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Abstract

Let G be a permutation group on a set� with no fixed point in�. If for each subset0 of � the size
|0g −0| is bounded, forg ∈ G, we define the movement ofg as the max|0g −0| over all subsets0 of�.
In particular, if all non-identity elements ofG have the same movement, then we say thatG has constant
movement. In this paper we will first give some families of groups with constant movement. We then
classify all transitive permutation groups with a given constant movementm on a set of maximum size.

2000Mathematics subject classification: primary 20BXX.

1. Introduction

Let G be a permutation group on a set� with no fixed points in� and letm be a
positive integer. If for each subset0 of� and each elementg ∈ G, the size|0g −0| is
bounded, we define themovementof0 as move.0/=maxg∈G|0g−0|. If move.0/ ≤ m
for all 0 ⊆ �, thenG is said to havebounded movementand themovementof G is
defined as the maximum of move.0/ over all subsets0. This notion was introduced in
[6]. Similarly, for each 16= g ∈ G, we define the movement ofg as the max|0g − 0|
over all subsets0 of �. If all non-identity elements ofG have the same movement,
then we say thatG hasconstant movement.

Clearly every permutation group with constant movement has bounded movement.
By [6, Theorem 1], ifG has bounded movement equal tom, then� is finite, and its
size is bounded by a function ofm.

For transitive groups of movementm, the following bounds on� were obtained
in [6].
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LEMMA 1.1. Let G be a transitive permutation group on a set� such thatG has
movementm.

(a) If G is a2-group then|�| ≤ 2m.
(b) If G is not a 2-group andp is the least odd prime dividing|G|, Then|�| ≤

b2mp=.p − 1/c. (For x ∈ R, bxc denotes the integer part ofx.)

There are various types of permutation groups with constant movement for which
the bounds in Lemma1.1 may be attained. For example, letG be either ap-group
of exponentp or a 2-group. If we considerG as a permutation group in its regular
representation, then we see that all non-identity elements have the same movement.

The purpose of this paper is to classify all transitive permutation groupsG of
maximum degreen with constant movementm, (wheren = 2m if G is a 2-group and
otherwisen = b2mp=.p−1/c if p is the least odd prime dividing|G| and by [6] these
are the maximum sizes ofn).

THEOREM 1.2. Let m be a positive integer, and letG be a transitive permutation
group on a set� of maximum sizen with constant movementm. Then eitherG is
a 2-group in its regular representation, or for an odd primep one of the following
holds:

(1) |�| = p, m = .p − 1/=2 and G is the semi-directed product ofZp Z2a, where
2a|.p − 1/ for somea ≥ 1;
(2) G := A4, A5, |�| = 6 andm = 2;
(3) G is a p-group of exponentp in its regular representation.

Moreover, all permutation groups listed above have constant movement.

All the groups in Theorem1.2are examples (see Section2). In Section3, we prove
the above theorem, which is a classification theorem for the transitive permutation
groups of maximal degree with constant movement.

2. Attaining the bounds: examples

LetG be a transitive permutation group on a finite set�. Then by [9, Theorem 3.26],
which we shall refer to as Burnside’s Lemma, the average number of fixed points in
� of elements ofG is equal to the number ofG-orbits in�, namely 1, and since 1G

fixes |�| points and|�| > 1, it follows that there is some element ofG which has no
fixed points in�. We shall say that such elements are fixed point free on�.

Let 1 6= g ∈ G and suppose thatg in its disjoint cycle representationhast nontrivial
cycles of lengthsl1; : : : ; l t , say. We might representg as

g = .a1a2 · · · al1/.b1b2 · · · bl2/ · · · .z1z2 · · · zlt
/:



[3] On permutation groups with constant movement 289

Let 0.g/ denote a subset of� consisting ofbli=2c points fromi th cycle, for eachi ,
chosen in such away that0.g/g ∩ 0.g/ = ∅.

For example we could choose0.g/ = {a2;a4; : : : ;b2;b4; : : : ; z2; z4; : : : }. Note
that0.g/ is not uniquely determined as it depends on the way each cycle is written
down. For any set0.g/ of this kind, we say that0.g/ consists ofevery second point
of every cycle ofg. From the definition of0.g/ we see that

|0.g/g − 0.g/| = |0.g/| =
t∑

i =1

bl i=2c:

In [3] we have shown that this quantity is an upper bound for|0g − 0| for an
arbitrary subset0. Thus the movement ofg is |0.g/|.

