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Abstract

Let G be a permutation group on a $etwith no fixed point inQ2. If for each subsel of Q the size

|T9 —T'| is bounded, fog € G, we define the movement gfas the maj ' — I'| over all subset¥ of .

In particular, if all non-identity elements @& have the same movement, then we say @Gags constant
movement. In this paper we will first give some families of groups with constant movement. We then
classify all transitive permutation groups with a given constant movement a set of maximum size.

2000Mathematics subject classificatioprimary 20BXX.

1. Introduction

Let G be a permutation group on a setwith no fixed points in2 and letm be a
positive integer. If for each subsétof 2 and each elemegte G, the sizgT’'?—T'| is
bounded, we define teovemenf I as movel’)=max,g|'9—T'|. Ifmove(I’) <m
forall T € Q, thenG is said to havéoounded movemeahd themovemenof G is
defined as the maximum of ma\fe) over all subset§'. This notion was introduced in
[6]. Similarly, foreach 1#£ g € G, we define the movement gfas the ma)™9 — I'|
over all subset$’ of Q. If all non-identity elements o5 have the same movement,
then we say tha® hasconstant movement

Clearly every permutation group with constant movement has bounded movement.
By [6, Theorem 1], ifG has bounded movement equalnp then< is finite, and its
size is bounded by a function of.

For transitive groups of movement, the following bounds o2 were obtained
in [6].
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LEmMA 1.1. Let G be a transitive permutation group on a setsuch thatG has
movementn.

(@) If Gisaz2-group then| < 2m.
(b) If G is not a2-group andp is the least odd prime dividings|, Then|Q| <
12mp/(p — 1)]. (For x € R, | x] denotes the integer part af)

There are various types of permutation groups with constant movement for which
the bounds in Lemma.1 may be attained. For example, IBtbe either ap-group
of exponentp or a 2-group. If we conside as a permutation group in its regular
representation, then we see that all non-identity elements have the same movement.
The purpose of this paper is to classify all transitive permutation grdipf
maximum degrea with constant movememn, (wheren = 2m if G is a 2-group and
otherwisen = [2mp/(p—1)] if pis the least odd prime dividings| and by p] these
are the maximum sizes a).

THEOREM1.2. Let m be a positive integer, and |& be a transitive permutation
group on a sef2 of maximum siz& with constant movement. Then eitherG is
a 2-group in its regular representation, or for an odd prinpeone of the following
holds

(1) 1] =p,m=(p—1)/2andG is the semi-directed product &;,Z,, where
22|(p — 1) for somea > 1;

(2) G:= A4 A5, |2 =6andm = 2;

(3) G isap-group of exponenp in its regular representation.

Moreover, all permutation groups listed above have constant movement.

All the groups in Theorerh.2are examples (see Sectidn In Section3, we prove
the above theorem, which is a classification theorem for the transitive permutation
groups of maximal degree with constant movement.

2. Attaining the bounds: examples

LetG be atransitive permutation group on a finiteQefThen by P, Theorem 3.26],
which we shall refer to as Burnside’s Lemma, the average number of fixed points in
Q of elements ofG is equal to the number @-orbits in2, namely 1, and sincesl
fixes|2| points and€2| > 1, it follows that there is some element@fwhich has no
fixed points inQ2. We shall say that such elements are fixed point fre@on

Let1 £ g € G and suppose thagtin its disjoint cycle representation hiasontrivial
cycles of lengths,, ... , I, say. We might represegtas

g=(ud-a,)bb--b,) (22 2).
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Let I'(g) denote a subset @ consisting of|l; /2] points fromi'" cycle, for each,
chosen in such away that(g)° N T'(g) = ¥.

