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Abstract

LetM be a semi-finite von Neumann algebra equipped with a faithful normal trace− . We prove a
Kadec-Pełczyński type dichotomy principle for subspaces of symmetric space of measurable operators
of Rademacher type 2. We study subspace structures of non-commutative Lorentz spacesL p;q.M ; −/,
extending some results of Carothers and Dilworth to the non-commutative settings. In particular, we show
that, under natural conditions on indices,`p cannot be embedded intoL p;q.M ; −/. As applications, we
prove that for 0< p < ∞ with p 6= 2,`p cannot be strongly embedded intoL p.M ; −/. This provides a
non-commutative extension of a result of Kalton for 0< p < 1 and a result of Rosenthal for 1≤ p < 2
on L p[0; 1].
2000Mathematics subject classification: primary 46L52, 46L51, 46E30.
Keywords and phrases: Lorentz spaces, von Neumann algebras, non-commutativeL p-spaces.

1. Introduction

The study of rearrangement invariant Banach spaces of measurable functions is a
classical theme. Several studies have been devoted to characterizations of subspaces
of rearrangement invariant spaces. Recently, the theory of rearrangement invariant
Banach spaces of measurable operators affiliated with semi-finite von Neumann alge-
bra have emerged as the natural non-commutative generalizations of K¨othe functions
spaces. This theory, which is based on the theory of non-commutative integration
introduced by Segal [24], replaces the classical duality .L∞.¼/; L1.¼// by the duality
between a semi-finite von Neumann algebra and its predual. It provides a unified
approach to the study of unitary ideals and rearrangement invariant spaces. Several
authors have considered these non-commutative spaces of measurable operators (see
for instance, [4, 6, 7, 8, 28]).
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The purpose of the present paper is to examine subspaces of symmetric spaces of
measurable operators in which the norm topology and the measure topology coincide,
and subspaces generated by disjointly supported basic sequences. Such subspaces are
of particular importance as they represent in many cases the extreme structures. Our
main method is to exploit the notion of uniform integrability of operators introduced
in [21]. One of main results of this paper is a dichotomy type result for subspaces
of symmetric spaces of measurable operators. More precisely, we prove that any
given subspace of a symmetric space of measurable operators either is isomorphic
to a Hilbert space or contains a basic sequence equivalent to a disjointly supported
sequence.

The classical spacesL p.¼/ are of central importance and results in their structures
go back to the work of Banach. Since their introduction by Lorentz in 1950, the
Lorentz function spacesL p;q have been found to be of special interests in many
aspects of analysis and probability theory. In [2] and [3], Carothers and Dilworth
studied the spacesL p;q[0;1] andL p;q[0;∞/. They proved, among other things, that
for some appropriate values of the indicesp andq, L p;q[0;∞/ does not contaiǹ p.
Precisely, for 0< p;q < ∞, p 6= q and p 6= 2, the sequence space`p does not
embed intoL p;q[0;∞/. Such result, not only is of interest in its own right, but also
provides an alternative proof to some non-trivial results onL p-spaces.

Motivated by such connections, we examine the subspace structures of non com-
mutative Lorentz spacesL p;q.M ; − /, where.M ; − / is a semi-finite von Neumann
algebra. Making use of our dichotomy result and some other results of general nature,
we show that some of the results of [2] and [3] extend to the non-commutative settings.
Our approach relies on a disjointification techniques based on the non-commutative
Khintchine’s inequalities ([17, 18]). As noted above, the initial basic question, that
led to the consideration of these Lorentz spaces, is the question of embeddings of`p

into L p.M ; − /. Clearly, any disjointly supported basic sequence inL p.M ; − / is iso-
morphic to`p. For the commutative case, Rosenthal proved in [23] that if .�;6;¼/ is
a¦ -finite measure space, 1≤ p < 2, andX is a subspace ofL p.�;6;¼/ containing
`p, then the norm topology and the measure topology do not coincide onX. For
0< p < 1, the same result is implicit in a paper of Kalton [14]. This implies that for
0< p < 2, any basic sequence inL p.�;6;¼/ that is equivalent tò p is essentially a
perturbation of a disjointly supported basic sequence. We establish, as applications of
our results on Lorentz spaces, that Kalton and Rosenthal’s results extend toL p.M ; − /.

The paper is organized as follows. In Section2 below, we gather some necessary
definitions and present some basic facts concerning symmetric spaces of measur-
able operators that will be needed throughout. In Section3, we present the Kadec-
Pełczyński type dichotomy for subspaces of symmetric spaces of measurable opera-
tors. The final section is devoted entirely to the study of subspaces of Lorentz spaces
and its applications.
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2. Definitions and preliminaries

We begin by recalling some definitions and facts about function spaces. LetE
be a complex quasi-Banach lattice. If 0< p < ∞, then E is said to bep-convex
(respectivelyp-concave) if there exists a constantC > 0 such that for every finite
sequence{xn} in E, ∥∥∥∥(∑ |xn|p

)1=p
∥∥∥∥

E

≤ C
(∑

‖xn‖p
)1=p

(
respectively

∥∥∥∥(∑ |xn|p
)1=p

∥∥∥∥
E

≥ C−1
(∑

‖xn‖p
)1=p

)
:

The least constantC is called thep-convexity(respectivelyp-concavity) constantof
E and is denoted byM .p/.E/ (respectivelyM.p/.E/).

For 0< p < ∞, E.p/ will denote the quasi-Banach lattice defined by

E.p/ := {x : |x|p ∈ E}

equipped with‖x‖E.p/ = ‖|x|p‖1=p
E . It is easy to verify that ifE is Þ-convex and

q-concave thenE.p/ is Þp-convex andqp-concave withM .Þp/.E.p// ≤ M .Þ/.E/1=p

andM.qp/.E.p// ≤ M.q/.E/1=p. Consequently, ifE isÞ-convex thenE.1=Þ/ is 1-convex
and therefore can be equivalently renormed to be a Banach lattice [16].

The quasi-Banach latticeE is said to satisfya lowerq-estimate(respectivelyupper
p-estimate) if there exists a positive constantC > 0 such that for all finite sequences
of mutually disjoint elements ofE(∑

‖xn‖q
E

)1=q ≤ C
∥∥∥∑ xn

∥∥∥
E(

respectively
(∑

‖xn‖p
E

)1=p ≥ C−1
∥∥∥∑ xn

∥∥∥
E

)
:

We denote byM a semi-finite von Neumann algebra on a Hilbert spaceH , with a
fixed faithful and normal semi-finite trace− . The identity inM is denoted by1, and
we denote byM p the set of all projections inM . A linear operatorx : dom.x/ →H ,
with domain dom.x/ ⊆ H , is calledaffiliated withM if ux = xu for all unitaryu
in the commutantM ′ of M . The closed and densely defined operatorx, affiliated
with M , is called− -measurableif for every ž > 0 there existsp ∈ M p such the
p.H / ⊆ dom.x/ and −.1 − p/ < ž. With the sum and product defined as the
respective closures of the algebraic sum and product,M̃ is a∗-algebra. For standard
facts concerning von Neumann algebras, we refer to [13, 26].

