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Abstract

Let A be a uniformly complete vector sublattice of an Archimedean semipfiratgebraB and p €
{1,2,...}. ltis shown thatthe sdlij(A) = {f,--- fp: fke Alk=1,..., p} is a uniformly complete
vector sublattice ofB. Moreover, if A is provided with an almosf -algebra multiplication« then
there exists a positive operat®p from I15(A) into A such thatfy x - -- % f, = Tp(f1--- fy) for all
f1 ..... fp e A

As application, being given a uniformly complete almdstlgebra(A, x) and a natural number
p > 3, the selll}(A) = {fi*---x fp: fk e Ak=1,..., p} is a uniformly complete semiprime
f -algebra under the ordering and the multiplication inherited flam
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1. Introduction

The only lattice-ordered algebras under consideration are alhadgebras,f-
algebras and commutatiwkalgebras. The definition of an almos$talgebra was

first given in 1967 by Birkhoff{]. Contrary to thef -algebras, introduced in 1956 by
Birkhoff and Pierce}], the almostf -algebras provoked little interest for a long period.

In fact, itis only since 1981, year of the publication of Scheffold’s fundamental paper
[1€], that this scope has attracted more attention and works in this field have been
more prolific. We cite particularly the important paper of Bernau and Huijsmgns [

in which the authors give some almdstalgebras properties and especially an elegant
proof of commutativity of Archimedean almostalgebras. In their work, Bernau

and Huijsmans present also a studydsalgebras, whose definition seems to go back
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to KudléCek [13]. We also mention the work of Buskes and van Roaij][which
includes, among others, a survey on products of two (and three) elements in almost
f-algebras. Our works7[ 8, 6] on products in lattice-ordered algebras and more
precisely in almost -algebras have been undoubtedly motivated by the Buskes and
van Rooij paper; It is in this context that, i6][ we proved the following results: i
is a uniformly complete vector sublattice of an Archimedean semipfiraéggebraB
thenTI3(A) = {fg : f, g € A} is a uniformly complete vector sublattice Bfwith
Y2(A) = {f?: f € A"} as positive cone. Moreover, & is, in addition, an almost
f-algebra with respect to a multiplicatianthen there exists a positive operaior
from IME(A) into A such thatf x g = T,(fg) forall f,g e A.

In this paper, and more precisely in the third section, we shall generalize these
results in the following sense: given a natural numper {1, 2, ... } and a uniformly
complete vector sublatticA of an Archimedean semiprime-algebraB, the set

M3(A) ={fy---fo: fre A, k=1,....p}

is a uniformly complete vector sublattice &f with E,E)‘(A) = {fP:. f € At} as
positive cone. Furthermore,Ais furnished with an almost-algebra multiplicatior
then there exists a positive operaigrfrom H,Ej(A) into A such that

foskooon fo=To(fy--- fp)  forall fy, ..., foe A

The main topic of Sectio# of this work is to investigate ke, the kernel ofT,,.

To be more precise, we prove thapif> 3 then kefT, is an order ideal oH,Ej(A). An
example is produced showing that this result fails in the gase2.

The last section of this paper deals mainly wﬁ,t(l‘I,Ej(A)), the range off,. In
particular, we show that ip > 3 thenTp(l'I,Ej(A)) is a uniformly complete vector
lattice with respect to the ordering inherited frdnand we give an example proving
that this result does not hold f = 2. As application, we re-prove (sed) that if
(A, %) is a given uniformly complete almogtalgebra then for every natural number
p > 3, the set

(A ={fix---xfp: fre A k=1,...,p}

is a uniformly complete semiprime-algebra under the ordering and the multiplication
inherited fromA with

(A = {fx---xf (ptimey : f € A}

as positive cone. We note that the case whe&ex) is a commutatived-algebra
(respectively,f-algebra) is also treated.

Finally, we point out that the second section is devoted to some preliminaries that
will be useful throughout this paper.
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2. Preliminaries

For terminology, notations and elementary properties of vector lattices not explained
or proved below we refer the reader to the standard wdrks4, 17].

