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Abstract

Let T be a free noncommutative group with free generatingésetLet . € £1(I") be real, symmetric,
nonnegative and suppose that sypp= AU A*. Leta be an endpoint of the spectrumotonsidered
as a convolver o#?(I"). Theni — w is in the left kernel of exactly one pure state of the reducgdr);
in particular, Paschke’s conjecture holds for .
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1. Introduction

Let " be a noncommutative free group on finitely many generators. Choose a basis
for I and denote by:| the length with respect to this basis. L&tonsist of the basis
elements and of their inverses. Eack I" can be uniquely represented as a reduced
word, thatis, a produca; - - - a, of elements oA with a;a;,; # e. Letq+1 = |A|.

The reduced*-algebra ofl” is theC*-algebra generated by the left regular repre-
sentationr,eg, that is, the completion of the convolution algebra of finitely supported
functions with respect to the norm

” f ”(zjfeg(r) = ||7Treg(f)”2 = Sup (f *0, fx g)

gl 2 =1

A unitary representation of I' is weakly contained i, if for every finitely
supported functionf on I" one has|z ()| < |mey(f)Il, where|| - || denotes the
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operator norm ofz(f); in other wordsr is weakly contained inr.q if and only if
7 extends to a representation@f,(I'). In our case, using Power’s resuff fhat

Crey(I') is simple, the above condition is equivalent to sayliing f)[| = [|7eq( ).
From this point on every representation is assumed to be unitary and weakly containec
iN TTreg.

Fix a nonzero, finitely supported functieri € ¢2(T"). In [6] Paschke conjectures
thaty' lies in the left kernel of at most finitely many pure state€<pf(I"). In terms
of representations this means that

(a) there are only finitely many equivalence classes of irreducible representations
7, weakly contained imr,eq, such thatr(x") has nontrivial kernel, and
(b) forany suchr, dimkerr (') = 1.

It is convenient for our exposition to fix € ¢*(I") and letw’ = A — u = A8 — u for
reC.

Let A, € Abe asetof free generatorsiof Letn = #(A;) = (q+1)/2. Paschke
treats the casp = 1a, = Y., 8. For eachh, 0 < i < /n, he constructs an
irreducible representation, so that dimkerr, (A — 1) = 1. No such representation
can occur foih > /n because/n is the spectral radius ¢f. In the case. = /n,
but only in that case, he proves thatis, up to equivalence, the unique irreducible
representation such that(A — ) has nontrivial kernel. Thus, foxr = /n, the
conjecture is proved. In7] Paschke extends his results to the analogous anisotropic
situation.

In this paper we shall prove that the conjecture is true in the case

n= Z Padas A = o
acA
wherep, (a € A) are positive numbers with, = pa-1, D, . Pa = 1 anduy is the
right endpoint of theé?(I") spectrum ofx. The case of the left endpoint,u, reduces
trivially to the case oft-iq by taking tensor products with the charactgisuch that
Xxo(@) = —1 for each generata € A. For analogous reasons, Paschke'’s results hold
not only fori = /n, but also for. = /ne’.

In fact we shall prove a stronger result, like Paschke’'s—there is, up to equivalence,
only oneirreducible representation for whieh(u)v = pev for some nonzero vector
v, namely the one in thenisotropic principal seriesf Figa-Talamanca and Stegéj [

The casep, = 1/(q + 1) for all a € A corresponds to thisotropic principal series
of Figad-Talamanca and Picardell®][

In the present case, as in Paschke’s case, the conjecture is proved only for the
extreme value of.. Referring to our papef] for the definition ofperfect boundary
realization observe that Paschke’s representatipiior » = /n admits exactly one
boundary realization, which is perfect. The same holds for the anisotropic principal
series representation corresponding to the endpoiat,. In neither case does this
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remain true as one passes to the interior of the spectrum. In spite of these notable
points in common, our techniques are quite different from Paschke’s. Ours definitely
don’t apply to his case, and it is not clear how his might apply to our case.

