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Abstract

Generalizing and strengthening some well-known results of Higman, B. Neumann, Hanna Neumann
and Dark on embeddings into two-generator groups, we introduce a construction of subnormal verbal
embedding of an arbitrary (soluble, fully ordered or torsion free) ordered countable group into a two-
generator ordered group with these properties. Further, we establish subnormal verbal embedding of
defect two of an arbitrary (soluble, fully ordered or torsion free) ordered groupG into a group with these
properties and of the same cardinality asG, and show in connection with a problem of Heineken that the
defect of such an embedding cannot be made smaller, that is, such verbal embeddings of ordered groups
cannot in general be normal.

2000Mathematics subject classification: primary 20E10, 20E15, 20E22, 20F14, 06F15.
Keywords and phrases: embeddings of groups, ordered groups, two-generator groups.

1. Introduction

The famous theorem of Higman, B. Neumann and Hanna Neumann on embedding
of an arbitrary countable group into a two-generator group [7] was an initial step for
further research on embeddings in two-generator groups with additional properties.
Let us list some of the main results in this direction, connected to the subject of the
current paper.

Embeddings of soluble groups Since abelian (or nilpotent) groups are not in general
embeddable into two-generator abelian (or nilpotent) groups [21, 22], such embed-
dings of soluble groups are of special interest. B. Neumann and Hanna Neumann have
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proved that every soluble countable group of lengthl is embeddable into a soluble
two-generator group of length at mostl + 2 (but notl + 1 in general) [22].

Subnormal embeddings Dark has shown in [1] that every countable group can
be embedded in a two-generator group in such a way that its image is a subnormal
subgroup of the two-generator group. (In this connection see also the paper of Hall [4].)

Embeddings into a word subgroups B. Neumann and Hanna Neumann have con-
structed in [22] not simply an embedding into a two-generator group but also into
the second derived group of the latter (see also [1]). Since two-generator groups
also are countable we can, for arbitraryn, construct embeddings of this type into the
nth member of the derived series of a suitable two-generator group. But one can set
the problem in a much more general form:whether for a given non-trivial word set
V ⊆ F∞ it is possible to embed a given countable group into the verbal subgroup
(corresponding toV) of some two-generator group.

Embeddings of ordered groups Solving a problem offeredby himself, B. Neumann
has proved that it is possible to embed a given countable (soluble) fully ordered group
into a two-generator (soluble) fully ordered group [20] (where of course it is assumed
that the order of the two-generator group ‘continues’ the order of the isomorphic copy
of the initial group).

For other results in this direction we refer to the papers of Ol’shanskii [25, 26],
B. Neumann [21], Levin and Rosenberger [13], Hall [4], Wilson and Zalesskii [28]
and to literature cited there.

The main result of this paper (Theorem1 in Section2) generalizes or strengthens
the theorems listed above, for it establishes an embedding combining all the properties
we have mentioned.For an arbitrary non-trivial word setV, an arbitrary countable
group G is subnormally embeddable into a two-generator groupG2, its image lying
in V.G2/, and if G is soluble, fully ordered or torsion free, the groupG2 ‘ inherits’
these properties. The proof of this result occupies Section2 and presents the main
construction of the paper.

In Section3 we deal with soluble embeddings of ordered groups and normal
embeddings of ordered groups. First we see that the valuel + 2 for the soluble length
of the two-generator group obtained in [22] cannot be combined with ‘verbality’ of
the embedding of Theorem1. On the other hand we can construct an embedding
preserving the rest of the properties listed above:every ordered soluble countable
group G of soluble lengthl can be subnormally embedded into an ordered two-
generator soluble group of lengthl + 2, but notl + 1 in general(Theorem2). This
theorem strengthens Theorem 3.3 and Corollary 3.4 of [20] as well as Theorem 5.1
and Corollary 5.2 of [22] by subnormality, and Theorem 2 of [1] by full order and by
solubility.
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A simplified version of our construction gives asubnormal embedding of defect2
of an arbitrary(ordered, soluble or torsion free) groupG into an(ordered, soluble or
torsion free) groupG1 of the same cardinality asG, such that the image ofG lies in
V.G1/ for a given non-trivial word setV (Theorem3). This strengthens the statement
A of our main theorem in [15] and is connected with the problem of Heineken on
normal verbal embeddability [5]: whether for a given non-trivial word setV and for
a given groupG there exists a groupH with a normal subgroup̃G such thatG̃ lies in
V.H / and is isomorphic toG. (See the criterion of verbal normal embeddings in our
recent paper [6]). We will see here that the defect 2 obtained above cannot be made
smaller: there exists a fully ordered (nilpotent, torsion free) groupG that, for a certain
word setV , cannot be normally embedded into a groupH so that the image ofG lies
in V.H / (even without the requirement onH to be ordered, soluble, torsion free, or
of the same cardinality asG).