Let E be a vector lattice with positive coriet ande € E*. The sequencgf,}i=°
in E is said toconvergee-uniformlyto f € E whenever, for every > 0, there exists
a natural numbeN, such thai f — f,| < eeforalln > N,. The sequencgf,};=°
is said toconverge(relatively) uniformlyto f € E if it convergese-uniformly to
f for some 0< e € E. In like manner the notion ofrélatively) uniform Cauchy
sequence is defined. Uniform limits are unique if and onli is Archimedean14,
Theorem 63.2]. For this reason all vector lattices and lattice-ordered algebras undel
consideration are supposed to be Archimedean. The (Archimedean) vectorHattice
is calleduniformly completevhenever every uniform Cauchy sequenceEimas a
(unique) limit. More about the (relatively) uniform convergence can be fount¥in [

Let E be a vector lattice. A vector subspalcef E is said to be awrder idealof
E whenevelf f| < |g|in Eandg € | imply f € |. Every order ideal oE is a vector
sublattice ofE. The order ideabeneratedby an elemene € E is denoted byE,
and it is the smallest (with respect to the inclusion) order ideal that coregatgery
order ideal of the fornk, is referred to as arincipal order ideal. Moreover, if E is
uniformly complete then so iE.. An elementO< e € E is called astrong order unit
whenevelE = E.. In particulargis a strong order unit ifc.. LetG be a non-empty
subset ofE. The collectionGY of all elementsf € E such that f| A |g] = 0 for
everyg € G is an order ideal oE.

A vector lattice A is said to be dattice-ordered algebrgor ¢-algebrg if there
exists an associative multiplication i with the usual algebra properties such that
fg> Oforall0< f,g e A Thet-algebraA is called anf-algebraif A has the
property thatf Ag=0in Aimplies(fhyAg=(hf)Ag=0forall0<h e A
An almost f -algebrais an¢-algebraA such thatf A g = 0in A implies fg =10
(equivalently,f2 = | f|2 for all f € A). Thet-algebraA is said to be al-algebra
wheneverf A g=0in Aimplies(fh) A (gh) = (hf) A(hg) =0forallO<he A
(equivalently, fg| = | f||g| forall f,g e A).

We recall that alle-algebras considered in this paper are supposed to be Archi-
medean. Anyf-algebra is an almost-algebra and @-algebra but not conversely.
Almost f-algebras need not likalgebras and vice versa. An (almostalgebra is
automatically commutative. In generdtalgebras are not commutative.dfalgebra
which is commutative is an almos$talgebra. We summarize as follows:

f-algebra= commutatived-algebra= almost f -algebra.

For any¢-algebraA, we denote byN (A) the set of all nilpotent elements & The
C-algebraA is said to besemiprimeif N(A) = {0}. Any (almost) f-algebra (or
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d-algebra) with positive multiplication unit is semiprime and any semiprime almost
f-algebra (od-algebra)is arf -algebra. The subséf € A: f2 = 0} of an¢-algebra
Ais denoted byN,(A) and the subsdtf € A: f3 = 0} is denoted byN;(A). If Ais

an almostf -algebra then

No(A) ={f € A: fg=0forallg € A}
and
N(A) = N3(A) ={f € A: fgh=0forallg,h € A}

If Ais an f-algebra theN(A) = N,(A) = {f ¢ A: fg=0forallg € A} and
fg e N(A)! forall f, g € A. For more informations abotft-algebras (respectively,
almost f -algebras and-algebras) refer tol[1, 17] (respectively, 2, 7]).