For example we could choo$&g) = {a, a4,... , 0,04, ... ,2,2,...}. Note
thatI"(g) is not uniquely determined as it depends on the way each cycldtiemvr
down. For any sef(g) of this kind, we say thal'(g) consists okvery second point
of every cycle of). From the definition of"(g) we see that

t
IT(@° —T(@ =T = ZLIi/2J~
i=1
In [3] we have shown that this quantity is an upper bound|fty — I'| for an
arbitrary subsel'. Thus the movement @is |[T'(Q)|.
Now we will show that there certainly are some families of examples of transitive
groups with constant movement for which the bound of Leniniaholds, for any
prime p. First we look at groups of exponept

LEMMA 2.1. (a) Letm := p**(p — 1)/2 for somea > 1, wherep is an odd
prime and suppose th& is a regular permutation group of exponembn a sef of
sizep? = 2mp/(p — 1). ThenG has constant movememt

(b) Letm be a power oR, and suppose thds is a 2-group of order2m. Then the
regular representation o is a permutation group of constant movement

PROOF. Letl# g e Gandletl € Q. By[3, Lemma2.1]jl'?—T| < m. SinceG
is regularg is fixed point free or2. Suppose thdt(g) consists of every second point
of every cycle ofg. Then by definitio"(g)? N T'(g) = @. If pis an odd prime, then
IT(@° =T (@ =I'@=(Ql/p(p-D/2=p(p-1/2=m.

ThusG has constantmovememt Also with the same argumentitcan be shown that
every 2-group of degrean2in its regular representation has constant movement]

In what follows we will see that the regularity condition fech transitivegp-group
is a necessary condition. L&t be a core-free subgroup offagroupG and consider
the permutation representation by right multiplication on the right cosets.off
H £ 1, thenG is not regular in this action and does not have constant movement. An
example of such a core-free subgradpin a p-group G of exponentp is the cyclic
group generated by any non-central element. Such elements exist provid&lithat
non-abelian.

LetH = (h) = Z,,andletk = (k) = Z,, be suchthaK is a subgroup of AutH).
Thenh* = h' for some positive integarsuch that™ = 1 (modn). LetG = HK be
the natural semi-direct product &f by K. ThenG is given by the defining relations:
h"=1,k™ =1,k *hk=h", withr™ =1 (modn).

Here every element o is uniquely expressible dgk!, where 0<i <n —1,
0 < j <m-— 1. Certain semi-direct products of this type also provide examples of
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groups with constant movement where the bound in Lerhrhlolds. (We note that, if
n = p, aprime, then this grou is a subgroup of the groupGL(1, p) = Z,Z,_;.)

LEMMA 2.2. LetG := Z,Z denote a group defined as above of orge2*, where
22|(p — 1) for somea > 1. ThenG acts transitively on a se® of sizep and in this
actionG has constant movemefyp — 1)/2.

PrOOF. The groupG is a Frobenius group and has up to permutationalisomorphism
a unique transitive representation of degpeen a sef?, say. Letg € G be such that
o(g) = p. Thenby B,Lemma2.1]JT?—T'| <m = (p—1)/2 for all subset§", and
if I'(g) consists of every second point of the unique cyclg othen|T"(g)¢ — T"'(9)|
has size equal tm. Suppose now thay € G has ordein(g) a power of 2. Thermy
has one fixed point anth — 1)/0(g) cycles of lengtho(g) in Q. For eachl’ C Q,
|T'9 — T'| consists of at most(g)/2 points from each cycle aj of lengtho(g) ,and
hence has size at mast Since each non-idéity element ofG is either a 2-element
or has ordep, it follows thatG has constant movement equahto O

LEMMA 2.3. The groupsA,, and As acting transitively on a set of siz& have
constant movement equal2o

PrROOF. By [2, 4, 5] the groupsA, and As have bounded movement equal to 2.
Using similar argument as i3] Lemma 3.3], we will show that they also have
constant movement 2. Let# g € A,. Theng has order 2 or 3. If has order 2
theng has two cycles of length 2 and hendé&g)? — I'(g)| = 2. Similarly, if g has
order 3 therg has two cycles of length 3 and agalf(g)? — I'(g)| = 2. As for A,
since every non-identity element 8§ has order 2, 3 or 5, as above it is easy to see
that every element of\; has movement equal to 2. Hence both of them have constant
movement 2. O

3. Proof of Theorem1.2

Let m be a positive integer. Suppose tlatis a transitive permutation group on
a setQ of sizen with constant movemenn, which have maximal degree. (Where
n = 2mif G is a 2-group and otherwise= [2mp/(p — 1) ] wherepis the least odd
prime dividing|G|.) By [1, Theorem 1], for some prime dividing |G|, there exists
aqg-element of orderg? (for some positive integea) in G which is fixed point free
on . Theng hasb; cycles of lengthy’ fori = 1,...,a, whered} _, bq = nand
b, > 0. Now we consider two cases:
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Case 1: Suppose thats odd. Then by the definition df(g) we have,
a .
g -1
= F = i—'
m=T'(9)| Z;b 5

