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Abstract

We distribute the points and lines BfG(2, 2"1) according to a special structure that we call the daisy
structure. This distribution is intimately related to a special block design which turns out to be isomorphic
to PG(n, 2).

We show a blocking set ofgBpoints inP G(2, 2"+1) that intersects each line in at least two points and
we apply this to find a lower bound for the heterochromatic number of the projective plane.

2000Mathematics subject classificatioprimary 51E15, 51E20, 51E21, 05C15.
Keywords and phrasedDesarguesian projective plane, oval, hyperoval, projective space, finite field,
block design, blocking set, heterochromatic number.

1. Introduction

1.1. Basic objectives In this paper we distribute the points and lines of the Desar-

guesian projective plane of ordet'2, denotedP G(2, 2"*?), according to a special
structure that we call theaisy structure The daisy structure distributes the points in
three sets, using a family of hyperovals, and allows us to distribute the lines on a dual
structure whose combinatorial scheme is controled by a special block design which
turns out to be isomorphic to the projective space of dimensiorer Z,, denoted
PG(n,2).

We use the daisy structure to prove two applications, the first one related to the
blocking sets inPG(2, ) ([7]). In the second one, we sé&G(2, q) as a(q + 1)-
hypergraph and prove that the heterochromatic numbBi®&(f2, q) is greater than or
equal tog® — 29 + 5 ([3)).

(© 2003 Australian Mathematical Society 1446-8107%2.00+ 0.00

145


http://www.austms.org.au/Publ/JAustMS/V74P2/y14.html

146 M. Gabriela Araujo Pardo [2]

1.2. Basic notation and definitions Let (P, #) be a projective plane of ordey;

with point setP and line set?. It is well known that(P, .¥) hasq? + q + 1 points
and that? hasg? + g + 1 lines withq + 1 points on every line. Awvalof P is a
nonempty set’ of points no three of which are collinear such that through any point
of & there is precisely one tangent (a line that interseécia only one point). A
hyperovalof P is a nonempty se# of points such that any line intersect in 0 or
exactly 2 points. Itis easy to see that any ovaPihas exactlyg + 1 points and any
hyperoval has exactly + 2 points B].

Itis well known that if& is any oval in a projective plane of order even all tangents
(one for each point) pass through a common pointnndeusof & [9]. In particular
the theorem of Quistl[Z] states that any oval in a projective plane of even order can
be extended to a hyperoval, if we take the oval plus its nuclgus [

We work with the projective planes of ordgrconstructed over finite fields and
denoted byP G(2, q). Recallthat given a vector spadeof dimension 3 over the finite
field G F(q) of orderq, we can construct the projective plaR&(2, q) whose points
are the 1-dimensional subspace¥aind whose lines are the 2-dimensional subspaces
of V, moreover, it is well known thaP G(2, q) is Desarguesiar8]. Examples of
ovals in Desarguesian planes are provided by nondegenerate quadrics (conics). Th
theorem of Segreg| states that in projective planes of odd order there are no other
ovals. The conclusion of Segre’s theorem does not remain true if the plane has ever
order. In this paper we work with the Desarguesian projective planes of grider
q =2""andn > 0.

Recall that the projective space of dimensiorover Z,, denotedP G(n, 2), is
constructed in a similar way, that is, ¥ is the vector space ovéf, of dimension
n+ 1, thenPG(n, 2), is the set of subspaces Wf. Moreover, thehyperplanes of
P G(n, 2) are the subspaces of dimensior- 1. It is well known, thatP G(n, 2) is
a symmetric and cycliéq — 1, q/2 — 1, q/4 — 1)-block design (Singer [1938]), for
g = 2"*1, where the elements of the design are the poinBGfn, 2) and the blocks
are the hyperplanes.

2. The daisy structure in PG(2, q)

2.1. The daisy structure of points Our first goal is to distribute the points in

PG(2, g) in a structure that resembles a daisy; we call itdhisy structure
SinceGF*(q) = GF(q) — {0} is a cyclic group 10] we can seeGF(q) like

{0,a° ... ,a%2}. Itis easy to prove thatthere exigt—2) /2 different decompositions

of the unit 1= o® + o2+, withi € {1,... ,(Q—2)/2}anda € {1, ... ,q—2} ([2).
Now, let us consider the following set of hyperovalsHiG(2, q)

2 ={[X,y,zl e P: 22 =a'xy} U{[1,0,0]}, foreachi € {0,...,q—2}.
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FIGURE 1. Daisy structure of points iR G(2, 16).

Equivalently, we can defing? as
2 =1{[1,0,0],[0,1,0],[0,0,1]}U {[1,a%/d',a] \ a € GF*(qQ)}.

