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Abstract

Let A be a uniformly complete vector sublattice of an Archimedean semiprimef -algebraB and p ∈
{1; 2; : : : }. It is shown that the set5B

p.A/ = { f1 · · · f p : fk ∈ A; k = 1; : : : ; p} is a uniformly complete
vector sublattice ofB. Moreover, if A is provided with an almostf -algebra multiplication∗ then
there exists a positive operatorTp from 5B

p.A/ into A such that f1 ∗ · · · ∗ f p = Tp. f1 · · · f p/ for all
f1; : : : ; f p ∈ A.

As application, being given a uniformly complete almostf -algebra.A; ∗/ and a natural number
p ≥ 3, the set5∗

p.A/ = { f1 ∗ · · · ∗ f p : fk ∈ A; k = 1; : : : ; p} is a uniformly complete semiprime
f -algebra under the ordering and the multiplication inherited fromA.

2000Mathematics subject classification: primary 06F25, 46A40.
Keywords and phrases: vector lattice, uniformly complete vector lattice, positive operator, lattice-ordered

algebra, almostf -algebra,d-algebra,f -algebra.

1. Introduction

The only lattice-ordered algebras under consideration are almostf -algebras, f -
algebras and commutatived-algebras. The definition of an almostf -algebra was
first given in 1967 by Birkhoff [4]. Contrary to thef -algebras, introduced in 1956 by
Birkhoff and Pierce [5], the almostf -algebrasprovoked little interest for a long period.
In fact, it is only since 1981, year of the publication of Scheffold’s fundamental paper
[16], that this scope has attracted more attention and works in this field have been
more prolific. We cite particularly the important paper of Bernau and Huijsmans [2],
in which the authors give some almostf -algebras properties and especially an elegant
proof of commutativity of Archimedean almostf -algebras. In their work, Bernau
and Huijsmans present also a study ond-algebras, whose definition seems to go back
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to Kudláček [13]. We also mention the work of Buskes and van Rooij [10] which
includes, among others, a survey on products of two (and three) elements in almost
f -algebras. Our works [7, 8, 6] on products in lattice-ordered algebras and more
precisely in almostf -algebras have been undoubtedly motivated by the Buskes and
van Rooij paper; It is in this context that, in [6], we proved the following results: ifA
is a uniformly complete vector sublattice of an Archimedean semiprimef -algebraB
then5B

2 .A/ = { f g : f; g ∈ A} is a uniformly complete vector sublattice ofB with
6B

2 .A/ = { f 2 : f ∈ A+} as positive cone. Moreover, ifA is, in addition, an almost
f -algebra with respect to a multiplication∗ then there exists a positive operatorT2

from5B
2 .A/ into A such thatf ∗ g = T2. f g/ for all f; g ∈ A.

In this paper, and more precisely in the third section, we shall generalize these
results in the following sense: given a natural numberp ∈ {1;2; : : : } and a uniformly
complete vector sublatticeA of an Archimedean semiprimef -algebraB, the set

5B
p.A/ = { f1 · · · f p : fk ∈ A; k = 1; : : : ; p}

is a uniformly complete vector sublattice ofB with 6B
p .A/ = { f p : f ∈ A+} as

positive cone. Furthermore, ifA is furnished with an almostf -algebra multiplication∗
then there exists a positive operatorTp from5B

p.A/ into A such that

f1 ∗ · · · ∗ f p = Tp. f1 · · · f p/ for all f1; : : : ; f p ∈ A:

The main topic of Section4 of this work is to investigate kerTp, the kernel ofTp.
To be more precise, we prove that ifp ≥ 3 then kerTp is an order ideal of5B

p.A/. An
example is produced showing that this result fails in the casep = 2.

The last section of this paper deals mainly withTp.5
B
p.A//, the range ofTp. In

particular, we show that ifp ≥ 3 thenTp.5
B
p.A// is a uniformly complete vector

lattice with respect to the ordering inherited fromA, and we give an example proving
that this result does not hold ifp = 2. As application, we re-prove (see [8]) that if
.A; ∗/ is a given uniformly complete almostf -algebra then for every natural number
p ≥ 3, the set

5∗
p.A/ = { f1 ∗ · · · ∗ f p : fk ∈ A; k = 1; : : : ; p}

is a uniformly complete semiprimef -algebra under the ordering and the multiplication
inherited fromA with

6∗
p.A/ = { f ∗ · · · ∗ f .p-times/ : f ∈ A+}

as positive cone. We note that the case where.A; ∗/ is a commutatived-algebra
(respectively,f -algebra) is also treated.

Finally, we point out that the second section is devoted to some preliminaries that
will be useful throughout this paper.
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2. Preliminaries

For terminology, notations and elementary properties of vector latticesnot explained
or proved below we refer the reader to the standard works [1, 14, 17].

Let E be a vector lattice with positive coneE+ ande ∈ E+. The sequence{ fn}n=∞
n=1

in E is said toconvergee-uniformlyto f ∈ E whenever, for every" > 0, there exists
a natural numberN" such that| f − fn| ≤ "e for all n ≥ N". The sequence{ fn}n=∞

n=1

is said toconverge(relatively) uniformly to f ∈ E if it convergese-uniformly to
f for some 0≤ e ∈ E. In like manner the notion of (relatively) uniform Cauchy
sequence is defined. Uniform limits are unique if and only ifE is Archimedean [14,
Theorem 63.2]. For this reason all vector lattices and lattice-ordered algebras under
consideration are supposed to be Archimedean. The (Archimedean) vector latticeE
is calleduniformly completewhenever every uniform Cauchy sequence inE has a
(unique) limit. More about the (relatively) uniform convergence can be found in [14].

