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Abstract

We first give the existence and uniqueness result and a comparison theorem for backward stochasti
differential equations with Brownian motion and Poisson process as the noise source in stopping time
(unbounded) duration. Then we obtain the existence and uniqueness result for fully coupled forward-
backward stochastic differential equation with Brownian motion and Poisson process in stopping time
(unbounded) duration. We also proved a comparison theorem for this kind of equation.
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1. Introduction

Nonlinear backward stochastic differential equations with Brownian motion as noise
sources (BSDE in short) have been independently introduced by Pardoux andBeng [
and Duffie and Epsteird]. It was soon discovered by Pent{ that, coupled with a
forward stochastic differential equation (SDE in short), such BSDE give a probabilistic
interpretation for a large kind of second order quasilinear partial differential equations
(PDE in short). In this paper Peng also gave an existence and uniqueness result o
BSDE in stopping time duration which can take infinite value. And then Darling
and Pardouxd] proved an existence and unigueness result for BSDE in stopping
time under different assumptions. They applied their result to construct a continuous
viscosity solution for a class of semilinear elliptic PDE. &, [El Karoui, Peng and
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Quenez gave a comparison theorem to BSDE and some applications in optimal contro
and financial mathematics.

Fully coupled forward-backward stochastic differential equations with Brownian
motion (FBSDE in short) can be encountered in the optimization problem when
applying stochastic maximum principle and mathematical finance considering large
investor in security market. Antonelll] first studied this kind of equations and
obtained the local existence and uniqueness results, that is, the time duration on whicl
the solutions exist (without explosion) has to be sufficiently small. He also gave a
counterexample to show that the Lipschitz condition is not enough for the existence
of FBSDE in an arbitrarily large time duration. Using PDE method, Ma, Protter and
Yong [9] successfully obtained the existence and uniqueness result for an arbitrarily
prescribed time duration. But they needed the forward SDE to be nondegenerate ant
the coefficients not to be randomly disturbed. Using probability method, Hu and Peng
[6] obtained the existence and uniqueness result when forward and backward equation
take same dimensions under some monotone assumptions. Elaafgdveaken their
monotone assumptions and discussed the application in stochastic differential games
Peng and the authod 7] extend their results to different dimensional FBSDE and
weaken the monotone assumptions so that the results can be used widely. The mai
method is to introduce am x n full rank matrix G to overcome the difficulty of
the different dimensions. Yon@[] made the above method systematic and called
it ‘continuation method’. In 12], Pardoux and Tang also gave the existence and
uniqueness results for FBSDE under some monotone conditions different &om [
and [L7]. Recently, Peng and Shif] gave an existence and uniqueness result of
FBSDE with infinite horizon. But the solution is in a square integrable space, the
infinite time value of the solution must be zero.

The BSDE with Poisson process (BSDEP in short) was first discussed by Tang
and Li [19]. The stochastic process in the equation is discontinuous with random
jump. After then Situ Rongl8] obtained an existence and uniqueness result with
non-Lipschitz coefficients for BSDEP. Using this kind of BSDEP Barles, Buckdahn
and Pardouxd] gave the probabilistic interpretation for a system of parabolic integro-
partial differential equation and proved that there exists a unique viscosity solution
for this kind of PDE systems. In Secticghwe study the BSDEP in stopping time
duration, here the stopping time is unbounded and can take infinite value. Under a
Lipschitz condition suitable for our case, we get the existence and uniqueness resul
for BSDEP using fixed point principle and other technique. Further in Se2fiom
give a comparison theorem for BSDEP in stopping time. The conclusion is similar
with that in [8]. We only need to control the height of the jump in BSDEP.

In Section3, we consider fully coupled forward-backward stochastic differential
equations with Brownian motion and Poisson process (FBSDEP in short) in stopping
time duration. Suitable for the case that the stopping time can be infinite, we prove
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an existence and uniqueness result under a Lipschitz and monotone assumptions, tf
infinite time value of the solution noeessarily be required zero.

In Section4, we give a comparison theorem for FBSDEP in stopping time. The
idea in the proof is to use duality technique and stopping time technique. The duality
technique is usually used in optimal control theory to introduce the adjoint equation
for proving the maximum principle (se&4, 20]). Another technique is to analyze the
jump height under the limit assumption. This kind of comparison theorem can be used
to connect FBSDEP with a parabolic integro-PDE system and study the existence of
the viscosity solution for this PDE system. The PDE system form should be a PDE
combined by the algebra equation. For no jump case this kind of PDE form can be
seen in [L5]. Here the comparison theorem of FBSDEP is established only at time O,
we cannot get the result in the whole random interval. We also give a counterexample
to show this point.

