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Abstract

Generalizing and strengthening some well-known results of Higman, B. Neumann, Hanna Neumann
and Dark on embeddings into two-generator groups, we introduce a construction of subnormal verbal
embedding of an arbitrary (soluble, fully ordered or torsion free) ordered countable group into a two-
generator ordered group with these properties. Further, we establish subnormal verbal embedding o
defect two of an arbitrary (soluble, fully ordered or torsion free) ordered gBouto a group with these
properties and of the same cardinality&sand show in connection with a problem of Heineken that the
defect of such an embedding cannot be made smaller, that is, such verbal embeddings of ordered grour
cannot in general be normal.

2000Mathematics subject classificatioprimary 20E10, 20E15, 20E22, 20F14, 06F15.
Keywords and phrasegmbeddings of groups, ordered groups, two-generator groups.

1. Introduction

The famous theorem of Higman, B. Neumann and Hanna Neumann on embedding
of an arbitrary countable group into a two-generator gralipvas an initial step for
further research on embeddings in two-generator groups with additional properties.
Let us list some of the main results in this direction, connected to the subject of the
current paper.

Embeddings of soluble groups Since abelian (or nilpotent) groups are notin general
embeddable into two-generator abelian (or nilpotent) gro@fs42], such embed-
dings of soluble groups are of special interest. B. Neumann and Hanna Neumann hav:
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proved that every soluble countable group of lerigit embeddable into a soluble
two-generator group of length at mast 2 (but notl 4+ 1 in general) 22].

Subnormal embeddings Dark has shown in1] that every countable group can
be embedded in a two-generator group in such a way that its image is a subnorma
subgroup of the two-generator group. (In this connection see also the paper dfHall |

Embeddings into a word subgroups B. Neumann and Hanna Neumann have con-
structed in 2] not simply an embedding into a two-generator group but also into
the second derived group of the latter (see algd. [ Since two-generator groups
also are countable we can, for arbitraryconstruct embeddings of this type into the

nth member of the derived series of a suitable two-generator group. But one can sef
the problem in a much more general formhether for a given non-trivial word set

V C F, it is possible to embed a given countable group into the verbal subgroup
(corresponding td/) of some two-generator group.

Embeddings of ordered groups Solving a problem offered by himself, B. Neumann
has proved that it is possible to embed a given countable (soluble) fully ordered group
into a two-generator (soluble) fully ordered gro@d)[(where of course it is assumed
that the order of the two-generator group ‘continues’ the order of the isomorphic copy
of the initial group).

For other results in this direction we refer to the papers of Ol'shangkji6],

B. Neumann 21], Levin and Rosenbergef §], Hall [4], Wilson and ZalesskiiZ8]
and to literature cited there.

The main result of this paper (Theordnin Section2) generalizes or strengthens
the theorems listed above, for it establishes an embedding combining all the properties
we have mentionedror an arbitrary non-trivial word seV, an arbitrary countable
group G is subnormally embeddable into a two-generator gr&@y its image lying
in V(G,), and if G is soluble, fully ordered or torsion free, the gro@y ‘inherits
these properties The proof of this result occupies Secti@rand presents the main
construction of the paper.

In Section3 we deal with soluble embeddings of ordered groups and normal
embeddings of ordered groups. First we see that the Vajufor the soluble length
of the two-generator group obtained &2] cannot be combined with ‘verbality’ of
the embedding of Theoreth On the other hand we can construct an embedding
preserving the rest of the properties listed abogeery ordered soluble countable
group G of soluble lengtd can be subnormally embedded into an ordered two-
generator soluble group of length+ 2, but notl + 1 in general(Theoren?). This
theorem strengthens Theorem 3.3 and Corollary 3.2dfés well as Theorem 5.1
and Corollary 5.2 0f22] by subnormality, and Theorem 2 df][by full order and by
solubility.
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A simplified version of our construction givessabnormal embedding of defext
of an arbitrary (ordered, soluble or torsion fregroup G into an(ordered, soluble or
torsion freg group G, of the same cardinality a&, such that the image @ lies in
V (G,) for a given non-trivial word se¥ (TheorenB). This strengthens the statement
A of our main theorem in15] and is connected with the problem of Heineken on
normal verbal embeddabilitys]: whether for a given non-trivial word s&t and for
a given groupG there exists a group! with a normal subgrous such tha(G lies in
V (H) and is isomorphic t@. (See the criterion of verbal normal embeddings in our
recent paperd]). We will see here that the defect 2 obtained above cannot be made
smaller: there exists a fully ordered (nilpotent, torsion free) gi@upat, for a certain
word setV, cannot be normally embedded into a grddiso that the image db lies
in V(H) (even without the requirement di to be ordered, soluble, torsion free, or
of the same cardinality &3).