Let E be a vector lattice. A vector subspaceI of E is said to be anorder idealof
E whenever| f | ≤ |g| in E andg ∈ I imply f ∈ I . Every order ideal ofE is a vector
sublattice ofE. The order idealgeneratedby an elemente ∈ E is denoted byEe

and it is the smallest (with respect to the inclusion) order ideal that containse. Every
order ideal of the formEe is referred to as aprincipal order ideal.Moreover, if E is
uniformly complete then so isEe. An element 0≤ e ∈ E is called astrong order unit
wheneverE = Ee. In particular,e is a strong order unit inEe. Let G be a non-empty
subset ofE. The collectionGd of all elementsf ∈ E such that| f | ∧ |g| = 0 for
everyg ∈ G is an order ideal ofE.

A vector latticeA is said to be alattice-ordered algebra(or `-algebra) if there
exists an associative multiplication inA with the usual algebra properties such that
f g ≥ 0 for all 0 ≤ f , g ∈ A. The`-algebraA is called anf -algebra if A has the
property thatf ∧ g = 0 in A implies . f h/ ∧ g = .h f / ∧ g = 0 for all 0 ≤ h ∈ A.
An almost f -algebra is an`-algebraA such that f ∧ g = 0 in A implies f g = 0
(equivalently, f 2 = | f |2 for all f ∈ A). The`-algebraA is said to be ad-algebra
wheneverf ∧ g = 0 in A implies. f h/∧ .gh/ = .h f / ∧ .hg/ = 0 for all 0 ≤ h ∈ A
(equivalently,| f g| = | f ||g| for all f; g ∈ A).

We recall that all̀ -algebras considered in this paper are supposed to be Archi-
medean. Anyf -algebra is an almostf -algebra and ad-algebra but not conversely.
Almost f -algebras need not bed-algebras and vice versa. An (almost)f -algebra is
automatically commutative. In general,d-algebras are not commutative. Ad-algebra
which is commutative is an almostf -algebra. We summarize as follows:

f -algebra⇒ commutatived-algebra⇒ almost f -algebra.

For any`-algebraA, we denote byN.A/ the set of all nilpotent elements ofA. The
`-algebraA is said to besemiprimeif N.A/ = {0}. Any (almost) f -algebra (or
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d-algebra) with positive multiplication unit is semiprime and any semiprime almost
f -algebra (ord-algebra) is anf -algebra. The subset{ f ∈ A : f 2 = 0} of an`-algebra
A is denoted byN2.A/ and the subset{ f ∈ A : f 3 = 0} is denoted byN3.A/. If A is
an almostf -algebra then

N2.A/ = { f ∈ A : f g = 0 for all g ∈ A}
and

N.A/ = N3.A/ = { f ∈ A : f gh = 0 for all g;h ∈ A}:
If A is an f -algebra thenN.A/ = N2.A/ = { f ∈ A : f g = 0 for all g ∈ A} and
f g ∈ N.A/d for all f; g ∈ A. For more informations aboutf -algebras (respectively,
almost f -algebras andd-algebras) refer to [11, 17] (respectively, [2, 7]).

Let E andF be vector lattices. An operator− from E into F is said to beorder-
boundedif the image under− of an order-bounded subset ofE is an order-bounded
subset ofF . The collection of all order-bounded operators fromE into F is denoted
byLb.E; F/ and byLb.E/ if E = F . An operator− from E into F is calledpositive
if −. f / ≥ 0 in F for all f ≥ 0 in E. The set of all positive operators fromE into
F is denoted byLb.E; F/+. This notation is justified by the fact thatLb.E; F/
is an ordered vector space withLb.E; F/+ as positive cone [1]. The operator−
from E into F is called alattice homomorphismwheneverf ∧ g = 0 in E implies
−. f /∧ −.g/ = 0 in F (equivalently,|−. f /| = −.| f |/ in F for all f ∈ E). Obviously,
every lattice homomorphism is positive. An order-bounded operator− of E is said
to be anorthomorphismif | f | ∧ |g| = 0 implies |−. f /| ∧ |g| = 0. A positive
operator− of E is an orthomorphism if and only iff ∧ g = 0 implies−. f / ∧ g = 0.
The collection Orth.E/ of all orthomorphisms ofE is, under the usual vector space
operations, the ordering inherited fromLb.E/ and the composition as multiplication,
an Archimedeanf -algebra with the identity mappingI E on E as unit element. IfE is
a uniformly complete vector lattice then Orth.E/ is as well and if, in addition, 0≤ e
is a strong order unit ofE then the map

Orth.E/ → E

− 7→ −.e/

is a lattice isomorphism. In particular, if 0≤ f ∈ E then there exists a unique
0 ≤ − f ∈ Orth.E/ such thatf = − f .e/ [11, Theorem 12.1 and Remark 19.5]. More
about orthomorphisms can be found in [11, 17].

Let E and F be vector lattices andp ∈ {2;3; : : : }. The p-linear map from
E p = E×· · · × E (p-times) intoF is calledpositiveif  . f1; : : : ; f p/ ≥ 0 in F for all
f1; : : : ; f p ≥ 0 in E. The positivep-linear map is said tohave the property.AF/
if fi ∧ f j = 0 for somei; j ∈ {1; : : : ; p} implies . f1; : : : ; f p/ = 0. In the proof
of commutativity of Archimedean almostf -algebras [2, Theorem 2.15], Bernau and
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Huijsmans do not make use of associativity. This shows that every positive bilinear
map with the property.AF/ is automatically symmetrical.

The following two results are important in the context of this work; they are already
proven in our paper [8] but for the sake of completeness we reproduce the proofs.

PROPOSITION2.1. Let E and F be Archimedean vector lattices, p ∈ {2;3; : : : },
9 be a positivep-linear map fromE p into F having the property.AF/ and¦ be a
permutation of the set{1; : : : ; p}. Then9. f1; : : : ; f p/ = 9. f¦ .1/; : : : ; f¦ .p// for all
f1; : : : ; f p ∈ E.

