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Abstract

Let .#/ be a semi-finite von Neumann algebra equipped with a faithful normal tracé/e prove a
Kadec-P&zynski type dichotomy principle for subspaces of symmetric space of measurable operators
of Rademacher type 2. We study subspace structures of non-commutative LorentzLspgacés, 7),
extending some results of Carothers and Dilworth to the non-commutative settings. In particular, we show
that, under natural conditions on indicég,cannot be embedded intg, 4 (.#, 7). As applications, we

prove that for O< p < oo with p # 2, £, cannot be strongly embedded intg(_.#, 7). This provides a
non-commutative extension of a result of Kalton foxOp < 1 and a result of Rosenthal ford p < 2
onL,[0, 1].

2000Mathematics subject classificatioprimary 46L52, 46L51, 46E30.
Keywords and phrases.orentz spaces, von Neumann algebras, non-commutagispaces.

1. Introduction

The study of rearrangement invariant Banach spaces of measurable functions is
classical theme. Several studies have been devoted to characterizations of subspac
of rearrangement invariant spaces. Recently, the theory of rearrangement invarian
Banach spaces of measurable operators affiliated with semi-finite von Neumann alge:
bra have emerged as the natural non-commutative generalizatiomstad finctions
spaces. This theory, which is based on the theory of non-commutative integration
introduced by SegaP{], replaces the classical ditg (L., (1), L1(@)) by the duality
between a semi-finite von Neumann algebra and its predual. It provides a unified
approach to the study of unitary ideals and rearrangement invariant spaces. Severe
authors have considered these non-commutative spaces of measurable operators (s
for instance, 4, 6, 7, 8, 29]).
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The purpose of the present paper is to examine subspaces of symmetric spaces «
measurable operators in which the norm topology and the measure topology coincide
and subspaces generated by disjointly supported basic sequences. Such subspaces
of particular importance as they represent in many cases the extreme structures. Ou
main method is to exploit the notion of uniform integrability of operators introduced
in [21]. One of main results of this paper is a dichotomy type result for subspaces
of symmetric spaces of measurable operators. More precisely, we prove that any
given subspace of a symmetric space of measurable operators either is isomorphi
to a Hilbert space or contains a basic sequence equivalent to a disjointly supportec
sequence.

The classical spacés, (1) are of central importance and results in their structures
go back to the work of Banach. Since their introduction by Lorentz in 1950, the
Lorentz function spacek,, have been found to be of special interests in many
aspects of analysis and probability theory. B énd [3], Carothers and Dilworth
studied the spacds; 4[0, 1] andL , 4[0, c0). They proved, among other things, that
for some appropriate values of the indigesindq, L, 4[0, co) does not contaird ,.
Precisely, for O< p,q < oo, p # g andp # 2, the sequence spaég does not
embed intoL, 4[0, co). Such result, not only is of interest in its own right, but also
provides an alternative proof to some non-trivial resultd sspaces.

Motivated by such connections, we examine the subspace structures of non com:
mutative Lorentz spaces, ((.#, t), where(.#, t) is a semi-finite von Neumann
algebra. Making use of our dichotomy result and some other results of general nature
we show that some of the results @f and [3] extend to the non-commutative settings.
Our approach relies on a disjointification techniques based on the non-commutative
Khintchine's inequalities ([7, 18]). As noted above, the initial basic question, that
led to the consideration of these Lorentz spaces, is the question of embeddipgs of
into L,(.#, 7). Clearly, any disjointly supported basic sequenck ji#, t) is iso-
morphic to¢ ,. For the commutative case, Rosenthal prove@#hthat if (2, X, u) is
ao-finite measure space,d p < 2, andX is a subspace df (2, X, ) containing
£,, then the norm topology and the measure topology do not coincid¥. ofror
0 < p < 1, the same result is implicit in a paper of Kaltdf]. This implies that for
0 < p < 2, any basic sequencelin (€2, X, u) thatis equivalent td , is essentially a
perturbation of a disjointly supported basic sequence. We establish, as applications o
our results on Lorentz spaces, that Kalton and Rosenthal’s results extepd4o, 7).

The paper is organized as follows. In Sectibhelow, we gather some necessary
definitions and present some basic facts concerning symmetric spaces of measul
able operators that will be needed throughout. In Seciome present the Kadec-
Petczyiski type dichotomy for subspaces of symmetric spaces of measurable opera-
tors. The final section is devoted entirely to the study of subspaces of Lorentz space:
and its applications.
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2. Definitions and preliminaries

We begin by recalling some definitions and facts about functiates. LetE
be a complex quasi-Banach lattice. I1f<©0 p < oo, thenE is said to bep-convex
(respectivelyp-concav¢ if there exists a constai@ > 0 such that for every finite
sequencex,} in E,

()] <c (D)

(respectively H > |xn|")”"H = ¢ (Yl p)””) .
E

The least constar@@ is called thep-convexity(respectivelyp-concavity constantof
E and is denoted by (P (E) (respectivelyM,, (E)).
For 0 < p < oo, E® will denote the quasi-Banach lattice defined by

E® :={x:|x|° € E}

equipped with||X|lgm = |||x|”||lE/”. It is easy to verify that ifE is «-convex and
g-concave therE® is ap-convex andjp-concave withM@P(E®) < M@ (E)YP
andMq,, (E®) < M, (E)*¥P. Consequently, i is a-convex therE™/* is 1-convex
and therefore can be equivalently renormed to be a Banach lattite [

The quasi-Banach lattide is said to satisfy lowerg-estimategrespectivelyupper
p-estimatg if there exists a positive consta@t> 0 such that for all finite sequences
of mutually disjoint elements dE

(Cmald) " <.
(respectively (Z ||xn||2)1/p >C! Z Xn E) .