We recall the notion of generalized singular value function [10]. Given a self-
adjoint operatorx inH we denote byex.·/ the spectral measure ofx. Now assume
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thatx ∈ M̃. Then�B.|x|/ ∈M for all Borel setsB ⊆ R, and there existss> 0 such
that−.�.s;∞/.|x|// < ∞. For x ∈M̃ andt ≥ 0, we define

¼t .x/ = inf
{
s ≥ 0 : −.�.s;∞/.|x|// ≤ t

}
:

The function¼.x/ : [0;∞/ → [0;∞] is called thegeneralized singular value function
(or decreasing rearrangement) ofx; note that¼t .x/ < ∞ for all t > 0. Suppose that
a > 0. If we considerM = L∞.[0;a/;m/, wherem denotes Lebesgue measure on
the interval[0;a/, as an abelian von Neumann algebra acting via multiplication on
the Hilbert spaceH = L2.[0;a/;m/, with the trace given by integration with respect
to m, it is easy to see that̃M consists of all measurable functions on[0;a/ which are
bounded except on a set of finite measure. Further, iff ∈ M̃, then the generalized
singular value function¼. f / is precisely the classical non-increasing rearrangement
of the function| f |. On the other hand, if.M ; − / is the space of all bounded linear
operators in some Hilbert space equipped with the canonical tracetr , thenM̃ = M
and, if x ∈ M is compact, then the generalized singular value function¼.x/ may
be identified in a natural manner with the sequence{¼n.x/}∞n=0 of singular values of
|x| = √

x∗x, repeated according to multiplicity and arranged in non-increasing order.
By L0.[0;a/;m/, we denote the space of allC-valued Lebesgue measurable functions
on the interval[0;a/ (with identificationm-a.e.). A quasi-Banach space.E; ‖ · ‖

E
/,

whereE ⊆ L0.[0;a/;m/ is called arearrangement-invariant Banach function space
on the interval[0;a/, if it follows from f ∈ E; g ∈ L0.[0;a/;m/ and¼.g/ ≤ ¼. f /
thatg ∈ E and‖g‖E ≤ ‖ f ‖E. If .E; ‖·‖E/ is a rearrangement-invariantquasi-Banach
function space on[0;a/, then E is said to besymmetricif f; g ∈ E and g ≺≺ f
imply that ‖g‖E ≤ ‖ f ‖E. Hereg ≺≺ f denotes submajorization in the sense of
Hardy-Littlewood-Polya∫ t

0

¼s.g/ds ≤
∫ t

0

¼s. f /ds; for all t > 0:

The general theory of rearrangement-invariant spaces may be found in [1] and [16].
Given a semi-finite von Neumann algebra.M ; − / and a symmetric quasi-Banach

function space.E; ‖ · ‖
E
/ on the measure space.[0; − .1//;m/, we define the non-

commutative spaceE.M ; − / by setting

E.M ; − / := {x ∈ M̃ : ¼.x/ ∈ E} with

‖x‖
E.M ;−/

:= ‖¼.x/‖
E

for x ∈ E.M ; − /:

It is known that if E is Þ-convex for some 0< Þ < ∞ with M .Þ/.E/ = 1, then
‖ · ‖

E.M ;−/
is a norm forÞ ≥ 1 and anÞ-norm if 0 < Þ < 1. In this case, the space

.E.M ; − /; ‖ · ‖
E.M ;−/

/ is aÞ-Banach space. Moreover, the inclusions

LÞ.M ; − / ∩M ⊆ E.M ; − / ⊆ LÞ.M ; − /+M :
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hold with continuous embeddings. We remark that if 0< p < ∞ and E =
L p[0; − .1// thenE.M ; − / coincides with the definition ofL p.M ; − / as in [19, 26]. In
particular, ifM = L .H / with the standard trace then theseL p-spaces are precisely
theSchatten classesCp.

We recall that the topology defined by the metric oñM obtained by setting

d.x; y/ = inf {t ≥ 0 : ¼t .x − y/ ≤ t} ; for x; y ∈ M̃;

is called themeasure topology. It is well known that a net.xÞ/Þ∈ I in M̃ converge to
x ∈ M̃ in measure topology if and only if for everyž > 0, Ž > 0, there existsÞ0 ∈ I
such that wheneverÞ ≥ Þ0, there exists a projectionp ∈M p such that

‖.xÞ − x/p‖
M < ž and −.1 − p/ < Ž:

It was shown in [19] that .M̃;d/ is a complete metric, Hausdorff, topological
∗-algebra.

For x ∈ M̃, the right and left support projections ofx are denoted byr .x/ andl .x/
respectively. Operatorsx; y ∈ M̃ are said to be right (respectively, left) disjointly
supported ifr .x/r .y/ = 0 (respectively,l .x/l .y/ = 0).

The following definition isolates the topic of this paper.

DEFINITION 2.1. Let E be a symmetric quasi-Banach function space on[0; − .1//.
We say that a subspaceX of E.M ; − / is strongly embeddedinto E.M ; − / if the
‖ · ‖E.M ;−/-topology and the measure topology onX coincide.

The next definition was introduced in [21] as an analogue of the uniform integra-
bility of families of functions.

DEFINITION 2.2. Let E be a symmetric quasi-Banach function space on[0; − .1//.
A bounded subsetK of E.M ; − / is said to beE-uniformly-integrableif

lim
n→∞

sup
x∈K

‖enxen‖E.M ;−/ = 0

for every decreasing sequence{en}∞
n=1 of projections withen ↓n 0.

A non-commutative extension of the Kadec-Pełczy´nski subsequence splitting lem-
ma relative to the above notion of uniform integrability was considered in [21] (see [21,
Theorem 3.1, Theorem 3.9, Corollary 3.10]) and will be used repeatedly throughout
this paper. For convenience of the reader, we include the version that we need.

THEOREM 2.3 ([21]). Let E be an order continuous symmetric quasi-Banach func-
tion space in[0; − .1//. Assume thatE is a Banach function space with the Fatou
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property orE is Þ-convex with constant1 for some0< Þ < 1 which satisfies a lower
q-estimate with constant1 for someq ≥ Þ.