And finally, we would like to announce here that the method we use in the current
paper can be modified for the casegeheralized soluble group&ovacs and B. Neu-
mann have extended iri(] the result of P2 and have constructed embeddings of
countableS I*-groups (of countabl& N*-groups) into two-generat@I*-groups (into
two-generatoiS Nf-groups, respectively). It is very natural to ask whether one can
‘add full order’ to this embedding as well. Recently we have constructed such sub-
normal embeddings for fully ordered and generalized soluble gr@igs S I-, S N*-
or SI*-groups) into appropriate fully ordered and generalized soluble two-generator

groups [L7].

Notations For information on varieties of groups we refer to the book of Hanna
Neumann 23]. Absolutely free groups of infinite rank (or of finite rami will be
denoted byF., (or by F,). For the given groufs, we denote, as usual, by @)

the variety generated bg. We have vafG) = var(F,,/V (F.)), whereV is the set

of all identities satisfied ic. We reserve the German letteélis 91, and O for the
varieties of all abelian groups, all nilpotent groups of class at moshd all groups
respectively.

For information on wreath products we refer to the paper of P. Neungathiof to
the book of Kargapolov and Merzljako9][ Since we use wreath products repeatedly,
let us reserve Greek letters to denote elements of the base group, and Roman lettel
for elements of the ‘active group’. The support of the elemeat the base group of
the (complete) wreath produét Wr B is denoted by (¢).

For information on ordered groups we refer to the papers of B. Neuntedn |
Levi[11, 12], or to the book of Fuchs?]. The groupG is fully ordered if there is a
transitive binary relatior: defined orG such that for each, b € G one and only one
of the three alternatives < b, a = bandb < a holds, and ifa < bthenac < bcand
ca < cbhold for allc € G. These groups are often called O-groups, but we adopt
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the term used by B. Neumann i@(]. The groupsA and B areorder isomorphidf
there exists an order-preserving isomorphism A — B. For an ordered grou@®
we denote byG™ andG~ the sets of ‘positive’ and ‘negative’ elements: an element
is positive if 1< X, andx is negative ifx < 1.

Let us make the following two conventions. Firstly, if we have an isomorphic
embeddingd : G — H, we avoid the details immaterial to our purposes and use in
proofs the same notation for the gro@and its image inH. Secondly, if in this
situation the grouss is an ordered one and if we have defined an order relatidd on
such that its reduction oA(G) makes the latter order isomorphic @& we will use
the same sign<’ for the orders orG and onH.

2. Construction of the main embedding

THEOREM 1. Let G be an arbitrary countable group and € F,, be an arbitrary
non-trivial word set. Then there exists a two-generator gr@spwith a subgroup
such that

(1) G isisomorphic tdG.
(2) G is subnormal inG,, and lies in the verbal subgrog(G).
Moreover if the groups satisfies some of the following conditions

(@) Gissoluble,
(b) G isafully ordered group,
(c) G istorsion free,

then the two-generator group, can be chosen to satisfy the same conditions.

As we will see from the proof, the group, can be chosen to belong to variety
var(G) 7.2, where ax we can take the nilpotency class of an arbitrary group not
from the variety corresponding to the word st

Here we will pay most attention to subnormal, verbal embeddings of fully ordered
groups; the condition (a) will be obtained as a property of the structure of the proof. In
the case whefg, is fully ordered the condition (c) is guaranteed automaticalf}.[

The case whef® is not necessarily an ordered group is covered by staterBezuts!
C of our Theorem 1 in15 (announced at the ICM 1998, Berlii4]). In this case
the fact that the two-generator group is torsion free follows from the proofin [
Section 2].

Let us note that we cannot replace the property (c) by the propertyGhét a
periodicgroup because such a property cannot be combined with (b) if the goup
is fully ordered, and cannot be combined with (a) in the general case.

We begin with a useful criterion for fully ordered groups adopted from the paper
of Levi [11].
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LeEmMMA 1 (Levi). The groupG is fully ordered if and only if it can be presented as
aunionG = G- U{1}UG" suchthatG~ andG* are semigroups, ang'G™g C G*
forall g € G.