PROOF. By multilinearity, we can establish the desired equality only for positive
elementsf1; : : : ; f p ∈ E. Besides, as groups of permutations are generated by trans-
positions, it suffices to prove that ifi 6= j ∈ {1; : : : ; p} then9.: : : ; f i ; : : : ; f j ; : : : / =
9.: : : ; f j ; : : : ; fi ; : : : /. Let8 be the map defined fromE2 into F by

8.u; v/ = 9. f1; : : : ;
i
u; : : : ;

j
v; : : : ; f p/ for all u; v ∈ E2:

It is easy to see that8 is a positive bilinear map with the property.AF/ and therefore
symmetrical. Consequently,

9.: : : ; fi ; : : : ; f j ; : : : / = 8. fi ; f j / = 8. f j ; fi / = 9.: : : ; f j ; : : : ; fi ; : : : /

as required.

As consequence, we get the following theorem which will turn out to be useful
later.

THEOREM 2.2. Let E and F be Archimedean vector lattices, p ∈ {2;3; : : : }, 9 be
a positivep-linear map fromE p into F having the property.AF/ and− ∈ Orth.E/.
Then, for everyi 6= j ∈ {1; : : : ; p}

9. f1; : : : ; − . fi /; : : : ; f j ; : : : ; f p/ = 9. f1; : : : ; fi ; : : : ; − . f j /; : : : ; f p/

for all f1; : : : ; f p ∈ E.

PROOF. It is clear that it suffices to prove this result for a positive orthomorphism
− ∈ Orth.E/. Let i 6= j ∈ {1; : : : ; p} and define the map8 : E p → F by

8. f1; : : : ; f p/ = 9. f1; : : : ; − . fi /; : : : ; f p/

for all f1; : : : ; f p ∈ E. The fact that8 is a positivep-linear map having the property
.AF/ is derived immediately from the definition of orthomorphisms. Proposition2.1
applied to8 and to the transposition¦ = .i; j / yields that

9. f1; : : : ; − . fi /; : : : ; f j ; : : : ; f p/ = 9. f1; : : : ; − . f j /; : : : ; fi ; : : : ; f p/:(2.1)
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Again by Proposition2.1, applied to9 and¦ , we get

9. f1; : : : ; − . f j /; : : : ; fi ; : : : ; f p/ = 9. f1; : : : ; fi ; : : : ; − . f j /; : : : ; f p/:(2.2)

The desired result is gotten combining (2.1) with (2.2).

Throughout this paper, we will keep the following notations: if.A; ∗/ is an`-
algebra,p ∈ {2;3; : : : } and f ∈ A then

(1) f ∗p = f ∗ · · · ∗ f (p-times).
(2) N∗.A/ is the set of all nilpotent elements ofA.
(3) N∗

2 .A/ = { f ∈ A : f ∗2 = 0}.
(4) N∗

3 .A/ = { f ∈ A : f ∗3 = 0}.

3. Almost f -algebras as vector sublattices off -algebras

Throughout this section,B stands for an Archimedean semiprimef -algebra andA
stands for a uniformly complete vector sublattice ofB.

In [6] we have shown that5B
2 .A/ = { f g : f; g ∈ A} is a vector sublattice ofB

with 6B
2 .A/ = { f 2 : f ∈ A+} as positive cone and ifA is, in addition, equipped

with an almostf -algebra multiplication∗ then there exists a positive operatorT2 from
5B

2 .A/ into B such thatf ∗ g = T2. f g/ for all f; g ∈ A. Our aim in this section is to
generalize these results to an arbitrary natural numberp ≥ 2 (note that the casep = 1
is obvious).

Let’s fix a natural numberp ≥ 2. Choose 0≤ f ∈ B and assume that there exists
0 ≤ g ∈ B such thatgp = f . As B is semiprime,g is the unique positive element of
B satisfying the equationgp = f [3, Proposition 2]. We say thatg is the pth root of
f in B and we denoteg = f 1=p.

We start this section by the following lemma.

LEMMA 3.1. Let 2 ≤ p be a natural number,A be a uniformly complete vector
sublattice of an Archimedean semiprimef -algebraB and0 ≤ f; g; f1; : : : ; f p ∈ A.
Then. f p + gp/1=p and. f1 · · · f p/

1=p exist and belong toA.

PROOF. Let 0 ≤ f; g ∈ A and pute = f + g. As A is uniformly complete, the
principal order idealAe generated bye is a uniformly complete vector sublattice ofA
with eas a strong order unit. Therefore, there exist− f and−g, positive orthomorphisms
on Ae, such that− f .e/ = f and−g.e/ = g. Define the map from .Ae/

p into B by

 .u1; : : : ;up/ = u1 · · · up for all u1; : : : ;up ∈ Ae:
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Since B is an f -algebra, is a positivep-linear map having the property.AF/.
Hence, using Theorem2.2

f p + gp =  . f; : : : ; f /+  .g; : : : ; g/

=  .− f .e/; : : : ; − f .e// +  .−g.e/; : : : ; −g.e//

=  .e; : : : ;e; − p
f .e// +  .e; : : : ;e; − p

g .e//

=  .e; : : : ;e; .− p
f + − p

g /.e//:

Now, Ae is uniformly complete and so is the unitalf -algebra Orth.Ae/. So thepth
root .− p

f + − p
g /

1=p of − p
f + − p

g exists in Orth.Ae/ [3, Corollary 6]. Consequently,

f p + gp =  .e; : : : ;e; ..− p
f + − p

g /
1=p/p.e//

=  ...−
p
f + − p

g /
1=p/.e/; : : : ; ..− p

f + − p
g /

1=p/.e//

= [..− p
f + − p

g /
1=p/.e/]p

(where we use Theorem2.2). We infer that. f p + gp/1=p = ..−
p
f + − p

g /
1=p/.e/ exists

and belongs toAe and thus toA.
The result concerning. f1 · · · f p/

1=p is obtained by an analogous method.