And finally, we would like to announce here that the method we use in the current
paper can be modified for the case ofgeneralized soluble groups. Kovács and B. Neu-
mann have extended in [10] the result of [22] and have constructed embeddings of
countableSI∗-groups (of countableSN∗-groups) into two-generatorSI∗-groups (into
two-generatorSN∗-groups, respectively). It is very natural to ask whether one can
‘add full order’ to this embedding as well. Recently we have constructed such sub-
normal embeddings for fully ordered and generalized soluble groups (SN-, SI-, SN∗-
or SI∗-groups) into appropriate fully ordered and generalized soluble two-generator
groups [17].

Notations For information on varieties of groups we refer to the book of Hanna
Neumann [23]. Absolutely free groups of infinite rank (or of finite rankn) will be
denoted byF∞ (or by Fn). For the given groupG, we denote, as usual, by var.G/
the variety generated byG. We have var.G/ = var.F∞=V.F∞//, whereV is the set
of all identities satisfied inG. We reserve the German lettersA, Nc andO for the
varieties of all abelian groups, all nilpotent groups of class at mostc, and all groups
respectively.

For information on wreath products we refer to the paper of P. Neumann [24] or to
the book of Kargapolov and Merzljakov [9]. Since we use wreath products repeatedly,
let us reserve Greek letters to denote elements of the base group, and Roman letters
for elements of the ‘active group’. The support of the element' of the base group of
the (complete) wreath productA Wr B is denoted by¦.'/.

For information on ordered groups we refer to the papers of B. Neumann [19],
Levi [11, 12], or to the book of Fuchs [2]. The groupG is fully ordered if there is a
transitive binary relation< defined onG such that for eacha;b ∈ G one and only one
of the three alternativesa < b, a = b andb < a holds, and ifa < b thenac< bcand
ca < cb hold for all c ∈ G. These groups are often called O-groups, but we adopt
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the term used by B. Neumann in [20]. The groupsA and B areorder isomorphicif
there exists an order-preserving isomorphismf : A → B. For an ordered groupG
we denote byG+ andG− the sets of ‘positive’ and ‘negative’ elements: an elementx
is positive if 1< x, andx is negative ifx < 1.

Let us make the following two conventions. Firstly, if we have an isomorphic
embeddingþ : G → H , we avoid the details immaterial to our purposes and use in
proofs the same notation for the groupG and its image inH . Secondly, if in this
situation the groupG is an ordered one and if we have defined an order relation onH
such that its reduction onþ.G/ makes the latter order isomorphic toG, we will use
the same sign ‘<’ for the orders onG and onH .

2. Construction of the main embedding

THEOREM 1. Let G be an arbitrary countable group andV ⊆ F∞ be an arbitrary
non-trivial word set. Then there exists a two-generator groupG2 with a subgroupG̃
such that:

(1) G is isomorphic toG̃.
(2) G̃ is subnormal inG2, and lies in the verbal subgroupV.G/.

Moreover if the groupG satisfies some of the following conditions

(a) G is soluble,
(b) G is a fully ordered group,
(c) G is torsion free,

then the two-generator groupG2 can be chosen to satisfy the same conditions.

As we will see from the proof, the groupG2 can be chosen to belong to variety
var.G/NcA

2, where asc we can take the nilpotency class of an arbitrary group not
from the variety corresponding to the word setV .