Let E andF be vector lattices. An operaterfrom E into F is said to beorder-
boundedf the image under of an order-bounded subset Bfis an order-bounded
subset ofF. The collection of all order-bounded operators fr&ninto F is denoted
by 4,(E, F) and by4,(E) if E = F. An operator from E into F is calledpositive
if z(f) > 0inF forall f > 0in E. The set of all positive operators frof into
F is denoted by%,(E, F)*. This notation is justified by the fact th#},(E, F)
is an ordered vector space witH,(E, F)* as positive conel]. The operatorr
from E into F is called alattice homomorphisnwvheneverf A g = 0 in E implies
t(f)At(g) = 0in F (equivalently|z(f)| = (| f]) in F forall f € E). Obviously,
every lattice homomorphism is positive. An order-bounded operatufrE is said
to be anorthomorphismif |f| A |[g] = O implies|t(f)| A |g] = 0. A positive
operatorr of E is an orthomorphism if and only if A g = 0 impliesz(f) Ag=0.
The collection OrtkE) of all orthomorphisms ok is, under the usual vector space
operations, the ordering inherited fraffy (E) and the composition as multiplication,
an Archimedearf -algebra with the identity mappinig on E as unit element. IE is
a uniformly complete vector lattice then O¢H) is as well and if, in addition, & e
is a strong order unit oE then the map

Orth(E) — E

T+ 1(8)

is a lattice isomorphism. In particular, if & f € E then there exists a unique
0 < t; € Orth(E) such thatf = 7¢(e) [11, Theorem 12.1 and Remark 19.5]. More
about orthomorphisms can be found iri[17].

Let E and F be vector lattices angp € {2,3,...}. The p-linear mapys from
EP = E x--- x E (p-times) intoF is calledpositiveif ¢ (fy, ..., f;) > 0inF forall
fi,..., f, > 0in E. The positivep-linear mapy is said tohave the propertyAF)
if fi A f; =0forsomei, | e ({1,...,p}impliesy(fy,..., f,) = 0. Inthe proof
of commutativity of Archimedean almost-algebras?, Theorem 2.15], Bernau and
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Huijsmans do not make use of associativity. This shows that every positive bilinear
map with the propertyAF) is automatically symmetrical.

The following two results are important in the context of this work; they are already
proven in our paperd but for the sake of completeness we reproduce the proofs.

ProPOSITION2.1. Let E and F be Archimedean vectortiéces, p € {2,3,...},
W be a positivep-linear map fromEP into F having the propertyAF) ando be a
permutation of the stl, ..., p}. ThenW(f, ..., fy) = W(f,q), ..., f,p) forall
fi,..., fp e E.

PrOOF. By multilinearity, we can establish the desired equality only for positive

elementsf,, ..., f, € E. Besides, as groups of permutations are generated by trans-
positions, it suffices to prove thatit j € {1,..., p}then¥ (..., fi,..., f;,...) =
W(..., fj,..., fi,...). Let® be the map defined frora? into F by

QU v) = U(fy ... U... b, Ty forall uveE2

Itis easy to see thab is a positive bilinear map with the propelthF) and therefore
symmetrical. Consequently,

W, f ) =0, f)=o(f, f)=Wv(.., f,..., fi...)
as required. O

As consequence, we get the following theorem which will turn out to be useful
later.

THEOREM2.2. Let E and F be Archimedean vectortiéices,p € {2,3,...}, ¥ be
a positivep-linear map fromEP into F having the property AF) andt € Orth(E).
Then, forevery # j € {1,..., p}

‘I’(fl,...,f(fi),..., fj,..., fp)=\1’(f1,..., fi,...,T(fj),..., fp)

forall fi,..., f, e E.

PrROOF. It is clear that it suffices to prove this result for a positive orthomorphism
T € Orth(E). Leti # j € {1,..., p} and define the ma@ : EP — F by

O(fy ..., fp) =W(h, ... 2(f), ..., )

forall f,,..., f, € E. The factthatd is a positivep-linear map having the property
(AF) is derived immediately from the definition of orthomorphisms. Proposiidn
applied to® and to the transposition = (i, j) yields that

(21) \I/(fl,...,‘t(fi),..., fj,..., fp)=\1’(f1,...,‘[(fj),..., fi,..., fp)
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Again by Propositior2.1, applied to¥ ando, we get
(22) \I’(fl,...,l’(fj),..., fi,..., fp)=\1’(f1,..., fi,...,T(fj),..., fp)

The desired result is gotten combinirigy ) with (2.2). O

Throughout this paper, we will keep the following notations:(4, *) is an¢-
algebrape {2,3,...}andf € Athen
Q) f*P=fx-.-x f (p-times).
(2) N*(A) is the set of all nilpotent elements Af
(3) Nj(A) ={f eA: f2=0).
(4) Ni(A) ={feA: f3=0)