Let {xn}∞
n=1 be a bounded sequence inE.M ; − /. Then there exist a subsequence

{xnk
}∞

k=1 of {xn}∞
n=1, bounded sequences{'k}∞

k=1 and{�k}∞
k=1 in E.M ; − / and mutually

disjoint sequence of projections{ek}∞
k=1 such that

.i/ xnk
= 'k + �k for all k ≥ 1;

.ii/ {'k : k ≥ 1} is E-uniformly-integrable andek'kek = 0 for all k ≥ 1;
.iii / {�k}∞

k=1 is such thatek�kek = �k for all k ≥ 1.

The following proposition is due to Sukochev [25] in the case where−.1/ < ∞
and will be used in the sequel.

PROPOSITION2.4. Let E beÞ-convex with constant1 and assume thatE is order
continuous. Let{xn}∞

n=1 be a basic sequence inE.M ; − / such that{xn}∞
n=1 is both

right and left disjointly supported. Then{xn}∞
n=1 is equivalent to a disjointly supported

basic sequence inE.

PROOF. For eachn ≥ 1, letqn := l .xn/ andpn := r .xn/ be the left and right support
projection ofxn respectively. Both sequences{qn}∞

n=1 and{pn}∞
n=1 are mutually disjoint

and for everyn ≥ 1, xn = qnxn pn. For any finite sequence of scalars{ai }n
i =1,∣∣∣∣∣

n∑
i =1

ai xi

∣∣∣∣∣
2

=
(

n∑
i =1

āi pi x
∗
i qi

)(
n∑

i =1

ai qi xi pi

)

=
n∑

i =1

|ai |2pi x
∗
i qi xi pi =

∣∣∣∣∣
n∑

i =1

ai |xi |
∣∣∣∣∣
2

:

Note that{|xi |}∞
i =1 is disjointly supported by the projections{pi }∞

i =1. For eachi ≥ 1,
the semi-finiteness ofpi implies that the family{eþ}þ of all projections inpiM pi of
finite trace satisfies 0≤ eþ ↑þ pi . SinceE is order-continuous, it follows that∥∥eþ|xi |eþ − |xi |

∥∥ → þ0:

For eachi ≥ 1, choose a projectioñpi ≤ pi such that−. p̃i / < ∞ and

‖ p̃i |xi | p̃i − |xi |‖Þ ≤ 2−i :

CLAIM . The sequence{ p̃i |xi | p̃i }∞
i =1 is equivalent to{|xi |}∞

i =1.

Let p = ∨∞
i =1 p̃i . For any x = ∑∞

i =1 ai |xi | ∈ span{|xi |; i ≥ 1}, we have∑∞
i =1 ai p̃i |xi | p̃i = p

(∑∞
i =1 ai |xi |

)
p so the series

∑∞
i =1 ai p̃i |xi | p̃i is convergent when-

ever
∑∞

i =1 ai |xi | converges. Conversely, if{an}∞
n=1 is a bounded sequence of scalars
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such that
∑∞

i =1 ai p̃i |xi | p̃i is convergent, then for any subsetSof N,∥∥∥∥∥∑
i ∈S

ai |xi |
∥∥∥∥∥
Þ

E.M ;−/

≤
∥∥∥∥∥∑

i ∈S

ai p̃i |xi | p̃i

∥∥∥∥∥
Þ

E.M ;−/

+
∥∥∥∥∥∑

i ∈S

ai . p̃i |xi | p̃i − |xi |/
∥∥∥∥∥
Þ

E.M ;−/

≤ sup
i ∈S

|ai |Þ ·
∑
i ∈S

2−i +
∥∥∥∥∥∑

i ∈S

ai p̃i |xi | p̃i

∥∥∥∥∥
Þ

E.M ;−/

:

This shows that the series
∑∞

i =1 ai |xi | is convergent. LetC1 and C2 be positive
constants so that for any finite sequence of scalars{ai }n

i =1,

C1

∥∥∥∥∥
n∑

i =1

ai |xi |
∥∥∥∥∥

E.M ;−/

≤
∥∥∥∥∥

n∑
i =1

ai p̃i |xi | p̃i

∥∥∥∥∥
E.M ;−/

≤ C2

∥∥∥∥∥
n∑

i =1

ai |xi |
∥∥∥∥∥

E.M ;−/

:

If Þ1 = 0 andÞn = ∑n
i =1 −. p̃i / < ∞, set fn := ¼.·/−Þn−1. p̃n|xn| p̃n/ for n ≥ 1. The

sequence{ fn}∞
n=1 is disjointly supported inE.0; − .1// and { fn}∞

n=1 is isometrically
isomorphic to{ p̃n|xn| p̃n}∞

n=1. For any finite sequence of scalars{ai }n
i =1,

C1

∥∥∥∥∥
n∑

i =1

ai xi

∥∥∥∥∥
E.M ;−/

= C1

∥∥∥∥∥
n∑

i =1

ai |xi |
∥∥∥∥∥

E.M ;−/

≤
∥∥∥∥∥

n∑
i =1

ai p̃i |xi | p̃i

∥∥∥∥∥
E.M ;−/

=
∥∥∥∥∥

n∑
i =1

ai fi

∥∥∥∥∥
E.0;−.1//

≤ C2

∥∥∥∥∥
n∑

i =1

ai xi

∥∥∥∥∥
E.M ;−/

:

The proof is complete.

3. Kadec-Pełczy´nski dichotomy

The main result of this section is the following theorem.

THEOREM 3.1. Let E be an order continuous rearrangement invariant Banach
function space on[0; − .1// with the Fatou property and assume thatE.M ; − / is of
type2. Then every subspace ofE.M ; − / either contains a basic sequence equivalent
to a disjointly supported sequence inE or is isomorphic to a Hilbert space.

REMARK 3.2. For the case ofL p with p > 2, the commutative case is a classical
result of Kadec and Pełczy´nski [12]; the finite case is a result of Sukochev [25].
Recently, Raynaud and Xu [22] also obtained such dichotomy for the case of Haagerup
L p-spaces.
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For the proof of Theorem3.1, we need several results onE.M ; − /, some of which
could be of independent interest.