If the given group is represented in the foBn= G~ U{1}UG™* and the conditions
of Lemmal hold, one can set fa, b € G

a<b ifandonlyif a'be G*.

Next we construct a nilpotent grougessential for our proof. We have to note that
the proof of the following lemma could be somewhat shorter if we simply USg [
Theorem 2.3] to show th& is fully ordered. But we define the order on this group
explicitlyin order to have aexplicit order onG.,.

LEMMA 2. For arbitrary non-trivial word sed there exists a fully ordered nilpotent
torsion free groupS with a non-trivial elemena such thata € V(S) and1 < a' for
all positive integers.

ProOOF. The set of all finite nilpotent groups generates the variety of all groups
) [23]. SinceV is non-trivial there exists a nilpotent group not from the variety
var(F,./V (F.)) corresponding t&/. Thusthereis a free nilpotent gro8g= F,(M)
of some rank and of some classwhich does not belong to véF../V (F.,)). Then
V(S) # {1} andV (S) contains an elemeiatof infinite order. Let furthel§ = 3 (S
be theith member of the lower central series®f

S=5>>.--->§,;={1}.

First we define (full) orders on facto®/S ;. Each of these factors is a free abelian
(torsion free) group of finite rank. A direct product of finitely many infinite cycles
can be fully ordered in the following wayLP]: order each cycl& = (z) as follows:

Z <7 ifandonlyif i< j

and continue these orders on the direct product lexicographically: compare elements
Z1, 2, € S/S.1 and se; < 7 if the first coordinate oF; is less than that di; if
their first coordinates are equal we consider the second ones, etc

Now we continue orders already defined on the factors on the whole gdoup
Denote byS" and S the semigroups of positive and negative element§.cdind
continue by induction:

Si={xeSill<x (modS._i}
SLi={xeSi|x<l (MmodS i)}
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Consider the se8" = | J*; S, andS™ = [ J*_; S ;. These satisfy the conditions of
Lemmal; the verification is easy and can by found ir9] for more general situations.
Therefore the full order we are looking for can be defined as:

for x,ye S, x <y ifand only if x 'y e S*.

Now return to the elemerd. Sincea # 1 we have 1< aora < 1. We can
assume 1< a because we can always replace our orderBy the inverse order
relation ‘<~*'. And finally sincea is positive its powera?, a3, ..., also are positive
according to defition of full order. O

For the given (not necessarily ordered or countable) g®Upt us consider the
(complete) wreath produ& Wr Swith the base grousS. Choose a subsét of
elementsy, of G® in the following way

g ifs=a,i=012...;

Xg(s)z{l’ if seS\{a'|i=0,12,...}.

(Herea is the element defined in Lemn23)
Define a subgroup d& Wr S:

G, =(Q,9).

LEmmA 3. If G, V and G; are defined as above, the gro@ is of the same
cardinality asG; G can be subnormally embedded irde such that its image lies in
V(G,); and if G is a fully ordered group(; can be fully ordered in such a way that
G is order isomorphic to its image i6; (relative to the reduction of the order &f;).

PROOF. V (G;) is non-trivial sinceV (S) is non-trivial: V (G;) contains the element
a (and all its powers). Defin&, to be the first copy o6 in the base grouS:

pg(s) =9, Iif s=1;

€ Gy ifandonlyif
%g 0 y {(pg(s) =1, if se S\{1}.

Since a verbal subgroup is normal we have
axe = Xg’la)(g = a()(gl)a)(g e V(Gy).
But as straightforward computations show,

g, if s=1=a%
() x0) =11, if s=aa%a’...;
1, ifseS\ali=012. 1
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Thus (x,1)*xg = ¢4 € Go, and the first copy 06 lies inV (G,) for g5 = a™*ax €
V(G,). The ruleg — ¢4 defines an embedding & into G Wr Swhich we denote
by v.

SinceG; is generated by2 and S, card(G;) = card(2) becauses is countable.
(The case of finitégs, when the cardinality of a group need n&cessarily coincide
with the cardinality of its generating system is impossible here since the orered group
G is torsion free.) On the other hand, clearly cé@) = card(G).