At this point, we put

5B
p.A/ = { f1 · · · f p : fk ∈ A; k = 1; : : : ; p}

and

6B
p .A/ = { f p : f ∈ A+}:

The previous lemma implies that the set6B
p .A/ is closed under addition and therefore

it is a positive cone inB. Furthermore, if 0≤ f; g ∈ A, then

. f ∨ g/p = f p ∨ gp

[3, Proposition 1]. As consequence,6B
p .A/ is closed under (finite) supremum. It

follows from [15, Proposition 1.1.4] that

6B
p .A/ −6B

p .A/ = { f p − gp : f; g ∈ A+}
is a vector sublattice ofB with 6B

p .A/ as positive cone.
Now, we are in position to prove the first main result of this section.

THEOREM 3.2. Let 2 ≤ p be a natural number andA be a uniformly complete
vector sublattice of an Archimedean semiprimef -algebra B. Then5B

p.A/ is a
uniformly complete vector sublattice of B with6B

p .A/ as positive cone.
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PROOF. We begin by showing that5B
p.A/ = 6B

p .A/−6B
p .A/. Take 0≤ f; g ∈ A

and observe that

f p − gp = . f − g/

(
p−1∑
k=0

f kgp−1−k

)

(by agreement,x0y = yx0 = y for all x; y ∈ B+). According to Lemma3.1,
f kgp−1−k ∈ 6B

p−1.A/ for everyk ∈ {0; : : : ; p − 1}. But then

p−1∑
k=0

f kgp−1−k ∈ 6B
p−1.A/

since6B
p−1.A/ is closed under addition. Thereforef p − gp ∈ 5B

p.A/ and thus

6B
p .A/ −6B

p .A/ ⊂ 5B
p.A/:

Conversely, letf1; : : : ; f p ∈ A. It is easy to see thatf1 · · · f p = F − G, whereF
(andG) is a sum of products ofp positive elements ofA (where we use an argument
of multilinearity). Using Lemma3.1, we infer thatF;G ∈ 6B

p .A/ and the second
inclusion follows. Summarizing,5B

p.A/ is a vector sublattice ofB with 6B
p .A/ as

positive cone.
In the remainder of this proof, we shall show that5B

p.A/ is uniformly complete.
Let { fn}n=∞

n=1 be a sequence inA+ and g ∈ A+ such that{ f p
n }n=∞

n=1 is a gp-uniform
Cauchy sequence in5B

p.A/ ⊂ B. It is shown in [3, Corollary 3] that{ fn}n=∞
n=1 is a

g-uniform Cauchy sequence inB and therefore inA, which is uniformly complete.
Hence there existsf ∈ A+ such that{ fn}n=∞

n=1 convergesg-uniformly to f . Finally
{ f p

n }n=∞
n=1 convergesgp-uniformly to f p [3, Corollary 3]. The proof is complete.

Now, let’s equipA with a multiplication∗ in such a manner that.A; ∗/ becomes an
almost f -algebra. We recall that for everyf; g; f1; : : : ; f p ∈ A+, both. f p + gp/1=p

(the pth root of f p + gp in B) and. f1 · · · f p/
1=p (the pth root of f1 · · · f p in B) exist

and belong toA (Lemma3.1). In the next lemma, we shall calculate the two powers
.. f p + gp/1=p/∗p and.. f1 · · · f p/

1=p/∗p.

LEMMA 3.3. Let B be an Archimedean semiprimef -algebra,.A; ∗/ be a uniformly
complete almostf -algebra such thatA is a vector sublattice ofB, 2 ≤ p be a natural
number and0 ≤ f; g; f1; : : : ; f p ∈ A. Then

(
. f p + gp/1=p

)∗p = f ∗p + g∗p and
(
. f1 · · · f p/

1=p
)∗p = f1 ∗ · · · ∗ f p:

PROOF. We opt for the gait followed in the proof of Lemma3.1.
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Let 0 ≤ f; g ∈ A and pute = f + g. We consider− f (respectively,−g) the positive
orthomorphism ofAe such that− f .e/ = f (respectively,−g.e/ = g). Define the map
 ∗ from .Ae/

p into A by ∗.u1; : : : ;up/ = u1 ∗ · · · ∗ up for all u1; : : : ;up ∈ Ae. It is
shown in the proof of Lemma3.1that. f p + gp/1=p = ..−

p
f + − p

g /
1=p/.e/. Therefore,(

. f p + gp/1=p
)∗p =  ∗ (. f p + gp/1=p; : : : ; . f p + gp/1=p

)
=  ∗ (..− p

f + − p
g /

1=p/.e/; : : : ; ..− p
f + − p

g /
1=p/.e/

)
:

Since.A; ∗/ is an almostf -algebra, ∗ is a positivep-linear map having the property
.AF/. In view of Theorem2.2, we obtain

.. f p + gp/1=p/∗p =  ∗.e; : : : ;e; ..− p
f + − p

g /
1=p/p.e//

=  ∗.e; : : : ;e; .− p
f + − p

g /.e//

=  ∗.e; : : : ;e; − p
f .e//+  ∗.e; : : : ;e; − p

g .e//

=  ∗. f; : : : ; f / +  ∗.g; : : : ; g/ = f ∗p + g∗p:

The second assertion can be obtained in the same way.

At this point, we are able to prove the second principal result of this section, namely
a generalization of [6, Theorem 1] to a natural numberp ≥ 2.

