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Abstract

Certain permutation representations of free groups are constructed by finite approximation. The first is a
construction of a cofinitary group with special properties, answering a question of Tim Wall published by
Cameron. The second yields, via a method of Kepert and Willis, a totally disconnected locally compact
group which is compactly generated and uniscalar but has no compact open normal subgroup. Finally, ar
oligomorphic group of automorphisms of the random graph is built, all of whose non-trivial subgroups
have just finitely many orbits.

2000Mathematics subject classificatioprimary 20B07.

1. Introduction

In this paper we give three constructions of faithful permutation representations,
with peculiar properties, of free groups. We collect them in the same paper more
because the methods aim#ar than kecause the topics are. In each case, we define
the permutation representation by finite approximation, expressing the generators a
unions of finite partial functions. It is not important that the groups acting are free:
indeed, by a theorem of Dixor3], the set of pairs of permutations which generate a
free group is comeagre in the natural topological space on pairs of permutatiiins of
(the product topology from the usual topology on ), and it remains a challenge
to build examples like those below which aretfree.

Our permutation groups will always act on a countableset {& ;i € N}. We
use lower case Greek letters for elementfofupper case Greek letters for subsets
of Q, and lower case Roman letters for group elements (except that we allow variables
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X, y to range through group elements@). Permutations are written on the right of
their arguments.

Ouir first theorem, proved in Sectid) concerns cofinitary permutation groups.
Recall that a permutation group on 2 is cofinitary (Cameron 2]) if every non-
identity element has just finitely many fixed points. Our theorem answers a question
of Wall [2, Section 10], posed as a test of the construction methods available for
cofinitary groups.

THEOREM1.1. There is a cofinitary permutation group on the countably infinite
setQ such thatG is freely generated byf; : i € N} and for each € N
(a) fifixest; for0 < j < i and acts as a single cycle @m\ {§; : j < i},
(b) the group(fo,..., f;)is not(i + 2)-transitive.

It is evident that by condition (a).fo, ... f;) is (i + 1)-transitive for each.

In Section3 we construct a permutation group which provides an answer to a
guestion of George Willis, in his work on scale functions for totally disconnected
groups.

THEOREM1.2. The free groupF, = (f, g) has a faithful transitive action on a
countable sef2 such that the following hold, whe® = T" U A is a partition of 2
into two infinite sets

(a) each cycle of each elementffis finite
(b) for eachx e F,, the symmetric differendeAT x is finite.

It follows that for eachx € F,thereisA C Q suchthatA AT is finite andAx = A,
but (by transitivity) there is n&-invariantsetA c Q with AAT finite.

The context of this construction is as follows (s€kdr [6] for background). IfG
is any totally disconnected locally compact group ane G, then there is a compact
open subgroup) of G so that the following hold, wherd, := (N(X"UXx™" :n € N)
andU_ :=N(x"Ux":n e N).
(1) U=U,U._.
(2) UX"Ux™:n e N)andJxx"U_x": n e N) are both closed subgroups
of G.

The index functiors(x) = [xU,x~!: U, |, thescale functiorof G, is independent
of the choice olU, and is a continuous functiam: G — N such thats(x) = 1 =
s(x71) if and only if x normalises some compact open subgrougofThe group
G is calleduniscalarif s takes value 1 everywhere. Clearly® has a compact
open normal subgroup théa is uniscalar, and the converse is known to be false (see
[10] for references). However, it was not previously known if there was a totally
disconnected locally compacbmpactly generatedniscalar group with no compact
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open normal subgroup, but if][Kepert and Willis show that such an example can be
obtained from the group constructed in Theore@ For letK be a finite group, and

letH := ", K x [[ K. LetF; actonQ as in Theorem..2 ThenF, acts onH via

its action on the indices, and the semidirect prodaci= H x F, will be a totally
disconnected locally compact compactly generated uniscalar group with no compact
open normal subgroup. As commented at the endpffpr eachg € F, the group

G even has a basis of neighbourhoods of the identity consisting of compact open
subgroups normalised k. Possible variations on the construction are discussed at
the end of SectioB.

We turn in Sectiont to ZTF groups. A permutation group on an infinite set is said
to beZTF ‘Zimmer torsionfree’ if each non-idetity element has just finitely many
cycles (so each non-trivial subgroup has finitely many orbits). iRnzer raised
guestions about the structure of such groups, in connection with ergodic theory. An
easy example of a ZTF group is the infinite cyclic group acting regularly, and at the
other extreme, the free group on 2-generators was show ito [have a faithful
ZTF action. These examples are in a sense typical, for by a result of Neumann [
Lemma 3.3], centralisers in a ZTF group must be cyclic-by-finite. A critical question
is whether there existskaghly implausible=robenius group, that is, a Frobenius ZTF
group in which point stabilisers are infinite cyclic.e€all that a permutation group
on a countably infinite set igsligomorphic[1] if it has finitely many orbits ork-sets
for all k > 0. NeumannT, Proposition 3.6] showed that any non-trivial ZTF group
which is not oligomorphic or regular has a subgroup with a faithful highly implausible
Frobenius action on some (possibly different) set. Itis not known whether there is any
highly implausible Frobenius group, but it is easy to see that such a group cannot be
free. We remark that byg] and [5], there is na2-transitivepermutation group whose
one-point stabilisers are infinite cyclic.

The ZTF group constructed i may well behighly transitive that is k-transitive
for all k > 0, and certainly the construction there can be modified to yield a highly
transitive group. Itis more interesting (and relevant to the existence of highly implau-
sible ZTF groups) to consid@on-highly transitive ZTF groups. As pointed out by
Peter Neumann, {iG, Q) is the permutation group built irf], thenG has a ‘diagonal’
action on the disjoint union of two copies ©f which is oligomorphic, ZTF, but not
transitive. However, it is not so clear how to obtain a primitive but not highly transitive
ZTF group. Below, we build such a group acting on the random graph (defined at the
end of the section).

THEOREM1.3. Let (2, ~) be the random grapfso~ is a binary irreflexive sym-
metric relation on the domai2), and letQ := {& : i € N}. Then there are
f, g € Aut(2, ~) such that

(&) f, ggenerate a free subgroup Aut($2, ~),
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(b) f has a single cycle ofe, which is infinite,
(c) gfixes&y and has two cycles of2 \ {£q},
(d) the group(f, g) is a primitive oligomorphic ZTF group.

