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Abstract

Certain permutation representations of free groups are constructed by finite approximation. The first is a
construction of a cofinitary group with special properties, answering a question of Tim Wall published by
Cameron. The second yields, via a method of Kepert and Willis, a totally disconnected locally compact
group which is compactly generated and uniscalar but has no compact open normal subgroup. Finally, an
oligomorphic group of automorphisms of the random graph is built, all of whose non-trivial subgroups
have just finitely many orbits.

2000Mathematics subject classification: primary 20B07.

1. Introduction

In this paper we give three constructions of faithful permutation representations,
with peculiar properties, of free groups. We collect them in the same paper more
because the methods are similar than because the topics are. In each case, we define
the permutation representation by finite approximation, expressing the generators as
unions of finite partial functions. It is not important that the groups acting are free:
indeed, by a theorem of Dixon [3], the set of pairs of permutations which generate a
free group is comeagre in the natural topological space on pairs of permutations ofN

(the product topology from the usual topology on Sym.N/), and it remains a challenge
to build examples like those below which arenot free.

Our permutation groups will always act on a countable set� := {¾i : i ∈ N}. We
use lower case Greek letters for elements of�, upper case Greek letters for subsets
of�, and lower case Roman letters for group elements (except that we allow variables
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x; y to range through group elements or�). Permutations are written on the right of
their arguments.

Our first theorem, proved in Section2, concerns cofinitary permutation groups.
Recall that a permutation groupG on � is cofinitary (Cameron [2]) if every non-
identity element has just finitely many fixed points. Our theorem answers a question
of Wall [2, Section 10], posed as a test of the construction methods available for
cofinitary groups.

THEOREM 1.1. There is a cofinitary permutation groupG on the countably infinite
set� such thatG is freely generated by{ fi : i ∈ N} and for eachi ∈ N
(a) fi fixes¾ j for 0 ≤ j < i and acts as a single cycle on� \ {¾ j : j < i },
(b) the group〈 f0; : : : ; fi 〉 is not.i + 2/-transitive.

It is evident that by condition (a),〈 f0; : : : fi 〉 is .i + 1/-transitive for eachi .
In Section3 we construct a permutation group which provides an answer to a

question of George Willis, in his work on scale functions for totally disconnected
groups.

THEOREM 1.2. The free groupF2 = 〈 f; g〉 has a faithful transitive action on a
countable set� such that the following hold, where� = 0 ∪ 1 is a partition of�
into two infinite sets:

(a) each cycle of each element ofF2 is finite;
(b) for eachx ∈ F2, the symmetric difference040x is finite.

It follows that for eachx ∈ F2 there is3 ⊂ � such that340 is finite and3x = 3,
but (by transitivity) there is noG-invariant set3 ⊂ � with 340 finite.

The context of this construction is as follows (see [9] or [6] for background). IfG
is any totally disconnected locally compact group andx ∈ G, then there is a compact
open subgroupU of G so that the following hold, whereU+ := ⋂

.xnU x−n : n ∈ N/
andU− := ⋂

.x−nU xn : n ∈ N/.
(1) U = U+U−.
(2)

⋃
.xnU+x−n : n ∈ N/ and

⋃
.x−nU−xn : n ∈ N/ are both closed subgroups

of G.

The index functions.x/ = |xU+x−1 : U+|, thescale functionof G, is independent
of the choice ofU , and is a continuous functions : G → N such thats.x/ = 1 =
s.x−1/ if and only if x normalises some compact open subgroup ofG. The group
G is calleduniscalar if s takes value 1 everywhere. Clearly ifG has a compact
open normal subgroup thenG is uniscalar, and the converse is known to be false (see
[10] for references). However, it was not previously known if there was a totally
disconnected locally compactcompactly generateduniscalar group with no compact
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open normal subgroup, but in [6] Kepert and Willis show that such an example can be
obtained from the group constructed in Theorem1.2. For letK be a finite group, and
let H := ∑

1
K × ∏

0
K . Let F2 act on� as in Theorem1.2. ThenF2 acts onH via

its action on the indices, and the semidirect productG := H × F2 will be a totally
disconnected locally compact compactly generated uniscalar group with no compact
open normal subgroup. As commented at the end of [6], for eachg ∈ F2 the group
G even has a basis of neighbourhoods of the identity consisting of compact open
subgroups normalised byg. Possible variations on the construction are discussed at
the end of Section3.

We turn in Section4 to ZTF groups. A permutation group on an infinite set is said
to beZTF ‘Zimmer torsion-free’ if each non-identity element has just finitely many
cycles (so each non-trivial subgroup has finitely many orbits). R. Zimmer raised
questions about the structure of such groups, in connection with ergodic theory. An
easy example of a ZTF group is the infinite cyclic group acting regularly, and at the
other extreme, the free group on 2-generators was shown in [7] to have a faithful
ZTF action. These examples are in a sense typical, for by a result of Neumann [7,
Lemma 3.3], centralisers in a ZTF group must be cyclic-by-finite. A critical question
is whether there exists ahighly implausibleFrobenius group, that is, a Frobenius ZTF
group in which point stabilisers are infinite cyclic. Recall that a permutation group
on a countably infinite set isoligomorphic[1] if it has finitely many orbits onk-sets
for all k > 0. Neumann [7, Proposition 3.6] showed that any non-trivial ZTF group
which is not oligomorphic or regular has a subgroup with a faithful highly implausible
Frobenius action on some (possibly different) set. It is not known whether there is any
highly implausible Frobenius group, but it is easy to see that such a group cannot be
free. We remark that by [8] and [5], there is no2-transitivepermutation group whose
one-point stabilisers are infinite cyclic.

The ZTF group constructed in [7] may well behighly transitive, that is,k-transitive
for all k > 0, and certainly the construction there can be modified to yield a highly
transitive group. It is more interesting (and relevant to the existence of highly implau-
sible ZTF groups) to considernon-highly transitive ZTF groups. As pointed out by
Peter Neumann, if.G;�/ is the permutation group built in [7], thenG has a ‘diagonal’
action on the disjoint union of two copies of� which is oligomorphic, ZTF, but not
transitive. However, it is not so clear how to obtain a primitive but not highly transitive
ZTF group. Below, we build such a group acting on the random graph (defined at the
end of the section).

THEOREM 1.3. Let .�;∼/ be the random graph(so∼ is a binary irreflexive sym-
metric relation on the domain�), and let� := {¾i : i ∈ N}. Then there are
f; g ∈ Aut.�;∼/ such that

(a) f; g generate a free subgroup ofAut.�;∼/,
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(b) f has a single cycle on�, which is infinite,
(c) g fixes¾0 and has two cycles on� \ {¾0},
(d) the group〈 f; g〉 is a primitive oligomorphic ZTF group.

We remark that since〈 f; g〉 is transitive on vertices, edges, and non-edges, by the
primitivity criterion of Higman [4] it acts primitively on�. By the remarks above,
since F2 is free but does not act regularly, the action is oligomorphic. It seems
likely that the proof could be modified to ensure that〈 f; g〉 is also adensesubgroup of
Aut.�;∼/, that is, has the same orbits on finite ordered sets as the whole automorphism
group. The proof is rather involved, but it suggests that many structures which are
homogeneous (in the sense defined below) admit large ZTF groups of automorphisms.
Observe though that Aut.Q;</ has no non-trivial ZTF subgroup. Furthermore, ifG
is any oligomorphic group acting on a set� such that the pointwise stabiliser inG of
a finite subset of� preserves some partial ordering on� with an infinite chain, then
the action ofG on� cannot be ZTF.

