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Abstract

We distribute the points and lines ofPG.2; 2n+1/ according to a special structure that we call the daisy
structure. This distribution is intimately related to a special block design which turns out to be isomorphic
to PG.n; 2/.

We show a blocking set of 3q points inPG.2; 2n+1/ that intersects each line in at least two points and
we apply this to find a lower bound for the heterochromatic number of the projective plane.
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1. Introduction

1.1. Basic objectives In this paper we distribute the points and lines of the Desar-
guesian projective plane of order 2n+1, denotedPG.2;2n+1/, according to a special
structure that we call thedaisy structure. The daisy structure distributes the points in
three sets, using a family of hyperovals, and allows us to distribute the lines on a dual
structure whose combinatorial scheme is controled by a special block design which
turns out to be isomorphic to the projective space of dimensionn over Z2, denoted
PG.n;2/.

We use the daisy structure to prove two applications, the first one related to the
blocking sets inPG.2;q/ ([7]). In the second one, we seePG.2;q/ as a.q + 1/-
hypergraph and prove that the heterochromatic number ofPG.2;q/ is greater than or
equal toq2 − 2q + 5 ([3]).
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1.2. Basic notation and definitions Let .P;L / be a projective plane of orderq,
with point setP and line setL . It is well known that.P;L / hasq2 + q + 1 points
and thatL hasq2 + q + 1 lines withq + 1 points on every line. Anoval of P is a
nonempty setO of points no three of which are collinear such that through any point
of O there is precisely one tangent (a line that intersectsO in only one point). A
hyperovalof P is a nonempty setH of points such that any line intersectsH in 0 or
exactly 2 points. It is easy to see that any oval inP has exactlyq + 1 points and any
hyperoval has exactlyq + 2 points [8].

It is well known that ifO is any oval in a projective plane of order even all tangents
(one for each point) pass through a common point, thenucleusof O [9]. In particular
the theorem of Quist [12] states that any oval in a projective plane of even order can
be extended to a hyperoval, if we take the oval plus its nucleus [8].

We work with the projective planes of orderq constructed over finite fields and
denoted byPG.2;q/. Recall that given a vector spaceV of dimension 3 over the finite
field G F.q/ of orderq, we can construct the projective planePG.2;q/ whose points
are the 1-dimensional subspaces ofV and whose lines are the 2-dimensional subspaces
of V , moreover, it is well known thatPG.2;q/ is Desarguesian [8]. Examples of
ovals in Desarguesian planes are provided by nondegenerate quadrics (conics). The
theorem of Segre [8] states that in projective planes of odd order there are no other
ovals. The conclusion of Segre’s theorem does not remain true if the plane has even
order. In this paper we work with the Desarguesian projective planes of orderq for
q = 2n+1 andn ≥ 0.

Recall that the projective space of dimensionn over Z2, denotedPG.n;2/, is
constructed in a similar way, that is, ifV is the vector space overZ2 of dimension
n + 1, thenPG.n;2/, is the set of subspaces ofV . Moreover, thehyperplanes of
PG.n;2/ are the subspaces of dimensionn − 1. It is well known, thatPG.n;2/ is
a symmetric and cyclic.q − 1;q=2 − 1;q=4 − 1/-block design (Singer [1938]), for
q = 2n+1, where the elements of the design are the points ofPG.n;2/ and the blocks
are the hyperplanes.

2. The daisy structure in PG.2;q/

2.1. The daisy structure of points Our first goal is to distribute the points in
PG.2;q/ in a structure that resembles a daisy; we call it thedaisy structure.

Since G F∗.q/ = G F.q/ − {0} is a cyclic group [10] we can seeG F.q/ like
{0; Þ0; : : : ; Þq−2}. It is easy to prove that there exist.q−2/=2 different decompositions
of the unit 1= Þai +Þai +i , with i ∈ {1; : : : ; .q −2/=2} andai ∈ {1; : : : ;q −2} ([2]).