We denote by# a semi-finite von Neumann algebra on a Hilbert spa€ewith a
fixed faithful and normal semi-finite traee The identity in.# is denoted byi, and
we denote by# P the set of all projections inZ. Alinear operatok : dom(x) — 7,
with domain donix) C 7, is calledaffiliated with.# if ux = xu for all unitaryu
in the commutant#’ of .#. The closed and densely defined operatoaffiliated
with .#, is calledt-measurabléf for every ¢ > 0 there existgp € .#P such the
p(#¥) € dom(x) andz(1 — p) < €. With the sum and product defined as the
respective closures of the algebraic sum and prod@d’s ax-algebra. For standard
facts concerning von Neumann algebras, we refet 8p76].

We recall the notion of generalized singular value functio€].[] Given a self-
adjoint operatox in ># we denote bye*(-) the spectral measure gaf Now assume
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thatx € .Z. Thenxg(|X|) € .# for all Borel setsB C R, and there exists > 0 such
thatt (x(s.) (1X])) < co. Forx e.# andt > 0, we define

() =inf {$ > 01 7 (x50 (IXD) < t}.

The functionu(x) : [0, co) — [0, oo] is called thegeneralized singular value function
(or decreasing rearrangement)gfnote thatu,(x) < oo forallt > 0. Suppose that
a > 0. If we considec# = L., ([0, a), m), wherem denotes Lebesgue measure on
the interval[0, a), as an abelian von Neumann algebra acting via multiplication on
the Hilbert space” = L,([0, a), m), with the trace given by integration with respect
tom, it is easy to see tha# consists of all measurable functions [@a) which are
bounded except on a set of finite measure. Furthefr, & ./, then the generalized
singular value functiom(f) is precisely the classical non-increasing rearrangement
of the function| f|. On the other hand, if.#, t) is the space of all bounded linear
operators in some Hilbert space equipped with the canonicaltrateen.z = .#
and, if x € .# is compact, then the generalized singular value functiox) may

be identified in a natural manner with the sequefiggx)}o° , of singular values of
[X| = +/X*X, repeated according to riiplicity and arranged in non-increasing order.
By Lo([0, a), m), we denote the space of @llvalued Lebesgue measurable functions
on the interval0, a) (with identificationm-a.e.). A quasi-Banach spack, || - ||.),
whereE C L([0, @), m) is called arearrangement-invariant Banach function space
on the interval0, a), if it follows from f € E, g € Lo([0,a), m) andu(g) < u(f)
thatg € Eand|glle < || flle. If (E, |- |lg) is arearrangement-invariantquasi-Banach
function space off0, a), thenE is said to besymmetridf f,g € E andg << f
imply that|glle < || flle. Hereg << f denotes submajorization in the sense of
Hardy-Littlewood-Polya

t t
/ MS(g)dss/ us(f)ds, for all t > 0.
0 0

The general theory of rearrangement-invariant spaces may be fouticaind [16].
Given a semi-finite von Neumann algelgré&’, t) and a symmetric quasi-Banach

function spacgE, || - ||.) on the measure spac¢g, (1)), m), we define the non-
commutative spack(.#, t) by setting

E(4,7):={Xe.Z:pux) ecE} with

IXlle s, = )]l for x € E(A, 7).
It is known that if E is «-convex for some O< o < oo with M@ (E) = 1, then
Il llew., is@norm fore > 1 and anx-norm if 0 < « < 1. In this case, the space
(ECZ,70), | - | ) is ax-Banach space. Moreover, the inclusions

E(A 1)

Lo(A,0)N M CE(H,T) CLo(M, T)+ 4.
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hold with continuous embeddings. We remark that if<Op < co andE =
L,[0, (1)) thenE(.#, t) coincides with the definition df ,(.#, 7) asin [L9, 26]. In
particular, if.# = £ (2¢) with the standard trace then thdsg-spaces are precisely
the Schatten classes,,.

We recall that the topology defined by the metric @hobtained by setting

dix,y) =inf{t>0: u(x—-y) <t}, for x,ye/?,

is called themeasure topologylt is well known that a netx, ). in Va converge to
X € . in measure topology if and only if for eveey> 0,8 > 0, there existsq € |
such that whenever > «y, there exists a projectiop € .# P such that

X —X)pll, <€ and t(1l—p) <§é.

It was shown in 19 that (A,d) is a complete metric, Hausdorff, topological
x-algebra.

Forx e ./, the right and left support projections»fare denoted by (x) andl (x)
respectively. Operators, y € A are said to be right (respectively, left) disjointly
supported ifr (X)r (y) = 0 (respectively (x)I (y) = 0).

The following definition isolates the topic of this paper.