The method of proof of Theorems1.1–1.3is to build a permutation group generated
freely by{ fi : i ∈ I }, by approximating each permutationfi by a chain of finite partial
functions. In Section2, I = N, and in Section3 and Section4, I = {0;1}, with
f := f0 andg := f1. We denote byf .k/i the partial function on� constructed after
k steps, sofi := ⋃

. f .k/i : k ∈ N/ (so we regard each partial function as a set of
ordered pairs). Ifw is a word in thefi , thenw.k/ is the partial function on� obtained
by composing thef .k/i . A partial w.k/-cycleis a maximal sequence0; : : : ; t from
� (denoted.: : : ; 0; : : : ; t; : : : /) such that0.w

.k//t is defined and equalst . We
use the wordcyclefor partial cycle, andcomplete cycleto refer to a cycle as above
wheretw

.k/ = 0. A w.k/-chain is a sequence.Ž0; : : : ; Žt; i;w/ ∈ � such that
for some subwordu1 · · · ut of a power ofw (with u1 the i th symbol ofw, and with
u1; : : : ;ut ∈ { f; g; f −1; g−1}), we haveŽ0u.k/1 · · · u.k/j = Ž j for each j = 1; : : : ; t .
In practice, we refer to thew-chain.Ž1; : : : ; Žt/ and drop the final entriesi;w, but
formally, twow-chains are equal if they agree in all entries, including the final ones.
A maximalw.k/-chain is aw.k/-chain which is not a proper subsequence of any other
w.k/-chain. Thelengthof a maximalw.k/-chain.Ž0; : : : ; Žt/ is t . At stepk, anew point
is someŽ ∈ � such thatŽ 6∈ {¾0; : : : ; ¾k} and such thatŽ 6∈ dom. f .k−1/

i / ∪ ran. f .k−1/
i /

for all i ∈ I . We often regard partial permutations as sets of ordered pairs, and we use
the notation〈Þ; þ〉 for ordered pairs.

A relational structureM is homogeneousif its domain is countably infinite and any
isomorphism between finite substructures ofM extends to an automorphism ofM .
The standard method of construction of homogeneous structures is Fra¨ıssé’s amal-
gamation theorem. Therandom graph, is a well-known example of a homogeneous
structure. It is up to isomorphism the unique countably infinite graph0 satisfying
the following ‘extension property’: for any two finite disjoint setsU;V of vertices,
there is a vertex adjacent to everything inU and to nothing inV . The homogeneous
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structure constructed in Section2, though over an infinite language, has a similar
characterisation. See [1] for more on homogeneous structures, Fra¨ıssé amalgamation,
and the random graph.

2. Proof of Theorem1.1

The groupG will be a group of automorphisms of a countable homogeneous
relational structure�∗ which we first construct. LetL be a first order language, with,
for eachn ∈ N, a single relation symbolRn+2 of arity n + 2. Let C be the class
of all finite L-structures in which, for eachn ≥ 0, wheneverR.x1; : : : ; xn+2/ holds,
we have that (a) all thexi are distinct, and (b)R.x1g; : : : ; x.n+2/g/ for eachg in the
symmetric groupSn+2. It is routine to check thatC is an amalgamation class, so there
is a unique countable homogeneousL-structure�∗ whose finite substructures are up
to isomorphism precisely the members ofC . Let� denote the domain of�∗, and for
eachi > 1 let�∗

i be the reduct of�∗ to the language containing only the relationsRj

for j ≥ i (so�∗
2 = �∗). Put� = {¾i : i ∈ N}.

We build the permutationsfi so that for eachi ∈ N,

.i/ fi fixes¾ j for all j < i , and acts as a single infinite cycle on{¾ j : j ≥ i }, and
.ii/ fi ∈ Aut.�∗

i +2/.

Since some but not all ordered.i +2/-sets in�∗
i +2 satisfyRi +2, the group〈 f0; : : : ; fi 〉

will not be .i + 2/-transitive.
We construct the permutations in! many steps, arranging that for each word

in the fi ; f −1
i , after a certain stage it acquires no new fixed points. The group

G := 〈 fi : i ∈ N〉 must then be cofinitary. Eachfi is constructed as a union of a
chain of finite approximations. f . j /

i : j ≥ i /, where f . j /
i is the approximation offi

constructed afterj steps.
Let W := {wi : i ∈ N} be the set of cyclically reduced words in thefi and f −1

i .
To ensure thatG is cofinitary, it suffices to arrange that each element ofW induces
a permutation of� with just finitely many fixed points. This ensures also thatG is
freely generated by thefi .

At step 0, we putf .0/0 = .: : : ¾1; ¾0; ¾i : : : /, wherei ∈ N \ {0;1} is least such that
R2.¾1; ¾0/ ↔ R2.¾0; ¾i /. This notation means that.: : : ¾1; ¾0; ¾i : : : / is a partial cycle
of f .0/0 , so¾1 f .0/0 = ¾0 and¾0 f .0/0 = ¾i , with f .0/0 not defined elsewhere.

Before thenth step, we will have definedf .n−1/
j for all j < n. Here, f .n−1/

j fixes¾k

for k < j and has exactly one other finite partial cycle, which is incomplete and of
length greater than one, and¾k ∈ dom. f .n−1/

j / ∩ ran. f .n−1/
j / for all k ≤ n − 1. This

last condition guarantees that thef j will be defined everywhere and surjective.
At the nth step, we ensure that¾n ∈ dom. f .n/j / ∩ ran. f .n/j / for j ≤ n, and that

f .n/n fixes ¾0; : : : ; ¾n−1. Our procedure to put¾n into the domain and range off .n/i
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is as follows (we do this for eachi ≤ n). If ¾n ∈ dom. f .n−1/
i / ∩ ran. f .n−1/

i /, put
f .n/i := f .n−1/

i . If ¾n ∈ dom. f .n−1/
i / \ ran. f .n−1/

i /, choose a ‘new’ pointŽ ∈ �

(‘new’ as defined in the end of Section1) and put f .n/i := f .n−1/
i ∪ {〈Ž; ¾n〉} (so

Ž f .n/i = ¾n). We also assume that a ‘new’ point forf .n/i cannot be new for anyf .n/j

where j ∈ {0; : : : ;n} \ {i }. The restriction onŽ is that f .n/i preserves the relationsRj

for j ≥ i + 2. Since theRj only hold on tuples of distinct elements, and dom. f .n/i / is
finite, only finitely manyRj need be considered (of arity at most| dom. f .n/i /|−1), and
so by the homogeneity of�∗ there are infinitely many possibilities forŽ. Similarly,
if ¾n ∈ ran. f .n−1/

i / \ dom. f .n−1/
i /, then choose newŽ ∈ � as above and putf .n/i :=

f .n−1/
i ∪{〈¾n; Ž〉}. Also, to put¾n into the domain and range off .n/n , just choose suitable

distinct newŽ; ž and put f .n/n := .¾0/ : : : .¾n−1/.: : : ; Ž; ¾n; ž; : : : /.
We must also consider the case when¾n 6∈ dom. f .n−1/

i / ∪ ran. f .n−1/
i /, andi < n.