2. BSDEP in stopping time duration

Let (2, Z,{Z =0, P) be a stochastic basis such th@} contains allP-null
elements of# and.#, = (. o % = F,t > 0. We suppose that the filtration
{Z}i=0 is generated by the following two mutually independent processes:

— ad-dimensional standard Brownian moti@B, };-, and

— a Poisson random measudeon R, x Z, whereZ c R' is nonempty open
set equipped with its Borel field (%), with compensatoﬂ(dz dt) = n(dz dt,
such thatN (A x [0,t]) = (N — N)(A x [0, tDi=0 IS @ martingale for alA € Z(%)
satisfyingn(A) < co. nis assumed to beafinite measure o0z, #(%)) and called
the characteristic measur&,, = \/,.,%:. Lett = {r(w)} be Z, stopping time and
take value in0, oo]. We introduce the following notations:

7% ={w,0<t < 7,is a# adapted process such thsup,_, _, [v|?] < 0o},
% ={v, 0=t < r,is aZ adapted process such tiit/; |v|>dt] < oo},
L? = {&, & is a.Z, measurable random variable such thet|> < oo},
Fi = {k(), 0<t <7,is aZ predictable process such that
E[ /5 /5 Ik (@[*n(d2) dt] < co}.

We consider the following BSDEP in stopping time duration

(2.1) m=s+/ f<s,ps,qs,ks>ds—/ qsst—/ k (N dzds,
tat trat J Z

taT

wheret > 0,£ € L2 and f is a map fromQ x [0, co] x R™ x R™d x R™ onto R™
which satisfies
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(H2.1) For every(p,q,k) € R™M™d+m f(. p q,k) is progressively measurable
andE( /5| f(s,0,0,0)|ds)® < oo.

(H2.2) There exist three positive deterministic functiop&), u,(t) andus(t), such
thatv(p',q',k),i =1, 2,

[, pt gt kY — f(t, p% g2 k)|
<u®Ipt— Pl +ulg' — g?l + us() k' — K?, t>0,

and 7 uy () dt < oo, [T u3(t) dt < oo, [T U3(t) dt < oo,
Then we have

THEOREM2.1. Assume < L? and f satisfies(H2.1)—«(H2.2), then there exists a
unique solution'p, g, k) € .2 x 3#? x Fj satisfying the BSDER2.1).

PROOF. For the uniqueness, I€p, G, k) be another solution, we st= (p — p),

4 = (q —d), k = (k — k). Using I5's formula to| 4|2, similarly with the proof in
[11] for fixed time T without jump except the Lipschitz constants being replaced by
uy (1), U, (t) andus(t), t > 0, we can get the conclusion from the assumptiod.p)

and Gronwall’s lemma.

For the existence we want to construct one contraction map2fdy &nd get the
solution. However, the stopping time duration is unbounded and can be infinite, so
we cannot get this in one step. We divide the proof into two steps.

First step. Assume

2

(/mul(t)dt> +/ u§(t)dt+/ u§(t)dt<i.
0 0 0 15

For every(p, q, k) € .2 x 2#? x Fi, we have

T 2
[E[éJr/ f(t, pt,qt,kt)dt]
0
2

< [E[I%‘I +/ (If(t,0,0,0) + ur(®)| pel + Uz (t) |kl +U3(t)lkcl)dt}
0

T 2 00 2
[E(/ ul(t)lnldt> 5(/ ul(t)dt> PO, < oo,
0 0
T 2 00
[E(/ u2<t>|q|dt) s(/ u%(t)dt) 19O 22 < oo,
0 0
T 2 00
[E( / us(t)lktldt> 5( / ui(t)dt) IKOIZ, < oo.
0 0

and
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Then [E[g + fOT f (S, Ps, s, Ks) ds| %M] is a square integral martingale. From mar-
tingale representation theorem, there ex{§s, K;) satisfying

E |:€ +/ f(S, pS7 qS7 kS) dS ytAt]
0

T tAT tAT
= [E[SJr/ f (S, Ps, Gs» ks)ds] +/ QSdBS+/ /K&(z)ﬂ(dzds).
0 0 0 z

We letP,,, = E[§ + [, T(S, Ps, Gs. ks)dS|. 7. ], thenP(-) € 2 and(P, Q, K)
is the solution of the BSDEP