Now we will show that there certainly are some families of examples of transitive
groups with constant movement for which the bound of Lemma1.1 holds, for any
prime p. First we look at groups of exponentp.

LEMMA 2.1. (a) Let m := pa−1.p − 1/=2 for somea ≥ 1, where p is an odd
prime and suppose thatG is a regular permutation group of exponentp on a set� of
sizepa = 2mp=.p − 1/. ThenG has constant movementm.
(b) Let m be a power of2, and suppose thatG is a 2-group of order2m. Then the

regular representation ofG is a permutation group of constant movementm.

PROOF. Let 1 6= g ∈ G and let0 ⊆ �. By [3, Lemma 2.1],|0g −0| ≤ m. SinceG
is regular,g is fixed point free on�. Suppose that0.g/ consists of every second point
of every cycle ofg. Then by definition0.g/g ∩ 0.g/ = ∅. If p is an odd prime, then
|0.g/g − 0.g/| = |0.g/| = .|�|=p/.p − 1/=2 = pa−1.p − 1/=2 = m.

ThusG has constant movementm. Also with the same argument it can be shown that
every 2-group of degree 2m in its regular representation has constant movementm.

In what follows we will see that the regularity condition foreach transitivep-group
is a necessary condition. LetH be a core-free subgroup of ap-groupG and consider
the permutation representation by right multiplication on the right cosets ofH . If
H 6= 1, thenG is not regular in this action and does not have constant movement. An
example of such a core-free subgroupH in a p-groupG of exponentp is the cyclic
group generated by any non-central element. Such elements exist provided thatG is
non-abelian.

Let H = 〈h〉 ∼= Zn, and letK = 〈k〉 ∼= Zm be such thatK is a subgroup of Aut.H /.
Thenhk = hr for some positive integerr such thatr m ≡ 1 .mod n/. LetG = H K be
the natural semi-direct product ofH by K . ThenG is given by the defining relations:
hn = 1, km = 1, k−1hk = hr , with r m ≡ 1 .mod n/.

Here every element ofG is uniquely expressible ashi k j , where 0≤ i ≤ n − 1,
0 ≤ j ≤ m − 1. Certain semi-direct products of this type also provide examples of
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groups with constant movement where the bound in Lemma1.1holds. (We note that, if
n = p, a prime, then this groupG is a subgroup of the groupAGL.1; p/ = Zp Zp−1.)

LEMMA 2.2. LetG := Zp Z2a denote a group defined as above of orderp:2a, where
2a|.p − 1/ for somea ≥ 1. ThenG acts transitively on a set� of sizep and in this
actionG has constant movement.p − 1/=2.

PROOF. The groupG is a Frobenius group and has up to permutational isomorphism
a unique transitive representation of degreep, on a set�, say. Letg ∈ G be such that
o.g/ = p. Then by [3, Lemma 2.1],|0g −0| ≤ m = .p −1/=2 for all subsets0, and
if 0.g/ consists of every second point of the unique cycle ofg , then|0.g/g − 0.g/|
has size equal tom. Suppose now thatg ∈ G has ordero.g/ a power of 2. Theng
has one fixed point and.p − 1/=o.g/ cycles of lengtho.g/ in �. For each0 ⊆ �,
|0g − 0| consists of at mosto.g/=2 points from each cycle ofg of lengtho.g/ ,and
hence has size at mostm. Since each non-identity element ofG is either a 2-element
or has orderp, it follows thatG has constant movement equal tom.

LEMMA 2.3. The groupsA4, and A5 acting transitively on a set of size6 have
constant movement equal to2.

PROOF. By [2, 4, 5] the groupsA4 and A5 have bounded movement equal to 2.
Using similar argument as in [3, Lemma 3.3], we will show that they also have
constant movement 2. Let 16= g ∈ A4. Theng has order 2 or 3. Ifg has order 2
theng has two cycles of length 2 and hence|0.g/g − 0.g/| = 2. Similarly, if g has
order 3 theng has two cycles of length 3 and again|0.g/g − 0.g/| = 2. As for A5,
since every non-identity element ofA5 has order 2, 3 or 5, as above it is easy to see
that every element ofA5 has movement equal to 2. Hence both of them have constant
movement 2.