Suppose thaa > 2, and consideln = go ', say. Therh hasb,q?* cycles of length
g, so by the definition of every second point of every cyclek afe have,

-1 & g-1 a_1
afl—qz =Zbiq2 +baq

m = [[(h)] = bg
i=1 2

a1 -1
i > =baqT(qa*1+---+q+1)

aflq_l q_
> + b, >

-1 a-l_ 1 -1
a-1d 2 + baq 2 > baqailq 2_,

> b,

1
@+ +q+1

=aq

=aq

which is a contradiction. Hence = 1 and thereford, = b; = n/q, andm =
(n/a)(g — 1)/2. Suppose there exists an odd primeividing |G| such thatr < q,
and letx € G,0(x) =r. Then

-1 2mqr -1

nr
m=|I'X)| = - =
r 2 q-1 2r

So(q — Dr < q(r — 1) and hence < r which is a contradiction. Henagis the
least odd prime dividingG|, that is, we have proved thgt= p.
Case 2: Now we suppose thgt= 2, so as above we can assume @) = 22 for
some positive integex, andg is a fixed point free element gd. Theng hash; cycles
oflength2fori =1,...,a,wheren=>._.b2,b, > 0, and

i<a

m= (@ =) b2™

i=1

Suppose thad > 2, and consideg® ' = h, say. Therh hasb,22* cycles of
length 2, so

a—1
b 22t = |T(h)=m= Z b2+ b22 1,

i=1

The above equality is true i, = 0 for each < a. So allg-cycles have length®2
and henceZn.
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We first suppose thds is a transitive permutation group on a set of gize 2m
andG is a 2-group. As each % g € G has constant movement, | SUpg)| = 2m,
where suppg) = {« € Q|a? # «}. Thusg is a fixed point free element a, that is,
G, = 1 for eache € Q. HenceG is a regular 2-group.

Now suppose thap is an odd prime. Thei® is not a 2-group. Sinc& is a
transitive permutation group with maximal degree, ByTheorem 6.4]

2m 2m
|m=L pJ= P
p—1] p-1

wherep is the least odd prime dividinggs| . (Since Zn < 2mp/(p — 1), soif G is

not a 2-group with maximal degree thgn| # 2m.) Then by P, 3, 4, 5], one of the
following holds:

(1) |2] = p,m = (p—1)/2 andG is the semi-direct produ@,Z.. where 2|(p—1)

for somea > 1.

(2) G is the semi-direct produd{ P with K a 2-group and® = Z, is fixed point

free onQ; 2] = 2°p, m = 25 (p — 1), and 2 < p, whereK has p-orbits of
length 2, and each element df moves at most2Zp — 1) points of 2. (We note
that A, = (Z,)?Z; is a transitive permutation group of degree 6 which has constant
movement 2, this occur in this case where- 3 andm = 2.)

(3) Gisap-group.

(4) p=3,m=2,andG = A..

All groups in part (1) are examples for Theoréri. In parts (2) and (4), except for
the groupsA, and A5 acting on a set of size 6, the other groups have some elements
whose movements are less than which contradicts the fact th& has constant
movement, (sinc& = K P has constant movement, each non-idetity element
k € K has(p — 1) cycles of length 2 We consider the elemekk?® of K. This
element s fixed point free d® and so has movemepgs-1, which is a contradiction).
In part (3), by Burnside’s lemma; has a fixed point free element, sgyon a set
of size p? for some positive integea. Since every fixed point free element has
order p with movementp?(p — 1)/2 (see B, Proposition 4]),0(g) = p and hence
move(g) = p* 1(p—1)/2. But, by our assumptioiG has constant movememtand
som = p*!(p — 1)/2. Therefore, each non-idéty elementg of G is a fixed point
free element, so th& is a regulam-group of exponenp. This completes the proof
of Theoreml.2 O

4. Intransitive examples

In this section we show that there certainly are families of examples of intransitive
permutation groups with constant movement, for any pripe~irst for p = 2, we
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have the following example.