Further we note that for each element € G, the support (x) is well-ordered
(according to the order defined &in Lemma2). This follows from the fact that the
supports of all elements of typg, are well-ordered and from the following obvious
properties of elements of the base group of a wreath produgt; +f;, v, € GS and
s € Sthen

oW =a),
oW1 Y2) S oY) Uo(Yn),
o) =0o() -s={s-s|s eo()}

Now we are able to continue the full order®to a full order on the whole grou@;.
For two non-equal elemenssy;, S x> € G; define

Six1 < S2X2

ifandonly ifs; < s, 0rs; =S, andy:(S) < x2(S), wheres, is the ‘first coordinate’
(the least element o8 according to the order defined on the gro8psuch that
X1(%0) # x2(80). (Clearly x1(S) = x»2(s) holds for infinitely many ‘first’ values of

s.) Existence of such a coordinaggfollows from the fact that (1) ando (x») are
well-ordered and; x; # S;x».

This orderrelationis a full order. Firstly itis easy to see that this relation is transitive

and that for arbitrary elemenssy:, S;x» € G; one and only one of following three
alternatives can take place

SiIX1 < SX2, SiX1=SXe, SX2 < SiX1-
Assume furthes, x; < S, andsy € G;. It remains to show that
Six1 - SX = S1S(X1)°X < SS(X2)°X = SoX2 - SX»
SX - Six1 =SS0 X1 < SS(X)¥x2 = SX - SoX2-

Let us prove the first of these relations. It is obvious tha ik s, thens;s < s;5,
for ‘<’ is a full order onS. Assumes, = s,. Sinceo ((x1)°) = o(x1) - s and

0((x2)°) = o(x2) - Swe get

(x1)° < (x2)° ifandonlyif x; < xa.
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And clearly

(x1)° < (x2)° ifandonlyif (x)° x < (x2)°- x-

because the simultaneous ltplication of some of coordinates @k )° and of(x»)®
by the same elements (coordinateg®foes not change the relatiog,)® < (x»)°.

It remains to note that the reduction of this order of the gréymn the first copy
Go makes the latter order isomorphic® O

As the next step we must emb€&d subnormally into a grouf® such that

(1) D is of the same cardinality &3;.

(2) The isomorphic image db; under this embedding lies in the derived subgroup
D’

(3) The groupD can be fully ordered in such a way that the reduction of the order
on the isomorphic image @; makes this image order isomorphicGa.

Of course we could get such a grolp simply from Lemma3 and Lemma2
taking the commutator worfk,, x,] = X; 'X, XX, instead of general word s&t.
As Swe could then use th#,-free groupF,(91,). Then the grou® would belong
to variety vanG,) - 91,. Nevertheless we will take another construction (given by
P. NeumannZ4] and frequently used in literature) not onlgdause it allows a more
‘economical’ embedding (namely into a group in the variety (@) 21) but also
because the same construction will be used in the next section.

LEMMA 4. For an arbitrary fully ordered groupG; there exists a fully ordered
group D which belongs to varietyar(G;) 2 and which satisfies the conditiofi),
(2) and (3) listed above.

PrOOF. LetC = (c) be an infinite cycle generated by the elemerthe groups;
is subnormally embeddable into the wreath prodactVr C, mapping onto its first
copy in the base grou$. Let v, be the element of this first copy corresponding to
the elemeng € G;.

We chooseD to be the subgroup of this wreath product generatedéyd by the
following elementsz, in G (g € Gy):

oo if i >0
Tt =
¢ 1, if i <O.

For arbitraryg € G4,

i -1_c i c i
[774-1, CI(C) = (ng,lng,l) (€) = (mgmgs) (€) = {1’ fi20
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Thus[r4-, €] = ¥4 and therefore the first copy @, lies in the derived subgroup’.
Let us denote by the embedding — 4 of G; onto the first copy 065, in Gf.

For each elemertr € D the supportr () has a minimal element. Let us define
the following order relation oD: c'7; < clmyif and only ifi < j orifi = j
andm,(c) < m,(c), whereck is the least power of for which 7, (c) andm,(c*)
are different. In analogy with the proof of Lemn3awe see that we have defined
a full order onD and that its reduction on the first copy & makes that copy
order isomorphic t@5;. Clearly D belongs to variety vaiG,) 2l and is of the same
cardinality asG;. O

Now assume our initial grou to be countable. Then the corresponding gréup
is also countable. We take another infinite cyZle- (z) and embed into the wreath
productD Wr Z, again onto the first copy d in the base grou4. We can order
the elements oD linearly, D = {dy, d;, ... , d,, ...}, and define a special elememnt
of D%:

N if i =2 k=0,1,2,...;
w =
1, ifiez\[2|k=0,12...}.