We remark that sincéf, g) is transitive on vertices, edges, and non-edges, by the
primitivity criterion of Higman F] it acts primitively onQ. By the remarks above,
since F, is free but does not act regularly, the action is oligomorphic. It seems
likely that the proof could be modified to ensure thatg) is also adensesubgroup of
Aut(€2, ~), thatis, has the same orbits on finite ordered sets as the whole automorphisn
group. The proof is rather involved, but it suggests that many structures which are
homogeneous (in the sense defined below) admit large ZTF groups of automorphisms
Observe though that A(®, <) has no non-trivial ZTF subgroup. FurthermoreGif
is any oligomorphic group acting on a setsuch that the pointwise stabiliser @ of
a finite subset of2 preserves some partial ordering @rwith an infinite chain, then
the action ofG on Q cannot be ZTF.

The method of proof of Theoremsl-1.3is to build a permutation group generated
freelyby{f; : i € |}, by approximating each permutatidnby a chain of finite partial
functions. In Sectior?, | = N, and in Sectior8 and Sectiord, | = {0, 1}, with
f := foandg := f,. We denote byf* the partial function o2 constructed after
k steps, sof; := [ J(f* : k € N) (so we regard each partial function as a set of
ordered pairs). Ifv is a word in thef;, thenw® is the partial function oi®2 obtained
by composing thef,*’. A partial w®-cycleis a maximal sequence, . .. , 1 from
Q (denoted(... , o, ..., % -..)) such thaty,(w®)! is defined and equalg. We
use the worctyclefor partial cycle andcomplete cycl¢o refer to a cycle as above

whereyw® = y. A w®-chainis a sequencésy, ... ,8,i,w) € Q such that
for some subwordl, - - - u, of a power ofw (with u, thei™ symbol ofw, and with
Us,... U € {f,g f7%g"), we havesoul ---u = §; for eachj = 1,... ,t.

In practice, we refer to the-chain (s, ... , §;) and drop the final entrieis w, but
formally, two w-chains are equal if they agree in all entries, including the final ones.
A maximalw®-chainis aw®-chain which is not a proper subsequence of any other
w®-chain. Thdengthof a maximahy®-chain(s, ... , 8, ist. Atstepk, anew point
is somes € 2 suchtha# ¢ {&, ... , &} and such that ¢ dom( f,* ) Uran(f*?)
foralli € . We often regard partial permutations as sets of ordered pairs, and we use
the notation«, B) for ordered pairs.

A relational structurévl is homogeneousits domain is countably infinite and any
isomorphism between finite substructureshdfextends to an automorphism bf.
The standard method of construction of homogeneous structuresissfgamal-
gamation theorem. Thendom graphis a well-known example of a homogeneous
structure. It is up to isomorphism the unique countably infinite grE@atisfying
the following ‘extension property’: for any two finite disjoint setls V' of vertices,
there is a vertex adjacent to everythingdnand to nothing iv. The homogeneous
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structure constructed in Sectidy though over an infinite language, has a similar
characterisation. Se&][for more on homogeneous structures,iBg&amalgamation,
and the random graph.

2. Proof of Theorem1.1

The groupG will be a group of automorphisms of a countable homogeneous
relational structur&* which we first construct. Let be a first order language, with,
for eachn € N, a single relation symbadR,,, of arity n + 2. Let% be the class
of all finite L-structures in which, for eaal > 0, wheneveR(xy, ... , X,,») holds,
we have that (a) all thg are distinct, and (bR(Xyg, ... , Xni2) for eachg in the
symmetric grougs,,,. Itis routine to check th&#’ is an amalgamation class, so there
is a unique countable homogenedustructure* whose finite substructures are up
to isomorphism precisely the members&f Let Q denote the domain ¢2*, and for
each > 1letQ be the reduct of2* to the language containing only the relatidis
for j >i (soQ = Q*). PutQ = {& :i € N}.

We build the permutation$ so that for each € N,

(i) fifixesg; forall j <i,andacts as a single infinite cycle @5 : j > i}, and

(i) f e Aut(s,,).

Since some but not all orderéidt- 2)-sets inQ, , satisfyR ., the group( fo, ... , ;)
will not be (i + 2)-transitive.

We construct the permutations in many steps, arranging that for each word
in the f;, f*, after a certain stage it acquires no new fixed points. The group
G := (f; : i € N) must then be cofinitary. Each is constructed as a union of a
chain of finite approximationsf”’ : j > i), wheref," is the approximation off;
constructed aftej steps.

LetW := {w; : i € N} be the set of cyclically reduced words in tiigand f,*.

To ensure tha6 is cofinitary, it suffices to arrange that each elementoinduces
a permutation of2 with just finitely many fixed points. This ensures also t@ais
freely generated by thé§ .

At step 0, we putf® = (... &, &, & ...), wherei € N\ {0, 1} is least such that
Ry(&1, &) < Ru(&, &). This notation means that. . &, &, & ...) is a partial cycle
of f37, so&; f¥ = & and&f,” = &, with f,” not defined elsewhere.

Before then™ step, we will have defined ™ forall j < n. Here, f" " fixes &
for k < j and has exactly one other finite partial cycle, which is incomplete and of
length greater than one, ag@d e dom(f") Nran(f""") for all k < n — 1. This
last condition guarantees that tfigwill be defined everywhere and surjective.

At the n™" step, we ensure that, € dom(f™) nran(f”) for j < n, and that
f™ fixes &, ... ,&,_1. Our procedure to pu, into the domain and range df"”
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is as follows (we do this for each< n). If &, € dom(f" ") Nnran(f"™"), put
£ = £V If & e dom(f"V) \ ran(f""), choose a ‘new’ point € Q
(‘new’ as defined in the end of Sectidy) and put f™ = £ U {(8, &)} (so
8™ = £,). We also assume that a ‘new’ point féf” cannot be new for any "
wherej € {0, ... ,n}\ {i}. The restriction o is that f," preserves the relatioris
for j > i +2. Since theR; only hold on tuples of distinct elements, and ddii) is
finite, only finitely manyR; need be considered (of arity at mogom( f,™)| — 1), and
so by the homogeneity a2* there are infinitely many possibilities fér Similarly,
if & e ran(f")\ dom(f""), then choose new €  as above and put™ :=
fi(”’l) U{(&n, 8)}. Also, to puts, into the domain and range 6f", just choose suitable
distinct news, € and putf™ := (&) ... 1) (... , 8, &n €, .. .).