PROPOSITION3.3. Let E be a symmetric quasi-Banach function space on[0; − .1//
that is order continuous and isÞ-convex with constant1 for some0 < Þ ≤ 1.
Suppose thatE satisfies a lowerq-estimate with constant1 for someq ≥ Þ. If X is
a subspace ofE.M ; − /, then eitherX is strongly embedded intoE.M ; − / or there
exist a normalized basic sequence{yn}∞

n=1 in X and a mutually disjoint sequence of
projections{en}∞

n=1 inM such that

lim
n→∞

‖yn − enynen‖E.M ;−/ = 0:

In particular, {yn}∞
n=1 has a subsequence that is equivalent to a disjointly supported

basic sequence inE. Moreover, if X has a basis then the sequence{yn}∞
n=1 can be

chosen to be a block basis of the basis ofX.

PROOF. Assume thatX is not strongly embedded intoE.M ; − / and set j :
E.M ; − / → M̃ the natural inclusion. SinceX is not strongly embedded into
E.M ; − /, the restrictionj |X is not an isomorphism. There exists a sequence{yn}∞

n=1

in the unit sphere ofX which converges to zero in measure. Note that the bounded set
{yn;n ≥ 1} cannot beE-uniformly integrable. By Theorem2.3, there exist a subse-
quence of{yn}∞

n=1 (whichwe will denote again by{yn}∞
n=1 for simplicity) and a mutually

disjoint sequence of projections{en}∞
n=1 inM such that the set{yn − enynen;n ≥ 1} is

E-uniformly integrable. Since{yn − enynen}∞
n=1 converges to zero in measure, we get

that limn→∞ ‖yn − enynen‖E.M ;−/ = 0.
Assume now thatX has a basis{xn}∞

n=1. We will show that the sequence{yn}∞
n=1

above can be chosen to be a block basis of{xn}∞
n=1. In fact since j .BX/ cannot be

a neighbourhood of zero for the (relative) measure topology onX, for everyž > 0,
B
M̃
.0; ž/ ∩ X 6⊂ BX (where B

M̃
.0; ž/ denotes the ball centered at zero and with

radiusž relative to the metric of the measure topology). Denote by³n the projection
X onto span{xk; k ≤ n}. Fix z1 ∈ SX ∩ B

M̃
.0;2−1/ and choosek1 ≥ 1 so that

‖z1−³k1.z1/‖ < 2−1. The restriction ofj on.I d −³k1/.X/ cannot be an isomorphism.
As above, one can choosez2 ∈ SX ∩ BM̃.0;2

−2/ and³k1.z2/ = 0. Inductively, one
can construct a sequence{zn}∞

n=1 in SX and a strictly increasing sequence of integers
{kn}∞

n=1 such that

.i/ zn ∈ BM̃.0;2
−n/ for all n ≥ 1;

.ii/ ‖zn − ³kn
.zn/‖ < 2−n for all n ≥ 1;

.iii / .I d − ³kn
/.zn+1/ = 0 for all n ≥ 1.

Set yn := ³kn
.zn/ for all n ≥ 1. Clearly{yn}∞

n=1 is a block basic sequence,‖yn‖Þ ≥
1 − 2−nÞ for all n ≥ 1 and{yn}∞

n=1 converges to zero in measure. The proof is
complete.
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The next result can be viewed as a non-commutative analogue of [16, Proposi-
tion 1.c.10, page 39]. Below,{rn.·/}∞n=1 denotes the sequence of the Rademacher
functions on[0;1].

PROPOSITION3.4. Let E be a symmetric Banach function space on[0; − .1//. As-
sume thatE is order continuous and satisfies the Fatou property. Let{xn}∞

n=1 be a
sequence inE.M ; − / such that

.i/ ‖xn‖ = 1 for all n ≥ 1;
.ii/ there exists a projectione ∈M with −.e/ < ∞ andexn = xn for all n ≥ 1.

Then either there exists a constantC > 0 such that for every choice of scalars{an}∞
n=1,

we have
∫ 1

0

∥∥∑n
i =1 ri .t/ai xi

∥∥
E.M ;−/

dt ≥ C
(∑n

i =1 |ai |2
)1=2

for everyn ≥ 1 or {xn}∞
n=1

has a subsequence{xnj
}∞

j =1 which is a basic sequence equivalent to a disjoint element
of E.

PROOF. For x ∈ E.M ; − /, we set as in [25], ¦.x; ž/ := �[ž‖x‖E.M ;−/ ;∞/.|x|/ and

ME.M ;−/.ž/ := {x ∈ E.M ; − /; −.¦ .x; ž// ≥ ž}:
Assume first that for everyž > 0, there existsnž such that|x∗

nž
| does not belong

to ME.M ;−/.ž/. We remark that|x∗
n| is supported by the finite projectione. There

exists a subsequence{xnj
}∞

j =1 such that{|x∗
nj

|}∞
j =1 converges to zero in measure. In

particular,{xnj
}∞

j =1 converge to zero in measure. By Theorem2.3, there exist a further
subsequence (which we will denote again by{xnj

}∞
j =1) and a disjoint sequence of

projections{ej }∞
j =1 so that the set{xnj

− ej xnj
ej ; j ≥ 1} is E-uniformly integrable so

by [21, Proposition 2.8], limj →∞ ‖xnj
− ej xnj

ej ‖ = 0. This shows that a subsequence
of {xnj

}∞
j =1 can be taken to be equivalent to a disjoint sequence ofE.

On the other hand, if{|x∗
n |;n ≥ 1} ⊂ ME.M ;−/.ž/ for somež > 0 then

1 = ‖x‖ = ‖|x∗
n|‖ ≥ ‖|x∗

n|‖L1.M ;−/+M ≥ .max.1; − .e///−1 ‖|x∗
n|‖1

≥ ž .max.1; − .e///−1
−
(
¦.|x∗

n|; ž/
) ≥ ž2.max.1; − .e///−1:

So for everyn ≥ 1,‖xn‖1 = ‖x∗
n‖1 = ‖|x∗

n|‖1 ≥ ž2.max.1; − .e///−1. SinceL1.M ; − /

is of cotype 2 ([27]), there existsA1 > 0 such that∫ 1

0

∥∥∥∥∥
n∑

i =1

ri .t/ai xi

∥∥∥∥∥
E.M ;−/

dt =
∫ 1

0

∥∥∥∥∥e

(
n∑

i =1

ri .t/ai xi

)∥∥∥∥∥
E.M ;−/

dt

≥
∫ 1

0

∥∥∥∥∥e

(
n∑

i =1

ri .t/ai xi

)∥∥∥∥∥
L1.M ;−/+M

dt

≥ .max.1; − .e///−1

∫ 1

0

∥∥∥∥∥e

(
n∑

i =1

ri .t/ai xi

)∥∥∥∥∥
1

dt
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≥ A1 .max.1; − .e///−1

(
n∑

i =1

|ai |2‖xi ‖2
1

)1=2

≥ A1ž
2 .max.1; − .e///−2

(
n∑

i =1

|ai |2
)1=2

:

The proof is complete.