We use an idea of Hall from3]. For arbitraryd, we havea)a’zn)(l) = d,. So for
arbitraryd, andd,,:

[0, 0 ](1) = [dy, U].
We note further that for arbitrary # 0
[w(fzn)’ w(z*zm)](zj) =1,

because fou,, vy, Uy, v, € Z andu; # U, the equation 2 — 2"+ = 2"2 — 2" has only
one solution:u; = v; andu, = vs.

Thus every element of the derived grolp belongs to the derived group of the
two-generator groufs, = (w, z'1). The groupG; is embeddable into two-generator
groupG,, for it is embeddable int®’. Moreover, the following holds:

LEmMA 5. If G; and G, are the groups constructed above, th&n can be sub-
normally embedded i5,, and G, can be ordered in such a way th&; is order
isomorphic to its image i®..

PROOF. G; is subnormal inD’ becausé&s; is subnormal inD. The derived group
D’ is subnormal inG, because it is subnormal b Wr Z. (D’ is normal in the base
groupD?, for D’ is characteristic in the first copy and the latter is normal in the base

group.)
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Let us consider the subgrolyh < D Wr Z generated by the first copy & and
the elements andz. We note that for each elemezris € N the support (§) has a
minimal element. Thus we define an order similar to that of Lerdmas, < 713,
if and only ifi < j orifi = j ands,(Z) < 8,(Z°), wherez* is the least power of
z such thats,(Z") is different fromé,(z*). We have defined a full order a4 and its
reduction on the first copy dD makes that copy order isomorphic Bn Clearly N
belongs to the variety vaD) 2(. Now simply choose the order on the gra@pto be
the reduction of the order we have just defined\to its subgrous,. O

Denote byd the subnormal embedding & in G, obtained in Lemm&. Now
we are able to present a subnormal verbal embeddio§G into the two-generator
groupG. as follows:

n="vi0,

whereG <« G, <a D << G,. The defect of5 in G, is 6, for the defect of each of
these embeddings is 2. The gra@p belongs to the variety vaG) 91.22.

To conclude the proof of Theorefnit remains to notice that if the grou@ is
soluble, say of length the groupG, is also soluble, having lengtht+ ¢ + 2, and if
the groupG is torsion free, the two-generator groGp is also torsion free, for it is a
subgroup of the torsion free grou@G Wr S) Wr C) Wr Z). Theorenl is proved.

3. Some related problems

Aswe mentioned in the introduction, the result of B. Neumann and Hanna Neumann
given in [22] guarantees not only embeddability of a soluble countable group of length
| into a soluble two-generator group, but also that the length of the latter is at most
| + 2. This is the best possible general value because accordig,tbgmma 5.3]
there is an abelian group which cannot be embedded in a two-generator metabelial
group. (See alsd].)

It is easy to see that this condition on the solubility length cannot be strengthened
by requirement of ‘verbality’ of the embedding. For\if contains the commutator
word s, (Xq, ... , Xa),

80 = X, St(Xl, e le) = [St,l(Xl, e th—l), (St—l(X21*1+l, e le)],

then fort > 2 the two-generator group, (constructed for thi¥ and for a countable
groupG of lengthl) cannot be of length+ 2 because, if this were the case, the verbal
subgroupV (G,) of G, would be of length at most+ 2 — t. But such a group cannot
contain a group of length

Nevertheless a shorter version of our construction of Setemables us to exhibit
another embedding, with the same properties apart from ‘verbality’.
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THEOREM 2. For each countable grouf®, there exists a two-generator gro@
in the varietyvar(G) 22 with a subnormal subgrou@ isomorphic toG. If G is a
fully ordered group the grou, can be fully ordered in such a way that the reduction
of its order onG makes the latter order isomorphic @®.

In particular, if the groupG is soluble of length, the two-generator groufs. is
soluble of length + 2 but notl + 1 in general.

If moreover the grougis (soluble of length) is torsion free, the grous, (soluble
of lengthl 4+ 2) can be chosen to also be torsion free.

Aswe mentioned in the introduction this theorem strengthens resuli§ o6 [22],
and of [1].

The proof of Theoreriis based on the constructions of Lem#rend Lemmé. To
avoid repetition we only sketch it. We note that this construction is more economical
than that of Section 3 in20)], for at each step in each wreath product we take a
smaller part of the base group than 9] (and not all elements of the base group with
well-ordered supports).