3. Almost f -algebras as vector sublattices off -algebras

Throughout this sectiorB stands for an Archimedean semiprirhealgebra andA
stands for a uniformly complete vector sublatticeBof

In [6] we have shown thafIZ(A) = {fg : f,g € A} is a vector sublattice oB
with =2(A) = {f?: f € A"} as positive cone and iA is, in addition, equipped
with an almostf -algebra multiplication: then there exists a positive operaigifrom
M2 (A) into B such thatf x g = T,(fg) for all f, g € A. Our aim in this section is to
generalize these results to an arbitrary natural number2 (note that the case = 1
is obvious).

Let’s fix a natural numbep > 2. Choose (< f € B and assume that there exists
0 < g € Bsuchthag? = f. As B is semiprimeg is the unique positive element of
B satisfying the equatiog? = f [3, Proposition 2]. We say thatis the pth root of
f in B and we denotg = f¥/P.

We start this section by the following lemma.

LEMMA 3.1. Let2 < p be a natural numberA be a uniformly complete vector
sublattice of an Archimedean semiprimealgebraB and0 < f, g, fy,..., f, € A
Then(fP + gP)Pand(f;--- f,)"/P exist and belong ta@.

PrOOF. Let0 < f,g e Aand pute= f + g. As Ais uniformly complete, the
principal order idealA, generated b is a uniformly complete vector sublattice Af
with eas a strong order unit. Therefore, there exjsindr,, positive orthomorphisms
on A, such thatr; (e) = f andry(e) = g. Define the mag from (A¢)P into B by

Y(Uy,...,Up) =Ug---Up forall ug,...,up € A
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Since B is an f-algebra,y is a positive p-linear map having the propergAF).
Hence, using Theoreh2

fPrgPl=yw(f,...., ) +v(@, ....0
=Y (t1(E),...,71(6) + ¥ (14(e), ..., 14(€))
=y ....e1{@€) + V... er1le)
=y ....e({+1P)(e).

Now, A, is uniformly complete and so is the unitatalgebra OrtiA.). So thepth
root (rf + tP)"/P of r{ + ¢ exists in OrthiA,) [3, Corollary 6]. Consequently,

fP+gP=v(e....e (@] +1)"")P@E)
=Y (] +D7P)O). ... (xf +1)P)(e)
= [z + )P E1°

(where we use Theoreth?). We infer that(f? 4 g°)"? = ((zf + t2)"/P)(e) exists
and belongs t&\ and thus toA.
The result concerningf; - - - f,)"/? is obtained by an analogous method. [

At this point, we put

M3(A) ={fy---fo: fre A, k=1,....p}
and
To(A) ={fP: fe A}

The previous lemma implies that the &} (A) is closed under addition and therefore
it is a positive cone irB. Furthermore, if 0< f, g € A, then

(fvgP=1fPvgl

[3, Proposition 1]. As consequencﬁg(A) is closed under (finite) supremum. It
follows from [15, Proposition 1.1.4] that

So(A) —Z5(A) ={fP—gP: f.ge AT}

is a vector sublattice 0 with X 2(A) as positive cone.
Now, we are in position to prove the first main result of this section.

THEOREM3.2. Let 2 < p be a natural number and\ be a uniformly complete
vector subl#ice of an Archimedean semiprimi-algebra B. Then l'I,Ej(A) is a
uniformly complete vector sulitice of B with X7 (A) as positive cone.
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ProOF. We begin by showing thdﬂfj(A) = E,E)‘(A) — E,E)‘(A). TakeO< f,ge A
and observe that

p-1
fP_ gp — (f _ g) <Z fkgplk)
k=

(by agreementx’y = yx° = y for all x,y € B*). According to Lemma3.1,
fkgP-t* e ©5 ,(A) foreveryk € {0,..., p— 1}. Butthen

=

p—

> fkgPtke B (A)

k=

sincex} ;(A) is closed under addition. Therefofé — g € I} (A) and thus
T (A) = ZH(A) CTIH(A).