Suppose that the non-trivial partial cycle off .n−1/
i is .: : : ; Þ1; : : : ; Þr ; : : : /. Choose

a new pointŽ and then a set of distinct new pointsBi = {þ1; : : : ; þs} (with Ž 6∈ Bi )
wheres = max{r − 1;n}, and put

f .n/i := .¾0/ : : : .¾i −1/.: : : ; Þ1; : : : ; Þr ; þ1; : : : ; þs; ¾n; Ž; : : : /:

The choice ofŽ is easy, much as in the last paragraph. The choice of theþi however
needs some care, to ensure thatf .n/i preservesRj for j ≥ i + 2. We can ignore the
fixed points¾0; : : : ; ¾i −1, since each relationRj and subset of sizek of {¾0; : : : ; ¾i −1}
determines a new relation of arityj − k ≥ i + 2− k ≥ 2 on� \ {¾0; : : : ; ¾i −1} which
must be preserved byfi , and there are finitely many of these ‘new’ relations (we only
need to consider relations of arity less thanr + s + 2, the length of the non-trivial
cycle of f .n/i ). We have two kinds of conditions required for theþ j andŽ. First, if one
of the relations holds of a tuple from{Þ1; : : : ; Þr } then it must hold for any translates
under f .n/i which involve theþi . Conditions of this sort have ‘span’ at mostr − 1, in
the sense that they involve points at mostr − 1 apart in the cycle off .n/i . Second, if
a relation holds of a tuple involving¾n and some of{Þ1; : : : ; Þr }, then translates of
this underf .n/i impose conditions on theþi andŽ. Conditions of this second sort have
span at leasts+1 ≥ r , so there is no clash between conditions of the two sorts. Thus,
using the homogeneity of�∗ the elements ofBi can be found. The setsBi (for i < n)
are all chosen to be disjoint.

It remains to verify that in this construction, each wordwi has finitely many fixed
points. Consider a wordw ∈ W. As usual letw.n/ denote the word obtained from
w by replacing, for eachi ∈ N, any occurrence offi or f −1

i by f .n/i or . f .n/i /−1

respectively. Suppose that at stepn, w acquires a fixed point, that is, there isž ∈ M
such thatžw.n−1/ is undefined butžw.n/ = ž. We shall show that either̀.w/ ≥ s (so
`.w/ ≥ n), or fn occurs inw. It follows that there is some stept such that after step
t , w acquires no new fixed points. Sincew.t/ has just finite domain, the wordw has
just finitely many fixed points, as required.
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We may suppose thatfn does not occur inw. Stepn really consists ofn + 1
substeps (one for each off .n/0 ; : : : ; f .n/n ), and for convenience we shall suppose that
w.n/ becomes defined atž at the 0th substep, when we put¾n into the domain and range
of f .n/0 . (The arguments forf0; : : : ; fn−1 are similar, and by the above assumption, we
can ignore the substep whenf .n/n is defined as this cannot introduce a fixed point forw.)
We shall suppose that¾n 6∈ dom. f .n−1/

0 / ∪ ran. f .n−1/
0 /, this being the hardest case. So

f .n−1/
0 = .: : : ; Þ1; : : : ; Þr ; : : : /, and f .n/0 = .: : : ; Þ1; : : : ; Þr ; þ1; : : : ; þs; ¾n; Ž; : : : /,

wheres = max{r − 1;n}.
Clearly f0 or f −1

0 occurs inw. Writew = u1 · · · ut andw.n/ = u.n/1 · · · u.n/t , where
ui ∈ { f j ; f −1

j : j ∈ N} andu.n/i is the approximation ofui after n steps. There is
j ≤ t such thatu.n−1/

1 · · · u.n−1/
j −1 is defined atž but u.n−1/

1 · · · u.n−1/
j is undefined atž.

This means thatuj is f0 or f −1
0 andž′, the image ofž underu.n−1/

1 · · · u.n−1/
j −1 , is in

{Þr ; þ1; : : : ; þs; ¾n} (if uj = f0) or in {þ1; : : : ; þs; ¾n; Ž} (if u j = f −1
0 ).

In the first case, whenuj = f0, there are three possibilities.

.i/ ž′ = ¾n;
.ii/ ž′ = Þr ;
.iii / ž′ ∈ {þ1; : : : ; þs} (in which casej = 1 as theþi are new).

As ¾n f .n/0 = Ž which is new andw is reduced, if case (i) holds thenj = t , ž = Ž,
andu1 = f −1

0 , contrary to the assumption thatw is cyclically reduced. If case (ii)
holds, then asw.n/ is defined atž it follows that each ofuj ; : : : ;u j +s is equal to f0,
so `.w/ ≥ s. In case (iii) we havež′ = ž = þk, say. Now sincew is cyclically
reduced andu1 = f0 and theþi are new,ut = f0. From this it again follows easily
that`.w/ ≥ s.

In the second case, we haveuj = f −1
0 . Now, one of the following holds.

.i/ ž′ = ¾n and j = 1 (asŽ is new);
.ii/ ž′ = Ž and j = 1 (asŽ is new);
.iii / ž′ ∈ {þ1; : : : ; þs} and j = 1.

In case (i), each ofuj ; : : : ;u j +s equalsf −1
0 , so`.w/ ≥ s. In case (ii), it follows that

ž′ = ž = Ž, andut = f0, contrary to the assumption thatw is cyclically reduced.
Finally, in case (iii), as theþi are new we havež′ = ž = þk, say. Now as in the last
paragraph, sincew is cyclically reduced it follows thatut = f −1

0 , and`.w/ ≥ s.
We have shown that in all cases, iffn does not occur inw, then`.w/ ≥ s ≥ n.

Hence,w has just finitely many fixed points, as required.

3. Proof of Theorem1.2

Put� := {¾i : i ∈ N}, 0 := {¾2i : i ∈ N}, and1 := � \ 0. Fix a surjection
8 : N → N

2. Let F2 be the free group on generatorsf; g. Let W := {wi : i ∈ N} be
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the set of non-empty cyclically reduced words inf; g; f −1; g−1. We shall define an
action ofF2 on� step-by-step, so that after stepk the partial isomorphismsf .k/, g.k/

will have been defined (andf := ∪. f .k/ : k ∈ N/, g := ∪.g.k/ : k ∈ N/). We adopt
other notational conventions of Section1. For eachk ∈ N there is an equivalence
relation∼k on�: Þ ∼k þ if there is some wordw such thatÞw.k/ = þ. The∼k-classes
will be calledk-components.

At step 0, we putf .0/ := {〈¾0; ¾1〉; 〈¾1; ¾0〉} andg.0/ := {〈¾0; ¾2〉; 〈¾2; ¾0〉}. We shall
preserve throughout the construction the following conditions.

.i/ For eachi ∈ N, all partial cycles ofw.k/
i are finite.

.ii/ 0 and1 areg.k/-invariant;
.iii / All f .k/-partial cycles other than.¾0; ¾1/ lie within 0 or within1.
.iv/ If 2 is a non-emptyk-component, then there is¾ ∈ 2 such that not all of

¾ f .k/, ¾g.k/, ¾. f .k//−1, ¾.g.k//−1 are defined (and if¾0 ∈ 2 then¾ can be chosen in
either0 or1).

Clearly, the above hold after Step 0. We also ensure that for eachi > 0,wi moves
some element of�, and that〈 f; g〉 acts transitively on�. By (i), part (a) of the
theorem holds. By (ii) and (iii), ifx ∈ F2 then all but finitely many of the cycles ofx
lie entirely in0 or entirely in1, and (b) of the theorem follows.

The construction is in the following steps.
Stepk = 4n. Ensure that¾n ∈ dom. f .k// ∩ ran. f .k// ∩ dom.g.k// ∩ ran.g.k//.
Stepk = 4n + 1. Ensure thatw.k/

n moves some element of� (to guarantee that
〈 f; g〉 acts faithfully).