Thedaisy’s centras the set” = {[1, 0, 0], [0, 1, O, [0, O, 1]}, and we call it simply
thecentre

It is easy to prove that two different hyperovatg and 7] for i # | intersect
exactly in the centre, it is#f N 7] = €.

Thedaisy’s petalgire theq — 1 sets of points?, = J# —% fori € {0, ... ,q— 2},
and we call them simply thpetals Observe that any petal hgs- 1 points and that
the intersection of any two different petals is empty. §he 1 points of a petal?,
arep! = [1, % /a',al]for j € {0,...,q—2}. Thus, we have? — 2q + 1 points
in the petals.

The daisy’s stemsre the points in the lines generated Bywithout the set?.
Thus, we have three stems wigh— 1 points in each one. Obviously two different
stems have empty intersection, therefore we hage-31) points of PG(2, q) in the
stems.

If we add the points in the centre, the petals and the stems we obtain all the points
in PG(2,0q).

2.2. The daisy structure of lines In this section we distribute the lines BiIG(2, q)
in a daisy structure of lines, dual to the daisy structure of points. We can observe that,
by duality, anhyperoval(of lineg of .Z is a nonempty se#* of lines such that any
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point in a line in2#* has exactly two lines i#*. In the following, we only use the
words centre, petal and stem when we speak about these sets in the daisy structure «
points and we shall be more specific otherwise.

We can observe that the daisy structure of points induce a natural partition of the
linesin P G(2, q) into three sets: the lines that meet the centre in two points, that meet
the centre in one point and that do not meet the centre. In the following we construct
with these sets the centre, the petals and the stems of the daisy structure of lines.

Thedaisy’s centre of liness the set of lines that meet two points in the centre. In
other words it is6™.

The daisy’s petals of linesre formed by the lines that do not meet the centre.
Moreover, we haveg — 1 petals of lines? fori € {0, ... ,q — 2} and anyZ* has
q — 1 linesl! such that! = [1, e% /', al]. Thus, we have? — 2q + 1 lines in the
petals, it is easy to see that the lines of the petals of lines meet each fifieimone
point and that this point is not part of the centre; therefore it is on the stem. Thus, we
have that any line of the petals of lines has a point in each stem and the rentpining
points are in the petals. In this form any line of the petals of lines megets2),/2
petals in two points at each one.

Thedaisy’s stems of lineare formed for the lines that meet the centre in only one
point. Thus, by definition of hyperoval, any line in the stems of lines meetg thd
petals in one point in each one, therefore the other point in these lines is in the stems

We distribute these lines in three packets or stems of lines. Two lines are in the
same stem if they meet the same point of the centre. Remember that in any point of
the centre arg + 1 lines, thus two of them are i#* and the rest forms a stem of
lines. Itis easy to see thatdfe 4 andT, is the stem that does not megtthen the
g — 1 lines in the stem of lines farmeet each one of the pointsTaand do not meet
points in the others stems. Then we canidentify tfeg-31) lines in the stem of lines
with the 3q — 1) points in the stems.

3. The daisy block design
We say that a liné € . jumpsk in the petalZ, if it meet the pointsp! and p/ ™
forj € {0,...,q— 2}, forafixedk € {1,... , (g — 2)/2}. We denote by§ the set
of these lines.
Let{ay, ... ,aq-2,2} be the exponents of thg — 2)/2 decompositions of unity
1 = a* + o** X introduced in the Sectiod.1. We have the following.

PrOPOSITION3.1. Forafixedk € {1, ..., (q—2)/2}, we havetha§ = 2%, _,, ..

PrOOF. The line in2?* that meets the pointﬁj andp®fori, j,s€{0,...,q—2}
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andj # sis[al*S, o', ol 4 o] and there is the cross prodyst x ps with

pl = [Lo?/d' o] and p’=[La®/a', o]

If we fix k € {1, ..., (q — 2)/2}, the lines in§ meet the pointg’ ™ and p**&**
fors e {1,...,q — 2}, therefore the lines iF are [a?+2+k of, o5t 4 gstack],
fors € {0,...,q — 2}. The decomposition of unity &= a* + «®** induce a

decomposition of®

O(S — aS+ak + O(S+ax<+k'

Therefore the lines i< are

a—2574ak—2k

i i—2s—2ak _ —s—2a—k
[a25+2ak+k’al’a5] — [l,ot' 2528k oy =S8 ] =1 ————,
o —2a—k

o sZakki| .

