¼/−2.e/〈³¼0.x/1;1〉 = g2
½.x/

g2
½.e/

1

�¼0.x/
:

Since³.¼/v = ¼0v the functional calculus gives³
(
.½−¼/−2

)
v = v=.½− ¼0/

2. One
computes

∑
x∈0

〈³¼0.x/1;1〉〈³.x/v; v〉 ž.x/ =
∑
x∈0

〈³.x/v; v〉.½ − ¼/−2.x/

.½ − ¼/−2.e/

= 1

g2
½.e/

〈³..½ − ¼/−2/v; v〉 = 〈v; v〉
g2
½.e/.½ − ¼0/2

:

So,

lim
ž
ž3
∑
x∈0

〈³¼0.x/1;1〉〈³.x/v; v〉 ž.x/ = lim
½→¼0

(√
½− ¼0

)3

g2
½.e/.½− ¼0/

2
〈v; v〉:

By (5) the quantity.½− ¼/−2.e/ = g2
½.e/ behaves likel=

(
4
√
½− ¼0w

2.¼0/
)

so that
the above limit is

4w2.¼0/

l
〈v; v〉 6= 0:
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Taking for granted that ž satisfies conditions (a) and (b) of Lemma3.1, said lemma
guarantees the existence of a0-intertwinerJ : H¼0 → H such that〈Jv;1〉 6= 0. As³
and³¼0 are irreducible,³ is unitarily equivalent to³¼0 .

Suppose that dim ker³¼0.¼0 − ¼/ > 1. In the above argument, choose³ = ³¼0

and choosev ∈ ker³¼0.¼0 −¼/ so that〈v;1〉 = 0. ThenJ intertwinesH¼0 to itself so
that〈Jv;1〉 6= 0. As J is necessarily a scalar, this is a contradiction. (Alternatively,
[2] contains a direct, computational proof that dim ker³¼0.¼0 − ¼/ = 1.)

Now we prove that ž satisfies (a) and (b) of Lemma3.1. First note that for½ > ¼0

.½− ¼/−2.x/

.½ − ¼/−2.e/
= d..½ − ¼/−1.x//=d½

d..½ − ¼/−1.e//=d½
= d..½ − ¼/−1.x//=dž

d..½ − ¼/−1.e//=dž
= dg½.x/=dž

dg½.e/=dž
;(8)

wherež = √
½− ¼0 . Fix x = a1 · · · an, an element of lengthn in 0. Define¾.x/, a

function of½, by ¾.x/ = ¾a1.½/ : : : ¾an
.½/. Using (8) and (2) we compute

.½− ¼/−2.x/

.½− ¼/−2.e/
= ¾.x/

(
1+ w

dw=dž

n∑
j =1

−d¾aj
=dž

¾aj

)
:

Since�¼0.x/ is given by the right hand side of (8) evaluated at½ = ¼0,

 ž.x/ = .½ − ¼/−2.x/

.½ − ¼/−2.e/�¼0.x/
= ¾.x/|½
¾.x/|¼0


1 + w

dw=dž

∣∣
½

∑n
j =1

−d¾aj =dž

¾aj

∣∣
½

1 + w

dw=dž

∣∣
¼0

∑n
j =1

−d¾aj =dž

¾aj

∣∣
¼0


 :(9)

Using (3) and (4) one sees that for½ in a neighbourhood of¼0 the functionsw,
dw=dž, ¾a, and−d¾a=dž are positive and differentiable with respect tož. It follows
that there exist constantsh; ž0 > 0 so that

1− hž ≤ w.½/

w.¼0/
· dw=dž|¼0

dw=dž|½ · ¾a.¼0/

¾a.½/
· −d¾a=dž|½
−d¾a=dž|¼0

≤ 1 + hž

for 0< ž ≤ ž0 and for alla ∈ A. Hence

1 − hž ≤
1+ w

dw=dž

∣∣
½

∑n
j =1

−d¾aj =dž

¾aj

∣∣
½

1+ w

dw=dž

∣∣
¼0

∑n
j =1

−d¾aj =dž

¾aj

∣∣
¼0

≤ 1 + hž:(10)

According to (4) d¾a=dž|¼0 = −ka < 0. Hence there exist constantsH; c > 0 so
that

1 − Hž ≤ ¾a.½/

¾a.¼0/
≤ e−žc(11)
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for all 0< ž ≤ ž0 and for alla ∈ A. Consequently,

.¾.x/|½/=.¾.x/|¼0/ ≤ e−cž|x|:(12)

Together with (9) and (10), this proves condition (a) in Lemma3.1.
Now we prove condition (b). Fix a ∈ A so that|ax| = n + 1. The opposite case,

|ax| = n − 1, easily reduces to this one. From (9) we obtain

 ž.ax/ −  ž.x/

= ¾.x/|½
¾.x/|¼0


 ¾a.½/

¾a.¼0/

1 + w

dw=dž

∣∣
½

(
¾a

−d¾a=dž

∣∣
½

+∑n
j =1

¾aj

−d¾aj =dž

∣∣
½

)
1 + w

dw=dž

∣∣
¼0

(
¾a

−d¾a=dž

∣∣
¼0

+∑n
j =1

¾aj .¼0/

−d¾aj =dž

∣∣
¼0

)

−
1 + w

dw=dž

∣∣
½

(∑n
j =1

¾aj

−d¾aj =dž

∣∣
½

)
1 + w

dw=dž

∣∣
¼0

(∑n
j =1

¾aj

−d¾aj =dž

∣∣
¼0

)

 :

By (10) and (11)

..1 − Hž/.1 − hž/ − .1 + hž//
¾.x/|½
¾.x/|¼0

≤  ž.ax/ −  ž.x/

≤ ..1 + hž/− .1 − hž//
¾.x/|½
¾.x/|¼0

which means that

−.2h + H /ž
¾.x/|½
¾.x/|¼0

≤  ž.ax/−  ž.x/ ≤ 2hž
¾.x/|½
¾.x/|¼0

:

Together with (12), this completes the proof of condition (b).
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[2] A. Figà-Talamanca and T. Steger, ‘Harmonic analysis for anisotropic random walks on homogeneous
trees’,Mem. Amer. Math. Soc.110(1994), No. 531.

[3] U. Haagerup, ‘An example of a nonnuclearC?-algebra which has the metric approximation property’,
Invent. Math.50 (1979), 279–293.

[4] M. G. Kuhn and T. Steger, ‘More irreducible boundary representations of free groups’,Duke Math.
J. 82 (1996), 381–436.

[5] , ‘Monotony of certain free group representations’,J. Funct. Anal.179(2001), 1–17.
[6] W. Paschke, ‘Pure eigenstates for the sum of generators of the free group’,Pacific J. Math.197

(2001), 151–171.



[11] Paschke’s conjecture 183

[7] , ‘Some irreducible free group representations in which a linear combination of the generators
has an eigenvalue’,J. Aust. Math. Soc.72 (2002), 257–286.

[8] R. T. Powers, ‘Simplicity of theC∗-algebra associated with the free group on two generators’,Duke
Math. J.42 (1975), 151–156.

Dipartimento di Matematica
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