THEOREM 3.4. Let B be an Archimedean semiprimef -algebra,.A; ∗/ be a uni-
formly complete almostf -algebra such thatA is a vector sublattice of B and2 ≤ p
be a natural number. There exists a positive operatorTp from5B

p.A/ into A such that

Tp. f1 · · · f p/ = f1 ∗ · · · ∗ f p for all f1; : : : ; f p ∈ A:

PROOF. Let 0 ≤ f; g ∈ A such thatf p = gp. SinceB is semiprime,f = g [3,
Proposition 2] and thusf ∗p = g∗p. Therefore a mapTp : 6B

p .A/ → A+ can be
defined by puttingTp. f p/ = f ∗p for all 0 ≤ f ∈ A. Set nowh = . f p + gp/1=p.
Lemma3.3 implies that

Tp. f p + gp/ = Tp

[(
. f p + gp/1=p

)p] = (
. f p + gp/1=p

)∗p = f ∗p + g∗p

for all 0 ≤ f; g ∈ A. Hence,Tp is additive on6B
p .A/. As6B

p .A/ is the positive cone
of the vector lattice5B

p.A/ (Theorem3.2), Tp extends uniquely to a positive operator
from 5B

p.A/ into A [1, Theorem 1.7]. This extension is also denoted byTp. We
intend to show thatTp. f1 · · · f p/ = f1 ∗ · · · ∗ f p for all f1; : : : ; f p ∈ A. It suffices
to prove this formula forf1; : : : ; f p ≥ 0 (the general case follows straightforwardly
from multilinearity). To do this, putf = . f1 · · · f p/

1=p. Using again Lemma3.3, we
get

T. f1 · · · f p/ = T. f p/ = f ∗p = f1 ∗ · · · ∗ f p

and we are done.
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4. The kernel of the operatorTp

We already mentioned in the preliminaries that everyf -algebra is an almostf -
algebra but not conversely. It is a very natural question to ask under which supple-
mentary condition any (Archimedean) almostf -algebra will be anf -algebra? The
answer is given in the next proposition.

PROPOSITION4.1. Let A be an Archimedean almostf -algebra. The following
statements are equivalent:

.i/ A is an f -algebra.
.ii/ A has the property that0 ≤ f; g;h and f gh = 0 imply . f g/ ∧ h = 0.

PROOF. (i) implies (ii). Assume thatA is an f -algebra and let 0≤ f; g;h ∈ A
such thatf gh = 0. So, 0≤ .. f g/ ∧ h/2 ≤ f gh = 0 whence,

. f g/ ∧ h ∈ N.A/:(4.1)

Moreover, 0≤ . f g/ ∧ h ≤ f g ∈ N.A/d . SinceN.A/d is an order ideal inA, we get

. f g/ ∧ h ∈ N.A/d :(4.2)

Combining (4.1) with (4.2), we obtain. f g/ ∧ h = 0.
(ii) implies (i). Let 0 ≤ f; g;h ∈ A such thatg ∧ h = 0. SinceA is an almost

f -algebra,gh = 0 and thusf gh = 0. It results from the hypothesis that. f g/∧h = 0
which implies thatA is an f -algebra, as desired.

Let .A; ∗/ be an Archimedean almostf -algebra. With everyf ∈ A, we associate
³ f the element ofLb.A/ defined by³ f .g/ = f ∗ g for all g ∈ A. The set of all³ f is
denoted by¦.A/. PuttingT = IA in [7, Theorem 4.4], we deduce that¦.A/ is, with
respect to the composition and the ordering inherited fromLb.A/, an Archimedean
f -algebra in its own right with the following supremum and infimum:

³ f ∨ ³g = ³ f ∨g; ³ f ∧ ³g = ³ f ∧g

for all f; g ∈ A. In other words, the map¦ : A → ¦.A/, defined by¦. f / = ³ f for
all f ∈ A, is a lattice homomorphism. Furthermore,

.¦ . f /¦ .g//.h/ = ¦. f /.¦ .g/.h// = ¦. f /.g ∗ h/

= f ∗ g ∗ h = ¦. f ∗ g/.h/

for all f; g;h ∈ A (the multiplication of¦.A/ is denoted by juxtaposition). Thus¦ is
also an algebra homomorphism.

In order to prove the following corollary, we recall thatf ∗ g = . f ∨ g/ ∗ . f ∧ g/
for all f; g ∈ A [2, Proposition 1.13].
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COROLLARY 4.2. Let .A; ∗/ be an Archimedean almostf -algebra, 3 ≤ p be a
natural number andf1; : : : ; f p ∈ A. If f1 ∗ · · · ∗ f p = 0 then| f1| ∗ · · · ∗ | fk| = 0.

PROOF. The method of the proof is by induction onp ≥ 3.
Let f; g;h ∈ A satisfying f ∗ g ∗ h = 0. Since¦ is a lattice and algebra

homomorphism and¦.A/ is an f -algebra, we get

³| f |³|g|³|h| = ¦.| f |/¦ .|g|/¦ .|h|/ = |¦. f /| |¦.g/| |¦.h/|
= |¦. f /¦ .g/¦ .h/| = |¦. f ∗ g ∗ h/| = 0 in ¦.A/:

Applying Proposition4.1to the f -algebra¦.A/, we obtain

³.| f |∗|g|/∧|h| = ³.| f |∗|g|/ ∧ ³|h| = .³| f |³|g|/ ∧ ³|h| = 0:

Finally,

| f | ∗ |g| ∗ |h| = [.| f | ∗ |g|/∧ |h|] ∗ [.| f | ∗ |g|/∨ |h|]
= ³.| f |∗|g|/∧|h|..| f | ∗ |g|/∨ |h|/ = 0:

The casep = 3 being treated, assume that the desired result is true for a natural
numberp ≥ 3 and let f1; : : : ; f p+1 ∈ A such thatf1 ∗ · · · ∗ f p+1 = 0. By induction
hypothesis, we obtain.| f1| ∗ · · · ∗ | f p−1|/ ∗ | f p ∗ f p+1| = 0. Consequently,

0 ≤ |.| f1| ∗ · · · ∗ | f p−1|/ ∗ f p ∗ f p+1| ≤ | f1| ∗ · · · ∗ | f p−1| ∗ | f p ∗ f p+1| = 0:

Therefore,

.| f1|∗| f2|/∗.| f1|∗ · · · ∗| f p−1|/∗ f p ∗ f p+1 = .| f1|∗ · · · ∗| f p−1|/ ∗ f p∗ f p+1 = 0:

Hence, again by induction hypothesis

| f1| ∗ · · · ∗ | f p+1| = ∣∣| f1| ∗ | f2|
∣∣ ∗ | f3| ∗ · · · ∗ | f p+1| = 0

which finishes the induction step.