The techniques developed here are based on the growth of the matrix coefficients o
7 and give a positive answer to the question every time that matrix coefficients grow
as fast as they can. This happens for the endpoint representations of the isotropic o
anisotropic principal series. A central role is played by Haagerup’s inequd]ity [

THEOREM1.1. Let (r, H) be a unitary representation d@f. Suppose that € H
is cyclic forz and consider the positive definite functigiix) = (w(X)v, v). The
following conditions are equivalent

(a) m is weakly contained in the regular representation.

(b) > n 6O < (N4 ?|v]*.
(c) For every positive: the functionx — ¢ (x)e < belongs to¢(T").

Observe first that, by polarization, every matrix coefficiet) = (7 (x)v, v') can
be written as a finite linear combination of positive definite functions so that if we
replaceg (x) with (z(x)v, v') (c) remains true while (with the same arguments used
in [3]) (b) becomes

Z [ (X)v, v)[> < C(n+ D?|vl?[v']1%
[X|=n
Let (71, H1), (,12, H,) be two irreducible representationsiofveakly contained in
the regular representation. Fix vectarin H; andw in H, with |Jv|| = |w] = 1.
Define a sesquilinear form ad, x H; by letting
B.(w',v) = Y (m(¥)v, v') (m(w, w)e ™.

xel’
By the Cauchy-Schwartz inequality
> (0w, V') e (w, w'y e

[X|=n

12 1/2
= <Z {1 (X)v, V') e”) (Z |7 (X)w, w')]| e”)

[X|=n [X|=n

< C+ D" [lw'll.

ThusB:. is well defined.
Moreover, since_ . ,(n + 1)?x" = (1 + x)/(1 — x)*for |x| < 1 we have

Il JTwll

1B/, )] = € 3+ Dfe o/l ' = C(L+ &) T =

n=0
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Hencee3B, is bounded as goes to 0. See CorollaB:2below for a proof that if

(1) limsupe® |B.(w', v')| > 0,

e—0

then the two representations are equivalent and moreover a version of Schur orthogo
nality holds for limits of normalized sums of products of matrix coefficients.

The problem is that in many known cases the limit 1 i€ zero. For example,
using the most natural choices for the vect@sgrows like ¢ in the case of a non-
endpoint isotropic ([]) or anisotropic (B]) spherical series representation. Growth
like 1/€? is to be found for Paschke’s endpoint representatios:(,/n) and for the
representations of our 1996 papéy. [

There are a few known cases in which the growth of the quaBtity’, w’) is of
the magnitude of 3, leading to a nonzero limit for®B,. These cases are

e whenn = 7, is an endpoint representation of the isotropic spherical series
(corresponding to the valug = 1/2 + ik in the notation of {])
e whenr = 7., is an endpoint representation of the anisotropic principal series
of [2].
In these cases the spherical functidngx)v, v) grow as fast as Haagerup’s results
allow them to and we can get precise and interesting information about the eigenspact
of the operatorr (u — Ag).

2. The spherical functions

Fix once and for all a free se&, of generators and leA = A, U A_ consist of
the generators and of their inverses. The Cayley gradh with respect toA is a
homogeneous tree of degmee 1 = | A|. Each vertexis labelled with a group element
and the (unoriented) edges are given by the gairga} wherea € A.

The anisotropic series representations were defined lay Fagamanca and Steger
in the memoir P] for all discrete groups whose Cayley graph is a tree. Those groups
are free product oM copies ofZ andN copies ofZ,, where M + N = g+ 1. Inthe
paper mentioned above, the cd$ée= q + 1 was considered in detail. Nonetheless,
formulas and results hold unchanged if we pass from a free product-of copies
of Z, to a free group ofiq + 1) /2 generators.