Now, let us consider the following set of hyperovals inPG.2;q/

Hi = {[x; y; z] ∈ P : z2 = Þi xy} ∪ {[1;0;0]}; for eachi ∈ {0; : : : ;q − 2} :
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FIGURE 1. Daisy structure of points inPG.2; 16/.

Equivalently, we can defineHi as

Hi = {[1;0;0]; [0;1;0]; [0;0;1]} ∪ {[1;a2=Þ i ;a] \ a ∈ G F∗.q/}:
Thedaisy’s centreis the setC = {[1;0;0]; [0;1;0]; [0;0;1]}, and we call it simply

thecentre.
It is easy to prove that two different hyperovalsHi andH j for i 6= j intersect

exactly in the centre, it isHi ∩H j = C .
Thedaisy’s petalsare theq−1 sets of pointsPi =Hi −C for i ∈ {0; : : : ;q − 2},

and we call them simply thepetals. Observe that any petal hasq − 1 points and that
the intersection of any two different petals is empty. Theq − 1 points of a petalPi

are pj
i = [1; Þ2 j=Þ i ; Þ j ] for j ∈ {0; : : : ;q − 2}. Thus, we haveq2 − 2q + 1 points

in the petals.
The daisy’s stemsare the points in the lines generated byC without the setC .

Thus, we have three stems withq − 1 points in each one. Obviously two different
stems have empty intersection, therefore we have 3.q − 1/ points ofPG.2;q/ in the
stems.

If we add the points in the centre, the petals and the stems we obtain all the points
in PG.2;q/.

2.2. The daisy structure of lines In this section we distribute the lines ofPG.2;q/
in a daisy structure of lines, dual to the daisy structure of points. We can observe that,
by duality, anhyperoval(of lines) ofL is a nonempty setH ∗ of lines such that any
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point in a line inH ∗ has exactly two lines inH ∗. In the following, we only use the
words centre, petal and stem when we speak about these sets in the daisy structure of
points and we shall be more specific otherwise.

We can observe that the daisy structure of points induce a natural partition of the
lines in PG.2;q/ into three sets: the lines that meet the centre in two points, that meet
the centre in one point and that do not meet the centre. In the following we construct
with these sets the centre, the petals and the stems of the daisy structure of lines.

Thedaisy’s centre of linesis the set of lines that meet two points in the centre. In
other words it isC ∗.

The daisy’s petals of linesare formed by the lines that do not meet the centre.
Moreover, we haveq − 1 petals of linesP∗

i for i ∈ {0; : : : ;q − 2} and anyP∗
i has

q − 1 linesl j
i such thatl j

i = [1; Þ2 j=Þ i ; Þ j ]. Thus, we haveq2 − 2q + 1 lines in the
petals, it is easy to see that the lines of the petals of lines meet each line ofC ∗ in one
point and that this point is not part of the centre; therefore it is on the stem. Thus, we
have that any line of the petals of lines has a point in each stem and the remainingq−2
points are in the petals. In this form any line of the petals of lines meets.q − 2/=2
petals in two points at each one.

Thedaisy’s stems of linesare formed for the lines that meet the centre in only one
point. Thus, by definition of hyperoval, any line in the stems of lines meets theq − 1
petals in one point in each one, therefore the other point in these lines is in the stems.

We distribute these lines in three packets or stems of lines. Two lines are in the
same stem if they meet the same point of the centre. Remember that in any point of
the centre areq + 1 lines, thus two of them are inC ∗ and the rest forms a stem of
lines. It is easy to see that ifc ∈ C andTc is the stem that does not meetc, then the
q − 1 lines in the stem of lines forc meet each one of the points inTc and do not meet
points in the others stems. Then we can identify the 3.q −1/ lines in the stem of lines
with the 3.q − 1/ points in the stems.

3. The daisy block design

We say that a linel ∈ L jumpsk in the petalPi if it meet the pointspj
i and pj +k

i

for j ∈ {0; : : : ;q − 2}, for a fixedk ∈ {1; : : : ; .q − 2/=2}. We denote bySk
i the set

of these lines.
Let {a1; : : : ;a.q−2/=2} be the exponents of the.q − 2/=2 decompositions of unity

1 = Þak + Þak+k introduced in the Section2.1. We have the following.