Stepk = 4n + 2. Arrange that¾0 and¾n lie in the samek-component (this will
yield transitivity of〈 f; g〉 on�).

Stepk = 4n + 3. Ensure that if8.n/ = 〈r; s〉 then thew.k/r -cycle containing¾s is
complete (this yields (i) above—the finiteness of allw-cycles).

We now verify that each of these steps can be carried out. It is easily checked that
(i)–(iv) are preserved.

Stepk = 4n. Suppose that¾n 6∈ dom. f .k−1// ∪ ran. f .k−1//. Find distinct new
points¾; ¾ ′ in 0 (if n is even) or in1 (if n is odd) and put

f .k/ := f .k−1/ ∪ {〈¾; ¾n〉; 〈¾n; ¾
′〉}:

There are other cases (whenf is replaced byg, or when¾n lies in just one of the
domain or range off or g), and these are handled similarly.

Stepk = 4n + 1. Let l := `.wn/. We extendf .k−1/; g.k−1/ to f .k/; g.k/ so that there
is anw.k/

n -chain consisting of distinct new pointsÞ0; : : : ; Þl ∈ 0 such thatÞ0w
.k/
n = Þl .

Stepk = 4n + 2. We may suppose¾n ∈ 0 (as the case¾n ∈ 1 is essentially the
same). Also, we may suppose that¾0 and¾n are in distinct.k−1/-components, as oth-
erwise the result already holds. By (iv), there is ∈ 0 lying in the.k −1/-component



[9] Strange permutation representations of free groups 275

of ¾0 such that for someh1 ∈ { f; g; f −1; g−1}, h.k−1/
1 is undefined. Likewise, there

is Ž in the .k − 1/-component of¾n such that for someh2 ∈ { f; g; f −1; g−1}, Žh.k−1/
2

is undefined. Leth3 ∈ { f; g; f −1; g−1};h3 6= h−1
1 ;h2. Choose new pointsž1; ž2 ∈ 0,

and take the least extension off .k−1/; g.k−1/ to f .k/; g.k/ so thath.k/1 = ž1, ž1h.k/3 = ž2

and ž2.h
.k/
2 /

−1 = Ž. If w := h1h3h−1
2 , thenw.k/ = Ž, so ¾0; ¾n are in the same

k-component, as required.
Stepk = 4n + 3. For notational convenience, put¾ := ¾s, w := wr andl := `.w/.

We may suppose that thew.k−1/-cycle containing¾ is incomplete, and has the form
.: : : ; Ž1; : : : ; Žt; : : : /. (We do not exclude here the case when¾ is a new point, so
t = 1.) Let u1 be a maximal initial segment ofw such thatŽtu

.k−1/
1 is defined, and

likewise letv1 be a maximal final segment ofw such thatŽ1.v
.k−1/
1 /−1 is defined. Put

ž := Žtu
.k−1/
1 andž′ := Ž1.v

.k−1/
1 /−1. There are wordsu′

1; v
′
1 so thatw = u1u′

1 = v′
1v1

(sou′
1; v

′
1 are non-empty, but possibly equalw).

Case 1.ž; ž′ ∈ 0. (The casež; ž′ ∈ 1 is similar.)
Let m := `.v′

1/+ `.u′
1/ and putw′ := u′

1v
′
1. Thenw′ is reduced, asw is cyclically

reduced. Suppose firstž 6= ž′. Choose new pointsž1; : : : ; žm−1 ∈ 0 and extend
f .k−1/; g.k−1/ so that there is aw′.k/-chain fromž to ž′ of the form.ž0; : : : ; žm/, where
ž0 := ž andžm := ž′. Thew-chain containing¾ is now complete.

If ž = ž′, slight extra care is needed if some initial segment ofu′
1 is equal to an

initial segment ofv′−1
1 . However, asw is cyclically reduced, we cannot haveu′

1 = v′−1
1 ,

and so essentially the same argument as above works.

Case 2.ž′ ∈ 0 andž ∈ 1. (The casež′ ∈ 1 andž ∈ 0 is similar.)
In this case, by (ii), there is at least one occurrence off or f −1 in w.

CLAIM . There are� ∈ 1 and�′ ∈ 0 and a maximalw.k−1/-chain beginning at�
and ending at�′ with �.u2w

j v2/
.k−1/ = �′, whereu2 is a proper final segment ofw

andv2 is a proper initial segment ofw (and possiblyj = 0).

PROOF OFCLAIM . For each occurrence off or f −1 in w, consider the maximal
w.k−1/-chain in which that occurrence takes¾0 to ¾1, and the maximalw.k−1/-chain in
which that occurrence takes¾1 to ¾0. LetC1; : : : ;Ct list thew.k−1/-chains so obtained.
Let ai be the number of.0;1/-crossingsof Ci (that is, successive pairs¾0; ¾1 in Ci ),
andbi the number of.1;0/-crossings(successive pairs¾1; ¾0). Each occurrence off
(or f −1) in w determines a unique.0;1/-crossing of someCi , and a unique.1;0/
of some (distinct)Cj . Also each (oriented) crossing of eachCi comes from a unique
occurrence off or f −1 in w. It follows that

a1 + · · · + at = b1 + · · · + bt :

If Ci is a chain of a completew.k−1/-cycle, or begins and ends in0, or begins and ends
in 1, thenai = bi . Likewise, ifCi begins in0 and ends in1 thenai = bi + 1, and if
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Ci begins in1 and ends in0 thenbi = ai + 1. Since the chain fromž′ to ž begins in
0 and ends in1, it follows that there is someCi which begins in1 and ends in0, as
required.

Given the claim, writew = u′
2u2 = v2v

′
2. As in case 1, the wordsu′

1u′
2 andv′

2v
′
1

are reduced. Suppose first thatž 6= � andž′ 6= �′. As in Case 1, extendf .k−1/; g.k−1/

to f .k/; g.k/ in a minimal way, entirely using new points, so thatž.u′
1u′

2/
.k/ = � and

�′.v′
2v

′
1/
.k/ = ž′. As in Case 1, slight extra care is needed if sayž = � (and similarly if

ž′ = �′). For example, it could happen thatž = � and there is an initial segmentu of
u′

1 such thatu−1 is a final segment ofu′
2. In this case, sincew is cyclically reduced we

cannot haveu′
1 = u = .u′

2/
−1, and it follows that the extension is still possible.

REMARK 3.1. There are certain refinements of the construction in the proof of
Theorem1.2. For example, it is possible to arrange thatF2 acts 2-transitively on
�. One needs to show that the stabiliser of¾2 can be made transitive on� \ {¾2}.
The idea is, for an arbitrary¾ , to fix ¾2 and map¾0 to ¾i by some very long word.
More generally, one can arrange that the action ofF2 on� is highly transitive, that is,
k-transitive for allk > 0.