Choose positive numberns, (a € A) with >, , pa = 1 andp, = p,:. Let
=Y ..a Pada. Consider the operator of right convolution hyacting on¢?(I"). Its
spectrum is a real interv@d- o, o] and, forx ¢ [—puo, o], the resolventis given by
right convolution with the Green functiag (x) = (A — u)~*(x) which is positive for
A real and greater thamg.
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Letx = aa, - - - &, be the reduced word expression forSet

_ 1
g.(e) = 200"
Then
1
(2 0.(X) = méal()»)faz()») - &g (A)

and greater thap, and where,, = gajfl.
It is more convenient to turm (1) andé, (1) into functions ofw: the formulas
below can be found inZ, page 10] and are valid for large positive valueswof

h=—@-Dw+) Vu+p,

acA

éa:<vw2+pa_w)/pa

There is a unique positiva,, for which we havedx/dw|,, = 0. The point
Mwg) = o is the (right) endpoint of the spectrum @fand it is also a branch point
for the analytic functionw (1) (see the discussion i[pages 22—-27]).

At this point we also have?./dw?|,, = L > 0 so that

where{é,, ()L)}‘f+l andw () are algebraic functions af which are positive foi real

L 2
A=pot S —wo) -

Set/A — o = € and use as a parameter for the formulae B.[In a neighbour-
hood ofA = 1y we have
3) w is an analytic function of, w(ue) > 0, dw/de|,, =1 > 0,
4) &, is an analytic function o€, &,(uo) > 0, d&,/del,, = —ka < O,

—d(x — )t B —_d 1
da ® = dir 2w(ir)
|

2winize T O
Let i, be the representation of the anisotropic principal serieg fatich corre-
sponds to some € [—uo, o]. Note thatr, is irreducible. There is a special vector
in the representation spacesmf. Actually, 1 is the function identically 1 in the real-
ization ofr, acting onL?(€2, dv) given in [2]. One hasr, (1)1 = A1. The spherical
functions are first defined as usual y(x) = (7, (X)1, 1) for A € (—uo, o). When
A = 1o the spherical function can be computed as a limit, 2epdge 30]

(;j_él)»:;l_o()" - M)il(x)
(;j_él)»:;l_o()" - M)il(e)

®) gi(e) = (A — () =

9,000 = lim (m, (01, 1) =

and analogously fox = — .
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3. The results

In order to prove our results we need to modify a little bit the faetof! which
guarantees the convergenceof - (1 (X)v, v') (mo(X)w, w’)e <. In the case of the
isotropic principal series, no modification is necessary.

LEmMMA 3.1. Let ¥.(X) be any family of complex functions having the proper-
ties
(@) |Y.(x)| < Ce M for some positive constan@&andc.
(b) |¥.(X) — Y. (xa)| < K(e) e > for eacha € AwhereK (¢) — Oase — 0.

Assume thatr;, H;) and(ir,, H,) are representations weakly contained in the regular
representation. Suppose that for somew; € H; andv,, w, € H, we have that

(6) limsupe® | Y " ()1, w1) (m(X) vz, wa) e ()| > 0.

e—0 xel

Then there is & -intertwiner J : H, — H; so that(Jw,, w,) # O.

PrROOF. We prove first that limsup, . €| 3, .- (m1 (X)v1, v;) (2 (X) vz, 05) ¥ (X)]
is finite and that we can form the analogueBptw’, v') by replacinge <! with v (x).
In fact condition €) together with Haagerup’s inequality says that for amyandz,
weakly contained inr., we have

> (G0, o) T2 (0w, v v )|

IX|=n

1/2 1/2
< (Z [EACE v1>|2|x/f€(x)|> (Z [EACIS v;>|2|x/f€(x)|>

[X]=n |X|=n

2
< C(n+ D% il vl Tvall vzl

Adding up ovem we get

Vil Topll ol vzl
(1 — 97Ce)3

(7 D {mi () vr, v () vz, vy (X)| < 2C

xel’

Considerv; andv, from (6) to be fixed. For every > 0, defined, : H, — H;
by letting (J. v, v}) = €3>, (T (X)v1, V) (T2(X) V2, V) Ve (X).