PROPOSITION3.1. For a fixedk ∈ {1; : : : ; .q−2/=2}, we have thatSk
i =P∗

−i −2ak−k.

PROOF. The line inP∗
i that meets the pointspj

i andps
i for i; j; s ∈ {0; : : : ;q − 2}
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and j 6= s is [Þ j +s; Þ i ; Þ j + Þs] and there is the cross productpj
i × ps

i with

pj
i = [

1; Þ2 j =Þ i ; Þ j
]

and ps
i = [

1; Þ2s=Þ i ; Þs
]
:

If we fix k ∈ {1; : : : ; .q − 2/=2}, the lines inSk
i meet the pointsps+ak

i and ps+ak+k
i

for s ∈ {1; : : : ;q − 2}, therefore the lines inSk
i are

[
Þ2s+2ak+k; Þ i ; Þs+ak + Þs+ak+k

]
,

for s ∈ {0; : : : ;q − 2}. The decomposition of unity 1= Þak + Þak+k induce a
decomposition ofÞs

Þs = Þs+ak + Þs+ak+k:

Therefore the lines inSk
i are

[
Þ2s+2ak+k; Þ i ; Þs

] = [
1; Þ i −2s−2ak−k; Þ−s−2ak−k

] =
[
1;
Þ−2s−4ak−2k

Þ−i −2ak−k
; Þ−s−2ak−k

]
:

ThusSk
i =P∗

−i −2ak−k.

In the next part we construct, via the daisy structure and Proposition 1, a symmetric
and cyclic.q −1;q=2−1;q=4−1/-design that we calldaisy block designand denote
asDBD . The elements ofDBD are the petals of lines and its blocks are the petals.

TheDBD is shown in the following table, whosei j -entry is the petal of lines that
jumps j inPi :

Jump 1 : : : Jump j : : : Jumpq−2
2

P0 P∗
−2a1−1 : : : P∗

−2aj − j : : : P∗
−2aq−2

2
−. q−2

2 /

:::
:::

:::
:::

:::
:::

Pi P∗
−i −2a1−1 : : : P∗

−i −2aj− j : : : P∗
−i −2aq−2

2
−. q−2

2 /

:::
:::

:::
:::

:::
:::

Pq−2 P∗
−.q−2/−2a1−1 : : : P∗

−.q−2/−2aj − j : : : P
∗
−.q−2/−2aq−2

2
−. q−2

2 /

It is easy to prove, from many results about ovals [2], that each pair of petals of
lines in PG.2;q/ meets together exactlyq=4 − 1 petals. Moreover, it is easy to see
that this design is cyclic since its incidence matrix is circulant [11]. Observe that the
.n + 1/-row in the table is obtained subtracting one (in the subscript) from then-row.

Now we have the following result.

THEOREM 3.2. There exists an isomorphism between theDBD constructed for
PG.2;q/ and PG.n;2/, where the points correspond to the petals of lines and the
hyperplanes correspond to the petals.
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PROOF. LetM be the design isomorphic toDBD obtained by changing the signs
of the subscript of the petals of lines inDBD . M is, by construction, a symmetric
block design with circulant incidence matrix.

Let M be the design isomorphic toM whose elements areZq and the isomorphism
g :M → M is g.P∗

i / = i for all i . Obviously,M is also isomorphic toDBD and
it is a cyclic block design.