We must also consider the case whgrg dom(f ") Uran(f" "), andi < n.
Suppose that the non-trivial partial cycle 6" " is (... ,ay, ... , o, ...). Choose
a new points and then a set of distinct new poirs = {84, ..., Bs} (With s ¢ B))
wheres = max{r — 1, n}, and put

£ = (). .. (GG an ., Bl BeEnn By,

The choice of is easy, much as in the last paragraph. The choice ofthewever
needs some care, to ensure tiidl preserveR; for j > i 4+ 2. We can ignore the
fixed pointsé, . .. , §_1, since each relatioR; and subset of sizleof {&, ... , &_1}
determines a new relation of arify— k > i +2—k > 20onQ\ {&, ... , &_1} which
must be preserved bfy, and there are finitely many of these ‘new’ relations (we only
need to consider relations of arity less tlras s + 2, the length of the non-trivial
cycle of f;). We have two kinds of conditions required for hgands. First, if one

of the relations holds of a tuple frofa;, ... , « } then it must hold for any translates
under f,™ which involve theg;. Conditions of this sort have ‘span’ at mast- 1, in

the sense that they involve points at most 1 apart in the cycle of ™. Second, if

a relation holds of a tuple involving, and some ofa, ... , o}, then translates of
this underf,™ impose conditions on thg ands. Conditions of this second sort have
span atleasgt+ 1 > r, so there is no clash between conditions of the two sorts. Thus,
using the homogeneity @&* the elements oB; can be found. The seB (fori < n)

are all chosen to be disjoint.

It remains to verify that in this construction, each wardhas finitely many fixed
points. Consider a word € W. As usual letw™ denote the word obtained from
w by replacing, for each e N, any occurrence of; or f,* by ™ or (f™)*
respectively. Suppose that at stepw acquires a fixed point, that is, thereciss M
such thatw ™" is undefined but¢w™ = e. We shall show that eithé(w) > s (so
£(w) > n), or f, occurs inw. It follows that there is some stepsuch that after step
t, w acquires no new fixed points. Sina¢” has just finite domain, the wond has
just finitely many fixed points, as required.
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We may suppose thaf,, does not occur inv. Stepn really consists oh + 1

substeps (one for each &f", ... , ™), and for convenience we shall suppose that
w™ becomes defined atat the @' substep, when we p#t into the domain and range
of fo(”). (The arguments fofy, ... , f,_1 are similar, and by the above assumption, we

canignore the substep whéf?” is defined as this cannotintroduce a fixed pointfor
We shall suppose thgt ¢ dom(f{" ") U ran( f\"™"), this being the hardest case. So
f" Y =), and i = (g B Bs Enn Sy,
wheres = maxr — 1, n}.
Clearly f, or f;* occurs inw. Writew = u; - - - U andw™ = u{” - - - u{"”, where
u € {fj, ffl . j € N} andu™ is the approximation ofi; aftern steps. There is
j < tsuchthau .. u" " is defined at butu" ¥ ... u"" is undefined at.
This means that; is fo or f;* ande’, the image ok underuf™™" .. u"™", is in
{or, Br, o Bs, En} (if Up = fo) orin {By, ..., Bs, &, 8} (if uj = f5).
In the first case, when; = f,, there are three possibilities.
(i) € =&,;
(i) € =a;
(i) € e€{By,...,Bs (inwhich casg = 1 as thes; are new).
As &, " = 8§ which is new andw is reduced, if case (i) holds thgn=t, ¢ = §,
andu; = f; %, contrary to the assumption thatis cyclically reduced. If case (ii)
holds, then asv™ is defined at it follows that each ofuj, ... , u;,s is equal tofy,
sof(w) > s. In case (iii) we have’ = ¢ = B, say. Now sincew is cyclically
reduced andi;, = f, and theg; are newu, = fo. From this it again follows easily
thatl(w) > s.
In the second case, we havp= f;*. Now, one of the following holds.
(i) € =& andj =1 (ass is new);
(i) € =s8andj =1 (ass is new);
(i) € e{Bs,...,Bstandj =1.
In case (i), each df;, ... , uj,s equalsf,*, sof(w) > s. In case (ii), it follows that
€ = ¢ = 4§, andu, = fy, contrary to the assumption that is cyclically reduced.
Finally, in case (iii), as thg; are new we have’ = ¢ = f, say. Now as in the last
paragraph, since is cyclically reduced it follows that, = f,*, and¢(w) > s.
We have shown that in all cases,fif does not occur inw, thenf(w) > s > n.
Hencew has just finitely many fixed points, as required. O

3. Proof of Theorem1.2

PutQ :=1{§ :i e N}, T :={& :i € N}, andA := Q\ I'. Fix a surjection
® : N — N2 LetF, be the free group on generatdisy. LetW := {w; :i € N} be
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the set of non-empty cyclically reduced wordsfing, f 1, g=. We shall define an
action of F, on Q step-by-step, so that after stiephe partial isomorphismg$®, g®
will have been defined (antl := U(f® : k e N), g := U(g¥ : k € N)). We adopt
other notational conventions of Secti@n For eachk € N there is an equivalence
relation~, onQ: o ~ g ifthere is some worab suchthatrw® = B. The~-classes
will be calledk-components

At step 0, we putf @ := {(&, £1), (€1, &0)} andg® := {(&, &), (52, &0)}. We shall
preserve throughout the construction the following conditions.

(i) Foreach € N, all partial cycles ofo™ are finite.
(i) T andA areg®-invariant;
(i) All f®-partial cycles other tha(,, £&,) lie within I" or within A.
(iv) If ® is a non-emptjk-component, then there & € ® such that not all of
gf 0 gg®, £(f9)71 £(g®)~! are defined (and if, € ® then& can be chosen in
eitherl” or A).