4. Proof of Theorem1.3

We build automorphismsf; g of the random graph.�;∼/. Let S be the set of
non-empty cyclically reduced words inf; g; f −1; g−1. Define an equivalence relation
≡ on S, puttingu ≡ v if and only if there are wordsw1;w2 ∈ S andr; s ∈ Z \ {0}
such that

w−1
1 urw1 = w−1

2 v
sw2:

Let W = {wi : i ∈ N} consist of exactly one element, chosen of least possible
length, from each≡-class. By the minimality assumption no element ofW can be
a proper power, and each is reduced, and not conjugate to any shorter word. The
construction off; g is by finite approximation, and after stepk we denote byf .k/; g.k/

the restrictions off; g so far defined (likewise, for any wordw, w.k/ is the restriction
defined after stepk). Let ln := `.wn/. We suppose thatw0 = f andw1 = g.
To ensure that〈 f; g〉 generate a ZTF group, we shall arrange that eachwi has just
finitely many cycles. One of the steps will be to extendf .k/; g.k/ so that certain partial
cycles of somewi are ‘joined’ into a single cycle. This is not always possible: for
example, if a partial automorphismh had incomplete cycles.: : : ; Þ1; : : : ; Þr ; : : : /

and.: : : ; þ1; : : : ; þs; : : : / whereÞ1 ∼ Þ2 but þ1 6∼ þ2, then there is no extension of
h with a single cycle extending these partial cycles. This problem did not arise in [7]
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(where there was no invariant relational structure) and makes the proof here more
complicated. First, we must formalise the notion of compatibility of partial cycles.

DEFINITION 4.1. Letw be a word, with̀ .w/ = l . Then twow.k/-cycles

.: : : ; ž1; : : : ; žr ; : : : / and .: : : ; ž′
1; : : : ; ž

′
s; : : : /

are compatible, if the following hold, where thew.k/-chains corresponding to the
above cycles are.Ž1; : : : ; Žn/ and.Ž′

1; : : : ; Ž
′
m/.

.i/ For all t ∈ N with tl ≤ min{m;n}
Ž1 ∼ Žt l ↔ Ž′

1 ∼ Ž′
t l :

.ii/ Suppose the finite completew.k/-cycles areC1; : : : ;Cp, of lengthsr1; : : : ; r p,
and thatDi := {x ∈ Ci : x ∼ ž1} and D′

i := {x ∈ Ci : x ∼ ž′
1}. Then there are

s1; : : : ; sp ∈ N such thatD′
i = Di .w

.k//si for eachi and there isa ∈ N such that
a ≡ si .mod ri / for eachi = 1; : : : ; p.

We shall say that twow.k/-cycles areweakly compatibleif just condition (ii) above
holds.

Because of condition (i), compatibility is not an equivalence relation (since two
incompatible longw.k/-cycles can each be compatible with a shortw.k/-cycle). How-
ever, weak compatibility is an equivalence relation. The idea of the above definition
is that if twow.k/-cycles are compatible then it should be possible to extendw.k/ so
that they are parts of a single cycle and such that the number of new points used to
join the two cycles depends on thea obtained in (ii) above. We shall do this explicitly
a little later.

We now describe the construction off; g. First, we fix a surjective function
8 : N → N

3 which takes each value ofN3 infinitely often. Our construction proceeds
through steps 5n to 5n + 4. If k ∈ {5n; : : : ;5n + 4}, then stepk may be a sequence
of substeps. We adopt the general notation that for a wordw, the function determined
byw before such a substep of stepk is writtenw.k∗/, and after the substep it is denoted
byw.k+/.

DEFINITION 4.2. Supposea;b ∈ N with a;b < k=5, and thatwa;wb ∈ W. A
.wa;wb; k∗; Þ; þ/-coincidenceconsists of aw.k∗/

a -chain and a distinctw.k∗/
b -chain

from Þ to þ such that there is a common letterx (one of f; g; f −1; or g−1) such that
þx.k∗/ is undefined, but in some extension of both thew.k∗/

a -chain and thew.k∗/
b -chain,

þx.k+/ would be the next element afterþ.

Before starting step 5n, we partition the incomplete cycles ofw.5n−1/
n−1 which lie in

maximal chains of length at least 2ln−1 into finitely many classes, say

K n−1
1 ; : : : ; K n−1

h.n−1/;
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so that any two cycles in someK n−1
i are compatible (hereh : N → N is some indexing

function). We will eventually arrange thatwn−1 hash.n − 1/ infinite cycles (so that
h.0/ = 1 andh.1/ = 2), with partial cycles in a givenK n−1

i eventually being joined
so they lie in the same cycle. The wordwn−1 acquires no new finite complete cycles
after step 5n − 1. If a partial cycle lies inK n−1

i then we refer toK n−1
i as itstype, or

compatibility type. This is never changed: later extensions of a partial cycle inK n−1
i

will still have typeK n−1
i , and at later stages, every cycle ofw.k/

n−1 in a maximal chain
of length at least 2ln−1 will have typeK n−1

i for some uniquei ∈ {1; : : : ;h.n − 1/}.
At each substep after 5n, as soon as a partial cycle ofwn−1 lies in a chain of length at
least 2ln−1, we choose somei so that the cycle is compatible with cycles of typeK n−1

i ,
and specify that it hastypeK n−1

i . At any stage any two cycles of a word of the same
type will be compatible.

Stepk = 5n. Ensure that¾n ∈ dom. f .k// ∩ ran. f .k//.
Stepk = 5n + 1. Ensure that¾n ∈ dom.g.k// ∩ ran.g.k//.
Stepk = 5n + 2. If 8.n/ = .p;q; r / with p < n, and¾q; ¾r lie in w.k−1/

p -cycles of
the same type, each in chains of length at least 2l p, extend f .k−1/, g.k−1/ so that¾q; ¾r

are in the samew.k/
p -cycle.

Stepk = 5n + 3. We ensure that over the complete cycles ofw.k−1/
n there are

w.k/
n -cycles of each possible weak compatibility class lying in chains of length at least

2ln .
Stepk = 5n +4. Extendf .k−1/, g.k−1/ to arrange that there are no.wi ;wn;5n + 4;

Þ; þ/-coincidences fori ≤ n.
Throughout the steps 5n to 5n + 4, we ensure that

(a) up to compatibility there is a uniquef .k/-cycle and at most 2 incompleteg.k/-
cycles, andg.k/ has a unique complete cycle.¾0/.
(b) there is no coincidence in which both the words involved are fromw0; : : : ; wn−1,
(c) if i ≤ n − 1, then any completew.5n+4/

i -cycle is a completew.5n−1/
i -cycle,

(d) any extension of cycles ofwk∗
i (0 ≤ i ≤ n −1) respects their compatibility type;

that is if two cycles ofw.k∗/
i have the same type, then so do their extensions to cycles

of w.k+/
i .

We call any extensionf .k+/, g.k+/ of f .k∗/; g.k∗/ preserving these properties agood
extension.

LEMMA 4.3. Suppose thatn = [k=5]; the integer part ofk=5, and that  6∈
dom. f .k∗//. Suppose that after stepk∗, (a)–(d)above hold. Then there isŽ ∈ �

so that the extensionf .k+/ := f .k∗/ ∪ {〈; Ž〉}, g.k+/ := g.k∗/ is good.

REMARK. The corresponding statements hold withf −1, g, or g−1 in place of f .