(2.2) Pm=s+/T s, ps,qs,kgds—/T Qsst—/T/K&(Z)N(dzdS.
tat tat JZ

tAT

This equation introduces the map : .2 x #? x F§ — % x 2% x F3 by
®:(p,q,k — (P,Q,K). We use the following method, which is similar with
that in [1], to get the solution of BSDE i space within the fixed time duration, to
prove the above map is a contraction. ket (p',q', k') — (P, Q', K", i = 1,2,
P—pl_ P2, Q‘: Q- Q?, K = KI—K2 p=p'—p? Q= ql_q21|2: k! — K2,

fy = f(s, pt, g kY — (s, p2, g2, k?). From Doob's inequality,

T 2 T 2
[E(/ f.ds %) 54[5(/ |f;|ds> ,
t 0
T 2 T 2 T 2
/ fsds —I[E/ fsds §[E</ |fs|ds>.
0 0 0
We note that#? = .2 x 7% x F3. So
”d)(pl’ ql7 kl) - q)(p27 q27 kz)'lé&?
. 2
= IPOI%: + 1QO) %2 + IKOIZ; < 5E ( / | £l ds)
0

o0 2 o0 o0
< 15[(/ ul(t)dt> +/ u§(t)dt+/ u§(t)dt}
0 0 0

x [IBOIE: + 16O + IROIZ |

IPOI2. =E sup

O<t<r

1ROz + IKOIIE, = E

From the assumptiorf /;° uy(t) dt)® + f;~u3®) dt + f;°ud®)dt < 1/15, then
® : B2 — #?is a strict contraction, BSDER (1) has one unique solution.
Second step. Assumg™ ui(t) dt < oo, [;7us(t)dt < oo, [;°U3(t)dt < oo.
Thenthere exist§ > 0, suchthaf [;° us(t) dt)2+fT°° u3(t) dt+ /7 u3(t) dt < 1/15.
We let fi(s, p,q,K) = li1..() (L, p,q, k), then f; satisfies Lipschitz condition
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(H2.2) with Gy (t) = li1 (DU (D), Ga(t) = 700 (DU(), Ug(t) = Ij7 (DU (L)
and ( /37 Ty (t) dt)2 + [, Gt dt + f;°03(t) dt < 1/15. So there exists solution
(P(), G(), k(-)) from the first step, such that, for= T,

(2.3) Iﬁm=€+/ f1<s,ﬁs,qs,|25>ds—/ qsst—/ k (N dzds.
tAT tAT tat J Z

Then we consider the following BSDEP,

TAT TAT TAT
(2.4) n=m+/ s, ﬁs,qs,@ds—/ qsst—/ /I@(z)N(dzds,
t t t Z

t € [0, T A 7]. From the result in10] or the result for fixed time in19], which only
need minor change suitable for our case, there exists unique sol@ignk). Let
us setp = liorrq ) P+ 17 nea B th = loTaa®OG + It ae G ke = o1k +
lrreke, it is easy to check that this is a solution of BSDERI]. The proof is
completed. O

Similarly to the comparison theorem of BSDE ig],[ we will give this kind of
theorem for BSDEP in stopping time in the remaining part of this section. But the
appearance of jump process needs one new condition to limit the height of the jump
besides the Lipschitz condition i@.2).

We consider the following two BSDEPs in stopping time, hare- 1.

(2.5) p=§ +/ fi(s, P, o, kL>ds—/ q;st—f k. (2N (dzds,
tAt tAt tat JZ

wherei =1,2,&" e L?, ' satisfy (H2.1) and (H2.2). From Theoren?.1, there exist

(P'(),q' (), K() € #2 x 2#?% x F2 which satisfy BSDEPZ.5) respectively. We

also assume

(H2.3) &> &2 fi(s, p?, 0% K?) = f2(s, p?, 0% k%), s > 0.

(H2.4) —cx(s) < (f(s, p% 0% kY — f2(s, p% g% k?))/(k* —k?) < ci(s), when

k! —k? £ 0, c,(s) andc,(s) are two positive deterministic functions which satisfy

Jy cus)ds < o0, [ ca(s) ds < oo andc,(s) < 1,5 > 0.

Then we have

THEOREM2.2. For everyt > 0, pl,, > p..

The proof is almost the same as the proof of the comparison the@efh¢o-
rem 2.2] for BSDE without jump. We omit it.