REMARKS 3.5. We do not know if condition (ii) can be removed. The same conclu-
sion holds if (ii) is replaced by: (ii)′ there exists a projectione ∈M with −.e/ < ∞
andxne = xn for all n ≥ 1.

PROPOSITION3.6. Let E be as in Theorem3.1. Then every basic sequence{xn}∞
n=1

in E.M ; − / either contains a block basic sequence equivalent to a disjointly supported
sequence inE or {rn.·/ ⊗ xn}∞

n=1 is equivalent tò 2.

If −.1/ < ∞, then Proposition3.6is a simple corollary of Proposition3.4with the
word ‘block basic sequence’ replaced by ‘subsequence’.

For the semi-finite case, choose a mutually orthogonal family{ fi }i ∈ I of projections
inM with

∑
i ∈ I fi = 1 for the strong operator topology and−. fi / < ∞ for all i ∈ I .

Let {xn}∞
n=1 be a basic sequence inE.M ; − /. Using a similar argument as in [28], one

can deduce that there exists a countable subset{ fk}∞
k=1 of { fi }i ∈ I such that for eachfi

outside of{ fk}∞
k=1 andn ≥ 1, fi xn = xn fi = 0. Let f = ∑∞

k=1 fk. For everyn ≥ 1,
we havef xn = xn f = xn. ReplacingM by fM f and− by its restriction onfM f ,
we may assume thatf = 1. For everyn ≥ 1, seten := ∑n

k=1 fk. The sequence
{en}∞

n=1 is such thaten ↑n 1 and−.en/ < ∞ for all n ≥ 1. Let X := span{xn;n ≥ 1}
and fora ∈M , let aX := {ax; x ∈ X} andXa := {xa; x ∈ X}.

LEMMA 3.7. If for everyn ≥ 1, X is not isomorphic toenX, then there exist a
normalized block basic sequence{yk}∞

k=1 of {xn}∞
n=1 and a strictly increasing sequence

of integers{nk}∞
k=1 so that‖yk − .enk

− enk−1/yk‖ < 2−k, for k ≥ 1. Similarly, if for
everyn ≥ 1, X is not isomorphic toXen, then there exist a normalized block basic
sequence{yk}∞

k=1 of {xn}∞
n=1 and a strictly increasing sequence of integers{nk}∞

k=1 so
that ‖yk − yk.enk

− enk−1/‖ < 2−k, for k ≥ 1.

PROOF. Inductively, we will construct a sequence{yk}∞
k=1 in the unit sphere ofX,

strictly increasing sequences of integers{mk}∞
k=1 and{nk}∞

k=1 such that

.i/ yk ∈ span{xn;mk−1 < n ≤ mk} for all k ≥ 1;
.ii/ ‖enk

yk‖ < 2−.k+1/ for all k ≥ 1;
.iii / ‖yk − enk

yk‖ < 2−.k+1/ for all k ≥ 1.
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Fix y1 a finitely supported vector inSX and letm1 ≥ 1 so thaty1 ∈ span{xn;n ≤ m1}.
Since.1 − en/ ↓n 0, there existsn1 such that‖y1 − en1 y1‖ < 2−1.

Assume that the construction is done for 1;2; : : : ; . j −1/. Let X j = span{xn;n ≥
mj −1}. Since X j is not isomorphic toenj−1 X j , there existsyj ∈ SX j

such that
‖enj−1 yj ‖ < 2−. j +1/. By perturbation, we can assume thatyj is finitely supported.
If we fix nj > nj −1 so that‖yj − enj

yj ‖ < 2−. j +1/ then‖yj − .enj
− enj−1/yj ‖ < 2− j

and the lemma follows.

PROOF OFPROPOSITION3.6. Assume first that there existsn0 ≥ 1 such thatX
is isomorphic toen0 X. Since −.en0/ < ∞, the sequence{en0 xn}∞

n=1 satisfies the
assumptions of Proposition3.4. SinceE.M ; − / has type 2, either{rn.·/ ⊗ en0xn}∞

n=1

is equivalent tò 2 or there exists a subsequence{en0xnj
}∞

j =1 which is equivalent to a
sequence of disjoint elements ofE and by isomorphism, the proposition follows.

Assume now that for everyn ≥ 1, X is not isomorphic toen X. By the above
lemma, there exist a normalized block basic sequence{yk}∞

k=1 and a strictly increasing
sequence of integers{nk}∞

k=1 so that for everyk ≥ 1,

‖yk − .enk
− enk−1/yk‖ < 2−k:(3.1)

Let Y := span{.enk
− enk−1/yk; k ≥ 1}. As above, if there existsm0 such thatY is

isomorphic toY em0, then the conclusion follows. Otherwise, there exist a block basic
sequence{zk}∞

k=1 of {.enk
− enk−1/yk}∞

k=1 and a strictly increasing sequence of integers
{mk}∞

k=1 such that for everyk ≥ 1,

‖zk − zk.emk
− emk−1/‖ < 2−k:(3.2)

We remark that since the sequence{zk}∞
k=1 is a block basic sequence of{.enk

−
enk−1/yk}∞

k=2, there exists a sequence{qk}∞
k=1 of mutually disjoint projections such that

for everyk ≥ 1, zk = qkzk. Therefore, the sequence{zk.emk
− emk−1/}∞

k=2 is both right
and left disjointly supported and hence is equivalent to a disjointly supported sequence
in E. By (3.2), we conclude that{zk}∞

k=1 has a subsequence that is equivalent to a
disjointly supported sequence inE (see for instance, [5, Theorem 9, page 46]). Since
{zk}∞

k=1 is a block basic sequence of{.enk
− enk−1/yk}∞

k=2, inequality (3.1) shows that the
corresponding block of{yk}∞

k=1 is equivalent to{zk}∞
k=1. The proof of Proposition3.6

is complete.

PROOF OFTHEOREM 3.1. Let X be a subspace ofE.M ; − / and assume thatX does
not contain any basic sequence equivalent to a disjointly supported sequence inE.
Let Y be a subspace ofX with a basis. From the proof of Proposition3.6above, there
exists ann0 ∈ N such thatY is isomorphic to eitheren0Y or Y en0. By Proposition3.4,
Y is of cotype 2 and therefore is isomorphic to a Hilbert space.
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4. Subspaces of Lorentz spaces and applications

In this section, we will specialize to the concrete case of Lorentz spaces. We begin
by recalling some definitions and basic facts about Lorentz spaces.