DEeFINITION 2.1. Let E be a symmetric quasi-Banach function spacgé®n (1)).
We say that a subspact of E(.#, 1) is strongly embeddethto E(.#, ) if the
| - llec«..-topology and the measure topology Xrcoincide.

The next definition was introduced i27] as an analogue of the uniform integra-
bility of families of functions.

DEFINITION 2.2. Let E be a symmetric quasi-Banach function spacgé®n (1)).
A bounded subsdé{ of E(.#, 1) is said to beE-uniformly-integrabldf

lim supllexellgcr..) =0

=0 xeK

for every decreasing sequen@g}>’ , of projections withe, |, O.

A non-commutative extension of the Kadec-Pettgli'subsequence splitting lem-
ma relative to the above notion of uniform integrability was consideredlir($ee P1,
Theorem 3.1, Theorem 3.9, Corollary 3.10]) and will be used repeatedly throughout
this paper. For convenience of the reader, we include the version that we need.

THEOREM 2.3 ([21]). Let E be an order continuous symmetric quasi-Banach func-
tion space in[0, t(1)). Assume thak is a Banach function space with the Fatou



336 Narcisse Randrianantoanina [6]

property orE is «-convex with constaritfor some0 < o < 1 which satisfies a lower
g-estimate with constaritfor someq > «.

Let {x,}>°, be a bounded sequence(.#, t). Then there exist a subsequence
{Xn }22, Of {Xn}°°,, bounded sequencég ;> , and{& )i, in E(.#, v) and mutually
disjoint sequence of projectiofs,}°, such that

() X = o+ forall k > 1;

(i) {ex : k > 1} is E-uniformly-integrable ana¢ex = O for all k > 1;

(i) {&)p2, is such thagse = ¢ forall k > 1.

The following proposition is due to Sukoche®q in the case where (1) < oo
and will be used in the sequel.

PrROPOSITION2.4. Let E be «-convex with constarit and assume tha is order
continuous. Lefx,}>>, be a basic sequence B(.#, ) such that{x,}>°, is both
right and left disjointly supported. Thew,}°° , is equivalent to a disjointly supported
basic sequence iE.

PrOOF. Foreacn > 1, letq, := I (x,) andp, := r (x,) be the left and right support

projection ofx, respectively. Both sequencieg}:>, and{p,}>2, are mutually disjoint
and for everyn > 1, x, = g.X, pn- FOr any finite sequence of scaldss}_,,

Zjl:axi 2 - (éa pixi*qi) (Zl:aqixi pi)
Zjl:alxil

Note that{|x;|}’°, is disjointly supported by the projectiofip}>°,. For each > 1,
the semi-finiteness g implies that the family{e;}, of all projections inp,.# p; of
finite trace satisfies & e; 14 pi. SinceE is order-continuous, it follows that

2

=Y lalPpxaxp =

i=1

lesixiles — 11| — Bo
For each > 1, choose a projectiofy < p; such that (f) < oo and
1B I 1B — Ixi[* <27
CLAIM. The sequenci x| P}, is equivalent tof|x;|}7° ;.
Let p = /I, B For anyx = >3* a&lx| € Sparix|,i = 1}, we have

Yorlapixlp = p( Y, alx|)psothe seried " a pi|x|f is convergent when-
ever) > a|x| converges. Conversely, {&,}2>, is a bounded sequence of scalars
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such tha) "~ a pi[x | pi is convergent, then for any subsgof N,

Zailxil Zaiﬁilxim

ieS ieS

o o o

< +

E(A4 ,7)

Zaiﬁilxim

ieS

> a@ixlp — 1%

ieS

E(4 1) E(A4 1)

o

<supla|*-y 27 +

ies ies

E(A4 ,7)

This shows that the seri€s -, a|x/| is convergent. LeC; andC, be positive
constants so that for any finite sequence of scd&ig ,,

a x| Y aplxIp
i=1

i=1

C, =<

<G

n
Zailxil
i1

E(A4 1) E(A4 ,7) E(A4 ,7)
If o, = 0 ande, = Zi":lr(f)i) < 00, setfy := g, (PnlXn| Pn) fOrn > 1. The
sequencd f,}>°, is disjointly supported inE(0, (1)) and{f,}>>, is isometrically

n=1

isomorphic tof P X, | Pr}2 ;. For any finite sequence of scaldss} ,,

Zaiﬁilxim

n n
Ci > ax =C; | Y alxl <
i=1 E(4 1) i=1 E(4 1) i=1 E(4 1)
n n
=D af <G|y ax
i=1 E(0,7(1)) i=1 E(4,7)
The proof is complete. O

3. Kadec-Pelczyski dichotomy

The main result of this section is the following theorem.

THEOREM3.1. Let E be an order continuous rearrangement invariant Banach
function space off0, t(1)) with the Fatou property and assume tHaf.#, ) is of
type2. Then every subspace Bf.#, 1) either contains a basic sequence equivalent
to a disjointly supported sequenceklnor is isomorphic to a Hilbert space.

REMARK 3.2. For the case oL P with p > 2, the commutative case is a classical
result of Kadec and Pefcmgki [12]; the finite case is a result of SukocheX4.
Recently, Raynaud and X@%] also obtained such dichotomy for the case of Haagerup
LP-spaces.
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For the proof of Theorer.1, we need several results &{(.#, t), some of which
could be of independent interest.