Thus§ = 2% _,, . O

In the next part we construct, via the daisy structure and Proposition 1, a symmetric
and cyclic(g—1, q/2— 1, g/4— 1)-design that we catlaisy block desigand denote
asZ#%. The elements o A% are the petals of lines and its blocks are the petals.

The 2% is shown in the following table, whosg-entry is the petal of lines that
jumpsj in 2

i =2
Jump 1 Jumpj Jump=3
* * *
P, P a1 . 3”72‘317 J. . 9’72%72 )
a2
A * * %
P, P a1 e 3”472‘3]7]. e 3”472%72 )
a2
* * *
@qu 9,((4,2),2‘31,1 T ‘@f(qu)*Zaj*J T yf(qu)fzaq,z —(52)
a2

It is easy to prove, from many results about ovéls fhat each pair of petals of
lines in PG(2, gq) meets together exactty/4 — 1 petals. Moreover, it is easy to see
that this design is cyclic since its incidence matrix is circuldi}.[ Observe that the
(n+ 1)-row in the table is obtained subtracting one (in the subscript) from-ttav.

Now we have the following result.

THEOREM 3.2. There exists an isomorphism between $h&d% constructed for
PG(2,q) and PG(n, 2), where the points correspond to the petals of lines and the
hyperplanes correspond to the petals.
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PROOF. Let.# be the design isomorphic 82 % obtained by changing the signs
of the subscript of the petals of linesnz%. .# is, by construction, a symmetric
block design with circulant incidence matrix.

Let M be the design isomorphic t& whose elements ai& and the isomorphism
g:.#Z — Misg(#r) =i foralli. Obviously,M is also isomorphic t&# #% and
it is a cyclic block design.

Now, let 4" be the cyclic block design isomorphic ¥ whose elements are in
GF*(q), ando : M — 4 is the isomorphism given by (i) = «', wherea is
a primitive element inG F*(q) [10]. Again, by construction,/” is isomorphic to
22#%. Recall that the first block i¥ 2% has the petals of lines

(P e 1T €L, (a—2)/2}}.
Therefore the first block i is
{2a; +jlje(l....(a-2/2}}.
Thus, the first block in4” is
B={a™"|je(l....@@—-2/2}.

whene is a primitive element o6 F*(q).
Now, we will prove thaB U {0} is a subgroup o6 F(q). Note that® (1+a') = 1
and theny®+ =o' /1 + o?. Also,

o o

1+a? o 2+1°

Thus, we have proved that

O(i
B={-——|i 1, ... —2)/2}; .
{1+a2, ie{l....@-2/ }}
Recall that, ifi € {1,...,q — 1}, there always exists ane {1,...,q — 1} such
thata' + «® = 1. Thereforeg' /(1 + «?) = a5(1 + a~%), because

o *+1  (A+ad/a

- = — — *Sl 75.
1+a? 1+ta=+1 o2 @ (+e)

Leta' /(14+a?) anda! /(14 a?) be inB, then there existandk € {1, ... ,q — 1}
such that:
If we add two elements a8 we have that
O(i O(j

__ S —k -s —k
1+a2i+1+a2j_a tad+a+a.
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Moreover, we know that = + « = = P for somep € {1,...,q — 1}, and that
there exists € {1,...,q — 1} such thaw® + «" = 1, therefore

-s -k -s -ky _ P Py _
o +a A+a 4o ) =a"1l+a”) = m.
Thus,B U {0} is a subgroup of ordey/2 in GF(Q).

Singer's Theorem asserts taG(n, 2) isa cyclic(q—1, q/2—1, q/4—1)-design.
Using the idea of the proof in the Singer’s Theorem:

Let f : PG(n,2) — GF*(q) be such thatf[a,, a,_1,... ,a] = > aao' for
a € 7Z, anda a primitive element of5 F*(q). Obviously, f is one to one and sends
the hyperplanes to subsets@¥*(q), in which the exponents ef form a difference
set [1].

Let PG(n, 2) U {0} be PG(n, 2) U {[ay, an1,... . @] | & = 0Vi}. If we define
f(0) = 0; thenf sendsP G(n, 2) U {0} into GF(q).

We know thatP G(n, 2) U {0} is the vector space of dimensiont+ 1 overZ, and
f sends the subspaces of dimensig to subgroups o6 F(q) of orderq/2.

Now, if H is any hyperplane ther U {0} is a subspace of dimensiap2. Thus,
for any H hyperplane ofP G(n, 2), the image undef of H U {0} are the subgroups
of GF(q) of orderq/2. Then,B is the image of some hyperplane. Moreover, since
4 is the block design generated By it is isomorphic toP G(n, 2). O

4. Two applications of the daisy structure

In this section we apply the results of the daisy structure and the daisy block design
discussed in the previous sections. First to blocking sets of projective planes and
then we use this application to find a lower bound for the heterochromatic number,
introduced in ], of the projective planes.