Clearly, the above hold after Step 0. We also ensure that forieach, w; moves
some element of2, and that(f, g) acts transitively or2. By (i), part (a) of the
theorem holds. By (ii) and (iii), ik € F, then all but finitely many of the cycles af
lie entirely inT" or entirely inA, and (b) of the theorem follows.

The construction is in the following steps.

Stepk = 4n. Ensure that, € dom( f ®) nran(f®) N dom(g®) N ranig®).

Stepk = 4n + 1. Ensure thatv® moves some element 6t (to guarantee that
(f, g) acts faithfully).

Stepk = 4n 4+ 2. Arrange thats, andé, lie in the samek-component (this will
yield transitivity of ( f, g) on 2).

Stepk = 4n + 3. Ensure that if®(n) = (r, s) then thew® -cycle containing; is
complete (this yields (i) above—the finiteness ofialtycles).

We now verify that each of these steps can be carried out. It is easily checked that
()—(iv) are preserved.

Stepk = 4n. Suppose that, ¢ dom(f*&) U ran f*&D). Find distinct new
pointsg, & in T (if nis even) or inA (if nis odd) and put

f0 = FEDULE, &), (5n, €N

There are other cases (whénis replaced byg, or wheng, lies in just one of the
domain or range of or g), and these are handled similarly.
Stepk = 4n + 1. Letl := ¢(w,). We extendf D, gk-bto f® g® so that there
is anw®-chain consisting of distinct new poings, . .. , & € I suchthatuw® = ;.
Stepk = 4n 4+ 2. We may supposeg, € I" (as the casg, € A is essentially the
same). Also, we may suppose thaandé, are in distinct(k — 1)-components, as oth-
erwise the result already holds. By (iv), thergrig T lying in the (k — 1)-component
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of & such that for somé, € {f, g, -1, g1}, yh{ " is undefined. Likewise, there
is 8 in the (k — 1)-component o, such that for somé, € {f, g, f~1, g1}, sh¥ ™
is undefined. Leh; € {f, g, f~1, g7, hs # h;* h,. Choose new points;, €, € T,
and take the least extensionbf~?, gk to f®, g so thatyh!® = €}, e,h¥ = ¢,
ande;,(h¥)~t = 5. If w := hihshyY, thenyw® = §, so&, &, are in the same
k-component, as required.

Stepk = 4n + 3. For notational convenience, piit= &, w := w, andl := £(w).
We may suppose that the*~Y-cycle containing is incomplete, and has the form
(..ry81,...,8,...). (We do not exclude here the case wlgeis a new point, so
t = 1) Letu, be a maximal initial segment ab such that,u ™ is defined, and
likewise letv; be a maximal final segment of such thas, (v*"?)~1 is defined. Put
e == 8,uf P ande’ := 5, (v)"1. There are words}, v} so thatw = u,u; = v},
(souy, vy are non-empty, but possibly equa).

Case le,¢’ €T'. (The case, €' € A is similar.)

Letm := £(vy) + €(u}) and putw’ := ujv;. Thenw’ is reduced, as is cyclically
reduced. Suppose first £ ¢/. Choose new points,, ... ,en_1 € I' and extend
f k=D g*k-b 5o that there is @’®-chain frome to €’ of the form(eo, ... , €n), Where
€ := € andey, := €. Thew-chain containing is now complete.

If ¢ = ¢, slight extra care is needed if some initial segmentpis equal to an
initial segment ob;*. However, asv is cyclically reduced, we cannot hawe = vy,
and so essentially the same argument as above works.

Case 2.¢' e ' ande € A. (The case’ € A ande € T is similar.)
In this case, by (ii), there is at least one occurrencé of f ~*in w.

CLAIM. There aren € A andn’ € T" and a maximakw®~Y-chain beginning ap
and ending at)’ with n(u,w!v,)* = »’, whereu, is a proper final segment af
andv, is a proper initial segment ab (and possiblyj = 0).

PrROOF OFCLAIM . For each occurrence of or f~!in w, consider the maximal
w*Y-chain in which that occurrence takasto £;, and the maximady“~Y-chain in
which that occurrence takésto &,. LetC,, ... , C list thew*Y-chains so obtained.
Leta be the number ofl", A)-crossingsof C; (that is, successive paigs, &; in C;),
andb; the number of A, T')-crossinggsuccessive pailg, &,). Each occurrence of
(or 1) in w determines a uniqud’, A)-crossing of som€;, and a uniquéA, I')
of some (distinctC;. Also each (oriented) crossing of eaChcomes from a unique
occurrence off or f~1in w. It follows that

a+---+a=b+---+b.

If C; is a chain of a complete®~Y-cycle, or begins and endsih or begins and ends
in A, thena, = b;. Likewise, ifC; begins inl" and ends im theng; = by + 1, and if
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Ci begins inA and ends i thenb, = g + 1. Since the chain frord to ¢ begins in
" and ends im\, it follows that there is som€; which begins inA and ends i, as
required. O

Given the claim, writew = u,u, = vv,. As in case 1, the words,u, andv,v;
are reduced. Suppose first thag n ande’ # n’. Asin Case 1, extend®b, g&=b
to f®, g® in a minimal way, entirely using new points, so tkat;u,)® = » and
n’ (v,)® = €. Asin Case 1, slight extra care is needed if say n (and similarly if
€ = n’). For example, it could happen that= n and there is an initial segmeutof
u; such thati~* is a final segment af,. In this case, since is cyclically reduced we
cannot havel;, = u = (u,)™*, and it follows that the extension is still possible. (I

ReEMARK 3.1. There are certain refinements of the construction in the proof of
Theoreml.2. For example, it is possible to arrange thatacts 2-transitively on
Q. One needs to show that the stabilisegpftan be made transitive an \ {&,}.
The idea is, for an arbitrar§, to fix & and maps, to & by some very long word.
More generally, one can arrange that the actioR,adn 2 is highly transitive that is,
k-transitive for allk > 0.

4. Proof of Theorem1.3

We build automorphismg, g of the random grapli€2, ~). Let S be the set of
non-empty cyclically reduced words iy g, f ~*, g~*. Define an equivalence relation
= on S, puttingu = v if and only if there are words)y, w, € Sandr,s € 7 \ {0}
such that

1 1
wy U wy = w, viw,.