Whent < T < oo, we can takei; (t), u,(t) andus(t), 0 <t < T, to be constants,
then the result of BSDEP in bounded time duration is the special case of our result in
this section.
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3. Existence and uniqueness of FBSDEP in stopping time duration

In this section, we discuss the fully coupled FBSDEP in stopping time duration.
We consider

tAt tAT
Xt =a + / b(s9 X57 p57 q57 kS) ds+ / 0(57 X57 p57 q57 kS) d BS
0 0

tAt
+/ /g(s’x&7 p&’Q&’k&(Z)vZ)N(dZdS»
(3.1) o Jz

pt/\l' = q)(XT) +/ f(S, XS7 pS7 qS7 ks)ds_/ quBs
tAT tAt

tAT
—/ /k&(z)ﬂ(dzds).
0 z

Heret > 0, (X, p, g, k) take value inrR™ x R™ x R™d x R™,

c Q2 x[0,00] x R™ x R™ x R™4 x R™ — R™,

(2 x[0,00] x R™x R™ x R™Y x R™ — R™Y

QO X[0,T]xR™x R™x R™Y x R™"x Z —> R™,

O[O, TI xR x R x R™9 x R™ —> R™  &:Q x R™— R™

- @ ° o

We assume the following:

(H3.1) ForeveryXx, p,q, k) € R™mmxd+m ¢ (x) ¢ L2 b, o, gandf are progres-
sively measurable and
2

e} %) 2
[E(/ Ib(s, 0,0, 0, 0)|dS) +[E</ | f(s,0,0, 0,0)|dS)
0 0

+[E/ lo(s,0,0,0,0)*ds + [E/ /lg(s, 0,0,0,0,2)|*n(d2 ds < oo.
0 0 z
(H3.2) There exists a positive deterministic bounded functigm), such that for
every(x', p', g', k) e Rmtmemxd+m j — 1 2
<u® X=X+ [pt— PPl + 19" — g’ + k' = K*|], t=0
| = b, o, f, grespectively, and;” u;(t) dt < oo, [~ u2(t)dt < co. There exists a
constaniC > 0 such that®(x;) — ®(Xp)| < C|X; — Xs|.
We introduce the notations
X —f

Cacw= |2 few,

X Qo T

g
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whereo = (o1 ---04). We use the usual inner product and Euclidean nor"n
R™d and assume the following monotone assumptions:

(H3.3) For everyu = (x, p,q,k), 0 = (X, p,a.k), 0 = (%P, 4.k = (x—x,
p-_ p’q _-q’k-_ k%

(At, u) — At, @), Q) < =AU ORI — BUs (PP + 1617 + K,
(@(X) = D(X), X = %) = %],

wherep,, B, andu; are given nonnegative constants with+ 8, > 0, uy + B> > 0.

ReEmMARK 3.1. (i) For notational simplicity, we take the same functigrit) in
(H3.2 and H3.3).

(i) We only consider the same dimensional casg ahdp. Whenx and p take
different dimensions such ase R", p € R™, we can introduce a full rank x n
matrix and deal with it using the method itif] to get the same result as the following
Theorenm3.1

THEOREM 3.1. We assumgH3.1), (H3.2) and(H3.3) hold, then FBSDER3.1) has
a unique solution(x(-), p(-), q(-), k(:)) € 2 x ¥ x #? x F.

PROOF. For the uniqueness, let = (Xs, Ps, 0s, Ks) andis = (Xs, Ps, Gs, ks) be
two solutions of .1). We setl = (x — X, p— p,q — d,k — k) = (X, p, G, k) and
apply It8’s formula to(Xs, ps). Using the same technique, which was used to prove
the uniqueness for FBSDE ii ], and the the uniqueness result for BSDEP and for
stochastic differential equation with jump if][ we can easily get the conclusionJ

To prove the existence, we can consider two cases according to the sjgngef
andu, this makes the proof clear and easy to understand.
First case, > 0, u, > 0 andg, > 0.