PrROPOSITION3.3. Let E be a symmetric quasi-Banach function spacé@n (1))
that is order continuous and ig-convex with constant for some0 < o < 1.
Suppose thaE satisfies a loweg-estimate with constari for someg > «. If X is
a subspace oE(.#, t), then eitherX is strongly embedded inte(.#, t) or there
exist a normalized basic sequengg}®> , in X and a mutually disjoint sequence of
projections{e,}>> , in .# such that

n"f!o Yo — eYnenllecw .y = 0.

In particular, {y,}>°, has a subsequence that is equivalent to a disjointly supported
basic sequence ik. Moreover, if X has a basis then the sequer(gg};’, can be
chosen to be a block basis of the basis<of

PrOOF. Assume thatX is not strongly embedded int&(.#, t) and set]j
E(#,v) — . the natural inclusion. SincX is not strongly embedded into
E(.#, ), the restrictionj |« is not an isomorphism. There exists a sequegygE®
in the unit sphere oKX which converges to zero in measure. Note that the bounded set
{Y¥n, N > 1} cannot beE-uniformly integrable. By TheorerR.3, there exist a subse-
quence ofy,}> ; (which we will denote again by, }>° , for simplicity) and a mutually
disjoint sequence of projectioris,}°* , in .# such that the s€ty, — e,y,e,, n > 1} is
E-uniformly integrable. Sincéy, — e,y.e,}°°, converges to zero in measure, we get
that lim,_. . [|Yn — € Yn€allecw.r) = 0.

Assume now thaK has a basi$x,}>>,. We will show that the sequendg,}> ,
above can be chosen to be a block basigxgf>,. In fact sincej(By) cannot be
a neighbourhood of zero for the (relative) measure topologX pfor everye > 0,
B,7(0,e) N X ¢ By (whereB ;(0, ¢) denotes the ball centered at zero and with
radiuse relative to the metric of the measure topology). Denoterbthe projection
X ontospanx, k < n}. Fixz € Sx N B4(0,21) and choosé&; > 1 so that
|z —m, (z) || < 271 Therestriction of on(1d —m, )(X) cannotbe anisomorphism.
As above, one can chooge € Sy N B ;(0,27?) andny, () = 0. Inductively, one
can construct a sequen{®}>, in S¢ and a strictly increasing sequence of integers
{kn}2 , such that

(i) z,eBz0,2Mforalln> 1,

(i) 1z — m,(Z)|| <2 "foralln > 1;

(i) (1d —m)(Z11) =O0foralln > 1.
Sety, := my, (z,) foralln > 1. Clearly{y,}>°, is a block basic sequenciy,|* >

1— 2" for all n > 1 and{y,}>>, converges to zero in measure. The proof is
complete. O
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The next result can be viewed as a non-commutative analogus5oPfoposi-
tion 1.c.10, page 39]. Belowy,(-)}>°, denotes the sequence of the Rademacher
functions on0, 1].

PrOPOSITION3.4. Let E be a symmetric Banach function space[0nt (1)). As-
sume thatE is order continuous and satisfies the Fatou property. {xg}>°, be a
sequence e (., t) such that

(i) %] =1foralln> 1;
(i) there exists a projectioa € .# with t(e) < oo andex, = x, forall n > 1.

Then either there exists a consta&ht- 0 such that for every choice of scaldie,} ;,
we havef) |0 ri(hax | cwn dt=C (XL, 1a %)% for everyn > 1or {x,}22,
has a subsequeng¢r,, }32, which is a basic sequence equivalent to a disjoint element

of E.

PROOF. Forx € E(.Z, t), we setasin9], o (X, €) = Xje|xlew..00 (IX]) and
Mg z.n(€) :={Xx € E(A,7), T(0(X,€)) > €}.

Assume first that for every > 0, there exists,. such that|x; | does not belong
to Mg« (). We remark thatx*| is supported by the finite projectiea There
exists a subsequengg, }2; such that{lx;;j [}32, converges to zero in measure. In
particular,{x,; }32, converge to zero in measure. By Theor2:3 there exist a further
subsequence (which we will denote again {xy, }32,) and a disjoint sequence of
projections{e; }32, so that the sefx,, — €;X, €;, ] > 1} is E-uniformly integrable so
by [21, Proposition 2.8], lim_. ., [ X,, — €;X,,€;|| = 0. This shows that a subsequence
of {x,, 132, can be taken to be equivalentto a disjoint sequende. of

On the other hand, ifix;|, n > 1} C Mg s ..)(¢) for somee > 0 then

L= Ixl = X1 = 11X ywrore = (MAX, (€))7 %3]l
> e (max1,7(e) "1 (o (IX;]. €)) > e*(max(L, 7(e))) .