Let W = {w; : i € N} consist of exactly one element, chosen of least possible
length, from each=-class. By the minimality assumption no elementéfcan be

a proper power, and each is reduced, and not conjugate to any shorter word. The
construction off, g is by finite approximation, and after stkpve denote byf ®, g®

the restrictions off, g so far defined (likewise, for any word, w® is the restriction
defined after stefx). Letl, := ¢(w,). We suppose thab, = f andw; = g.

To ensure that f, g) generate a ZTF group, we shall arrange that eachas just
finitely many cycles. One of the steps will be to extefiitl, g® so that certain partial
cycles of somew; are ‘joined’ into a single cycle. This is not always possible: for
example, if a partial automorphistmhad incomplete cycle&.. , o, ..., o, ...)
and(..., B, ..., Bs ...) Wherea; ~ a, but 81 # B,, then there is no extension of

h with a single cycle extending these partial cycles. This problem did not arigg in [
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(where there was no invariant relational structure) and makes the proof here more
complicated. First, we must formalise the notion of compatibility of partial cycles.

DEFINITION 4.1. Let w be a word, with¢(w) = 1. Then twow®-cycles
(.. ,€,c.,6,...) and (...,e, ..., €,...)

are compatible if the following hold, where thas®-chains corresponding to the
above cycles arésy, ... , 8,) and(s, ..., 5)).

(i) Forallt e N withtl < min{m, n}
81~ 8y < 8~ 8.

(i) Suppose the finite completeéX'-cycles areCy, ... , C,, of lengthsry, ... , 1y,
and thatD; := {x € C; : X ~ ¢} and D] := {x € C; : X ~ €1}. Then there are
Si,...,Sp € N such thatD] = D;(w®)s for eachi and there ia € N such that
a=g5 (modry) foreach =1,...,p.

We shall say that twav®-cycles areveakly compatibléf just condition (ii) above
holds.

Because of corition (i), compatibility is not an equivalence relation (since two
incompatible longv™® -cycles can each be compatible with a shoft-cycle). How-
ever, weak compatibility is an equivalence relation. The idea of the above definition
is that if two w®-cycles are compatible then it should be possible to extefidso
that they are parts of a single cycle and such that the number of new points used tc
join the two cycles depends on th@btained in (ii) above. We shall do this explicitly
a little later.

We now describe the construction dfg. First, we fix a surjective function
® : N — N3which takes each value &f infinitely often. Our construction proceeds
through stepsibto 5n + 4. If k € {5n, ... , 5n + 4}, then stegk may be a sequence
of substeps. We adopt the general notation that for a wottle function determined
by w before such a substep of stefs writtenw®*, and after the substep it is denoted
by w®.

DEFINITION 4.2. Supposea, b € N with a,b < k/5, and thatw,, w, € W. A
(wa, wy, k*, a, B)-coincidenceconsists of aw{*’-chain and a distincwf)k*)—chain
from « to B such that there is a common lettefone of f, g, f =%, or g~!) such that
Bx* is undefined, but in some extension of both #{&’-chain and thev”-chain,

Bx*H would be the next element aftgr

Before starting steprg we partition the incomplete cycles of ™, which lie in
maximal chains of length at leadt,2; into finitely many classes, say

n-1 n-1
Kit o Kty
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so that any two cycles in sont€"* are compatible (hete: N — N is some indexing
function). We will eventually arrange that,_; hash(n — 1) infinite cycles (so that
h(0) = 1 andh(1) = 2), with partial cycles in a givei"~* eventually being joined
so they lie in the same cycle. The warg_; acquires no new finite complete cycles
after step & — 1. If a partial cycle lies irK"~* then we refer t&K"™* as itstypg or
compatibility type This is never changed: later extensions of a partial cycke/in*
will still have type K "%, and at later stages, every cyclewd’; in a maximal chain
of length at least2_; will have typeK"™* for some unique < {1, ... ,h(n — 1)}.

At each substep aften5as soon as a partial cycle of,_, lies in a chain of length at
least 2,_;, we choose somieso that the cycle is compatible with cycles of tdg ™,
and specify that it hatype K%, At any stage any two cycles of a word of the same
type will be compatible.

Stepk = 5n. Ensure thag, € dom(f®) Nnran(f®).

Stepk = 5n + 1. Ensure that, € dom(g®) Nnran(g®).

Stepk = 5n+ 2. If ®(n) = (p, q,r) with p < n, andg,, & lie in wg‘*l)—cycles of
the same type, each in chains of length at legstextend f -, gk~ so thats,, &
are in the same¥-cycle.

Stepk = 5n + 3. We ensure that over the complete cyclesuff? there are
w® -cycles of each possible weak compiitipp class lying in chains of length at least
2, .

Stepk = 5n+ 4. Extendf -V, g*&-V to arrange that there are (o;, wy,, 5n + 4,

a, B)-coincidences for < n.
Throughout the steps3o 5n + 4, we ensure that

(a) up to compatibility there is a unique®-cycle and at most 2 incompletg?-
cycles, andy® has a unique complete cyal&).

(b) thereis no coincidence in which both the words involved are ftgm. . , w,_4,

(c) ifi <n—1,thenany complete™**-cycle is a completes™ " -cycle,

(d) any extension of cycles of** (0 <i < n— 1) respects their compatibility type;
that is if two cycles ofw™ have the same type, then so do their extensions to cycles

k
of w".

We call any extensiorf ), g+ of f* g** preserving these propertiegaod
extension

LEMMA 4.3. Suppose thah = [k/5], the integer part ofk/5, and thaty ¢
dom( f®), Suppose that after stegp, (a)—(d)above hold. Then there & e Q
so that the extensioh®® := f &) U {(y, §)}, g** := g is good.

REMARK. The corresponding statements hold wfth!, g, org=! in place of f.

PrROOF OFLEMMA 4.3, We must choosé, a new point of Q. The requirement
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that f " is a partial automorphism essentially says that for certain finite disjoint
A1, A, € Q,8 must be chosenin

{X:Vy e Ai(X ~y) AVY € Aa(X # )}

By the extension property which characterises the random graph, this set is infinite,
that is, there are infinitely many choices for suth As § is new and thew; are
cyclically reduced, for any € N any complete cycle of*" is a complete cycle of
w®, so in particular (c) above will be satisfied.