Here we will pay most attention to subnormal, verbal embeddings of fully ordered
groups; the condition (a) will be obtained as a property of the structure of the proof. In
the case whenG2 is fully ordered the condition (c) is guaranteed automatically [19].
The case whenG is not necessarily an ordered group is covered by statementsB and
C of our Theorem 1 in [15] (announced at the ICM 1998, Berlin [14]). In this case
the fact that the two-generator group is torsion free follows from the proof in [15,
Section 2].

Let us note that we cannot replace the property (c) by the property thatG2 is a
periodicgroup because such a property cannot be combined with (b) if the groupG
is fully ordered, and cannot be combined with (a) in the general case.

We begin with a useful criterion for fully ordered groups adopted from the paper
of Levi [11].



[5] An embedding construction 383

LEMMA 1 (Levi). The groupG is fully ordered if and only if it can be presented as
a unionG = G− ∪{1}∪G+ such thatG− andG+ are semigroups, andg−1G+g ⊆ G+

for all g ∈ G.

If the given group is represented in the formG = G− ∪{1}∪G+ and the conditions
of Lemma1 hold, one can set fora;b ∈ G

a < b if and only if a−1b ∈ G+:

Next we construct a nilpotent groupSessential for our proof. We have to note that
the proof of the following lemma could be somewhat shorter if we simply use [19,
Theorem 2.3] to show thatS is fully ordered. But we define the order on this group
explicitly in order to have anexplicit order onG2.

LEMMA 2. For arbitrary non-trivial word setV there exists a fully ordered nilpotent
torsion free groupS with a non-trivial elementa such thata ∈ V.S/ and1 < ai for
all positive integersi .

PROOF. The set of all finite nilpotent groups generates the variety of all groups
O [23]. Since V is non-trivial there exists a nilpotent group not from the variety
var.F∞=V.F∞// corresponding toV. Thus there is a free nilpotent groupS= Fn.Nc/

of some rankn and of some classc which does not belong to var.F∞=V.F∞//. Then
V.S/ 6= {1} andV.S/ contains an elementa of infinite order. Let furtherSi = 
i .S/
be thei th member of the lower central series ofS:

S = S1 ≥ S2 ≥ · · · ≥ Sc+1 = {1}:
First we define (full) orders on factorsSi=Si +1. Each of these factors is a free abelian
(torsion free) group of finite rank. A direct product of finitely many infinite cycles
can be fully ordered in the following way [12]: order each cycleZ = 〈z〉 as follows:

zi < zj if and only if i < j

and continue these orders on the direct product lexicographically: compare elements
z1, z2 ∈ Si=Si +1 and setz1 < z2 if the first coordinate ofz1 is less than that ofz2; if
their first coordinates are equal we consider the second ones, etc: : :

Now we continue orders already defined on the factors on the whole groupS.
Denote byS+

c and S−
c the semigroups of positive and negative elements ofSc and

continue by induction:

S+
c−i = { x ∈ Sc−i | 1< x .mod Sc−i +1/ };

S−
c−i = { x ∈ Sc−i | x < 1 .mod Sc−i +1/ }:
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Consider the setsS+ = ⋃c−1
i =0 S+

c−i andS− = ⋃c−1
i =0 S−

c−i . These satisfy the conditions of
Lemma1; the verification is easy and can by found in [19] for more general situations.
Therefore the full order we are looking for can be defined as:

for x; y ∈ S; x < y if and only if x−1y ∈ S+:

Now return to the elementa. Sincea 6= 1 we have 1< a or a < 1. We can
assume 1< a because we can always replace our order ‘<’ by the inverse order
relation ‘<−1’. And finally sincea is positive its powersa2;a3; : : : , also are positive
according to definition of full order.

For the given (not necessarily ordered or countable) groupG let us consider the
(complete) wreath productG Wr S with the base groupGS. Choose a subset� of
elements�g of GS in the following way

�g.s/ =
{

g; if s = ai ; i = 0;1;2; : : : ;

1; if s ∈ S\{ai | i = 0;1;2; : : : }:
(Herea is the element defined in Lemma2.)

Define a subgroup ofG Wr S:

G1 = 〈�; S〉:
LEMMA 3. If G, V and G1 are defined as above, the groupG1 is of the same

cardinality asG; G can be subnormally embedded intoG1 such that its image lies in
V.G1/; and if G is a fully ordered group,G1 can be fully ordered in such a way that
G is order isomorphic to its image inG1 (relative to the reduction of the order ofG1).