3. Proof of Theorem1.2

Let m be a positive integer. Suppose thatG is a transitive permutation group on
a set� of sizen with constant movementm, which have maximal degree. (Where
n = 2m if G is a 2-group and otherwisen = b2mp=.p − 1/c wherep is the least odd
prime dividing|G|.) By [1, Theorem 1], for some primeq dividing |G|, there exists
a q-elementg of orderqa (for some positive integera) in G which is fixed point free
on�. Theng hasbi cycles of lengthqi for i = 1; : : : ;a , where

∑a
i =1 bi qi = n and

ba > 0. Now we consider two cases:
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Case 1: Suppose thatq is odd. Then by the definition of0.g/ we have,

m = |0.g/| =
a∑

i =1

bi
qi − 1

2
:

Suppose thata ≥ 2, and considerh = gqa−1
, say. Thenh hasbaqa−1 cycles of length

q, so by the definition of every second point of every cycles ofh we have,

m = |0.h/| = baqa−1 q − 1

2
=

a−1∑
i =1

bi
qi − 1

2
+ ba

qa − 1

2

≥ ba
qa − 1

2
= ba

q − 1

2
.qa−1 + · · · + q + 1/

= baqa−1 q − 1

2
+ ba

q − 1

2
.qa−2 + · · · + q + 1/

= baqa−1 q − 1

2
+ ba

qa−1 − 1

2
> baqa−1 q − 1

2
;

which is a contradiction. Hencea = 1 and thereforeba = b1 = n=q, andm =
.n=q/.q − 1/=2. Suppose there exists an odd primer dividing |G| such thatr ≤ q,
and letx ∈ G, o.x/ = r . Then

m = |0.x/| ≤ n

r

r − 1

2
= 2mq

q − 1

r − 1

2r
:

So .q − 1/r ≤ q.r − 1/ and henceq ≤ r which is a contradiction. Henceq is the
least odd prime dividing|G|, that is, we have proved thatq = p.
Case 2: Now we suppose thatq = 2, so as above we can assume thato.g/ = 2a for
some positive integera, andg is a fixed point free element on�. Theng hasbi cycles
of length 2i for i = 1; : : : ;a , wheren = ∑

i ≤a bi 2i , ba > 0, and

m = |0.g/| =
a∑

i =1

bi 2
i −1:

Suppose thata ≥ 2, and considerg2a−1 = h, say. Thenh hasba2a−1 cycles of
length 2, so

ba2a−1 = |0.h/| = m =
a−1∑
i =1

bi 2
i −1 + ba2a−1:

The above equality is true ifbi = 0 for eachi < a. So allg-cycles have length 2a,
and hence 2a|n.
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We first suppose thatG is a transitive permutation group on a set of sizen = 2m
andG is a 2-group. As each 16= g ∈ G has constant movementm, | supp.g/| = 2m,
where supp.g/ = {Þ ∈ �|Þg 6= Þ}. Thusg is a fixed point free element on�, that is,
GÞ = 1 for eachÞ ∈ �. HenceG is a regular 2-group.

Now suppose thatp is an odd prime. ThenG is not a 2-group. SinceG is a
transitive permutation group with maximal degree, by [7, Theorem 6.4]

|�| =
⌊

2mp

p − 1

⌋
= 2mp

p − 1
;

wherep is the least odd prime dividing|G| . (Since 2m < 2mp=.p − 1/, so if G is
not a 2-group with maximal degree then|�| 6= 2m.) Then by [2, 3, 4, 5], one of the
following holds:

(1) |�| = p, m = .p−1/=2 andG is the semi-directproductZp Z2a where 2a|.p−1/
for somea ≥ 1.
(2) G is the semi-direct productK P with K a 2-group andP = Z p is fixed point

free on�; |�| = 2s p, m = 2s−1.p − 1/, and 2s < p, whereK has p-orbits of
length 2s, and each element ofK moves at most 2s.p − 1/ points of�. (We note
that A4

∼= .Z2/
2Z3 is a transitive permutation group of degree 6 which has constant

movement 2, this occur in this case wherep = 3 andm = 2.)
(3) G is a p-group.
(4) p = 3, m = 2, andG = A5.