We next check that can be found so that (d) holds. Condition (i) in Definitiéri
plays norole here, because the weak compayiblass of a partial cycle is determined
by one of its elements. Essentially, our compatibility requirements merely force us
to restrict the choice of by increasingA; and A, (to ensure that the conditions are
satisfied). The only problem is to ensure tiiatand A, are disjoint, that is, that it
doesn’t happen that one compatibility requirement puts sorme\;, and some other
compatibility (or automorphism) condition putse A,. There could not be a clash
between a compatibility requirement and an automorphism condition, for suppose
the compatibility requirement forceldd~ ¢ (that is,e € A,;) and an automorphism
requirement forced »# ¢ (that is,e € A,). This means that for sormee < n there
will be a w*-chain of lengtttl, say frome to §, and furthen) := e(f*)=1 »~ y.
However, in this case there is alreadyg*-chain of lengthtl, from 5 to  which
conflicts with our compatibility requirements. It can be checked that two compatibility
requirements can only clash if there wasuw, wy, k*, o, 8)-coincidence, and by
assumption there is none.

To verify (b), suppose that there iS(@,, wy, K+, @, 8) coincidence. Then either
a =38orp =36 If B =34 then the last letter used in both the<"-chain
and thewf)k“—chain is f, so there was previously @v,, wy, k%, a, y)-coincidence,
contrary to (b) at the previous step. Similarlysie «, then there was previously a
(wa, wy, kx, v, B)-coincidence, again a contradiction. O

LEmMmA 4.4, (i) Let wy,wp, € W, with w, # w,, and putl, = €(w,),
Iy = £(wp). Suppose thab,, w, have a common chain of length Then

n < maxla(la + 1), I,y + D}

(i) Letw € W have length and (&, ... , 8) be aw-chain with§ow? = 8.
Suppose that for some> 0 there is aw-chain(§;, ... , 8i). Theni =1.

PrROOF. (i) Suppose not. We may suppdse> |,. By the pigeon-hole principle,
we may suppose there are distingte; on thew,-cycle and an initial subword of
w, such thaiu, €;u are on thew,-cycle. (There is another possible case, handled
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similarly, whenu is a final subword ofw, ande;u™, €;u™! are on thewy-cycle.)
Henceejuwf = €;u for somek € N. Putm := j —i. Thenew? = ¢; (via the same
chain), sow™u = uwf. Hencew, = wy,, which is a contradiction.

(ii) Suppose # | and supposa, v are respectively initial and final segmentsuof
such tha,u = § ands; v = 85. Then (by considering lengths of word&)y = §
and§u = & . It follows thatuw = wu, sow is a proper power ofi, which is
impossible. O

To get started we write down the first 10 steps explicitly (rememberingitat f,
wy, = g). This will serve to check that the conditions hold early on.

Step 0: Putf©@ = (...&,&,& ...), wherei € N\ {0, 1} is least such that
& ~ & < & ~ &. As in Section2 this notation means thdt.. &, &, & ...) is a
partial cycle off @, so&, f @ = &, andé, f @ = &, with f© not defined elsewhere.

Step 1: Pug®© = (&). That isg fixes&,.

It is easy to see that there is nothing to be done in Steps 2, 3 and 4. At this stage
we specify thah(0) = 1, thatis,wo = f has a unique compatibility typi&?.

Step 5: Putf® = (... &, &1, 60, & ...), wherej € N\ {0, 1,i} is least such that
& ~ & o & ~Eandg ~ & < & ~ &

Step 6: Here we need to pgitinto the domain and range gf Let us call a poing
of Q aneighbourof & if & ~ & and anon-neighbountherwise. Sincg fixes&, we
extendg in such a way that all neighbours will eventually be in one cycle and the non-
neighbours in another, thus giving us 3 cycles in all. gPtt= (&)(... &y, &1, &m...)
whereg,, &, &, are either all neighbours or all non-neighbourggoénd

én~ &1 < &1~ &

Step 7: Nothing need be done, @& has a unique incomplete cycle with more
than one point.

Step 8: The only complete cycle gf” is (£&y), so for example i, ~ &, then
at step 8 we must extergd” by adjoining an incomplete 2-cycle of non-neighbours
of &,.

Step 9: Nothing need be done, ag, w; have length 1 and distinct words of
length 1 cannot have a common next letter as required for a coincidence.

Finally, we specify thatv; = g has two compatibility type&.: andKj], corre-
sponding to neighbours and non-neighbourgaespectively, sdi(1) = 2.

It follows immediately from Lemmat.3 and the remark following its statement
that Steps B and 5 + 1 are possible. Itis also straightforward to see that Step 3
is possible, since we can construct nef®"*>-chains of length,, using new points.

Stepk = 5n 4+ 2. This is the most troublesome step. Suppose that) =
(Q1, Gz, ) With g; < n and writew := wg, andl := £(w). Let(... e, ... €, ...)
be thew®~Y-cycle containing,,, with correspondingo®->-chain(sy, ... , §;), and
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(... €,... €4 ...) be thew* P-cycle containings,, with correspondingy®-?-
chain(s;, ... , 8). We may suppose that these two cycles are distinct, as otherwise
there is nothing to do. By extending these two cycles if necessary (using LémBma
we may assume that they are the two longest?-cycles, withc > d.

Letl’ := maxlo, ... ,l,}. We first apply Lemmat.3to add betweeh? + |" and
1”2 4 21’ new points to each end of the*~?-chain(s,, ... , §,) to obtain a neww®*-
chain(ay, ... ,a) with w-cycle (... ,e_m, ... , €crmets - - - ), Wherea; = e_,, and
oy = €c1ms1 (SOM > 1'). Likewise, we can find a good extension of thé&~?-chain
(8,...,8,) to a chain(ay, ... ,al) with w*-cycle (..., € ... € m---)
wherea] = €’ anday = €}, ;. Thisis done so Lemma&4 (i) can be applied later.

We now adopt the notation of Definitioh 1 for the complete cycle€,, ... ,C,
of wkb, In particular,D; := {x € C; : X ~ ¢} andD/ = {x € C; : X ~ €]},
foreachi = 1,..., p. By compatibility, there isa such thata = s (modr;) for
eachi = 1,...,p. Putb := a— (c+2m+ 1). The idea here is to ensure that
eqw? = €}. Now €;w*™ = €c i1, ande’ . w™?t = ¢/. Thus we needb such that
€crmpw® = €' ,.. That givesa = ¢+ m+ b+ m+ 1. For later convenience, we
choosea so thatb > ¢+ 2m + 2.