The inequality {) bounds the operator norm df ase — 0. Choose a sequence
{€j} tending to zero such thdt, w,, w;) has a nonzero limit, then extract a weak
operator convergent subsequence &f} with limit J. This is possible since norm
closed balls are compact in the weak operator topologytarate separable.
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For some suitable sequenfeg}, we have

(J(v3), vy) = ”En € Z(nl(x)vl’ V(2 (X)v2, V) Y (X).

xel’

By a construction Jw,, w;) # 0. Now we show thatl intertwinesrn, to m;. It is
enough to check thatr,(a) = m1(a)J whena is a generator of. Let us compute

(J(m2(a)vy), vy) — (ma(@) I (v3), vy):
[(Im2(8) (v3), v1) — (m1(8) I (v3), vy)]
= |(Ima(@) (vh), vy) — (I(vp), (@ Hvy)|

= I|m EJ?’

D S {m () vr, v (v, T2@)V) e, (X)

xel’

=Y {m)vr, m@ V) (T2 (X) vz, v) P, (X)

xel’

= lim 63
j ]

> tmi@x)vr, v'1) (ma(X) vz, v5) ¥, (@X)

xel’

= (m@x)vr, ) (202, Vy) e (X)

xel’

e« =0 0O

< limsupe; K (€) Y [tr 00w, @) T (00w, v5)
J xel’
COROLLARY 3.2. Lety, be a family of functions satisfying conditiof@ and (b) of
Lemma3.1l Let(w, H) be anirreducible representation. Then there exist a sequence
€; — Oand a constanC, > 0 so that for anyv,, vy, v, v, € H

lim ¢ Z(nl(x)vl’ V) (2(X)v2, Vo) e (X) = Colva, v2) vy, v).
i

xel’

PrOOF. This is a corollary to the demonstration rather than to the statement of
Lemma3.L Ifthe lim sup of ) is zerofor all choices of the vectors, then Corollarg
is true withC, = 0. Otherwise, we fix some; andv, and constructl : H — H
as in the proof of Lemma&.1 Sincex is irreducible,J is necessarily scalar, say
J = C{ = Cy(v1, v2). Then for allv; andv, we have

Co(vr, v2){vg, v5) = (Jup, vy} =lim € " fra(¥)vr, V1) (m2() vz, 1) ¥, ().
xel’

The rest of the proof proceeds as for the usual Schur orthdigomelations.
Exchanging the roles @by, v,) and(vy, v5) we find thatC} is proportional ta(vy, v,),
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sayCy(vq, v2) = (v1, v2)Co. Then for allvy, vp, vy, v, € H

Co(v1, v2){vy, v3) = "En e Z(ﬂl(x)vl, V) (T2 (X) 2, v3) Yre; (X).

xel’

Takingv, = vy, v, = v, we find thatCy > 0. O

THEOREM 3.3. Suppose thafr, H) is an irreducible representation weakly con-
tained inmee. Assume that there exists a nonzero vectarH such thatr (u)v = po.
Thenr is equivalent to the representatign,,,, H,,) corresponding to the endpoint
of the anisotropic principal series ¢&]. Moreoverdimkerr,, (o — 1) = 1.