For 0< p < ∞, 0 < q ≤ ∞, and I = [0;1] or [0;∞/, the Lorentz function
spaceL p;q.I / is the space of all (classes of) Lebesgue measurable functionsf on I
for which‖ f ‖p;q < ∞, where

‖ f ‖p;q =


(∫

I

¼q
t . f /d.tq=p/

)1=q

; q < ∞;

sup
t∈ I

t1=p¼t. f /; q = ∞:

(4.1)

Clearly, L p;p.I / = L p.I / for any p > 0. It is well known that for 1≤ q ≤ p < ∞,
(4.1) defines a norm under whichL p;q.I / is a separable rearrangement invariant
Banach function space; otherwise, (4.1) defines a quasi-norm onL p;q.I / (which is
known to be equivalent to a norm if 1< p < q < ∞).

The following lemma was observed in [2]. It contains the technical ingredients for
the construction of the non-commutative counterparts.

LEMMA 4.1. Let0< p < ∞, 0< q < ∞.

.i/ If q < p, then L p;q.I / is q-convex with constant1 and satisfies a lower
p-estimate with constant1.
.ii/ L p;q.I / satisfies an upperr -estimate and lowers-estimate(with some constant

C), wherer = min.p;q/ ands = max.p;q/.

For 0< p < q < ∞, L p;q.I / can be equivalently renormed to be a quasi-Banach
lattice, that is,
 -convex (for
 < p) with constant 1 and satisfies a lowerq-estimate of
constant 1. Hence for any 0< p;q < ∞, we can define the non-commutative space
L p;q.M ; − / as in Section2. Since we are only interested in isomorphic properties,
we will use the quasi-norm defined in (4.1). All results from Section2 and Section3
apply toL p;q.M ; − / with appropriate values ofp andq.

The main result of this section extends a result of Carothers and Dilworth [3] to the
non-commutative settings.

THEOREM 4.2. Let 0 < p < ∞, 0 < q < ∞, p 6= q and p 6= 2. Then`p does
not embed intoL p;q.M ; − /. In particular, the Lorentz-Schatten idealSp;q does not
contain`p.

The following application follows easily from Theorem4.2. It characterizes
strongly embedded subspaces inL p.M ; − / and generalizes results of Rosenthal and
Kalton onL p[0;1] to the non-commutative settings.



[13] Non-commutative spaces 343

THEOREM 4.3. Let 0 < p < ∞, p 6= 2 and X be a subspace ofL p.M ; − /. Then
the following are equivalent:

(1) X contains̀ p.
(2) X is not strongly embedded intoL p.M ; − /.

PROOF. Let X be a subspace ofL p.M ; − / and assume thatX contains̀ p. Since
for p < q, ‖ ·‖p;q ≤ C‖ ·‖p, for some constantC (see [1, Proposition 4.2, page 217]).
There exists an inclusion map fromL p.M ; − / into L p;q.M ; − /. If X is strongly
embedded intoL p.M ; − /, then X is isomorphic to a subspace ofL p;q.M ; − /. In
particular,̀ p embeds intoL p;q.M ; − /. This contradicts Theorem4.2.

The converse is a direct consequence of Theorem4.7.

REMARK 4.4. For 1 ≤ p < 2 andM being finite, Theorem4.3 also appeared in
recent work of Haagerup, Rosenthal and Sukochev [11, Theorem 5.4]. Their approach
is completely different from the one taken in this paper.

For the proof of Theorem4.2, we need some preparation. First, we recall that for
any given 0< p < ∞ and 0< q ≤ ∞, the spaceL p;q.I / is equal (up to an equivalent
quasi-norm) to the spaces.L p1.I /; L p2.I //�;q constructed using the real interpolation
method where 0< p1 < p2 < ∞, 0< � < 1 and 1=p = .1 − �/=p1 + �=p2. From
general theory of lifting of interpolations to non commutative settings, the same result
remains valid forL p;q.M ; − / (see for instance [20]).

LEMMA 4.5. If 0< p1; p2;q < ∞ and0< � < 1, then

.L p1.M ; − /; L p2.M ; − //�;q = L p;q.M ; − /

(with equivalent quasi-norms), where1=p = .1 − �/=p1 + �=p2.

Combining [3, Lemma 2.4] with Proposition2.4, we can also state:

LEMMA 4.6. Let 0 < p < ∞ and0 < q < ∞. Let {xn}∞
n=1 be a normalized basic

sequence inL p;q.M ; − /. If {xn}∞
n=1 is both right and left disjointly supported, then

span{xn;n ≥ 1} contains a copy of̀q.

The next result can be viewed as a particular case of a result of Levy on real-
interpolation [15]. It canalso be deduced directly from Proposition3.3and Lemma4.6

PROPOSITION4.7. Let 0 < p < ∞, 0 < q < ∞, and let X be a subspace of
L p;q.M ; − /. Then eitherX is strongly embedded intoL p;q.M ; − / or X contains a
copy of`q.
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For the next result, we need to fix some notation. LetN be a von Neumann algebra
on a given Hilbert spaceH with semi-finite trace'. Define

[N ] := {
.ai j /i j ; ∀ i; j; ai j ∈ N ; ‖.ai j /i j ‖B.`2.H // < ∞}

:

Clearly,[N ] is a von Neumann algebra over the Hilbert space`2.H /and the functional
[']..ai j /i j / = ∑∞

i =1'.aii / defines a normal semi-finite trace on[N ]. The von
Neumann algebra[N ] is formallyN ⊗̄B.`2/ and['] = '⊗ tr , wheretr is the usual
trace onB.`2/.

Let {yk}∞
k=1 be a sequence inN . For eachk ≥ 1, we define[yk] = .[yk]i j /i j by

setting: [yk]1;k = yk and[yk]i j = 0 for .i; j / 6= .1; k/, that is, fork ≥ 1,

[yk] :=
0 · · · 0 yk 0 · · ·

0 · · · 0 0 0 · · ·
::: · · · :::

:::
::: · · ·

 :
This amounts to placing the sequence{yk}∞

k=1 in the first row of an infinite matrix i.e
for everyk ≥ 1, [yk] = yk ⊗ e1;k.