ExaMPLE 4.1. Letm = 2' > 1 and letG := Z,. ThenGhas2 -1=2m—1
subgroups of index 2, sat;, ..., Hon_1. FOri =1,...,2m—1, letQ®; denote the
set of two cosets off, in G, and set

ThenG acts faithfully on®2 by right multiplication with 2n — 1 orbits<, . .., Qom_1,
each of length 2. Each nontrivial elemant G liesinexactly 2 —1=m -1
of the subgroupst; and permutes nontrivially the remaining= 2"~ points of;.
Thus each nontrivial element & hasm = 2~ cycles of length 2 ir2. For any
subsefl” € Q and any 1:£ g € G, the set(I"9 — I') consists of at most 1 point from
each of theG-orbits on whichg acts nontrivially, and hencmaxI'® — I'| = m. It
follows thatG has constant movemenmt

The following example shows that intransitiyegroups, p odd, with constant
movement do exist.

EXAMPLE 4.2. Letd be a positive integer, l&b := Z§, lett := (p’ — 1)/(p — 1),
and letH,, ... , H; be an enumeration of the subgroups of ingein G. Define®,
to be the coset space bf in GandQ = Q, U--- U Q. If g e G — {1}, theng lies
in (p®~t —1)/(p — 1) of the groupsH; and therefore acts ad as a permutation with
p(p?~t—1)/(p—1) fixed points ang?~* orbits of lengthp. Taking every second point
from each of these-cycles to form a sat we see thatmovg) = m > p?~1(p-1)/2,
and it is not hard to prove that in fact moyg) = m = p**(p — 1)/2. Sinceg is
non-trivial, G has constant movemept—(p — 1)/2.

The lastexample fop = 3, inclined to the following example not only are examples
of permutation groups with constant movement equaFPtd and 2 respectively, but
also gives some positive answer to the Question 1.8]in [

ExavMPLE 4.3. Let @ = Q; U Q, be a set of size 7, such th&; = {1, 2,3}
and, = {1, 2, 3, 4}. Moreover, suppose that; = ((1'2)(34), (1'3)(24)) and
Z3 = ((123(1'23))

Then the semi-direct produ@ := Z5Z; with normal subgrougZ3 is a permutation
group on a se® with 2-orbits which has constant movement 2, since each non-identity
element ofG has two cycle of length 2 or two cycle of length 3.

Finally, one may ask whether there exist further examples of intransitive groups,
which have constant movement.



294 Mehdi Alaeiyan (Khayaty) [8]

Acknowledgement

The author thanks Cheryl E. Praeger for her helpful comments and her corrections
on earlier draft of the paper which led to its improvement.

References

[1] B. Fein, W. M. Kantor and M. Schacher, ‘Relative Brauer groupsJi'Reine Angew. Matt828
(1981), 39-57.

[2] A.Gardiner and C. E. Praeger, ‘Transitive permutation groups with bounded movetheitjebra
168(1994), 798-803.

[3] A. Hassani, M. Khayaty, E. |. Khukhro and C. E. Praeger, ‘Transitive permutation groups with
bounded movement having maximal degrde’Algebra214(1999), 317-337.

[4] C.H.Li, ‘The primitive permutation groups of certain degreels’Pure Appl. Algebrd 15(1997),
275-287.

[5] A.Mann and C. E. Praeger, ‘Transitive permutation groups of minimal movemkmlgebral8l
(1996), 903-911.

[6] C.E. Praeger, ‘On permutation groups with bounded movem&niigebral44(1991), 436-442.

[7 , ‘The separation problem for group actions’, i@rdered groups and infinite permutation
group(ed. W. C. Holland) (Kluwer, Dordrecht, 1996) pp. 195-219.

[8] ———, ‘Movement and separation of subsets of points under group acfiobgndon Math. Soc.
(2) 56 (1997), 519-528.

[9] J.J. RotmanAn introduction to the theory of group3rd edition (Allyn and Bacon, Boston, 1984).

Department of Mathematics

Iran University of Science and Technology
Narmak, Tehran 16844

Iran

e-mail: alaeiyan@iust.ac,ikhayaty@iust.ac.ir


mailto:alaeiyan@iust.ac.ir
mailto:khayaty@iust.ac.ir