PROOF OFLEMMA 4.3. We must chooseŽ, a new point of �. The requirement
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that f .k+/ is a partial automorphism essentially says that for certain finite disjoint
11;12 ⊆ �, Ž must be chosen in

{x : ∀y ∈ 11.x ∼ y/ ∧ ∀y ∈ 12.x 6∼ y/}:

By the extension property which characterises the random graph, this set is infinite,
that is, there are infinitely many choices for suchŽ. As Ž is new and thew j are
cyclically reduced, for anyi ∈ N any complete cycle ofw.k+/

i is a complete cycle of
w
.k∗/
i , so in particular (c) above will be satisfied.
We next check thatŽ can be found so that (d) holds. Condition (ii) in Definition4.1

plays no role here, because the weak compatibility class of a partial cycle is determined
by one of its elements. Essentially, our compatibility requirements merely force us
to restrict the choice ofŽ by increasing11 and12 (to ensure that the conditions are
satisfied). The only problem is to ensure that11 and12 are disjoint, that is, that it
doesn’t happen that one compatibility requirement puts somež ∈ 11, and some other
compatibility (or automorphism) condition putsž ∈ 12. There could not be a clash
between a compatibility requirement and an automorphism condition, for suppose
the compatibility requirement forcedŽ ∼ ž (that is,ž ∈ 11) and an automorphism
requirement forcedŽ 6∼ ž (that is,ž ∈ 12). This means that for somea ≤ n there
will be aw.k+/

a -chain of lengthtla say fromž to Ž, and further� := ž. f .k∗//−1 6∼  .
However, in this case there is already aw.k∗/

a -chain of lengthtla from � to  which
conflicts with our compatibility requirements. It can be checked that two compatibility
requirements can only clash if there was a.wa;wb; k∗; Þ; þ/-coincidence, and by
assumption there is none.

To verify (b), suppose that there is a.wa;wb; k+; Þ; þ/ coincidence. Then either
Þ = Ž or þ = Ž. If þ = Ž, then the last letter used in both thew.k+/

a -chain
and thew.k+/

b -chain is f , so there was previously a.wa;wb; k∗; Þ;  /-coincidence,
contrary to (b) at the previous step. Similarly, ifŽ = Þ, then there was previously a
.wa;wb; k∗;  ; þ/-coincidence, again a contradiction.

LEMMA 4.4. .i/ Let wa;wb ∈ W, with wa 6≡ wb, and put la = `.wa/,
lb = `.wb/. Suppose thatwa, wb have a common chain of lengthn. Then

n < max{la.la + 1/; lb.lb + 1/}:

.ii/ Let w ∈ W have lengthl and .Ž0; : : : ; Ž2l / be aw-chain with Ž0w
2 = Ž2l .

Suppose that for somei > 0 there is aw-chain.Ži ; : : : ; Ži +l/. Theni = l .

PROOF. (i) Suppose not. We may supposela ≥ lb. By the pigeon-hole principle,
we may suppose there are distinctži , ž j on thewa-cycle and an initial subwordu of
wa such thatži u; ž j u are on thewb-cycle. (There is another possible case, handled
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similarly, whenu is a final subword ofwa and ži u−1; ž j u−1 are on thewb-cycle.)
Henceži uwk

b = ž j u for somek ∈ N. Putm := j − i . Thenžiw
m
a = ž j (via the same

chain), sowm
a u = uwk

b. Hencewa ≡ wb, which is a contradiction.
(ii) Supposei 6= l and supposeu; v are respectively initial and final segments ofw

such thatŽ0u = Ži andŽi +lv = Ž2l . Then (by considering lengths of words),Ži v = Žl

and Žl u = Ži +l . It follows that uw = wu, sow is a proper power ofu, which is
impossible.

To get started we write down the first 10 steps explicitly (remembering thatw0 = f ,
w1 = g). This will serve to check that the conditions hold early on.

Step 0: Put f .0/ = .: : : ¾1; ¾0; ¾i : : : /, wherei ∈ N \ {0;1} is least such that
¾1 ∼ ¾0 ↔ ¾0 ∼ ¾i . As in Section2 this notation means that.: : : ¾1; ¾0; ¾i : : : / is a
partial cycle of f .0/, so¾1 f .0/ = ¾0 and¾0 f .0/ = ¾i , with f .0/ not defined elsewhere.

Step 1: Putg.0/ = .¾0/. That isg fixes¾0.
It is easy to see that there is nothing to be done in Steps 2, 3 and 4. At this stage

we specify thath.0/ = 1, that is,w0 = f has a unique compatibility typeK 0
1.

Step 5: Putf .5/ = .: : : ¾ j ; ¾1; ¾0; ¾i : : : /, where j ∈ N \ {0;1; i } is least such that
¾ j ∼ ¾1 ↔ ¾1 ∼ ¾0 and¾ j ∼ ¾0 ↔ ¾1 ∼ ¾i .

Step 6: Here we need to put¾1 into the domain and range ofg. Let us call a point¾
of � a neighbourof ¾0 if ¾ ∼ ¾0 and anon-neighbourotherwise. Sinceg fixes¾0 we
extendg in such a way that all neighbours will eventually be in one cycle and the non-
neighbours in another, thus giving us 3 cycles in all. Putg.5/ = .¾0/.: : : ¾n; ¾1; ¾m : : : /

where¾n; ¾1; ¾m are either all neighbours or all non-neighbours of¾0 and

¾n ∼ ¾1 ↔ ¾1 ∼ ¾m:

Step 7: Nothing need be done, asg.6/ has a unique incomplete cycle with more
than one point.

Step 8: The only complete cycle ofg.7/ is .¾0/, so for example if¾1 ∼ ¾0, then
at step 8 we must extendg.7/ by adjoining an incomplete 2-cycle of non-neighbours
of ¾0.

Step 9: Nothing need be done, asw0;w1 have length 1 and distinct words of
length 1 cannot have a common next letter as required for a coincidence.

Finally, we specify thatw1 = g has two compatibility typesK 1
1 and K 1

2, corre-
sponding to neighbours and non-neighbours of¾0 respectively, soh.1/ = 2.

It follows immediately from Lemma4.3 and the remark following its statement
that Steps 5n and 5n +1 are possible. It is also straightforward to see that Step 5n +3
is possible, since we can construct neww.5n+3/

n -chains of lengthln using new points.
Stepk = 5n + 2. This is the most troublesome step. Suppose that8.n/ =

.q1;q2;q3/ with q1 < n and writew := wq1 andl := `.w/. Let .: : : ; ž1; : : : ; žc; : : : /

be thew.k−1/-cycle containing¾q2, with correspondingw.k−1/-chain.Ž1; : : : ; Žr /, and
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.: : : ; ž′
1; : : : ; ž

′
d; : : : / be thew.k−1/-cycle containing¾q2, with correspondingw.k−1/-

chain.Ž′
1; : : : ; Ž

′
s/. We may suppose that these two cycles are distinct, as otherwise

there is nothing to do. By extending these two cycles if necessary (using Lemma4.3),
we may assume that they are the two longestw.k−1/-cycles, withc> d.

Let l ′ := max{l0; : : : ; ln}. We first apply Lemma4.3 to add betweenl ′2 + l ′ and
l ′2 + 2l ′ new points to each end of thew.k−1/-chain.Ž1; : : : ; Žr / to obtain a neww.k∗/-
chain.Þ1; : : : ; Þr ′/ with w-cycle .: : : ; ž−m; : : : ; žc+m+1; : : : /, whereÞ1 = ž−m and
Þr ′ = žc+m+1 (som ≥ l ′). Likewise, we can find a good extension of thew.k−1/-chain
.Ž′

1; : : : ; Ž
′
s/ to a chain.Þ′

1; : : : ; Þ
′
s′/ with w.k∗/-cycle .: : : ; ž′

−m; : : : ; ž
′
d+m+1; : : : /,

whereÞ′
1 = ž′

−m andÞ′
s′ = ž′

d+m+1. This is done so Lemma4.4(i) can be applied later.
We now adopt the notation of Definition4.1 for the complete cyclesC1; : : : ;Cp

of w.k−1/. In particular,Di := {x ∈ Ci : x ∼ ž1} and D′
i = {x ∈ Ci : x ∼ ž′

1},
for eachi = 1; : : : ; p. By compatibility, there isa such thata ≡ si .mod ri / for
eachi = 1; : : : ; p. Put b := a − .c + 2m + 1/. The idea here is to ensure that
ž1w

a = ž′
1: Now ž1w

c+m = žc+m+1, andž′
−mw

m+1 = ž′
1. Thus we needb such that

žc+m+1w
b = ž′

−m. That givesa = c + m + b + m + 1. For later convenience, we
choosea so thatb > c + 2m + 2.