The next example shows that Corollary4.2fails in the casep = 2.

EXAMPLE 1. Take A = C[−1;1] with the usual operations and order. For every
f; g ∈ A, we put

. f ∗ g/.x/ =




|x + 1=3| f .x/g.x/ if − 1 ≤ x ≤ −1=3;

0 if − 1=3 ≤ x ≤ 2=3;∫ x−2=3

2=3−x

f .t/g.t/dt if 2=3 ≤ x ≤ 1:



34 Karim Boulabiar [12]

It is easy to show that.A; ∗/ is an Archimedean almostf -algebra. Consider now
Þ; þ ∈ A, defined by

Þ.x/ =




−1 if − 1 ≤ x ≤ −1=3;

3x if − 1=3 ≤ x ≤ 1=3;

1 if 1=3 ≤ x ≤ 1

and

þ.x/ =




0 if − 1 ≤ x ≤ −1=3;

3x + 1 if − 1=3 ≤ x ≤ 0;

−3x + 1 if 0 ≤ x ≤ 1=3;

0 if 1=3 ≤ x ≤ 1:

A straightforward computation shows thatÞ ∗ þ = 0. However,

.|Þ| ∗ |þ|/.1/ = 6
∫ 1=3

0

t .−3t + 1/dt > 0:

At this point, let.A; ∗/be a uniformly complete almostf -algebra,B be a semiprime
f -algebra such thatA is a vector sublattice ofB and 3≤ p be a natural number.
According to Theorem3.4, there exists a positive operatorTp from 5B

p.A/ into A
defined byTp. f1 · · · f p/ = f1 ∗ · · · ∗ f p for all f1; : : : ; f p ∈ A. The topic of the
following proposition is the kernel, ker.Tp/, of Tp.

PROPOSITION4.3. Let B be an Archimedean semiprimef -algebra, .A; ∗/ be a
uniformly complete almostf -algebra such thatA is a vector sublattice of B and
3 ≤ p be a natural number. Thenker.Tp/ is an order ideal in5B

p.A/.

PROOF. Let f1; : : : ; f p ∈ A such thatTp. f1 · · · f p/ = 0. Then

f1 ∗ · · · ∗ f p = Tp. f1 · · · f p/ = 0:

It follows from Corollary4.2that

Tp.| f1 · · · f p|/ = Tp.| f1| · · · | f p|/ = | f1| ∗ · · · ∗ | f p| = 0:

The rest is obvious.

The following example shows that Proposition4.3fails in the casep = 2.

EXAMPLE 2. It is known thatB = C[−1;1], equipped by the usual algebra opera-
tions and order is a uniformly complete unital (and therefore semiprime)f -algebra.
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Consider.A; ∗/ the almost f -algebra defined in Example1. The operatorT2 is, in
this case, defined by

T2. f /.x/ =




|x + 1=3| f .x/ if − 1 ≤ x ≤ −1=3;

0 if − 1=3 ≤ x ≤ 2=3;∫ x−2=3

2=3−x

f .t/dt if 2=3 ≤ x ≤ 1

for all f ∈ A. It is shown in Example1 that T2.Þþ/ = Þ ∗ þ = 0 andT2.|Þþ|/ =
|Þ| ∗ |þ| 6= 0. Therefore, ker.T2/ is not an order ideal.

5. The range of the operatorTp

We start this section by mentioning some well-known facts concerning ordered
vector spaces. Consider an operatorT from a vector latticeE into an arbitrary vector
spaceF such that ker.T/ is an order ideal ofE. The rangeT.E/ of T is a vector
lattice with T.E+/ as positive cone. The lattice operations inT.E/ are given by
sup{T. f /;T.g/} = T. f ∨ g/ and inf{T. f /;T.g/} = T. f ∧ g/. In other words,T
is a lattice homomorphism fromE into T.E/. Furthermore, ifF is, in addition, an
ordered vector space then the ordering onT.E/ inherited fromF coincides with the
initial ordering onT.E/ if and only if F+ ∩ T.E/ = T.E+/ (more details can be
found in [14, Section 18]).

Throughout this section,.A; ∗/ designates a uniformly complete almostf -algebra,
B an Archimedean semiprimef -algebra such thatA is a vector sublattice ofB and
3 ≤ p a natural number. Recall that5B

p.A/ = { f1 · · · f p : fk ∈ A; k = 1; : : : ; p} is a
vector sublattice ofB with 6B

p .A/ = { f p : f ∈ A+} as positive cone (Theorem3.2)
and there exists a positive operatorTp from the5B

p.A/ into A defined by

Tp. f1 · · · f p/ = f1 ∗ · · · ∗ f p for all f1; : : : ; f p ∈ A

(Theorem3.4). Observe that

Tp.5
B
p.A// = { f1 ∗ · · · ∗ f p : fk ∈ A; k = 1; : : : ; p}

and

Tp.6
B
p .A// = { f ∗p : f ∈ A+}:

Since ker.Tp/ is an order ideal of5B
p.A/ (Proposition4.3), Tp.5

B
p.A// is a vector

lattice withTp.6
B
p .A// as positive cone andTp is a lattice homomorphism from5B

p.A/
into Tp.5

B
p.A//. We obtain the following theorem.
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THEOREM 5.1. Let B be an Archimedean semiprimef -algebra,.A; ∗/ be a uni-
formly complete almostf -algebra such thatA is a vector sublattice of B and3 ≤ p
be a natural number. Then

.i/ Tp.5
B
p.A// is a vector lattice under the ordering inherited fromA with

Tp.6
B
p .A// as positive cone.