Conversely, letf;, ..., f, € A. Itis easyto see tha; --- f, = F — G, whereF
(andG) is a sum of products gb positive elements oA (where we use an argument
of multilinearity). Using Lemma.1, we infer thatF, G € X7(A) and the second
inclusion follows. Summarizing],‘[,Ej(A) is a vector sublattice oB with 2§(A) as
positive cone.

In the remainder of this proof, we shall show th‘aS(A) is uniformly complete.
Let {f,}r=° be a sequence i\t andg € AT such that{ fP}'= is a gP-uniform
Cauchy sequence iﬁfj(A) C B. Itis shown in B, Corollary 3] that{ f,}=° is a
g-uniform Cauchy sequence B and therefore imA, which is uniformly complete.
Hence there exist$ € A* such that{ f,};=° convergegy-uniformly to f. Finally
{ f.PIn=5° convergegP-uniformly to f P [3, Corollary 3]. The proof is complete. O

Now, let's equipA with a multiplications in such a manner thaA, %) becomes an
almost f -algebra. We recall that for everfy g, f, ..., f, € AT, both(f? + gP)?
(the pth root of f P 4+ gPin B) and(f;--- f,)¥P (the pth root of f; - - - f, in B) exist
and belong toA (Lemma3.1). In the next lemma, we shall calculate the two powers
((fP+4+ gp)l/p)*p and((f,--- fp)l/p)*p_

LEmMMA 3.3. LetB be an Archimedean semiprinfealgebra,(A, x) be a uniformly
complete almost -algebra such thaf is a vector subltice of B, 2 < p be a natural
number and < f, g, fi,..., f, € A Then

((FP+gPYP) P =fP+gP and ((f;--- f)P)"P = frs-ox £,

PrOOF. We opt for the gait followed in the proof of Lemn®al



[9] On products in lattice-ordered algebras 31

LetO< f,g e Aandpute = f +g. We consider (respectivelyr,) the positive
orthomorphism ofA. such thatr; (e) = f (respectivelyzy(e) = g). Define the map
Y* from (Ag)P into Aby (U, ..., Up) =upx---sxupforallug, ..., u, € Ae. ltis
shown in the proof of Lemma.1that(fP 4 gP)¥P = ((z} + t2)'/P)(e). Therefore,

((FP+g)YP) =y ((FP+ g7, (FP+gP)Y7)
=¥ (! + D", ... (] +DHYP)(e).
Since(A, x) is an almostf -algebray * is a positivep-linear map having the property
(AF). In view of Theoren®.2, we obtain
(fFP+gP"P)P =y, ....e ((rf + Tgp)l/p)p(e))
=y ....e () + 1))
=y ....e 1) +yE....e1l®)
=y (f,.... )+ v¢v*@Q,...,9 = P+ g™
The second assertion can be obtained in the same way. O

At this point, we are able to prove the second principal result of this section, namely
a generalization off, Theorem 1] to a natural number> 2.

THEOREM 3.4. Let B be an Archimedean semiprimfealgebra, (A, x) be a uni-
formly complete almost-algebra such tha# is a vector subltice of B and2 < p
be a natural number. There exists a positive operdipirom H,Ej(A) into A such that

To(fy-oe fp) = fra-on £, forall fi,.... f,eA

PrROOF. Let 0 < f,g € A such thatf? = gP. SinceB is semiprime,f = g [3,
Proposition 2] and thud *P = g*P. Therefore a maf, : E,?(A) — A" can be
defined by puttingl,(f?) = f*Pforall 0 < f € A. Set nowh = (fP + gP)V/P.
Lemma3.3implies that

To(fP+0°) =T, [((FP+g""?)"] = ((F°+g""?)"" = P+ g

forall0 < f, g € A. HenceT, is additive onE,?(A). As E,?(A) is the positive cone
of the vector Iatticd‘I,Ej(A) (Theoren®.2), T, extends uniquely to a positive operator
from T3 (A) into A [1, Theorem 1.7]. This extension is also denotedThy We
intend to show thal,(f;--- fp) = fyx---x fyforall fy,..., f, € A It suffices
to prove this formula forfy, ..., f, > O (the general case follows straightforwardly
from multilinearity). To do this, puf = (f;--- f;)¥P. Using again Lemma&.3 we
get

T(fl fp):T(fp): f*P = fl** fp

and we are done. O
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4. The kernel of the operatorT,

We already mentioned in the preliminaries that evérglgebra is an almost-
algebra but not conversely. Itis a very natural question to ask under which supple-
mentary condition any (Archimedean) almdstalgebra will be anf -algebra? The
answer is given in the next proposition.