We shall find new1; : : : ; lb−1 so that there is a good extensionf .k+/, g.k+/ of
f .k∗/, g.k∗/ such that there is aw.k+/-chain .Þ1; : : : ; Þr ′ ; 1; : : : ; lb−1; Þ

′
1; : : : ; Þ

′
s′/

with Þr ′.w.k+//b = Þ′
1. To smooth out notation, we put

−.r ′−1/ := Þ1; : : : ; 0 := Þr ′ ; lb := Þ′
1; : : : ; lb+s′−1 := Þ′

s′:

The process is inductive. After a typical stepk∗ we will have found1; : : : ; i −1,
so that.−.r ′−1/; : : : ; i −1/ is aw.k∗/-chain. At stepk+ we must findi so that the
following conditions hold (they are assumed inductively to hold after stepk∗). Below,
we say that a wordz potentially takesÞ to þ if, for any extension off .k+/; g.k+/

to f .k/; g.k/ (partial permutations, not necessarily automorphisms) given by choosing
i +1; : : : ; lb−1 so that.−.r ′−1/; : : : ; lb+s′−1/ is a w.k/-chain, we haveÞz.k/ = þ.
Thus, for example, before finding1 the wordwb potentially takes0 to lb, and if
f is the first letter ofw, thenwb f potentially takes0 to lb+1. The idea of (1)–(4)
below is that we have an implicit commitment that a certain final subword ofwb must
eventually takei to lb. We will also sometimes say that a wordz will eventually take
Þ to  j ∈ {i +1; : : : ; lb−1}, or write thatÞz.k/ =  j , meaning that for any extension
f .k/; g.k/ as above, we haveÞz.k/ =  j .

(1) Automorphism conditions:f .k+/; g.k+/ are partial automorphisms.
(2) Compatibility conditions: fori < n, if two partial cycles ofw.k∗/

i have the same
compatibility type, so do their extensions after stepk+.
(3) If Þ; þ ∈ � with Þz.k+/ = þ, and¼; ½ ∈ � and¼z.k+/ is undefined butz

potentially takes¼ to ½, ¼ ∼ Þ ↔ ½ ∼ þ.
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(4) If Þ; þ; Þ ′; þ ′ ∈ � andÞz.k+/, þz.k+/ are undefined butz potentially takes〈Þ; þ〉
to 〈Þ′; þ ′〉, thenÞ ∼ Þ′ ↔ þ ∼ þ ′.

Conditions (3) and (4) deal with commitments arising because of the intention
later to addi +1; : : : ; lb−1. They become important when we chooselb−1. Up
until then, using Lemma4.3, we could make choices preserving just (1) and (2).
However, to ensure that we can chooselb−1 so that (1) and (2) still hold, we need to
preserve (3) and (4) throughout the construction (and this will suffice). To see this,
suppose after step.k∗/ we have found1; : : : ; lb−2, and must findlb−1, subject say
to lb−2 f .k+/ = lb−1 andlb−1g.k+/ = lb. Suppose say that it is impossible to find
lb−1 (subject to (1) above). In this case there are½;¼; ¹ such that½ f .k∗/ = ¼ and
½ 6∼ lb−2, and¼g.k∗/ = ¹ and¹ ∼ lb (or the same holds with∼ and 6∼ reversed).
Then after step.k∗/ we had thatf g potentially takeslb−2 to lb, and½ f .k∗/g.k∗/ = ¹,
but½ 6∼ lb−2 but ¹ ∼ lb, contrary to (3) or (4) at stepk∗.

Condition (2) above poses no problems, essentially by Lemma4.4(i) (and the fact
that we extended the chain.Ž1; : : : ; Žr / sufficiently). For when we add1; : : : ; lb−1,
no cycles forw0; : : : ; wn−1, other than the obvious one forw, are affected (we may
create some new cycles for other words, but they will be compatible with previous
cycles). Also, as in the proof of Lemma4.3, we may at each stage choosei such
that (1) holds (with the argument in the last paragraph fori = lb − 1). Thus, the
problem is to show that (3) and (4) hold before1 is chosen, and that, assuming that
1; : : : ; i −1 are chosen to satisfy (1)–(4) and that the choice ofi also satisfies (1),
then it can be arranged that (3) and (4) also hold after the choice ofi .

We first simplify (3). Suppose thatu.k+/ is the word which will take0 along the
chain.0; 1; : : : ; i / to i , and thatwb = uv (so thatv potentially takesi to lb).
Then, since we assumei is chosen to satisfy (1), an easy induction argument on the
length ofz in (3) allows us to assume thatz = v, with Þ = i andþ = lb. We omit
the other case, whenz = v−1 andÞ = lb, þ = 0.

Starting the induction. First, note that condition (3) holds before1 is chosen,
since thew.k∗/-cycles

.: : : ; −.r ′−1/; : : : ; 0; : : : / and .: : : ; lb; : : : ; lb+s′−1; : : : /

satisfy condition (ii) of Definition4.1, and since by the choice ofb, there are no other
w-cycles of lengthb.

We show now that (4) holds at the beginning, that is, when.k+/ is the step
before1 is chosen. Suppose not, and let the wordz be a counterexample to (4) of
least length. Then we can writez asx1y1x2y2 : : : xpyp, where thexi ; yi are reduced
words (yp possibly empty, the otheryi non-empty), withx1; : : : ; xr ∈ {wb;w−b}.
Furthermore, we may supposeÞ ∈ {0; lb}, sayÞ = 0, in which casex1 = wb.
Slightly abusing notation, we shall write thatÞx.k+/

1 = lb. Since we are reducing to
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the casep = 1, we first supposep > 1. Eachy.k+/
i is defined onÞ.x1y1 · · · xi −1/

.k+/,
andÞ.x1y1 · · · xi −1/

.k+/ is equal tolb if xi −1 = wb, or0 if xi −1 = w−b. By minimality
of z (using (1) and that (3) holds at the beginning),Þ′x.k+/

1 ; Þ ′.x1y1/
.k+/ are undefined,

that is,x1; x1y1 will eventually takeÞ′ to points in{1; : : : ; lb−1}. Sincex1 ends in a
copy ofw, andx2 starts with a copy ofw orw−1, it follows by Lemma4.4(ii) that

Þ′x.k/1 ; Þ
′.x1y1/

.k/ ∈ {0w
i : i = 1; : : : ;b − 1}:

In particular, y1 is a power ofw (clearly a positive power as it is defined on
lb = Þx.k+/

1 ). However, in this caselb y1 = l .b+ j / for some j > 0, contradict-
ing thatlb y1 ∈ {0; lb}

Thus, we havep = 1, so z = wby1, with lb y1 defined after step.k+/. By
minimality of z, we also havez = y′

1w
b or z = y′

1w
−b, and we suppose the former

(the latter is similar). Thenþ ′ = lb. We wish to showy1 or y′
1 is a power ofw, for

then (4) holds by condition (i) of Definition4.1.
Suppose firstl .y′

1/ ≥ lb. Then, sincewb is an initial segment ofz, we have
z = wbuwb for someu. In this case, aswb is defined (before the choice of1) on
lbu.k∗/, the elementlbu.k∗/ lies on a finite completew-cycle, as doesÞ.u−1/.k∗/. Now
Þ ∼ Þ′ ↔ þ ∼ Þ′ (as the twow-cycles being joined satisfy Definition4.1(ii)). Since
u is defined onÞ′; þ before1 is chosen,þ ∼ Þ′ ↔ þ ′ ∼ Þ. By Definition 4.1 (ii)
again,þ ′ ∼ Þ ↔ þ ′ ∼ þ, whenceÞ ∼ Þ′ ↔ þ ∼ þ ′, as required. Thus, we
may assumè.y′

1/ < lb, so y′
1 is an initial subword ofwb (and likewisey1 is a final

subword). It now follows by Lemma4.4 (ii) that y′
1 is a power ofw, since otherwise

z would not potentially takeÞ to þ. This starts the induction.