LEMMA 4.8. Let0< p < 2 and{yk}∞
k=1 be a sequence inL p;q.N ; '/. There exists

an absolute constantC such that for every choice of scalars{ak}∞
k=1 and everyn ≥ 1,

∫ 1

0

∥∥∥∥∥
n∑

k=1

rk.t/ak yk

∥∥∥∥∥
2

L p;q.N ;'/

dt(4.2)

≤ C min


∥∥∥∥∥

n∑
k=1

ak[yk]
∥∥∥∥∥

2

L p;q.[N ];[']/
;

∥∥∥∥∥
n∑

k=1

āk[y∗
k ]
∥∥∥∥∥

2

L p;q.[N ];[']/

 :
PROOF. We first remark from non-commutative Kintchine’s inequalities ([18] for

1 ≤ p < 2 and [20, Remark 6.3] for 0< p < 1) that∫ 1

0

∥∥∥∥∥
n∑

k=1

rk.t/ak yk

∥∥∥∥∥
2

L p.N ;'/

dt

1=2

≤
∥∥∥∥∥∥
(

n∑
k=1

|ak|2yk y∗
k

)1=2
∥∥∥∥∥∥

L p.N ;'/

:(4.3)

Note that

∣∣∣∣∣
n∑

k=1

āk[yk]∗
∣∣∣∣∣

p

=

(∑n

k=1 |ak|2yk y∗
k

)p=2
0 · · ·

0 0 · · ·
:::

::: · · ·


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therefore ∥∥∥∥∥
n∑

k=1

āk[yk]∗
∥∥∥∥∥

L p.[N ];[']/
=
∥∥∥∥∥∥
(

n∑
k=1

|ak|2yk y∗
k

)1=2
∥∥∥∥∥∥

L p.N ;'/

:

Hence ∥∥∥∥∥
n∑

k=1

ak[yk]
∥∥∥∥∥

L p.[N ];[']/
=
∥∥∥∥∥∥
(

n∑
k=1

|ak|2yk y∗
k

)1=2
∥∥∥∥∥∥

L p.N ;'/

and by (4.3),∫ 1

0

∥∥∥∥∥
n∑

k=1

rk.t/ak yk

∥∥∥∥∥
2

L p.N ;'/

dt ≤
∥∥∥∥∥

n∑
k=1

ak[yk]
∥∥∥∥∥

2

L p.[N ];[']/
:

SUBLEMMA 4.9. For every0 < p < 1, the map.ai j /i j → ∑
k rk.·/a1k is bounded

as a linear map fromL p.[N ]; [']/ into L2.[0;1]; L p.N ; '//.

Leta = .ai j /i j be an element ofL p.[N ]; [']/ and consider|a∗|2 = .bi j /i j . Clearly,
b11 = ∑∞

k=1 a1ka∗
1k. Sete to be the projection in[N ] defined bye = 1 ⊗ e1;1, that is,

e = .Þi j /i j with Þ11 = 1 andÞi j = 0 for .i; j / 6= .1;1/. We have

e|a∗|2e =

∑∞

k=1 a1ka∗
1k 0 · · ·

0 0 · · ·
:::

::: · · ·


so‖e|a∗|2e‖L p=2.[N ];[']/ = ∥∥(∑∞

k=1 a1ka∗
1k

)1=2∥∥2

L p.N ;'/
and as above,

∫ 1

0

∥∥∥∥∥
∞∑

k=1

rk.t/a1k

∥∥∥∥∥
2

L p.N ;'/

dt ≤
∥∥∥∥∥

∞∑
k=1

[a1k]
∥∥∥∥∥

2

L p.[N ];[']/
=
∥∥∥∥∥∥
( ∞∑

k=1

a1ka∗
1k

)1=2
∥∥∥∥∥∥

2

L p.N ;'/

= ∥∥e|a∗|2e∥∥
L p=2.[N ];[']/ ≤ ‖a‖2

L p.[N ];[']/ :

The sublemma follows.
By interpolation, the map.ai j /i j → ∑

k rk.·/a1k is also a bounded map from
L p;q.[N ]; [']/ into L2.[0;1]; L p;q.N ; '//. In particular, there exists an absolute
constantC such that∫ 1

0

∥∥∥∥∥
n∑

k=1

rk.t/ak yk

∥∥∥∥∥
2

L p;q.N ;'/

dt ≤ C

∥∥∥∥∥
n∑

k=1

ak[yk]
∥∥∥∥∥

2

L p;q .[N ];[']/
:

By taking adjoints, the other inequality follows. The proof of Lemma4.8 is
complete.
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Our next result is a disjointification of sequences inL p;q.M ; − / and could be of
independent interest.

PROPOSITION4.10. Let.M ; − / be a semi-finite von Neumann algebra. There exists
a semi-finite von Neumann algebraS equipped with a faithful normal semi-finite trace
! with the following properties:

.i/ M is a von Neumann subalgebra ofS ;
.ii/ − is the restriction of! onM ;
.iii / for 0 < p < 2 and0 < q < ∞, there exists a constantK such that for any

given basic sequence{xn}∞
n=1 in L p;q.M ; − /, there exists a left and right disjointly

supported sequence{sn}∞
n=1 in L p;q.S ; !/ such that for any choice of scalars{ak}∞

k=1

andn ≥ 1,

∫ 1

0

∥∥∥∥∥
n∑

k=1

akrk.t/xk

∥∥∥∥∥
2

L p;q.M ;−/

dt ≤ K

∥∥∥∥∥
n∑

k=1

aksk

∥∥∥∥∥
2

L p;q.S ;!/

:

PROOF. Using the above notation, letN = [M ], ' = [− ]. Clearly,.N ; '/ is a
semi-finite von Neumann algebra on the Hilbert spaceH = `2.H /. SetS = [N ]
and! = [']. As above,M can be identified as a von Neumann subalgebra ofS

with − being the restriction of! onM .
Let {xn}∞

n=1 be a basic sequence inL p;q.M ; − /. Consider the sequence{[xn]}∞
n=1 in

N = [M ].

CLAIM . The sequence{[xn]}∞
n=1 is right disjointly supported.

To verify this claim, recall that elements ofN are infinite matrices with entries
in M . For n ≥ 1, let ³n = .ai j /i j with an;n = 1 andai; j = 0 for .i; j / 6= .n;n/.
Clearly,{³n}∞

n=1 is a mutually disjoint sequence of projection inN and for eachn ≥ 1,
[xn]³n = [xn].

For eachn ≥ 1, let zn = [xn] ∈ L p;q.N ; '/ and consider the sequence{sn}∞
n=1 in

L p;q.S ; !/ defined bysn := [z∗
n]∗.

CLAIM . The sequence{sn}∞
n=1 is left and right disjointly supported.

First note that, as above, the sequence{[z∗
n]}∞

n=1 is right disjointly supported so its
adjoints{sn}∞

n=1 is left disjointly supported. To prove that it is right disjointly supported,
consider the following sequence{en}∞

n=1 in S : en = .a.n/i j /i j , wherea.n/11 = ³n and
a.n/i j = 0 for .i; j / 6= .1;1/.