We consider the following family of FBSDEP parametrizecoby [0, 1].

tAT

tAT
X =a+/ [ahs, uz>+¢51ds+/ o (s, US) + s dBy
0 0

tat
+/ /[ag(s,U“&,Z)+k&(2)]ﬁ(d2d5),
(3.2) o Jz

pr=a®(X)+A—a)X; +&+ [ [(L—a)piu(s)X] +af (s, u) +yslds

taT

—/ qdes—/ K »N(dz ds,
tat trat JZ
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whereg, v, y and are given processes with values Rf, R™d, R™ and R™
respectivelyé € L? and

- 2 T 2 T T
F (/ |¢S|ds> +E (/ |y5|ds> + [E/ [¥|? ds+ [E/ /|As(z)|2n(dz)ds < .
0 0 0 0 JZ

Clearly, whenx = 1, the existence of the solution d3.9) implies this of @.1).
Whena = 0, it is easy to see that there exists a solution®®)( So we need the
following lemma.

LEMMA 3.2. We assume thaiH3.1), (H3.2) and (H3.3) hold. Then there exists
a positive constand, such that if, apriorily, forag € [0, 1) there exists a solu-
tion (x*, p*, g, k*) of (3.2), then for eachs € [0, §y] there exists a solution
(x0T prote qeotd keotdy e 92 x 2 x % x FZ of (3.2) for o = ag + 8.

PrOOF. Since for eacly, y,v, A, ag € [0, 1), there exists a solution 0B8(2), then,
for each triple

Us = (X, Ps; Os, Ks) € S x 92 x #2 x Fa, X, € L?

there exists a unique triplgs = (Xs, Ps, Qs, Ks) € .92 x .92 x #7? x Fj satisfying
the following FBSDEP

tAT
X = a+/ [agb(s, Ug) + 8b(s, us) + ¢s]ds
0
tAT
+/ [ago (S, Us) + 8o (S, Us) + ] d B
0
tAT
+/ /[aog(s,U&,z)+59(s,u&,z)+k&]ﬂ(dz ds
0 z

P = ao®(X;) + (1 =) X; +3(P(X) = X) +§

+ / [(1—a0)Brus(8) Xs+ag f (S, Us) +8(—Brus ()X + f (S, Us)) + 5] ds
t

- [ qde- [ [k @N@zas.
tAT tat JZ
We want to prove that the mapping defined by

loois(U X X)) =U xXT:fzxyzx%”szﬁxLz
— P x S x H#?x Fix L?

is a contraction.
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We note that#? = .72 x .2 x 5% x F2 and letd = (X, p,q,k) € %42,
U x X; = loy45(0 x X,). Using the same notations férandU as above and applying
Itd’s formula to(Xs, Ps), we get

(3.3) [aom+(1—ao>][E|K|2+ﬂltE/ uy(s)|Xs|2ds
0

< 8CyE[%, | + 8CLE| X, |?

o] o0 2
+ac1[/ ui(s)ds+(/ uﬂs)ds)][||U<->||§32+||0<->||§32].
0 0

Using It9's formula to| Py|2 and then Gronwall’s Lemma and the Burkholder-Davis-
Gundy inequality, we get

IPOIZz + 1QO) 5 + IKOIZ

<G, [[E/ uy(9)|Xs[2ds + [E|K|2] + 5CLE|%,|?
0

o] o0 2
+8C, [/ ui(s)ds+ (/ ul(s)ds> } 10 112-
0 0

Applying the usual technique to the forward stochastic differential equation and
combining with 8.3), we get

10O + 11X N2 < SM GO 12 + 1R )122] -

Here the constants,;, C, andM depend oy, u; andC.
We now choose&, = 1/(2M). It is clear that, for each fixed < [0, §;], the
mappingl,,.s is a contraction and has a unique fixed point

Uao+8 — (Xa°+8, Pa°+8, an+8’ Kao+8)
which is the solution of%.2) for « = g + 8. The proof is complete. O

Second cases, > 0,8, > 0, u; > 0.
We need to consider the following family of FBSDEP parametrized lay[O, 1].
(3.4)

tAt

X =a+[ [ab(s,u) + (1 —a)B(—ui(s)pl) + ¢slds
0

tAt

+ | lao(s,u) + (1 —a)Ba(—Ui(8)07) + Y] dBs

0

tat
+ / / [@g(S, U, 2) + (1 — @) Bal—ts (9K ) + 1s (21N (dZ d9
0 zZ

pY=a®(x?) + &+ [ [af(s,ul) +yslds— [ q@dB—[ k* (zN(dzds,

tat tat tAT
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where¢, ¥, y, A andé satisfy the same assumptions as that3r2)( Similarly to
Lemma3.2, we can show the following result.