The inductive step. We now suppose that (3) and (4) hold after stepk∗ (when
i −1 was chosen), and verify thati can be chosen so they hold after stepk+. We
may suppose thati is to be chosen to equali −1 f .k+/. Recall the simplification
of (3) before the inductive step, and the choice ofv. In particular, after stepk∗, f v
potentially takesi −1 to lb.

First note that (3) does not conflict with a condition of type (1). Suppose¼; ½ ∈ �
with ¼v.k∗/ = ½, and that½ ∼ lb. We must choosei so¼ ∼ i . If this clashes
with (1), then¼. f −1/.k∗/ 6∼ i −1. However,f v potentially takes (at stepk∗) i −1 tolb

and.¼. f −1/.k∗//. f v/.k∗/ = ½. Thus,½ ∼ lb and¼. f −1/.k∗/ 6∼ i −1, contrary to (3) at
the previous substep. We should also consider here the case½ = i , in which case we
must ensure¼ ∼ i ↔ i ∼ lb. Again, this is consistent.

Thus, it remains to show that (4) is preserved, under the assumption that (1)–(3)
hold after stepk+. So supposei is chosen so that (1)–(3) hold but (4) does not hold,
and that the wordz is a counterexample to (4) of minimal length. By this minimality
we may suppose that in (4),Þ = i , and that the wordz has formvy1x2y2 · · · xr yr ,
wherex2; : : : ; xr ∈ {v; v−1}, and theyi are arbitrary (reduced) words. Here, after



284 Meenaxi Bhattacharjee and Dugald MacPherson [18]

stepk∗, eachyi is defined on the potential image ofi undervx2y2 · · · xi , and the
decomposition ofz is chosen so thatÞvy1 : : : yj is potentiallyÞ if xj +1 = v, or lb if
xj +1 = v−1.

We suppose for a contradiction thatr > 1. By minimality of `.z/ and the as-
sumption that (1)-(3) hold,v.k+/ and .vy1/

.k+/ are not potentially defined onÞ′ (so
eventually, i.e., after stepk, they will takeÞ′ to points in{i +1; : : : ; lb−1}). Also, as
lb y.k∗/

1 ∈ {i ; lb} and any word at stepk∗ of length at mostl 2 defined onlb is an
initial subword ofwl , `.y1/ ≥ l 2, and y1 has an initial subwordw. It follows that
after stepk, w will be defined onÞ′v.k/. In particular, as eventually we will have
Þ′vw ∈ {i +1; : : : ; lb} we have`.v/ > `.w/, and we can writev = v′wq where
`.v′/ < `.w/ andq > 0. By Lemma4.4 (ii), after stepk Þ′v will lie on thew-cycle
of 0. Assume first̀ .v′/ > 0. Then asv′ is a proper final subword ofw (and the
maximalw.k∗/-chain of0 begins with a point on thew-cycle of0), it follows that
Þ′′ := Þ′ f −1 is defined. Hence, after stepk∗ f z potentially takes〈i −1; Þ

′′〉 to 〈þ; þ ′〉.
Hencei −1 ∼ Þ′′ ↔ þ ∼ þ ′, so as f is an automorphism,i ∼ Þ′ ↔ þ ∼ þ ′, as
required. Ifv′ is empty, sov = wq, then, by considering Lemma4.4 (ii) applied to
Þ′v; Þ′vy1; Þ

′vy1x2, we get thaty1 is a positive power ofw. This contradicts that

lb y.k+/
1 ∈ {i ; lb}:

Thus, we reduce to the caser = 1, that is,z = vy. Again, by minimality of̀ .z/we
may suppose that after stepk, each point on they.k/-chain fromÞ′v.k/ toÞ′.vy/.k/ will
lie in {i +1; : : : ; lb−1}, except forÞ′.vy/.k/ which is one ofi ; : : : ; lb. In particular,
`.y/ < `.v/. Write v = v′wq where`.v′/ < l .

Suppose first̀ .y/ ≥ `.w/. Then aslb y.k∗/ is defined,y hasw as an initial
segment. Hence, by Lemma4.4 (ii), as y.k/ will be defined onÞ′v.k/, Þ′v.k/ will be
on thew-cycle of0. In particular,y is a power ofw, andþ ′ = lb. In this case,vy
is a final segment of a power ofw, and it potentially takesÞ to þ andÞ′ to þ ′ along
a subset of thew-chain from−r ′−1 to lb+s′−1. We may supposev′ is non-empty, as
otherwisez is a power ofw and hence satisfies (4) by Definition4.1(i). In particular,
as aboveÞ′′ := Þ′ f −1 is defined at stepk∗, and f vy potentially takes〈i −1; Þ

′′〉 to
〈þ; þ ′〉. Since (4) held at stepk∗ and f is a partial automorphism, (4) holds after
stepk+.

Alternatively, `.y/ < `.w/. There are two cases, according to whetherþ′ is lb

or i . In the first case, we have tochoosei to ensurei ∼ Þ′ ↔ þ ∼ lb, and in the
second case we choosei so thati ∼ Þ′ ↔ þ ∼ i . It can be checked that this does
not conflict with other constraints.

The above argument shows that the two cycles ofw.k−1/ can be joined, without
creating new incompatible cycles forw0; : : : ; wn−1. It remains to check that after
Step 5n + 2, there are no coincidences. By the proof of Lemma4.3, any such
coincidence must involve one of theŽi and one of theŽ′

i and for somee ≤ n − 1 must
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involve awe-chain fromŽi to Ž′
j along0; : : : ; lb (we do not mean that theŽi ; Ž

′
i are

endpointsof the chains in the coincidence). Furthermore, by Lemma4.4(i), we = w.
So suppose we have a.w;we′ ; k; Þ; þ/-coincidence. Since the ‘next’ letter of the

w-chain fromÞ to þ is undefined, we must haveþ = Þ′
s′. However, in this case, some

chain of length at leastl 2 + l is both aw-chain and awe′ -chain, so by Lemma4.4(i),
w = we′ , and the two chains betweenÞ andþ are equal, contrary to the definition of
coincidence.

Stepk = 5n + 4. Putl := max{l0; : : : ; ln}. Consider all pairs〈ž;w〉, wherež is an
old point andw is a reduced word of lengthl 2 + l , whose first letterh does not have
ž ∈ dom.h.k−1//. For each such pair, use Lemma4.3 to add aw.k/-chain of length
l 2 + l , so thatžw.k/ is defined. We do this by a good extension, in such a way that there
are no overlaps between the added points for〈ž;w〉 and for any other〈ž′;w′〉, except
those forced becausež = ž′ andw;w′ have a common initial subword. It follows
from Lemma4.4 that after this step there is no.wa;wb; k; Þ; þ/ coincidence for any
a;b ≤ n.
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