It is clear that theen’s are projections inS and since{³n}∞
n=1 is mutually disjoint

inN , {en}∞
n=1 is mutually disjoint and one can see that for everyn ≥ 1, snen = sn.
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To complete the proof, we use Lemma4.8,

∫ 1

0

∥∥∥∥∥
n∑

k=1

rk.t/akxk

∥∥∥∥∥
2

L p;q.M ;−/

dt ≤ C

∥∥∥∥∥
n∑

k=1

ak[xk]
∥∥∥∥∥

2

L p;q.N ;'/

= C
∫ 1

0

∥∥∥∥∥
n∑

k=1

rk.t/ak[xk]
∥∥∥∥∥

2

L p;q .N ;'/

dt

= C
∫ 1

0

∥∥∥∥∥
n∑

k=1

rk.t/ak zk

∥∥∥∥∥
2

L p;q.N ;'/

dt:

Applying Lemma4.8on the von Neumann algebraN ,

∫ 1

0

∥∥∥∥∥
n∑

k=1

rk.t/akxk

∥∥∥∥∥
2

L p;q.M ;−/

dt ≤ C2

∥∥∥∥∥
n∑

k=1

āk[z∗
k]
∥∥∥∥∥

2

L p;q.S ;!/

= C2

∥∥∥∥∥
n∑

k=1

ak[z∗
k]∗
∥∥∥∥∥

2

L p;q.S ;!/

= C2

∥∥∥∥∥
n∑

k=1

aksk

∥∥∥∥∥
2

L p;q.S ;!/

:

The proof is complete

PROOF OFTHEOREM 4.2. The proof will be divided into several cases. First, notice
that sincep 6= q, Proposition4.7 shows that every subspace ofL p;q.M ; − / equiv-
alent to`p (and therefore not containing any copy of`q) is strongly embedded into
L p;q.M ; − /. Fix r > q, then‖·‖p;r ≤ C‖·‖p;q, whereC is a constant depending only
on p, q andr (see for instance [1, Proposition 4.2, page 217]). In particular, there
exists a continuous inclusion fromL p;q.M ; − / into L p;r .M ; − / and if X is a strongly
embedded subspace ofL p;q.M ; − / thenX is isomorphic to a subspace ofL p;r .M ; − /

so without loss of generality, we can assume thatp < q and 1< q.

Case0< p < q < ∞ and p < 2.

Assume that there exists a sequence{xn}∞
n=1 that isM-equivalent tò p in L p;q.M ; − /

and consider the disjoint sequence{yn}∞
n=1 in L p;q.S ; !/ as in Proposition4.10. For

every finite sequence of scalars{an}, we have:(∑
n

|an|p

)1=p

≤ M

∫ 1

0

∥∥∥∥∥∑
n

rn.t/anxn

∥∥∥∥∥
2

L p;q.M ;−/

dt

1=2

≤ M:
√

K

∥∥∥∥∥∑
n

anyn

∥∥∥∥∥
L p;q.S ;!/

≤ N:M:
√

K

∥∥∥∥∥∑
n

an'n

∥∥∥∥∥
L p;q.0;∞/
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where{'k}∞
k=1 is a disjoint sequence inL p;q[0;∞/ andN > 0. Sincep < q, the space

L p;q[0;∞/ satisfies an upperp-estimate hence there exists constantsC1 andC2 such
that

C1

(
n∑

k=1

|ak|p

)1=p

≤
∥∥∥∥∥

n∑
k=1

ak'k

∥∥∥∥∥
L p;q[0;−.1//

≤ C2

(
n∑

k=1

|ak|p

)1=p

:

But this is a contradiction sincespan{'k; k ≥ 1} contains a copy of̀q.

Case2< p < q < ∞.

We remark that combining [9] with [16, Proposition 2g.22, page 230],L p;q.M ; − /

is of type 2 and therefore Theorem3.1applies toL p;q.M ; − /. Assume that there exists
a sequence{xn}∞

n=1 in L p;q.M ; − / that is equivalent tò p. Sincep 6= 2, Theorem3.1
implies that{xn}∞

n=1 contains a block basic sequence{yn}∞
n=1 that is equivalent to a

disjointly supported normalized sequence inL p;q[0; − .1// so span{yn;n ≥ 1} does
not contaiǹ p. This is a contradiction since{yn}∞

n=1 is equivalent tò p.

We conclude the paper with an observation on copies of`p in L p.M ; − /. It extends
a well known results for copies of̀1 in preduals of von Neumann algebras.

COROLLARY 4.11. Let 1 ≤ p < ∞, p 6= 2. If {xn}∞
n=1 is a sequence inL p.M ; − /

that is equivalent tò p and {"n}∞
n=1 is a sequence in the interval.0;1/ with "n ↓n 0,

then there exists a block basis{yn}∞
n=1 of {xn}∞

n=1 such that(∑
n

|an|p

)1=p

−
(∑

n

|an|p"n
p

)1=p

≤
∥∥∥∥∥∑

n

an yn

∥∥∥∥∥
≤
(∑

n

|an|p

)1=p

+
(∑

n

|an|p"n
p

)1=p

for all finite sequence.an/n of scalars. In particular, for everyk ≥ 1, the sequence
{yn}∞

n=k is .1 + "k/-equivalent tò p.

PROOF. Since`p is not strongly embedded intoL p.M ; − /, Proposition3.3implies
the existence of a block basic sequence{zn}∞

n=1 of {xn}∞
n=1 and a sequence{pn}∞

n=1 of
mutually disjoint projections inM such that

lim
n→∞

‖zn − pnzn pn‖ = 0:

Note that lim infn→∞ ‖pnzn pn‖ > 0. By taking a subsequence (if necessary), we will
assume that for everyn ≥ 1,

‖zn − pnzn pn‖
‖pnzn pn‖ ≤ "n2−n:



[19] Non-commutative spaces 349

For n ≥ 1, setyn := zn=‖pnzn pn‖. If .an/n is a finite sequence of scalars then∥∥∥∥∥∑
n

an yn

∥∥∥∥∥ ≤
∑

n

|an| ‖yn − pnzn pn‖ +
(∑

n

|an|p

)1=p

≤
(∑

n

|an|p"p
n

)1=p (∑
n

2−nq

)1=q

+
(∑

n

|an|p

)1=p

where 1=p + 1=q = 1. This shows that∥∥∥∥∥∑
n

anyn

∥∥∥∥∥ ≤
(∑

n

|an|p

)1=p

+
(∑

n

|an|p"p
n

)1=p

:

The other inequality can be obtained with similar estimates.
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