Remember that ifP, ) is a projective plane, hlocking setof P is a setB of
points such that any line contains a pointB®find a point outsidd&. Moreover, we
know that if B is a blocking set in a projective plane of ordgthen

d+/0+1<|B <qg*—.,/[q (Bruenf 6]).

Using the isomorphism between the daisy block designR@dn, 2) given in the
last section we have the following theorem.

THEOREM4.1. A Desarguesian projective plane of ordge= 2", forn > 1, has
a blocking set 08q points that intersects each line in at least two points.

PROOF. Let 22 %" be the cyclic and symmetrig) — 1, q/2 — 1, q/4 — 1)-design
dual toZ#% whose elements are the petals of points and the blocks are the petals of
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lines suchthatan eleme#t, isin abIock@j* if gvj* =S forke{1,...,(q-2)/2}.

It is easy to prove tha¥ 22" is isomorphic toZ 22 ([1, 2]), therefore it is also
isomorphic toP G(n, 2) (TheorenB.2). Let f be the isomorphism betweenz "

andP G(n, 2) and let#?;, 4%, and.%?; be three petals of points whose images under
f are three collinear points iRG(n, 2). Since three collinear points in a projective
space are together in exactly4 — 1 hyperplanes]], we claim that%?,, %2, and %,

are together in exactlg/4 — 1 blocks of 2 Z2*.

Moreover, we know that any pair of elements4nZ %" are together in exactly
g/4 — 1 blocks and that any elementinzZ %" is exactly inq/2 — 1 blocks then, it
is easy to see that there exiptd — 1 blocks with.#2;, &2, and.%?; and that any other
block in 22 %™ is one and only one of the three petals of poiatg, 27, and ;.

Now, since the petals of lines are the blocki# 7", it is easy to see that any line
in the petals of lines (Sectich2) meets some petal of point®;, fori € {1, 2, 3}.

Consider the set of points/ = 27 U 22, U 225 in PG(2,q), and recall that
24 = P U % (Section2). We claim thate/ is a blocking set that satisfies the
hypothesis of the theorem. Now, we will prove that any lind?iG(2, q) has at least
two points in«’.

Letl € .Z. If | isin the centre of lines (Sectidh?) it has two points inz#. If |
is a line of the petals of lines we proved that it has two points in at least one of three
sets#,, &2, or &3 (observe that it is possible thiahas two points in each one of this
sets). Now, ifl is a line of the stems of lines (Secti@r?) it has two points in#;, one
point in %2, and one point in#,.

It is clear, (by the definition of/) that all lines in.Z have more than one point
outside ofe¢/ .

Finally, if we add the points in#, &2, and %3, we find that.«/| = 3q. O

Now, we will apply our results to Graph Theory; we S8&(2, q) as a(q + 1)-
hypergraphH = (V, E), whereV = P andE = ¢ and prove that the heterochro-
matic number, introduced i8], is greater than or equal ¥ — 2q + 5.

Recall that, ifH = (V; E) is a hypergraph, by &coloring of H we mean a
surjectivemapping from the vertex s&t onto at-element set. A-coloring f of H
separateshe edgex € E if the images byf of the vertices inx are all different. We
call f heterochromatidf f separates some edgeldf Theheterochromatic number
of H, denotech.(H), is the maximunt for which there exists & — 1)-coloring that
is not heterochromatic.

Then we prove the following theorem.

THEOREM4.2. For q = 2" andn > 1 we have thah.(PG(2, q)) > g>—2q +5.

ProOOF. We will construct, using Theorer 1, ag® — 2q + 4-coloring that is not
heterochromatic. If we have the sets of poigts, &2, and #7; as in Theoren.1
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and we letf : P — {1,...,t} be at-coloring of PG(2, q) such thatf (57#) = 1,
f(#,) = 2 and f (Z%;) = 3 and the rest of the points id has each one a different
color and also differentto 1, 2 and 3 we havie@loring that is not heterochromatic
since any line oP G(2, q) has at least two points in any of these three sets. Moreover,
we havethat =3+ (°+q+1—-3q) =q°>— 29 + 4. O

Itis important to point out that we can prove that this bound is exad®fG(2, 4).

We also proved that the heterochromatic number for any projective plane oigorder
is greater than or equal tf — 2q + 4 and it has as upper bound the numdper q + 1.
These results are obtained using the concept of trace in a hyperdtapiu [blocking
sets. Details will appear elsewhere.
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