Soforevenyn > 1, [[xl1 = Ix;1ls = 1X;ll1 > €*(max(L, z(e)))~*. SinceL(.#, 1)
is of cotype 2 (R7]), there existsA; > 0 such that

1 n 1 n
/ > riax dt=/ e(Zri(t)axi> dt
0 Jli=1 E(A 1) 0 i=1 E(A 1)
1 n
2/ e(Zn(UM) dt
0 i=1 Ly (Al 1)+l

1
> (max(1, T(e)))l/
0

e (i ri (Da; Xi)
i1

dt
1
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i=1

n 1/2
> A (max(l, 7(e)) (Z EYR[ES ||i>

n 1/2
> Are? (max(l, 7(e)) 2 (Z E IZ) :

i=1

The proof is complete. O

ReEMARKS 3.5. We do not know if condition (ii) can be removed. The same conclu-
sion holds if (i) is replaced by: (iithere exists a projectiome .# with 7(e) < oo
andx,e = x, foralln > 1.

PROPOSITION3.6. Let E be as in Theorer.1. Then every basic sequenog}
in E(.#, 1) either contains a block basic sequence equivalent to a disjointly supported
sequence irkE or {r,(-) ® x,}>2, is equivalent tc,.

If (1) < oo, then Propositior3.6is a simple corollary of Propositiod.4 with the
word ‘block basic sequence’ replaced by ‘subsequence’.

For the semi-finite case, choose a mutually orthogonal faftily., of projections
in.# with ", _, f; = 1for the strong operator topology andf;) < oo foralli e I.
Let {x,}>°, be a basic sequencel1.#, t). Using a similar argument as i@, one
can deduce that there exists a countable syldggr , of { f;}i, such that for eacl;
outside of{ fy}e2, andn > 1, fix, = %, fi = 0. Let f = "7, fi. For everyn > 1,
we havef x, = x, f = x,. Replacing# by f.# f andz by its restriction onf .# f,
we may assume that = 1. For everyn > 1, sete, := >, fi. The sequence
{en}r2, is such thae, 1, 1andz(e,) < ocoforalln > 1. Let X := Sparfx,, n > 1}
and fora e .#, letaX := {ax, x € X} andXa:= {xa, x € X}.

LEmmA 3.7. If for everyn > 1, X is not isomorphic tce, X, then there exist a
normalized block basic sequengg}y> ; of {x,}°°, and a strictly increasing sequence
of integers{n,}22, so that|yx — (€, — €, Ykl < 27%, for k > 1. Similarly, if for
everyn > 1, X is not isomorphic taXe,, then there exist a normalized block basic
sequencéyilp, of {x,}5°, and a strictly increasing sequence of integémg};®, So
that ||y — (€, — & )l < 27%, fork > 1.

ProOF. Inductively, we will construct a sequenég ;> , in the unit sphere ok,
strictly increasing sequences of integérg};> ; and{n,}°, such that
(i) W € spafx,, m_; < n<m}forallk > 1;
(i) e Ykl < 27 Y forallk > 1;
(i) vk — e Ykl < 27®*V forall k > 1.
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Fix y; a finitely supported vector iSx and letm; > 1 so thaty; € sparix,, n < my}.
Since(1 —e,) |, O, there exist®; such thaf]y; — €, yi|| < 2%

Assume that the construction is done foRl. .. , (j —1). LetX; = SpariX,, n >
m;_1}. Since X; is not isomorphic toe, _, X;, there existsy; € S, such that
len, .Yl < 270D, By perturbation, we can assume thatis finitely supported.
If we fix nj > nj_; so thatlly; — e, yjll < 279V then|ly; — (&, — &)Yyl <27
and the lemma follows. O

PrROOF OFPROPOSITION3.6. Assume first that there existy, > 1 such thatX
is isomorphic toe, X. Sincez(e,) < oo, the sequencée, x,}>, satisfies the
assumptions of Propositidh4. SinceE(.#, t) has type 2, eithefr,(-) @ e, Xn}o>,
is equivalent tct, or there exists a subsequerieg x, }52; which is equivalent to a
sequence of disjoint elements Bfand by isomorphism, the proposition follows.

Assume now that for everg > 1, X is not isomorphic tee,X. By the above
lemma, there exist a normalized block basic sequéngg , and a strictly increasing
sequence of integefs,}°, so that for everk > 1,

(3.1) Yk — (€n, — € DYkl < 27,

LetY := Spari(e, — e, )Yk, kK > 1}. As above, if there exists), such thaty is
isomorphic toY &y, then the conclusion follows. Otherwise, there exist a block basic
sequencégz ]}y, of {(e, — e, ,)Yklee, and a strictly increasing sequence of integers
{m¢}e2, such that for everk > 1,

(3.2) 2 — Zc(Em, — Em DIl < 27%.

We remark that since the sequeni@g}y®, is a block basic sequence ¢fe, —

en_.) Yk, there exists a sequenfig )}, of mutually disjoint projections such that

for everyk > 1, z = qxz. Therefore, the sequen¢g(e,, — en, )}, is both right

and left disjointly supported and hence is equivalent to a disjointly supported sequence
in E. By (3.2), we conclude tha{z};°, has a subsequence that is equivalent to a
disjointly supported sequence i (see for instances] Theorem 9, page 46]). Since
{z}72, Is a block basic sequence{&,, — e, _,) Yk}, inequality 8.1) shows that the
corresponding block ofyi};? , is equivalent to{z};°,. The proof of Propositior3.6

is complete. O

PrOOF OFTHEOREM 3.1 Let X be a subspace &(.#, t) and assume tha¢ does
not contain any basic sequence equivalent to a disjointly supported sequelce in
LetY be a subspace of with a basis. From the proof of Propositi@r6 above, there
exists am, € N such thaty is isomorphic to eitheg, Y or Y g,.. By Propositior3.4,

Y is of cotype 2 and therefore is isomorphic to a Hilbert space. O
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4. Subspaces of Lorentz spaces and applications

In this section, we will specialize to the concrete case of Lorentz spaces. We begin
by recalling some definitions and basic facts about Lorerdzag.