PROOF. V.G1/ is non-trivial sinceV.S/ is non-trivial: V.G1/ contains the element
a (and all its powers). DefineG0 to be the first copy ofG in the base groupGS:

'g ∈ G0 if and only if

{
'g.s/ = g; if s = 1;

'g.s/ = 1; if s ∈ S\{1}:
Since a verbal subgroup is normal we have

a�g = �−1
g a�g = a

(
�−1

g

)a
�g ∈ V.G1/:

But as straightforward computations show,

((
�−1

g

)a
�g

)
.s/ =




g; if s = 1 = a0;

1; if s = a;a2;a3; : : : ;

1; if s ∈ S\{ai | i = 0;1;2; : : : }:
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Thus.�−1
g /a�g = 'g ∈ G0, and the first copy ofG lies in V.G1/ for 'g = a−1a�g ∈

V.G1/. The ruleg 7→ 'g defines an embedding ofG into G Wr S which we denote
by ¹.

SinceG1 is generated by� andS, card.G1/ = card.�/ becauseS is countable.
(The case of finiteG, when the cardinality of a group need not necessarily coincide
with the cardinality of its generating system is impossible here since the orered group
G is torsion free.) On the other hand, clearly card.�/ = card.G/.

Further we note that for each elements� ∈ G1 the support¦.�/ is well-ordered
(according to the order defined onS in Lemma2). This follows from the fact that the
supports of all elements of type�g are well-ordered and from the following obvious
properties of elements of the base group of a wreath product: if ; 1;  2 ∈ GS and
s ∈ S then

¦. −1/ = ¦. /;

¦ . 1 ·  2/ ⊆ ¦. 1/ ∪ ¦. 1/;

¦ . s/ = ¦. / · s = {s′ · s | s′ ∈ ¦. /}:
Now we are able to continue the full order ofS to a full order on the whole groupG1.
For two non-equal elementss1�1; s2�2 ∈ G1 define

s1�1 < s2�2

if and only if s1 < s2 or s1 = s2 and�1.s0/ < �2.s0/, wheres0 is the ‘first coordinate’
(the least element ofS according to the order defined on the groupS) such that
�1.s0/ 6= �2.s0/. (Clearly�1.s/ = �2.s/ holds for infinitely many ‘first’ values of
s.) Existence of such a coordinates0 follows from the fact that¦.�1/ and¦.�2/ are
well-ordered ands1�1 6= s2�2.

This order relation is a full order. Firstly it is easy to see that this relation is transitive
and that for arbitrary elementss1�1; s2�2 ∈ G1 one and only one of following three
alternatives can take place

s1�1 < s2�2; s1�1 = s2�2; s2�2 < s1�1:

Assume furthers1�1 < s2�2 ands� ∈ G1. It remains to show that

s1�1 · s� = s1s.�1/
s� < s2s.�2/

s� = s2�2 · s�;

s� · s1�1 = ss1.�/
s1�1 < ss2.�/

s2�2 = s� · s2�2:

Let us prove the first of these relations. It is obvious that ifs1 < s2 thens1s < s2s,
for ‘<’ is a full order on S. Assumes1 = s2. Since¦..�1/

s/ = ¦.�1/ · s and
¦..�2/

s/ = ¦.�2/ · s we get

.�1/
s < .�2/

s if and only if �1 < �2:
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And clearly

.�1/
s < .�2/

s if and only if .�1/
s · � < .�2/

s · �:
because the simultaneous multiplication of some of coordinates of.�1/

s and of.�2/
s

by the same elements (coordinates of�) does not change the relation.�1/
s < .�2/

s.
It remains to note that the reduction of this order of the groupG1 on the first copy

G0 makes the latter order isomorphic toG.

As the next step we must embedG1 subnormally into a groupD such that

(1) D is of the same cardinality asG1.
(2) The isomorphic image ofG1 under this embedding lies in the derived subgroup

D′.
(3) The groupD can be fully ordered in such a way that the reduction of the order

on the isomorphic image ofG1 makes this image order isomorphic toG1.