We shall find newyy, ... , »,_1 SO that there is a good extensidit, g+ of
f®, g such that there is @*"-chain (a1, ... , e, Y1, oo Vi1, @), - L 0
with o, (w*")* = «}. To smooth out notation, we put

Vo) S= 01, ..., Yo =0, Vib 1= 0, oo, Vibrs—1 1= Oy
The process is inductive. After a typical stepwe will have foundys, ... , yi_1,
so that(y_¢ 1), ..., ¥i-1) is aw®-chain. At stepk+ we must findy, so that the

following conditions hold (they are assumed inductively to hold after kigpBelow,
we say that a word potentially takesx to 8 if, for any extension off &, gkt

to f®, g (partial permutations, not necessarily automorphisms) given by choosing
Yit1s -+ » V-1 SO that(y_¢_1), ... , Yibss—1) iS @ w®-chain, we haverz®¥ = B.
Thus, for example, before finding the wordw® potentially takes, to y;,, and if

f is the first letter ofw, thenw® f potentially takes/ to yp,1. The idea of (1)—(4)
below is that we have an implicit commitment that a certain final subwore shust
eventually takes to y1,. We will also sometimes say that a wardiill eventually take
a0y € (i1, --- » Vib_1}, Or write thatez® = y;, meaning that for any extension
f®, g® as above, we hawez® = y;.

(1) Automorphism conditionsf ®*, g+ are partial automorphisms.

(2) Compatibility conditions: for < n, if two partial cycles ofw™* have the same
compatibility type, so do their extensions after skep

(3) If a, B € Q with az®*? = B, andu,r € Q and uz*" is undefined butz
potentially takegt to &, u ~ a <> A ~ B.
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4) fa, B, o, B € Qandaz®?, gz& are undefined but potentially takega, B)
to (o, B'), thena ~ o’ < B ~ B'.

Conditions (3) and (4) deal with commitments arisingcause of the intention
later to addy;,4, ..., yp-1. They become important when we choogg ;. Up
until then, using Lemmal.3, we could make choices preserving just (1) and (2).
However, to ensure that we can chogge; so that (1) and (2) still hold, we need to
preserve (3) and (4) throughout the construction (and this will suffice). To see this,
suppose after stefk«) we have founds, ... , yi,_», and must finds,_1, subject say
t0 Yip_o T * = yp_1 andyp_19%" = yp. Suppose say that it is impossible to find
Yib_1 (Subject to (1) above). In this case there are:, v such thatif ©2 = 4 and
A % Vb2, andug® = v andv ~ y;, (or the same holds with- and * reversed).
Then after stegkx) we had thatf g potentially takes,_» to y,, anda f &g =y,
buti +# yp_o butv ~ 3, contrary to (3) or (4) at stelpox.

Condition (2) above poses no problems, essentially by Lerhh@) (and the fact
that we extended the chaiéy, ... , &) sufficiently). For whenwe adg,, ... , yip_1,
no cycles forw,, ... , w,_1, other than the obvious one far, are affected (we may
create some new cycles for other words, but they will be compatible with previous
cycles). Also, as in the proof of Lemma3, we may at each stage choggesuch
that (1) holds (with the argument in the last paragraphi fer Ib — 1). Thus, the
problem is to show that (3) and (4) hold befgreis chosen, and that, assuming that
yi, ..., Y1 are chosen to satisfy (1)—(4) and that the choiceg, aflso satisfies (1),
then it can be arranged that (3) and (4) also hold after the choige of

We first simplify (3). Suppose that*" is the word which will takey, along the
chain(yo, y1, ..., ¥) to %, and thatw® = uv (so thatv potentially takes; to yip).
Then, since we assumeis chosen to satisfy (1), an easy induction argument on the
length ofz in (3) allows us to assume that= v, with « = y; andg = . We omit
the other case, when= v~! anda = i, B = V0.

Starting the induction. First, note that condition (3) holds befoyeg is chosen,
since thew™®* -cycles

(.. s V(=) + - - s Y05 - -) and Gor s Viny - - ,)/|b+s/,1,...)

satisfy condition (ii) of Definition4.1, and since by the choice bf there are no other
w-cycles of lengttb.

We show now that (4) holds at the beginning, that is, wiier) is the step
beforey, is chosen. Suppose not, and let the waige a counterexample to (4) of
least length. Then we can writeasx;yi1 XY, . . . XpYp, Where thex;, y; are reduced
words (y, possibly empty, the othey; non-empty), withx,, ..., % € {w® w=™"}.
Furthermore, we may supposec {yo, ¥n}, Saya = yp, in which casex; = wP.

Slightly abusing notation, we shall write thax“" = y;,. Since we are reducing to
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the casep = 1, we first suppos@ > 1. Eachy*" is defined onx(x,y; - - - %_1)*?,

anda (X y; - - - X_1)*" is equal toy, if X;_; = wP®, ory, if x_; = w™. By minimality

of z (using (1) and that (3) holds at the beginningk“", o’(x,y,) " are undefined,

that is,xy, X1 y; will eventually takex’ to points in{y, ... , yip—1}. Sincex; ends in a

copy ofw, andx, starts with a copy ofv or w2, it follows by Lemma4.4 (i) that
a'x ' ay)® e fpow' (i =1,... ,b—1}.

In particular, y; is a power ofw (clearly a positive power as it is defined on

Mo = axiP). However, in this casgpy; = 1., for somej > 0, contradict-

ing thatypys € {¥o. ¥ib}

Thus, we havep = 1, soz = wPy,;, with .y, defined after stegk+). By
minimality of z, we also have = y;w® or z = yjw=, and we suppose the former
(the latter is similar). Thep’ = y,,. We wish to showy; or y; is a power ofw, for
then (4) holds by condition (i) of DefinitioA. L

Suppose first(y;) > Ib. Then, sincew® is an initial segment of, we have
z = wPuw® for someu. In this case, as"® is defined (before the choice ¢f) on
ypu®, the elemeng;,u® lies on a finite complete-cycle, as does (u=1)®. Now
a ~ o < B~ o (asthe twaw-cycles being joined satisfy Definitioch1(ii)). Since
u is defined orw’, 8 beforey, is choseng ~ «’ <> B ~ «. By Definition 4.1 (ii)
again,f’ ~ a < B ~ B, whencex ~ o' < B ~ f/, as required. Thus, we
may assumé(y;) < Ib, soy; is an initial subword ofv® (and likewisey; is a final
subword). It now follows by Lemma.4 (i) that y; is a power ofw, since otherwise
zwould not potentially take to 8. This starts the induction.