ForO< p < 00,0 <@ < o0, andl = [0, 1] or [0, c0), the Lorentz function
spacel , (1) is the space of all (classes of) Lebesgue measurable functiomsl
for which || f ||, q < oo, where

1/q
(/M?(f)d(tq”’)> . < oo
(4-1) ” f ”p,q = I
supt™ P (), q = ooc.

tel
Clearly,L, (1) = Ly(l) forany p > 0. Itis well known that for 1< q < p < oo,
(4.1) defines a norm under which, (1) is a separable rearrangement invariant
Banach function space; otherwisd, 1) defines a quasi-norm o, () (which is
known to be equivalentto a normifd p < gq < o).
The following lemma was observed ][ It contains the technical ingredients for
the construction of the non-commutative counterparts.

LEMMA 4.1. LetO < p < 00,0 < q < o0.

(i) If g < p, thenL,4(l) is g-convex with constant and satisfies a lower
p-estimate with constarit

(i) Lpq(l) satisfies an upper-estimate and lowes-estimatgwith some constant
C), wherer = min(p, q) ands = max(p, Q).

ForO< p < q < oo, Lp4(l) can be equivalently renormed to be a quasi-Banach
lattice, thatisy-convex (fory < p)with constant 1 and satisfies a lovgeestimate of
constant 1. Hence for any€ p, q < oo, we can define the non-commutative space
L,q(#, 1) as in SectiorR. Since we are only interested in isomorphic properties,
we will use the quasi-norm defined id.(). All results from Sectior? and Sectior8
apply toL, (.7, ) with appropriate values g andq.

The main result of this section extends a result of Carothers and Dilv&jrtir fhe
non-commutative settings.

THEOREM4.2. LetO < p < 00,0 < q < o0, p # qand p # 2. Then{, does
not embed intd_, 4(.#, 7). In particular, the Lorentz-Schatten ide8), , does not
containg .

The following application follows easily from Theoreh2 It characterizes
strongly embedded subspaced.ip(.#, ) and generalizes results of Rosenthal and
Kalton onL ,[0, 1] to the non-commutative settings.
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THEOREM4.3. Let0 < p < oo, p # 2 and X be a subspace df,(.#, r). Then
the following are equivalent

(1) X containstp.
(2) Xis not strongly embedded intg,(.#, 7).

PROOF. Let X be a subspace df,(.#, r) and assume that containst,. Since
forp<aq,|l-llpq <Cll-l, for some constar@ (see [, Proposition 4.2, page 217]).
There exists an inclusion map frolm,(.#, r) into L, 4(.#, 7). If X is strongly
embedded intd_,(.#, 7), then X is isomorphic to a subspace bf, ,(.#, 7). In
particular,f, embeds intd_, 4(.#, v). This contradicts Theorerm2.

The converse is a direct consequence of Theatein O

REMARK 4.4. For 1 < p < 2 and.# being finite, Theorem.3 also appeared in
recentwork of Haagerup, Rosenthal and SukochéyTheorem 5.4]. Their approach
is completely different from the one taken in this paper.

For the proof of Theorem.2, we need some preparation. First, we recall that for
any given O< p < oo and 0< q < oo, the spacé , 4(I) is equal (up to an equivalent
quasi-norm) to the spacék, (1), L,, (1)), 4 constructed using the real interpolation
method where O< p; < p <00,0<6 <land¥Yp=(1—-0)/p. +6/p.. From
generaltheory of lifting of interpolations to non commutative settings, the same result
remains valid forlL , (., 7) (see for instance)]).

LEMMA 4.5.1f 0 < py, P2, < 00 and0 < 6 < 1, then
(Lpl('%9 T)& Lpz('%9 T))Q.q = Lp,q('//l, T)

(with equivalent quasi-normswherel/p = (1 —0)/p. + 6/ p>.

Combining B, Lemma 2.4] with Propositio.4, we can also state:

LEMMA 4.6. LetO < p < oo and0 < q < oo. Let{x,}°, be a normalized basic
sequence ik, (.7, 7). If {X,}32, is both right and left disjointly supported, then
Sparix,, n > 1} contains a copy of.

The next result can be viewed as a particular case of a result of Levy on real-
interpolation [L5]. It canalso be deduced directly from Propositd8and Lemmat.6

PrROPOSITION4.7. Let0 < p < 00, 0 < q < o0, and let X be a subspace of
Lyq(#, 7). Then eitherX is strongly embedded intb, ,(.#, T) or X contains a
copy of¢y.
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For the next result, we need to fix some notation..lkébe a von Neumann algebra
on a given Hilbert spackl with semi-finite trace. Define

AT = {@)i: VLo & € A 1@ sy < 00}

Clearly,[-#"]isavon Neumann algebra over the Hilbert spg¢El ) and the functional
[pl((@))ij) = Y., ¢(a;) defines a normal semi-finite trace ¢n¥"]. The von
Neumann algebria47] is formally 4 ®B(¢,) and[¢] = ¢ ® tr, wheretr is the usual
trace onB(¢,).