Now, letN be the cyclic block design isomorphic toM whose elements are in
G F∗.q/, and¦ : M → N is the isomorphism given by¦.i / = Þi , whereÞ is
a primitive element inG F∗.q/ [10]. Again, by construction,N is isomorphic to
DBD . Recall that the first block inDBD has the petals of lines

{
P

∗
−2aj − j | j ∈ {1; : : : ; .q − 2/=2}}:

Therefore the first block inM is
{
2aj + j | j ∈ {1; : : : ; .q − 2/=2}}:

Thus, the first block inN is

B = {
Þ2aj + j | j ∈ {1; : : : ; .q − 2/=2} }

;

whenÞ is a primitive element ofG F∗.q/.
Now, we will prove thatB∪{0} is a subgroup ofG F.q/. Note thatÞai .1+Þi / = 1

and thenÞ2ai +i = Þi=1+ Þ2i . Also,

Þi

1 + Þ2i
= Þ−i

Þ−2i + 1
:

Thus, we have proved that

B =
{

Þi

1 + Þ2i

∣∣∣∣ i ∈ {
1; : : : ; .q − 2/=2

}}
:

Recall that, ifi ∈ {1; : : : ;q − 1}, there always exists ans ∈ {1; : : : ;q − 1} such
thatÞi + Þs = 1. Therefore,Þi=.1 + Þ2i / = Þ−s.1 + Þ−s/, because

Þi

1+ Þ2i
= Þs + 1

1 + Þ2s + 1
= .1 + Þ−s/=Þ−s

1=Þ−2s
= Þ−s.1 + Þ−s/:

LetÞi =.1+Þ2i / andÞ j =.1+Þ2 j / be inB, then there exists andk ∈ {1; : : : ;q − 1}
such that:

If we add two elements ofB we have that

Þi

1 + Þ2i
+ Þ j

1 + Þ2 j
= Þ−s + Þ−k.1 + Þ−s + Þ−k/:
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Moreover, we know thatÞ−s + Þ−k = Þ p for somep ∈ {1; : : : ;q − 1}, and that
there existsr ∈ {1; : : : ;q − 1} such thatÞ p + Þr = 1, therefore

Þ−s + Þ−k.1 + Þ−s + Þ−k/ = Þ p.1 + Þ p/ = Þr

1 + Þ2r
:

Thus,B ∪ {0} is a subgroup of orderq=2 in G F.q/.
Singer’s Theorem asserts thatPG.n;2/ is a cyclic.q−1;q=2−1;q=4−1/-design.

Using the idea of the proof in the Singer’s Theorem:
Let f : PG.n;2/ → G F∗.q/ be such thatf [an;an−1; : : : ;a0] = ∑

aiÞ
i for

ai ∈ Z2 andÞ a primitive element ofG F∗.q/. Obviously, f is one to one and sends
the hyperplanes to subsets inG F∗.q/, in which the exponents ofÞ form a difference
set [1].

Let PG.n;2/ ∪ {0} be PG.n;2/ ∪ {[an;an−1; : : : ;a0] | ai = 0 ∀ i
}
. If we define

f .0/ = 0; then f sendsPG.n;2/ ∪ {0} into G F.q/.
We know thatPG.n;2/ ∪ {0} is the vector space of dimensionn + 1 overZ2 and

f sends the subspaces of dimensionq=2 to subgroups ofG F.q/ of orderq=2.
Now, if H is any hyperplane thenH ∪ {0} is a subspace of dimensionq=2. Thus,

for any H hyperplane ofPG.n;2/, the image underf of H ∪ {0} are the subgroups
of G F.q/ of orderq=2. Then,B is the image of some hyperplane. Moreover, since
N is the block design generated byB, it is isomorphic toPG.n;2/.

4. Two applications of the daisy structure

In this section we apply the results of the daisy structure and the daisy block design
discussed in the previous sections. First to blocking sets of projective planes and
then we use this application to find a lower bound for the heterochromatic number,
introduced in [3], of the projective planes.

Remember that if.P;L / is a projective plane, ablocking setof P is a setB of
points such that any line contains a point ofB and a point outsideB. Moreover, we
know that if B is a blocking set in a projective plane of orderq, then

q + √
q + 1 ≤ |B| ≤ q2 − √

q (Bruen [7, 6]).

Using the isomorphism between the daisy block design andPG.n;2/ given in the
last section we have the following theorem.

THEOREM 4.1. A Desarguesian projective plane of orderq = 2n+1, for n > 1, has
a blocking set of3q points that intersects each line in at least two points.