LEMMA 3.3. We assumé¢H3.1), (H3.2) and (H3.3 hold, then there exists a pos-
itive constants, such that if, apriorily, for anag € [0, 1) there exists a solu-
tion (x®, p*, q*, k*) of (3.4), then for eachs € [0, §o] there exists a solution
(xeots | prote qeotd keotdy e 92 x 2 x % x FZ of (3.4) for o = ag + 8.

PROOF OFTHEOREM 3.1 (EXISTENCE). From the assumptiorH3.3), we know that
either ()1 > 0, u1s > 0, B > O or (ii) B = 0, uy > 0, B > 0. In the first
case, we consideB(2) and wherw = 0, (3.2) has a unique solution. It then follows
from Lemma3.2that there exists a positive constapsuch that for each € [0, &],
(3.2 has a unique solution far = oy + §. We can repeat this proceBistimes with
1 < N§p < 1+ 8. It then follows that, in particular, fax = 1 with ¢ = 0, y5 = O,
¥s = 0,15 = 0 andé = 0 (3.2) has a unique solution.

In the second case, we consider4 and wherw = 0, FBSDEP 8.4) has a unique
solution. It then follows from Lemma.3, by repeating the same process as in the first
case, that we get the desired conclusion. The proof is completed. O

ReEmMARK 3.2. If we replace H3.3) by the following
(H3.4) For everyu = (x, p,q,k), 0 = (X, p,G,K), 0 = (% 0,4,k = (x — X,
p_ p,q_q,k_k),
{ (At u) — At, 0), 0) > By (IR + Bous () (I PI° + 1617 + [k[?)
{

D(X) — P(X), X — X) < —pa| X%,

wheref;, B> andu, are given nonnegative constants with+ 8> > 0, uy + B, > 0.
Using a similar method as in Theoredrl, we can also prove that FBSDEB.J) has
the unique solution.

REMARK 3.3. When the stopping time < T < oo, uy(t), 0 <t < T, can be
replaced by the constant, then the existence and uniqueness result of FBSDEP i
bounded time duration is the special case of Thed@ein

4. The comparison theorem of FBSDEP in stopping time duration

In this section, we give a comparison theorem to FBSDEP in stopping time. This
theorem is one of important properties of FBSDEP. We consider the following two
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FBSDEPs,
tAT

—a +/ b(s, xs, p's,q's)ds+/ o (s, Xs, p's,q's)dBS
0

tat
+/ /g(s,x;, p.,ql,2N(dzds, i=12,
(4.2)

'—<I>(x>+/ f'(s, x., p‘s,q‘s,kbds—/ 0. d B
tat

/ /k&N(dzds)

The coefficients of FBSDERA(D), i = 1, 2, both satisfy 13.1), (H3.2 and H3.3),

then there exists the solutigi', p', q', k') € %2 x .¥2 x 32 x FZ respectively.

In the following part, we only considen = 1, in fact we can also deal with the

case wherx takes multidimensional value suchxs R". For that case, we need

to introduce a 1x n nonzero vectoG in the monotone assumptions to ensure the

existence and uniqueness for different dimensional FBSDEP the same as ¥t in [
We assume

(H4.1) Foreveryx € R,s> 0,

al >a?, ®(x) > d?(x), a.s.
fi(s,x, p,q,k) > f2(s,x, p.q,k), a.s.
The introduction of a random jump let the solutionand p to be not continuous, so
we also need the foIIowing condition to control the jump height.
PEREe S FERRED ok roas

(H4.2) -1 <
Then we have
THEOREM4.1. p§ > p3.

PrOOF. For notational convenience, we assuthe- 1 and first consider the fol-
lowing FBSDEP:

tat tat
% = a' + / b(s. %. Ps. Go) dS + / 0(S. %, Ps. Gs) A By
0 0

tAT
+/ /g(s,f(&, Ps .Gs ,2N(dzdy, i=12
(4.2) o Jz

pt = cI)Z()_('L') +/ fz(s’ )_(S’ F_)S’ qs’ Rs) ds_ / C_Isd BS
tAt tAt

tAT
—/ /R&N(dz ds.
0 z
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Obviously, the above FBSDEP has a unique solugiarp, g, k). We setk = x* — X,
p=p' —p.§=0q" —q k=Kk!—k, the quartetk, p, g, k) satisfies

tAT

tAT
% = / (bi% + b2 s + b3Gs) ds + / (04 %s + 0 Ps + 026s) dBs
0 0

tat
+/ /(giﬁ& + 02 Ps + 02 6 )N(dzd9
(4.3) o Jz
fr = ®%, + PH(R,) — PA(X,) +/ (T3 + f22ps + 126