Let {y}r2, be a sequence in/". For eactk > 1, we defingyi] = ([ylij)i; by
setting: [Yklik = Yk and[yli; = Ofor (i, j) # (1, k), thatis, fork > 1,

0 --- 0 y 0 --
0O --- 0 0

(Vi := 0

This amounts to placing the sequerigg* , in the first row of an infinite matrix i.e
for everyk > 1, [yk] = Yk ® €.

LEMMA 4.8. Let0 < p < 2and{y};2, be asequenceib, (.4, ). There exists
an absolute constar@@ such that for every choice of scaldie};2, and everyn > 1,
n
Z Ne(t)ay Yi
k=1

1
(4.2) /
0
2
< Cmin | ] .
Lp.q(41.[¢D)

ProOOF. We first remark from non-commutative Kintchine’s inequalitiesd|[for
1< p < 2andp0 Remark 6.3] for O< p < 1) that

. ) 1/2
(4.3) / at] =
0 Lp(/Vv(/J)

Note that
p (X ks [al®yieys) !
0 0

2

dt

L p.q (Wv(ﬂ)

2

’

Lpg (A4 LIeD

> adyl

k=1

> adyid
k=1

n 1/2
(Z |ak|2yky;>
k=1

Zrk(t)akyk
k=1

Lp(”v‘ﬂ)

[Vil”

78)I

x
Il
N
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therefore
) | 1/2
Al yi" = (Z |ak|2yky;>
k=1 LA 10D k=1 Lo(4.0)
Hence
) , 1/2
a[yil = (Z |ak|Zka;>
k=1 Lp(A 1IgD) k=1 Lp(A.0)
and by @.3),
1 2 n 2
/ dt < ay[ Ykl
0 Lo k=1 Lp(lA 1IgD)

SUBLEMMA 4.9. For every0 < p < 1, the map(a;j)i; — >, rk(-)ax is bounded
as a linear map fronk , (471, [¢]) into L,([0, 1], L o(-4", ¢)).

Leta = (a;)i; be anelementdf ,([.4], [¢]) and considefa*|> = (b;;);;. Clearly,
by = o, anaj,. Seteto be the projection i 4] defined bye = 1 ® e, ;, that is,
e = (ajj)ij With oy; = Lande;; = 0for (i, j) # (1, 1). We have

Yeidudy O
ela*|e = 0 0

1/2
) / and as above,

sollela el q i = | (Eres aunas) [ )

1/2 2
dt <

Zrk(t)alk

Z[alk] = Zalkalk

= H e|a*|zeHLp/2([./V],[(p]) = ”a”Lp([W],[w])'

Lp(A",0) Lp([A1[0]) Lp(A",0)

The sublemma follows.

By interpolation, the maga;); — Y, r«(-)ax is also a bounded map from
Loq([7], [@]) into Lo([0, 1], L, (-4, 9)). In particular, there exists an absolute
constantC such that

1
J
By taking adjoints, the other inequality follows. The proof of Lemrha& is
complete. O

2 2

Z a [yl

k=1

dt<C

Zrk(t)akyk
k=1

LpAq(JVv(/J) LpAq([/V]v[(ﬂ])
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Our next result is a disjointification of sequenced.ip,(.#, r) and could be of
independent interest.

ProPOSITION4.10. Let(.#, ) be a semi-finite von Neumann algebra. There exists
a semi-finite von Neumann algehbvaequipped with a faithful normal semi-finite trace
o with the following properties

(i) -# is avon Neumann subalgebra.6f;
(i) 7 isthe restriction ofv on.#;
(i) for0< p <2and0 < q < oo, there exists a constamt such that for any
given basic sequende,}, in L,4(.#, 7), there exists a left and right disjointly
supported sequends,}o2, in L, 4(-, w) such that for any choice of scalafa};®

andn > 1,
1
/

PrROOF. Using the above notation, let” = [.#], ¢ = [t]. Clearly, (.4, ¢) is a
semi-finite von Neumann algebra on the Hilbert spbice- ¢,(57). Set. = [.47]
andw = [¢]. As above,.# can be identified as a von Neumann subalgebr&’of
with 7 being the restriction ab on.#.

Let {x,}q>, be a basic sequencelin, 4(.#, t). Consider the sequengx, ]}, in
N = [H).

2 2

n

> as

k=1

dt < K

n
> andtx,
k=1

Lpg( 1) Lpg( )

CLAIM . The sequenciix,]}>, is right disjointly supported.

To verify this claim, recall that elements of” are infinite matrices with entries
in.#. Forn > 1, letm, = (a&;);; with a,, = 1 anda_; = 0 for (i, j) # (n,n).
Clearly,{m,}2 , is a mutually disjoint sequence of projectioniti and for eacim > 1,
[Xnlmh = [Xal.