Of course we could get such a groupD simply from Lemma3 and Lemma2
taking the commutator word[x1; x2] = x−1

1 x−1
2 x1x2 instead of general word setV .

As S we could then use theN2-free groupF2.N2/. Then the groupD would belong
to variety var.G1/ · N2. Nevertheless we will take another construction (given by
P. Neumann [24] and frequently used in literature) not only because it allows a more
‘economical’ embedding (namely into a group in the variety var.G1/A) but also
because the same construction will be used in the next section.

LEMMA 4. For an arbitrary fully ordered groupG1 there exists a fully ordered
group D which belongs to varietyvar.G1/A and which satisfies the conditions(1),
(2) and (3) listed above.

PROOF. Let C = 〈c〉 be an infinite cycle generated by the elementc. The groupG1

is subnormally embeddable into the wreath productG1 Wr C, mapping onto its first
copy in the base groupGC

1 . Let g be the element of this first copy corresponding to
the elementg ∈ G1.

We chooseD to be the subgroup of this wreath product generated byc and by the
following elements³g in GC

1 (g ∈ G1):

³g.c
i / =

{
g; if i ≥ 0;

1; if i < 0:

For arbitraryg ∈ G1,

[³g−1; c].ci / =
(
³−1

g−1³
c
g−1

)
.ci / = (

³g³
c
g−1

)
.ci / =

{
g; if i = 0;

1; if i 6= 0:
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Thus[³g−1; c] =  g and therefore the first copy ofG1 lies in the derived subgroupD′.
Let us denote by½ the embeddingg 7→  g of G1 onto the first copy ofG1 in GC

1 .
For each elementci³ ∈ D the support¦.³/ has a minimal element. Let us define

the following order relation onD: ci³1 < cj³2 if and only if i < j or if i = j
and³1.ck/ < ³2.ck/, whereck is the least power ofc for which ³1.ck/ and³2.ck/

are different. In analogy with the proof of Lemma3 we see that we have defined
a full order onD and that its reduction on the first copy ofG1 makes that copy
order isomorphic toG1. Clearly D belongs to variety var.G1/A and is of the same
cardinality asG1.

Now assume our initial groupG to be countable. Then the corresponding groupD
is also countable. We take another infinite cycleZ = 〈z〉 and embedD into the wreath
productD Wr Z, again onto the first copy ofD in the base groupDZ. We can order
the elements ofD linearly, D = {d0;d1; : : : ;dn; : : : }, and define a special element!
of DZ:

!.zi / =
{

dk; if i = 2k; k = 0;1;2; : : : ;

1; if i ∈ Z\{2k | k = 0;1;2; : : : }:

We use an idea of Hall from [3]. For arbitrarydn we have!.z
−2n

/.1/ = dn. So for
arbitrarydn anddm:

[!.z−2n
/; !.z

−2m
/].1/ = [dn;dm]:

We note further that for arbitraryj 6= 0

[!.z−2n
/; !.z

−2m
/].zj / = 1;

because foru1; v1;u2; v2 ∈ Z andu1 6= u2 the equation 2u1 − 2v1 = 2u2 − 2v2 has only
one solution:u1 = v1 andu2 = v2.

Thus every element of the derived groupD′ belongs to the derived group of the
two-generator groupG2 = 〈!; z−1〉. The groupG1 is embeddable into two-generator
groupG2, for it is embeddable intoD′. Moreover, the following holds:

LEMMA 5. If G1 and G2 are the groups constructed above, thenG1 can be sub-
normally embedded inG2, and G2 can be ordered in such a way thatG1 is order
isomorphic to its image inG2.

PROOF. G1 is subnormal inD′ becauseG1 is subnormal inD. The derived group
D′ is subnormal inG2 because it is subnormal inD Wr Z. (D′ is normal in the base
groupDZ , for D′ is characteristic in the first copy and the latter is normal in the base
group.)
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Let us consider the subgroupN ≤ D Wr Z generated by the first copy ofD and
the elements! andz. We note that for each elementzi Ž ∈ N the support¦.Ž/ has a
minimal element. Thus we define an order similar to that of Lemma4: zi Ž1 < zj Ž2

if and only if i < j or if i = j andŽ1.zk/ < Ž2.zk/, wherezk is the least power of
z such thatŽ1.zk/ is different fromŽ2.zk/. We have defined a full order onN and its
reduction on the first copy ofD makes that copy order isomorphic toD. Clearly N
belongs to the variety var.D/A. Now simply choose the order on the groupG2 to be
the reduction of the order we have just defined onN to its subgroupG2.