.ii/ Tp is a lattice homomorphism from5B
p.A/ to Tp.5

B
p.A//. In particular, the

absolute value off1 ∗ · · · ∗ f p in Tp.5
B
p.A// is | f1| ∗ · · · ∗ | f p| for all f1; : : : ; f p.

.iii / Tp.5
B
p.A// is uniformly complete.

PROOF. (i) The only point that needs some details is the fact that the initial ordering
on Tp.5

B
p .A// coincides with the ordering inherited fromA. To this end, we need to

show thatTp.6
B
p .A// = A+ ∩ Tp.5

B
p.A//.

The inclusionTp.6
B
p .A// ⊂ A+ ∩ Tp.5

B
p.A// being obvious, prove the second

one. Let f1; : : : ; f p ∈ A such that 0≤ f1 ∗ · · · ∗ f p (in A) and consider the lattice and
algebra homomorphism¦ from A into the f -algebra¦.A/ = {³ f : f ∈ A} defined by
¦. f /.g/ = ³ f .g/ = f ∗g for all f; g ∈ A (see Section4). Hence 0≤ ¦. f1/ · · · ¦. fp/

in ¦.A/. As¦.A/ is an f -algebra, we get

¦. f1 ∗ · · · ∗ f p/ = ¦. f1/ · · · ¦. fp/ = |¦. f1/ · · · ¦. fp/| = |¦. f1/| · · · |¦. fp/|
= ¦.| f1|/ · · · ¦.| fp|/ = ¦.| f1| ∗ · · · ∗ | f p|/

and thus| f1| ∗ · · · ∗ | f p| − f1 ∗ · · · ∗ f p ∈ ker.¦ /.
Using multilinearity,| f1| ∗ · · · ∗ | f p| − f1 ∗ · · · ∗ f p is a sum of products (under∗)

of p positive elements ofA. It follows from Lemma3.3 that there exists 0≤ g ∈ A
such thatg∗p = | f1| ∗ · · · ∗ | f p| − f1 ∗ · · · ∗ f p. Observe now that

ker.¦ / = { f ∈ A : ¦. f / = 0} = { f ∈ A : ¦. f /.g/ = 0 for all g ∈ A}
= { f ∈ A : f ∗ g = 0 for all g ∈ A} = N∗

2 .A/ ⊂ N∗.A/:

Thereforeg ∈ N∗.A/ = N∗
3 .A/ and thusg∗3 = 0. Sincep ≥ 3, g∗p = 0. This gives,

via Lemma3.3, that

f1 ∗ · · · ∗ f p = | f1| ∗ · · · ∗ | f p| = ..| f1| · · · | f p|/1=p/∗p ∈ Tp.6
B
p .A//

which is the desired result.
(ii) This follows immediately from the introduction made in the beginning of this

section.
(iii) This is a straightforward inference from the fact that the range of a lattice

homomorphism defined on a uniformly complete vector lattice is also a uniformly
complete vector lattice [13, Theorem 59.3].
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In the following example, we show that the previous result is not true in the case
p = 2.

EXAMPLE 3. The setB = C[−1;1] is a uniformly complete unital (and then
semiprime)f -algebra under the usual algebra operations and order. TakeA = B and
put

. f ∗ g/.x/ =




0 if − 1 ≤ x ≤ 0;∫ x−1

−1

f .t/g.t/dt if 0 ≤ x ≤ 1

for all f; g ∈ A. A simple calculation shows that.A; ∗/ is an almostf -algebra under
the multiplication∗. In this case,T2 is defined by

T2. f /.x/ =




0 if − 1 ≤ x ≤ 0;∫ x−1

−1

f .t/dt if 0 ≤ x ≤ 1

for all f ∈ A. An elementf ∈ T2.5
B
2 .A// if and only if f .x/ = 0 for all x ∈ [−1;0]

and the restriction off to [0;1] belongs toC1[0;1]. ThereforeT2.5
B
2 .A// can not be

a vector lattice under the ordering inherited fromA.

We said in Theorem5.1(i) that if p ≥ 3 thenTp.5
B
p.A// is a vector lattice under the

ordering inherited fromA. However, in general,Tp.5
B
p.A// is not a vector sublattice

of A as it shown in the next example.

EXAMPLE 4. Consider the uniformly complete unitalf -algebraB = C.[−1;1]/.
TakeA = B and defineÞ ∈ A by

Þ.x/ =
{

−x if − 1 ≤ x ≤ 0;

0 if 0 ≤ x ≤ 1:

For f; g ∈ A, we put

. f ∗ g/.x/ =



Þ.x/ f .x/g.x/ if − 1 ≤ x ≤ 0;∫ 0

−x

f .t/g.t/dt if 0 ≤ x ≤ 1:

It is not hard to show thatA is a uniformly complete almostf -algebra under the
multiplication∗. In this case, the operatorT3 is defined by

T3. f /.x/ =



Þ.x/2 f .x/ if − 1 ≤ x ≤ 0;∫ 0

−x

Þ.t/ f .t/dt if 0 ≤ x ≤ 1
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for all f ∈ A. Define now' ∈ A by '.x/ = 2x + 1 for all x ∈ [−1;1]. By a simple
calculation, we get

|T3.'/|.1/ = 1

10
6= .|'| ∗ |'| ∗ |'|/.1/ = 1

8
:

This translates that the absolute value inT3.5
B
3 .A// doesn’t coincide with the absolute

value in A.

Assume now that.A; ∗/ is, in addition, ad-algebra (in other words,.A; ∗/ is an
uniformly complete commutatived-algebra) or, in particular, anf -algebra. Then the
situation improves, in this case the property| f ∗ g| = | f | ∗ |g| holds inA. We obtain
straightforwardly the following corollary.