PrOOF. Fix any nonzero eigenvectar of (1) corresponding to the eigenvalue
Wo. Let1be the nonzerp, eigenvector ofr,, (1) as described previously. We shall
construct a functiony, satisfying € and @) of Lemma3.1for which

lim e* Y (7, (0L D{m()v. 0] ¥ (x) # O.

xel’

Let g,(x) = (A — u)~1(x) be the resolvent oft. Choose\ positive and greater
thanuy and sek = /A — up. Define

G-w2%  _gx 1
A — M)fz(e)(nuo L1 gf(e) ¢Mo (X) )

Ve(X) =

Sincern (1)v = ugv the functional calculus gives((k—u)*z)v =v/(A — up)?. One
computes

-_—0 _ -2
= (mr (A — ,Uu)fz)v V) = L
A VT P00
So,
3
im €3 (,, 001, DTGV, VY (x) = fim g((— m< V).

xel’

By (5) the quantity(x — )~%(e) = g2(e) behaves liké/(4/% — no w?(110)) SO that
the above limit is

4w2(,u0)
|

(v,v) #0.
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Taking for granted that,, satisfies conditionssf and @) of Lemma3.1, said lemma
guaranteesthe existence df antertwinerJ : H,, — H suchthatJv, 1) # 0. Asx
andr,, are irreducibles is unitarily equivalent tor,,.

Suppose that dimker, (1o — ) > 1. In the above argument, choose= r,,
and choose € kerm,, (1o — ) so that(v, 1) = 0. ThenJ intertwinesH,,, to itself so
that(Jv, 1) # 0. As J is necessarily a scalar, this is a contradiction. (Alternatively,
[2] contains a direct, computational proof that dimkgj(uo — ) = 1.)

Now we prove that, satisfies§) and @) of Lemma3.1 First note that foh > g

(o= w20 d(@ = we0)/dr  d((h— w ) /de  dg.(x)/de

8 - - - ’
®) (h—mw2  d((—wt(e)/dr  d((r —w(e)/de  dg.(e)/de

wheree = /A — ug. Fixx =a; ---a,, an element of length in I". Define&(x), a
function of &, by £(x) = &, (%) ... &, (1). Using @) and @) we compute

(= ) 2(x) —dé&, /de

-~z 7 1+ ]

G—we o ( e Z ) )
Sinceg,,, (x) is given by the right hand side o8) evaluated at = o,

w n —dé,; /de
G2 £ (“—awaeh Yl |x)

(9) Ye(X) =

G- = 1077@9,00 — 80T \ 14 | vy B

Using 3) and @) one sees that for in a neighbourhood ofiq the functionsw,
dw/de, &, and—d&,/de are positive and differentiable with respecttolt follows
that there exist constantse, > 0 so that

w®) dw/de|,, a(no) —dEa/del;

1—he < . <1l+he
w(po) dw/del;,  &(d) —d&/del,,
for 0 < € < ¢y and for alla € A. Hence
n —d&, /dE
1+ dw/de| j=1 Eaj |
(10) 1-he < — 5. = 1+he
1 + dw/de |pL0 Zj:]- Eaj |M0

According to @) d&,/de|,, = —ka < 0. Hence there exist constarts c > 0 so
that

2 &0

11 1—He
( ) sa(,uo)
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forall 0 < € < ¢ and for alla € A. Consequently,
(12) ECO)/EX) ) < €N

Together with 9) and (L0), this proves conditiond) in Lemma3.1
Now we prove conditionlf). Fix a € A so thatjax| = n+ 1. The opposite case,
lax| = n — 1, easily reduces to this one. Frof8) (ve obtain

Ye(@x) — ¥ (x)
w L n &a;
L (a0 1T oo (g, +ZJ:1T33;E|A)

- &aj (140)
500 \ Salo) 1+ | (i, + Eioimat e o)
&a;
1 + dwu/)de |A (ZTle&,:E |A )

sa'
1 + dwu/)de |;,L0 (ZTle&,:E |;,L0)

By (10) and (1)

(A=He)1—he) — 1+ hé))w = Ye(@ax) — ¥e(X)
EX) o

< (L +he) — (L — hep 20k

EX) o

which means that

X)L X)L
— 2h .
5001, = Ye(@x) —e(x) < Gf(x)mo

Together with {2), this completes the proof of conditioh)( O

—(2h + H)e
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