Denote by� the subnormal embedding ofD′ in G2 obtained in Lemma5. Now
we are able to present a subnormal verbal embedding¼ of G into the two-generator
groupG2 as follows:

¼ = ¹½�;

whereG
¹GG G1

½GG D′ �GG G2. The defect ofG in G2 is 6, for the defect of each of
these embeddings is 2. The groupG2 belongs to the variety var.G/NcA

2.
To conclude the proof of Theorem1 it remains to notice that if the groupG is

soluble, say of lengthl , the groupG2 is also soluble, having lengthl + c + 2, and if
the groupG is torsion free, the two-generator groupG2 is also torsion free, for it is a
subgroup of the torsion free group...G Wr S/ Wr C/ Wr Z/. Theorem1 is proved.

3. Some related problems

As we mentioned in the introduction, the result of B. Neumann and Hanna Neumann
given in [22] guarantees not only embeddability of a soluble countable group of length
l into a soluble two-generator group, but also that the length of the latter is at most
l + 2. This is the best possible general value because according to [22, Lemma 5.3]
there is an abelian group which cannot be embedded in a two-generator metabelian
group. (See also [8].)

It is easy to see that this condition on the solubility length cannot be strengthened
by requirement of ‘verbality’ of the embedding. For ifV contains the commutator
wordŽt .x1; : : : ; x2t /,

Ž0 = x; Žt.x1; : : : ; x2t / = [Žt−1.x1; : : : ; x2t−1/; Žt−1.x2t−1+1; : : : ; x2t /];
then fort > 2 the two-generator groupG2 (constructed for thisV and for a countable
groupG of lengthl ) cannot be of lengthl +2 because, if this were the case, the verbal
subgroupV.G2/ of G2 would be of length at mostl + 2− t . But such a group cannot
contain a group of lengthl .

Nevertheless a shorter version of our construction of Section2 enables us to exhibit
another embedding, with the same properties apart from ‘verbality’.
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THEOREM 2. For each countable groupG, there exists a two-generator groupG2

in the varietyvar.G/A2 with a subnormal subgroup̃G isomorphic toG. If G is a
fully ordered group the groupG2 can be fully ordered in such a way that the reduction
of its order onG̃ makes the latter order isomorphic toG.

In particular, if the groupG is soluble of lengthl , the two-generator groupG2 is
soluble of lengthl + 2 but notl + 1 in general.

If moreover the groupG (soluble of lengthl ) is torsion free, the groupG2 (soluble
of lengthl + 2) can be chosen to also be torsion free.

As we mentioned in the introduction this theorem strengthens results of [20], of [22],
and of [1].

The proof of Theorem2is based on the constructions of Lemma4and Lemma5. To
avoid repetition we only sketch it. We note that this construction is more economical
than that of Section 3 in [20], for at each step in each wreath product we take a
smaller part of the base group than in [20] (and not all elements of the base group with
well-ordered supports).

PROOF OFTHEOREM 2. First we embed the given fully ordered groupG subnor-
mally into a groupD so thatG ≤ D′, and continue the full order ofG on D as in
Lemma4. Next we embed the groupD into the wreath productD Wr Z (where
Z = 〈z〉 is an infinite cycle) and choose an element! ∈ D Z as in the previous section.
Then the two-generator group

G2 = 〈!; z−1〉

contains the derived group of the first copy ofD in DZ . Thus, as in Lemma5, G is
subnormal inG2 of defect 4, and the full orderD can be continued to a full order on
G2. Clearly,G2 ∈ var.G/AA = var.G/A2.

Let us turn to another problem. Lemma2and Lemma3establishverbal, subnormal
embedding of an arbitrary infinite group into a group of the same cardinality. This
embedding is of defect 2, and it is very natural to ask whether or not this defect can
be reduced to 1, that is, whether or not this embedding can be normal.