tAT

+f:4125+f;>ds—/ 6.dB — k Nz ds,
tat tat JZ

wherefs = f1(s, X, p,d, k) — f2(s, X, p, d, k),

dL(xt) — dL(KR,
- 0D =) o g
® = Xt —X,

0, otherwise

I(Sv 5’ pS’ qs) I(S7 )_(57 p:sl’ q;l) )2 ;é 0
’ S ’

|Sl = XSl — Xs

0, otherwise
, I(Sv )_(57 ps7 ) - I(S XS’ pS7 qs) f)s # 0’
Is = ps - pS

0, otherwise
; I(S XS7 pS7 qs) - I(S XS7 pS7 qs) qs ;é 0,
Is = qs qS

0, otherwise

| = b, o, g respectively.

fl(s’ s’ps’qs’ksl)_ fl(s Xs, ps’qs’ksl o
fH= XL — Xs X 70,
0, otherwise

fl(s XS7 ps’ qS’ ké) - fl(s XS7 pS7 qS’ k;l f)s ;é 0,

fslz = ps - pS
0, otherwise
f1(s, Xs, Ps, 9%, kY — (s, Xs, Ps, s, .
. (S, Xs, Ps, 0o, kD) ( spsqsks) 6 %0,
fs = qs qS

0, otherwise



262 Zhen Wu [14]

fl(s’x7 p ’q ’ké)'_ fl(s’x7 ﬁ ’q 7RS) O
fl4_ S S S l__ S S S , ks#o,
s = ke —ks

0, otherwise

It is easy to check thati(3) satisfies [{3.1), (H3.2) and H3.3), thus(X, P, G, k) is
the unique solution of4.3). We first need to prove thgl, > 0. We use the duality
technique and introduce the dual FBSDEP

tAT
M, =1+ / (Mg — bZNg — 02Ug — g2Vs) ds
0
tAT
+ /0 (fBMg — BENg — 02Us — g3Vs) d B
tAT
(4.4) +/ / f*Ms N(dz ds,
0 z

Nt = _EMT + / (_ fslMS + biNS + OSlUS + gSlVS) dS

tAT

—/T Usst—/T /V&(Z)N(dzds).
tAT tat JZ

The duality technique is usually used to introduce the adjoint equation in optimal
control theory when we want to get the maximum principle (4ednd [20]). From
(4.3 satisfying {3.1), (H3.2 and H3.3), we can verify that4.4) satisfies (3.1),
(H3.2) and H3.4). Then it follows from Remark 3.2 that there exists a unique quartet
(M, N, U, V) which is the solution of4.4).

Applying It6’s formula toXsNs + psMs, we have

Po = E(P*(X,) — ®*(X))M, + [E/ M; fs ds.
0

From (H4.1) andM, = 1 > O, if we can proveM,, > 0, a.ss > 0, thenp, > 0.
Let us define the following stopping time

v=inf{t > 0O;M; <0} A T.

Sov < 1, a.s.andV,_ > 0. In the first equation of4(4), the noncontinuous part of
M, is only produced by random measue from (H4.2),

AM, > -M,, M, =M, +AM, >0,

soM, = 0, whenv < 7. We can introducéM,, N, U, V;), t € [v, t], which satisfies
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the following FBSDEP
_ tAt _ _ _ _
M, = / (Mg — BZNg — 02Us — g2Vs) ds

tAt

+ [ (M- 0N - 020, - W) B
tAT
(4.5) 4 / / 114, N(dz ds
v z
N, = —®M, + / (— fIMs + bINg + 02U + glVe) ds
tat

—/T L_Jsst—/T /V&(Z)N(dzds).
tAT tat JZ

Then it is easy to see thawl;, N;, U, ;) = (0,0, 0, 0) is the unique solution. Now
we let

M{ = Lo, (DM, + 1, (1) M, N; = Lo, (DN, + 1(v,r](t)|\_|t
U =10, OU + 1, OU;, V) =10,OV,+1, 4DV, 0=<t=<rt.

It is easy to see thatVl;, N/, U/, V) is a solution of 4.4), from Remark3.2, this is
the unique solution. FrorM) = M, = 1 > 0 andM, > 0, obviouslyM/,, > 0, a.s.
s > 0, that is,Ms,, > 0. So we havep] > .