PROOF OFTHEOREM 2. First we embed the given fully ordered gro@subnor-
mally into a groupD so thatG < D’, and continue the full order d& on D as in
Lemma4. Next we embed the group into the wreath producb Wr Z (where
Z = (z) is aninfinite cycle) and choose an element D as in the previous section.
Then the two-generator group

Gz = (a), Zil)

contains the derived group of the first copy®fin DZ. Thus, as in Lemma&, G is
subnormal inG, of defect 4, and the full ordeld can be continued to a full order on
G,. Clearly,G, € var(G) 2l = var(G) 21°. O

Letus turnto another problem. Lemrdand Lemma establistverbal, subnormal
embedding of an arbitrary infinite group into a group of the same cardinality. This
embedding is of defect 2, and it is very natural to ask whether or not this defect can
be reducedto 1, that is, whether or not this embedding can be normal.

Normal verbal embeddings of groups are of independent interest. The problem
is formulated and solved for finit@-groups by Heineken in5]. For the general
criterion of normal verbal embeddability we refer to our Main Theoren®jn Here
we give a result on normal verbal embeddings of ordered groups which strengthens
the statemenA of our Theorem 1 in15].

THEOREM 3. For an arbitrary fully ordered groupG and arbitrary non-trivial
word setV, there exists a fully ordered groug of the same cardinality a& with a
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subnormal subgroufs of defec® such thatG lies in V (H) and the reduction of the
order of H on the subgrouiss makes the latter order isomorphic @.

If the groupG is soluble or torsion free, the groug can be chosen to satisfy these
properties.

If the group G is finitely generated, the groupl can be chosen to be finitely
generated as well.

The defect of embedding cannotin general be made smétlesome fully ordered
group a normal verbal embedding cannot be obtained.

PrOOF. The embedding needed is already constructed in Letharad Lemma.
So it suffices to takéd = G;.

AssumeG is generated by finitely many elemergs g, ... , g.. Denote byg
(i =1,...,t) the image ofg, in G. For each of these elements there exist words
wi;jeV(=1...,s)and eIementIsui'fj eH((k=1,...,1;)suchthat:

gi = (wi,l(hil’ ) h:i,‘:ll))éi‘l et (wIS (h|ls LI h:I; ))Ei‘s'

i=1....t €1,...,€65 = x1). Soif the groupH is not finitely generated, it is
enough to replace it by the finitely generated group

(hjeHli=1....t;j=1....s;k=1... 1),

which contains the subgrou.

Our criterion of normal verbal embeddabiliy] enables us to construct an example
of a groupG which for a certain word se¥ cannot be normally embedded into a
groupH such thaiG € V(H), even without requiringd to be fully ordered, torsion
free, soluble or of the same cardinality@s But since none of the examples ifi [
is a torsion free fully ordered group—fully ordered groups must be torsion free—we
give here a scheme of construction of fully ordered and mdétembeddable’ (see
[6]) groups.

Every absolutely free groulp, can be fully ordered]9]. Let*U be a non-abelian
variety such that the group of automorphisms

A = Aut (F, (D))

of the U-free group of rankn has a non-trivial identityw = 1. It is easy to find
examples of such varieties: it suffices to take a locally finite vaflgétyThen the
group of automorphisma4 is finite and we can take = x*, wherek = expA. Then

Inn(Fy) Z (Aut(Fy))¥,

and this condition guarantees, by the Main Theorem6in that the fully ordered
group F, is not normally embeddable into a groilib such that its image lies in
HK = (x¥| x € H). O
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In fact we could easily find many other examples of word Setgith this property.
And we could find other fully ordered groups which do not posses normal verbal
embeddings; in particular such groups can even be nilpoteniG letF,(91.) andJ
be a subvariety d¥1. such that AutF,(0)) satisfies a non-trivial identity = 1. It
suffices to take &% the variety defined by the identities

Xg, ... Xl =1 and x'=1

for somel > 2. ThenF,(D) is finite and we can takew = x*, wherek =
exp Aut(F,(0)). Again Inn(G) ¢ (Aut(G)) and soG is not normally embed-
dable into a grougd such that its image lies iHl .

The last theorem and this consideration gives rise to following problem.

PrOBLEM. For the given non-trivial word sét and fully ordered grougs, find a
criterion under whiclG can be normally embedded into an appropriate fully ordered
groupH with a subgrougG such thaiG lies in V(H) and the reduction of the order
of H on G makes the latter order isomorphic@

In this direction we restrict ourselves to Theor8rhecause this problem will be
considered elsewherag].
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