PROOF. LetDBD∗ be the cyclic and symmetric.q − 1;q=2− 1;q=4− 1/-design
dual toDBD whose elements are the petals of points and the blocks are the petals of
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lines such that an elementPi is in a blockP∗
j ifP∗

j = Sk
i , for k ∈ {1; : : : ; .q − 2/=2}.

It is easy to prove thatDBD∗ is isomorphic toDBD ([1, 2]), therefore it is also
isomorphic toPG.n;2/ (Theorem3.2). Let f be the isomorphism betweenDBD ∗

and PG.n;2/ and letP1,P2 andP3 be three petals of points whose images under
f are three collinear points inPG.n;2/. Since three collinear points in a projective
space are together in exactlyq=4− 1 hyperplanes [1], we claim thatP1,P2 andP3

are together in exactlyq=4− 1 blocks ofDBD ∗.
Moreover, we know that any pair of elements inDBD∗ are together in exactly

q=4 − 1 blocks and that any element inDBD∗ is exactly inq=2 − 1 blocks then, it
is easy to see that there existq=4− 1 blocks withP1,P2 andP3 and that any other
block inDBD∗ is one and only one of the three petals of pointsP1,P2 andP3.

Now, since the petals of lines are the blocks inDBD∗, it is easy to see that any line
in the petals of lines (Section2.2) meets some petal of pointsPi , for i ∈ {1;2;3}.

Consider the set of pointsA = H1 ∪ P2 ∪ P3 in PG.2;q/, and recall that
H1 = P1 ∪ C (Section2). We claim thatA is a blocking set that satisfies the
hypothesis of the theorem. Now, we will prove that any line inPG.2;q/ has at least
two points inA .

Let l ∈ L . If l is in the centre of lines (Section2.2) it has two points inH1. If l
is a line of the petals of lines we proved that it has two points in at least one of three
setsP1,P2 orP3 (observe that it is possible thatl has two points in each one of this
sets). Now, ifl is a line of the stems of lines (Section2.2) it has two points inH1, one
point inP2 and one point inP3.

It is clear, (by the definition ofA / that all lines inL have more than one point
outside ofA .

Finally, if we add the points inH1,P2 andP3, we find that|A | = 3q.

Now, we will apply our results to Graph Theory; we seePG.2;q/ as a.q + 1/-
hypergraph,H = .V; E/, whereV = P andE = L and prove that the heterochro-
matic number, introduced in [3], is greater than or equal toq2 − 2q + 5.

Recall that, if H = .V ; E/ is a hypergraph, by at -coloring of H we mean a
surjectivemapping from the vertex setV onto at-element set. At-coloring f of H
separatesthe edgeÞ ∈ E if the images byf of the vertices inÞ are all different. We
call f heterochromaticif f separates some edge ofH . Theheterochromatic number
of H , denotedhc.H /, is the maximumt for which there exists a.t − 1/-coloring that
is not heterochromatic.

Then we prove the following theorem.

THEOREM 4.2. For q = 2n+1 andn ≥ 1 we have thathc.PG.2;q// ≥ q2 −2q +5.

PROOF. We will construct, using Theorem4.1, a q2 − 2q + 4-coloring that is not
heterochromatic. If we have the sets of pointsH1, P2 andP3 as in Theorem4.1
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and we let f : P → {1; : : : ; t} be at-coloring of PG.2;q/ such that f .H1/ = 1,
f .P2/ = 2 and f .P3/ = 3 and the rest of the points inP has each one a different
color and also different to 1, 2 and 3 we have at-coloring that is not heterochromatic
since any line ofPG.2;q/ has at least two points in any of these three sets. Moreover,
we have thatt = 3 + .q2 + q + 1 − 3q/ = q2 − 2q + 4.

It is important to point out that we can prove that this bound is exact forPG.2;4/.
We also proved that the heterochromatic number for any projective plane or orderq

is greater than or equal toq2−2q+4 and it has as upper bound the numberq2−q+1.
These results are obtained using the concept of trace in a hypergraph [4] and blocking
sets. Details will appear elsewhere.
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