Now we try to compargd, with p3, and then get the desired conclusiora’if= a?,
from TheorenB.1, pp = p3, thenp; > p. If a* > a?, we set

X = (X —x°), p=P-p, 0=(@-u)

-9, k=(k-k),
and apply lo’s formula toX; f,

E(P(X) — P(X2)% — (Po — Pp)(@ — &%) = [E/OT(A(S, Us) — AGs, u3), Gg) ds.
Here we use the notation from Secti®for u andA. From H3.3), we have
(Po— py)@ —a°) =0,

sopp > p3, and thenp} > p2. The proof is completed. O

Now we give an example of FBSDEP to show the comparison theorem.
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ExamvPLE 4.1. We consider the following two FBSDEPs,

tAT +X +q tAtq p
l:2 / ps Sds_/ s Sd
X o d+sP . drsE >

tAt
/ /z(1+ )2 Nedzds,

(4.6) )
1 _ps ks 1
p‘_X’+5+/w< 1+57 +(1+s)2>ds

—/ qldB — k! (zN(dzds, t=>0
tAT tat JZ

and

tAT 2+X2+q2 tAtq p
2:1_/ ps S Sds_/ s Sd
. ) <1+s>2 ) Arsric

tAT
zd
@) / /z a +s )2 >

2
2 2 ks
p‘_xf+/w <1+s>2
—/ q2dB — k2 (zN(dzds, t=0.
tAT tat JZ

It is easy to check thati(6) and @.7) satisfy H3.1), (H3.2) and (3.3, so accord-
ing to TheorenB.1, there exist unique solutions*, p*, g*, k%) and (x?, p?, g2, k?)
respectively. We can check that the above two FBSDEPs satigfylY and (H4.2),
so from Theoremd.1, we know thatpj > p2.

We notice that the comparison Theoréri of FBSDEP, which holds only at time
t = 0, is weaker than that of BSDEP, that is, Theor2 In the forward-backward
case, we cannot easily jump to a conclusion ljke= ®*(x}) > ®?(x?) = p? from
the assumption thab(x) > ®?(x) because in the present situation, the forward
solutionsx! andx? are different if®! and ®2 are. Thus unlike the classical (pure
backward) case, no common comparison theorem can be mada’exen? except
fort = 0. We will give a counterexample to show this point.

ExampLE 4.2. For simplicity, we consider the fixed time duratidn > 0, the
Lipschitz coefficient being constant, a one dimensional Brownian motion and study
the following two FBSDEPS,

t t
xt1=a+/(—p§+qsl)ds—/(xsl+ pl+ghdB, 0<t<T,
(4.8) 0 0

T T T
p3=x%+2+/ (x:—q:+2>ds—/ qist—/ /ki(zm(dzds,
t t t V4
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t t
x5=a+/ (—p§+qsz)ds—/ ¢+ pi+a)dB, 0<t<T,
0 0

T T T
pf:x$+/ (x§—q§)ds—/ qSZdBS—/ /kg(z)ﬁ(dzds),
t t t z

From Theoren8.1 and Remark3.3, there exist a unique solutioix!, p*, g, k%)
for (4.8) and(x?, p?, g2, k?) for (4.9 respectively. Then, from Theorednl, pZ > p3.
Now we try to check this conclusion for this example.

Firstly, it is easy to know thatx*, p*, gq*, k?) is the unique solution of4(8), where
pt=xt+2,q = —x — 1,k' = 0 andx} is the solution of the following stochastic
differential equation:

(4.9)

1 _ 1_ _ 1
(4.10) {olxt = (-2 —3)dt — (* + 1)dB,

1 _
X5 =a.

Then we get
t t
th — ge /2B _ g5t/2-B / 4e55/2+Bs g _ @ 5/2- B / €55/2+8Bs 4 B
0 0

andp! = x! +2,0<t < T. We also can getx?, p?, g k) is the unique solution
of (4.9, wherep? = xZ, g2 = —x2, k? = 0 andx? satisfies the following stochastic
differential equation

2 o9y2 2
(4.11) {dxt_ 2xgdt — x7d B

2 _
x¢ = a.

Thenp? = x2 = ae®/#"®. So

t t
ptl . ptz —2_ est/zs,/ 4e55/2+Bs (g _ est/zs,/ g55/2+8Bs B..
0 0
Fort =0, pj — p; = 2 > 0, but for anyt > 0, it can be both positive or negative
with positive probability.
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