Normal verbal embeddings of groups are of independent interest. The problem
is formulated and solved for finitep-groups by Heineken in [5]. For the general
criterion of normal verbal embeddability we refer to our Main Theorem in [6]. Here
we give a result on normal verbal embeddings of ordered groups which strengthens
the statementA of our Theorem 1 in [15].

THEOREM 3. For an arbitrary fully ordered groupG and arbitrary non-trivial
word setV, there exists a fully ordered groupH of the same cardinality asG with a
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subnormal subgroup̃G of defect2 such thatG̃ lies in V.H / and the reduction of the
order of H on the subgroup̃G makes the latter order isomorphic toG.

If the groupG is soluble or torsion free, the groupH can be chosen to satisfy these
properties.

If the group G is finitely generated, the groupH can be chosen to be finitely
generated as well.

The defect of embedding cannot in general be made smaller: for some fully ordered
group a normal verbal embedding cannot be obtained.

PROOF. The embedding needed is already constructed in Lemma2 and Lemma3.
So it suffices to takeH = G1.

AssumeG is generated by finitely many elementsg1; g2; : : : ; gt . Denote byg̃i

(i = 1; : : : ; t) the image ofgi in G̃. For each of these elements there exist words
wi; j ∈ V ( j = 1; : : : ; si ) and elementshk

i; j ∈ H (k = 1; : : : ; l i; j ) such that:

gi = .wi;1.h
1
i;1; : : : ;hli;1

i;1//
ži;1 · · · .wi;si

.h1
i;si
; : : : ;h

li;si
i;si
//ži;si

.i = 1; : : : ; t ; ži;1; : : : ; ži;si
= ±1/. So if the groupH is not finitely generated, it is

enough to replace it by the finitely generated group

〈hk
i; j ∈ H | i = 1; : : : ; t ; j = 1; : : : ; si ; k = 1; : : : ; l i; j 〉;

which contains the subgroup̃G.
Our criterion of normal verbal embeddability [6] enables us to construct an example

of a groupG which for a certain word setV cannot be normally embedded into a
groupH such thatG ⊆ V.H /, even without requiringH to be fully ordered, torsion
free, soluble or of the same cardinality asG! But since none of the examples in [6]
is a torsion free fully ordered group—fully ordered groups must be torsion free—we
give here a scheme of construction of fully ordered and ‘notnV-embeddable’ (see
[6]) groups.

Every absolutely free groupFn can be fully ordered [19]. LetV be a non-abelian
variety such that the group of automorphisms

A = Aut .Fn.V//

of theV-free group of rankn has a non-trivial identityw ≡ 1. It is easy to find
examples of such varieties: it suffices to take a locally finite varietyV. Then the
group of automorphismsA is finite and we can takew = xk, wherek = expA. Then

Inn.Fn/ 6⊆ .Aut .Fn//
k ;

and this condition guarantees, by the Main Theorem in [6], that the fully ordered
group Fn is not normally embeddable into a groupH such that its image lies in
H k = 〈xk | x ∈ H 〉.
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In fact we could easily find many other examples of word setsV with this property.
And we could find other fully ordered groups which do not posses normal verbal
embeddings; in particular such groups can even be nilpotent. LetG = Fn.Nc/ andV
be a subvariety ofNc such that Aut.Fn.V// satisfies a non-trivial identityw = 1. It
suffices to take asV the variety defined by the identities

[x1; : : : ; xc+1] = 1 and xl = 1

for some l > 2. Then Fn.V/ is finite and we can takew = xk, wherek =
exp Aut.Fn.V//. Again Inn.G/ 6⊆ .Aut .G//k and soG is not normally embed-
dable into a groupH such that its image lies inH k.

The last theorem and this consideration gives rise to following problem.

PROBLEM. For the given non-trivial word setV and fully ordered groupG, find a
criterion under whichG can be normally embedded into an appropriate fully ordered
groupH with a subgroupG̃ such thatG̃ lies in V.H / and the reduction of the order
of H on G̃ makes the latter order isomorphic toG.

In this direction we restrict ourselves to Theorem3 because this problem will be
considered elsewhere [18].
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