For eacm > 1, letz, = [x,] € L, 4(-#+", ) and consider the sequenfs}y, in
Lyq(-7, o) defined bys, := [Z;]".

CLAIM. The sequences,}>?, is left and right disjointly supported.

First note that, as above, the sequefieg]}>, is right disjointly supported so its
adjoints{s,} , is left disjointly supported. To prove thatitis right disjointly supported,
consider the following sequende,}*, in .#: e, = (a;");;, whereaj] = m, and
a’ =0ford, j) # (1 1).

It is clear that thes,’s are projections in” and sincen,}°°, is mutually disjoint

in .47, {e,}2; is mutually disjoint and one can see that for every 1, 5,6, = S,.
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To complete the proof, we use Lemma,

2 2

1| n n
/ > ndac dt < C|> adxd
0 k=1 LpAq(‘///,r) k=1 LpAq(*/Vv(p)
1] n 2
=C / > rk®adxd dt
0 || k=1 Lpq(A.0)
1 n 2
_ c/ 3 nbac dt.
0 k=1 Lpa(49)

Applying Lemma4.8on the von Neumann algebré’,

2 2

1] n n
/ > re®ack dt<C*|) alz]
O k=1 Lpa( ) k=1 Lpa( )
n 2 n 2
=C* | alzl’ =C* | as
k=1 Lpg(.0) k=1 Lpq( @)
The proof is complete O

PrOOF OFTHEOREM 4.2 The proof will be divided into several cases. First, notice
that sincep # q, Proposition4.7 shows that every subspace lof ,(.#, ) equiv-
alent to¢, (and therefore not containing any copy4j is strongly embedded into
Lpq(#, 7). Fixr > q,then|-||,, < Cll-|lpq, whereC is a constant depending only
on p, q andr (see for instancel| Proposition 4.2, page 217]). In particular, there
exists a continuous inclusion frohy, 4(.#, ) into L, (.#, ) and if X is a strongly
embedded subspacelof ,(.#, 7) thenX is isomorphic to a subspacelof, (.#, t)
so without loss of generality, we can assume fhat g and 1< g.

Case0< p<g<ocandp < 2.

Assume thatthere exists a sequefiG§? , thatisM-equivalenttd ,in L, (.7, 7)
and consider the disjoint sequer(gg}>, in L, (-, w) as in Propositiod.10 For
every finite sequence of scaldeg}, we have:

1/p ) 5 12
(Z|an|p> =M [ | rmax dt
n 0 n Lpg( 1)
<MAVK X:anyn < N.M.AVK Zanwn
n Lpq( @) n L p.q(0,00)
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where{gi}g ; is adisjoint sequence in, 4[0, co) andN > 0. Sincep < g, the space
L,.4[0, oo) satisfies an uppgp-estimate hence there exists constahitandC, such
that

n 1/p n n 1/p
cl(zw) IS an scz(zw) |
k=1 k=1 k=1

But this is a contradiction sincariypy, k > 1} contains a copy of,.

L p.q [0,7(1))

Case2 < p < < oc.

We remark that combining®] with [ 16, Proposition 29.22, page 23, (.#, t)
is of type 2 and therefore Theoredhlappliesta , 4(.#, ). Assume that there exists
asequencex, ), in L, (., 7) that is equivalent té,. Sincep # 2, Theoren8.1
implies that{x,}>°, contains a block basic sequengg}:, that is equivalent to a
disjointly supported normalized sequencelig4[0, (1)) sosSpariy,, n > 1} does
not contain,,. This is a contradiction sincg/, }o° , is equivalent ta . O

We conclude the paper with an observation on copiég of L ,(.#, 7). It extends
a well known results for copies @f in preduals of von Neumann algebras.

COROLLARY 4.11. Letl < p < o0, p # 2. If {X,}52, is a sequence i ,(.#, T)
that is equivalent td, and{e,}>2, is a sequence in the intervéd, 1) with &, |, O,
then there exists a block bagig,}>° ; of {x,}°, such that

(Z |an|°>l/p —~ (?aﬂpsnp)w < Xn:anyn
< (panw’)l/p + (Z |an|°sn°>

for all finite sequencea,), of scalars. In particular, for everk > 1, the sequence
{Ynlpy is (14 e)-equivalent tol .

1/p

PROOF. Sincel,, is not strongly embedded into,(.#, ), Propositior8.3implies
the existence of a block basic sequefzg> ; of {x,}°°, and a sequendg,}>>, of
mutually disjoint projections in# such that

nlmo ”Zn - pnznpn” = 0.

Note that liminf_ . || pnz.pnll > 0. By taking a subsequence (if necessary), we will
assume that for every > 1,
”Zn - ann pn” < n27n-
[l PnZn Pal
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Forn > 1, sety, := z,/l pnz. pnll- If (@), is a finite sequence of scalars then
1/p
D Y| <Y 12l 1Yo — Pazapall + (Zlaﬂ")
1/p 1/q 1/p
< (Z Ianl"sﬁ) (Z 2”“) + (Z Ian|°>

where ¥ p + 1/g = 1. This shows that

1/p 1/p
> ay s(ZIaﬂ") +(Z|an|"sﬁ> :

The other inequality can be obtained with similar estimates. O
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