COROLLARY 5.2. Let B be an Archimedean semiprimef -algebra, .A; ∗/ be a
uniformly complete commutatived-algebra (respectively,f -algebra) such thatA is a
vector sublattice of B and2 ≤ p be a natural number. Then

.i/ Tp.5
B
p.A// is a vector sublattice of A with Tp.6

B
p .A// as positive cone.

.ii/ Tp is a lattice homomorphism from5B
p.A/ into A.

.iii / Tp.5
B
p.A// is uniformly complete.

Note that the casep = 2 in the previous corollary follows immediately from [6,
Corollary 2].

In the last paragraph of this section,.A; ∗/ is a given uniformly completè-algebra.
For every natural numberp ≥ 3, we put

5∗
p.A/ = { f1 ∗ · · · ∗ f p : fk ∈ A; k = 1; : : : ; p}

and6∗
p.A/ = { f ∗p : f ∈ A+}.

A classical result of vector lattices theory is that there exists an Archimedean
unital (and then semiprime)f -algebra havingA as a vector sublattice (we refer
to [9] for a Zorn Lemma-free proof of this existence or [1] for an approach using
orthomorphisms). LetB be such anf -algebra, whose multiplication is denoted by
juxtaposition. According to Theorem5.1and Corollary5.2, we obtain the following
result.

COROLLARY 5.3. Let.A; ∗/ be a uniformly completè-algebra andp be a natural
number.

.i/ If .A; ∗/ is an almostf -algebraandp ≥ 3 then5∗
p.A/ is a uniformly complete

semiprimef -algebra under the ordering and the multiplication inherited fromA with
6∗

p.A/ as positive cone and with the following supremum and infimum.

f ∗p ∧p g∗p = . f ∧ g/∗p and f ∗p ∨p g∗p = . f ∨ g/∗p for all 0 ≤ f; g ∈ A:
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The absolute value in5∗
p.A/ is given by| f1 ∗ · · · ∗ f p|p = | f1| ∗ · · · ∗ | f p|, for all

f1; : : : ; f p ∈ A.
.ii/ If .A; ∗/ is a commutatived-algebra andp ≥ 3 then5∗

p.A/ is a uniformly
complete semiprimef -subalgebra ofA.
.iii / If .A; ∗/ is a commutatived-algebra then5∗

2.A/ is a uniformly complete
f -subalgebra ofA.
.iv/ If .A; ∗/ is an f -algebra andp ≥ 2 then5∗

p.A/ is a uniformly complete
semiprimef -subalgebra ofA.

PROOF. (i) We prove only that5∗
p.A/ is a semiprimef -algebra, the rest of the proof

is a simple inference from Theorem5.1. Obviously,5∗
p.A/ is an`-algebra under the

multiplication inherited fromA. Let 0 ≤ f; g ∈ A such thatf ∗p ∧p g∗p = 0. Hence
. f ∧ g/∗p = 0 and f ∧ g ∈ N∗.A/ = N∗

3 .A/. Consequently,

f ∗p ∗ g∗p = . f ∗ g/ ∗ . f ∗ g/∗.p−1/

= . f ∧ g/ ∗ . f ∨ g/ ∗ . f ∗ g/∗.p−1/ = 0:

We deduce that.5∗
p.A/; ∗/ is an almostf -algebra. It suffices therefore to show that

it is semiprime. To do this, choose 0≤ f ∈ A such that. f ∗p/n = 0 for some
n ∈ {1;2; : : : }. This implies thatf ∗pn = 0 and thusf ∈ N∗.A/ = N∗

3 .A/. We infer
that f ∗3 = 0 and, asp ≥ 3, f ∗p = 0.

(ii) We obtain this assertion by combining (i) with Corollary5.2.
(iii) The fact that5∗

2.A/ is a uniformly complete vector lattice follows immediately
from Corollary5.2. For the remainder, letf; g;h ∈ A+ such that f 2∗ ∧ g2∗ = 0.
Therefore,

0 ≤ .h2∗ f 2∗/ ∧ g2∗ = ..h f / ∧ g/2∗

≤ h ∗ f ∗ g = h ∗ . f ∨ g/ ∗ . f ∧ g/:

Observe now that. f ∧ g/2∗ = f 2∗ ∧ g2∗ = 0. Hence f ∧ g ∈ N∗.A/ and thus
h ∗ . f ∨ g/ ∗ . f ∧ g/ = 0. Finally .h2∗ f 2∗/ ∧ g2∗ = 0. We deduce that5∗

2.A/ is an
f -algebra.

(iv) It only remains that5∗
2.A/ is semiprime. For this, take 0≤ f ∈ A such that

. f ∗2/n = 0 for somen ∈ {1;2; : : : }. Hence f ∈ N∗.A/ = N∗
2 .A/. Finally, f ∗2 = 0

and we may conclude.

Remark that Example4 shows that, in general,5∗
p.A/ is not a vector sublattice of

A when.A; ∗/ is a uniformly complete almostf -algebra.
In the end of this paper,we present an example of a uniformly complete commutative

d-algebra.A; ∗/ such that, contrary to thef -algebras case, thef -subalgebra5∗
2.A/

is not semiprime
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EXAMPLE 5. Let A be the set of all real sequences with the usual addition, scalar
multiplication, partial ordering and the multiplication∗ defined by

.un/n≥0 ∗ .vn/n≥0 = .wn/n≥0

with w0 = u2v2, w1 = u1v1 andwn = 0 for all n ≥ 2. It is easily verified that
.A; ∗/ is a uniformly complete commutatived-algebra and5∗

2.A/ = {.un/n≥0 : un =
0 for all n ≥ 2}. Now that.1;0; : : : / ∈ 5∗

2.A/ and .1;0; : : : /∗2 = 0. Therefore
5∗

2.A/ is not semiprime.
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