The inductive step. We now suppose that (3) and (4) hold after skep(when
yi_1 was chosen), and verify that can be chosen so they hold after skep. We
may suppose that; is to be chosen to equg_, f *. Recall the simplification
of (3) before the inductive step, and the choicevofin particular, after stegx, fv
potentially takes;_; to yp.

First note that (3) does not conflict with a condition of type (1). Suppasee Q
with pv®® = A, and that. ~ y,. We must choose; sou ~ y. If this clashes
with (1), thenu( f ~H® £ 4 _,. However,f v potentially takes (at stelpr) _1 to #p
and(u(fH®))(fv)® = A, Thus,z ~ yp andu(fH* ~ 4 _,, contrary to (3) at
the previous substep. We should also consider here the.case, in which case we
must ensure. ~ y; <> v ~ yp. Again, this is consistent.

Thus, it remains to show that (4) is preserved, under the assumption that (1)—(3)
hold after stefk+. So supposeg; is chosen so that (1)—(3) hold but (4) does not hold,
and that the word is a counterexample to (4) of minimal length. By this minimality
we may suppose that in (4, = y;, and that the word has formvy; X,y - - - % V.,
wherex,, ... , X € {v, v}, and they, are arbitrary (reduced) words. Here, after
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stepksx, eachy, is defined on the potential image gf undervx,y,--- x;, and the
decomposition ot is chosen so thaivy, ... y; is potentiallye if X1 = v, or yp if
Xj41 =0 "

We suppose for a contradiction that> 1. By minimality of £(z) and the as-
sumption that (1)-(3) holdy®® and (vy,)** are not potentially defined om’ (so
eventually, i.e., after stelp, they will takeo’ to points in{yi,4, ... , yip—1}). Also, as
mby{k*) € {yi, v} and any word at stepx of length at most? defined ony, is an
initial subword ofw', £(y;) > |2, andy, has an initial subwordy. It follows that
after stepk, w will be defined ona’v®. In particular, as eventually we will have
a'vw € {41, ..., Yo} We havel(v) > £(w), and we can writes = vw® where
L(v") < €(w) andg > 0. By Lemma4.4 (ii), after stepk «’v will lie on the w-cycle
of 5. Assume first?(v') > 0. Then as’ is a proper final subword ab (and the
maximal w®*-chain ofy, begins with a point on the-cycle of y;), it follows that
a” =o' f tis defined. Hence, after stép f z potentially takesy,_1, a”) to (8, B').
Hencey_; ~ «” < B ~ B/, so asf is an automorphismy, ~ o’ < g ~ g/, as
required. Ifv’ is empty, sov = w9, then, by considering Lemm&4 (ii) applied to
a'v, d'vyy, a'vy X, We get thaty, is a positive power ofv. This contradicts that

)’lbyik+) € {¥i, Vn}.

Thus, we reduce to the case- 1, thatis,z = vy. Again, by minimality of¢(z) we
may suppose that after stkpeach point on thg®-chain froma’'v® to o’ (vy)® will
lie in {¥i41, ..., ¥io_1}, €XCeEpt forx’(vy)® which is one ofy;, ... , . In particular,
L(Yy) < £(v). Write v = v'w® wherel(v') < .

Suppose first’(y) > £(w). Then asy,y** is defined,y hasw as an initial
segment. Hence, by Lemnda4 (i), as y® will be defined ona'v®, o’v® will be
on thew-cycle ofyy. In particular,y is a power ofw, andg’ = y;,. In this casepy
is a final segment of a power af, and it potentially takea to 8 anda’ to g’ along
a subset of thev-chain fromy_,._; t0 yip.s—_1. We may suppose’ is non-empty, as
otherwisez is a power ofw and hence satisfies (4) by Definitidril (i). In particular,

as abovex” := o' f ! is defined at stefx, and f vy potentially takesy;_;, «”) to
(B, B'). Since (4) held at stepx and f is a partial automorphism, (4) holds after
stepk+.

Alternatively, £(y) < £(w). There are two cases, according to whetbeis
or y;. In the first case, we have thoosey; to ensure; ~ o’ < 8 ~ y;p, and in the
second case we choogeso thaty, ~ «’ <+ B ~ y;. It can be checked that this does
not conflict with other constraints.

The above argument shows that the two cyclesf? can be joined, without
creating new incompatible cycles fax, ... , w, ;. It remains to check that after
Step % + 2, there are no coincidences. By the proof of Lem#nd any such
coincidence must involve one of tlieand one of thé and for somes < n — 1 must
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involve awe-chain fromg; to &; alongyy, . .. , ¥ (We do not mean that thg, &/ are
endpointof the chains in the coincidence). Furthermore, by Lerdmdi), we = w.

So suppose we have(a, we, K, @, B)-coincidence. Since the ‘next’ letter of the
w-chain frome to B is undefined, we must haye= «,. However, in this case, some
chain of length at leas$t + | is both aw-chain and ave-chain, so by Lemma.4 (i),

w = we, and the two chains betweerandg are equal, contrary to the definition of
coincidence.

Stepk = 5n+ 4. Putl := maxXl,, ... ,l,}. Consider all pairge, w), wheree is an
old point andw is a reduced word of lengti + |, whose first letteh does not have
e € domh® D). For each such pair, use Lemma to add aw®-chain of length
12+1, so thatw® is defined. We do this by a good extension, in such a way that there
are no overlaps between the added pointgdow) and for any othete’, w’), except
those forced because= ¢ andw, w’ have a common initial subword. It follows
from Lemma4.4 that after this step there is M@,, wy, K, @, 8) coincidence for any
a,b<n. O
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