All groups in part (1) are examples for Theorem1.2. In parts (2) and (4), except for
the groupsA4 andA5 acting on a set of size 6, the other groups have some elements
whose movements are less thanm, which contradicts the fact thatG has constant
movement, (sinceG = K P has constant movementm, each non-identity element
k ∈ K has.p − 1/ cycles of length 2s. We consider the elementkkg of K . This
element is fixed point free on� and so has movementp2s−1, which is a contradiction).
In part (3), by Burnside’s lemma,G has a fixed point free element, sayg, on a set
of size pa for some positive integera. Since every fixed point free element has
order p with movementpa.p − 1/=2 (see [3, Proposition 4]),o.g/ = p and hence
move.g/ = pa−1.p −1/=2. But, by our assumption,G has constant movementm and
som = pa−1.p − 1/=2. Therefore, each non-identity elementg of G is a fixed point
free element, so thatG is a regularp-group of exponentp. This completes the proof
of Theorem1.2.

4. Intransitive examples

In this section we show that there certainly are families of examples of intransitive
permutation groups with constant movement, for any primep. First for p = 2, we
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have the following example.

EXAMPLE 4.1. Let m = 2r −1 ≥ 1 and letG := Zr
2. ThenG has 2r − 1 = 2m − 1

subgroups of index 2, sayH1; : : : ; H2m−1. For i = 1; : : : ;2m − 1, let�i denote the
set of two cosets ofHi in G, and set

� :=
2m−1⋃
i =1

�i :

ThenG acts faithfully on� by right multiplication with 2m−1 orbits�1; : : : ;�2m−1,
each of length 2. Each nontrivial elementg ∈ G lies in exactly 2r −1 − 1 = m − 1
of the subgroupsHi and permutes nontrivially the remainingm = 2r −1 points of�i .
Thus each nontrivial element ofG hasm = 2r −1 cycles of length 2 in�. For any
subset0 ⊆ � and any 16= g ∈ G, the set.0g − 0/ consists of at most 1 point from
each of theG-orbits on whichg acts nontrivially, and hencemax|0g − 0| = m. It
follows thatG has constant movementm.

The following example shows that intransitivep-groups, p odd, with constant
movement do exist.

EXAMPLE 4.2. Let d be a positive integer, letG := Zd
p, let t := .pd − 1/=.p − 1/,

and letH1; : : : ; Ht be an enumeration of the subgroups of indexp in G. Define�i

to be the coset space ofHi in G and� = �1 ∪ · · · ∪�t . If g ∈ G − {1}, theng lies
in .pd−1 − 1/=.p − 1/ of the groupsHi and therefore acts on� as a permutation with
p.pd−1−1/=.p−1/ fixed points andpd−1 orbits of lengthp. Taking every second point
from eachof thesep-cycles to form a set0 we see that move.g/ = m ≥ pd−1.p−1/=2,
and it is not hard to prove that in fact move.g/ = m = pd−1.p − 1/=2. Sinceg is
non-trivial,G has constant movementpd−1.p − 1/=2.

The last example forp = 3, inclined to the following example not only are examples
of permutation groups with constant movement equal to 3d−1 and 2 respectively, but
also gives some positive answer to the Question 1.5 in [8].

EXAMPLE 4.3. Let � = �1 ∪ �2 be a set of size 7, such that�1 = {1;2;3}
and�2 = {1′;2′;3′;4′}. Moreover, suppose thatZ2

2
∼= 〈.1′2′/.3′4′/; .1′3′/.2′4′/〉 and

Z3
∼= 〈.123/.1′2′3′/〉
Then the semi-direct productG := Z2

2 Z3 with normal subgroupZ2
2 is a permutation

group on a set�with 2-orbits which has constant movement 2, since each non-identity
element ofG has two cycle of length 2 or two cycle of length 3.

Finally, one may ask whether there exist further examples of intransitive groups,
which have constant movement.
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