PrOPOSITION4.1. Let A be an Archimedean almodt-algebra. The following
statements are equivalent

(i) Aisan f-algebra.

(i) A has the property thad < f, g,hand fgh=0imply (fg) Ah=0.

ProOOF. (i) implies (ii). Assume thatA is an f-algebra and let 6< f,g,h € A
such thatfgh = 0. So, 0< ((fg) A h)2 < fgh= 0 whence,

(4.1) (fg) Ah e N(A).
Moreover, 0< (fg) Ah < fg € N(A)?. SinceN(A)? is an order ideal i, we get
(4.2) (fg) Ahe N(A)".

Combining @.1) with (4.2), we obtain(fg) A h = 0.

(i) implies (i). Let0 < f,g,h € A such thatg A h = 0. SinceA is an almost
f-algebragh = 0 and thusfgh = 0. It results from the hypothesis th@ftg) Ah = 0
which implies thatA is an f-algebra, as desired. O

Let (A, x) be an Archimedean almog$talgebra. With everyf € A, we associate
¢+ the element of4,(A) defined by (g) = f xgforallg € A. The setof allz¢ is
denoted by (A). PuttingT = 14 in[7, Theorem 4.4], we deduce thatA) is, with
respect to the composition and the ordering inherited fignA), an Archimedean
f-algebrain its own right with the following supremum and infimum:

Tt Vg =Ttyg, TfATg=Tixg
forall f,g € A. In other words, the map : A — o(A), defined byo (f) = =; for
all f € A is alattice homomorphism. Furthermore,
(o (F)a@)(h) =a(f)(o(@)(h) =o(f)(gx*h)
=fxgxh=0(f*xQg)(h)

forall f, g, h € A(the multiplication ofo (A) is denoted by juxtaposition). Thusis
also an algebra homomorphism.

In order to prove the following corollary, we recall thbtcg = (f v g) % (f A Q)
forall f,g e A[2, Proposition 1.13].
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COROLLARY 4.2. Let (A, %) be an Archimedean almodt-algebra,3 < p be a
natural number andf,, ..., fo e A If fyx--- % f, =0then|fy| .- x|f|=0.

ProOOF. The method of the proof is by induction gn> 3.
Let f,g,h € A satisfying f x g« h = 0. Sinceo is a lattice and algebra
homomorphism and (A) is an f-algebra, we get

mymgmn = o (| fDo(gho(h]) = o ()] o (@)] o (h)]
=lo(f)o(@oh)| =|o(fxgxh) =0 in o(A).
Applying Propositiord.1to the f -algebras (A), we obtain
T tilghalhl = T(f1xigh A Th = (7T17ig) A 7Ty = 0.
Finally,
[ (gl [hl =[(fl*[gD) A ][ f]*]g])V [h]
= n(\f\*\gDA\hl((l fl=* g v [h|) = 0.

The casep = 3 being treated, assume that the desired result is true for a natural
numberp > 3 and letf,, ..., f,;; € Asuch thatf; % --- % f,,; = 0. By induction
hypothesis, we obtaiff fy| * - - - * [ f,_4|) % | f, % f,,1] = 0. Consequently,

O < |[(Ifals-- | fpal)w fom oyl < [ fulseox [ fogl x| fox foql = 0.
Therefore,
(I ol s Ty s (| Fof s - [ Fpql) s Fpk Fopq = (ol | Foog]) * fox fpg = 0.
Hence, again by induction hypothesis
[ fal o [ Fppal = [ fal | ol |5 [ fal %o [ o] = 0
which finishes the induction step. O
The next example shows that Corollaty? fails in the casep = 2.

ExamvPLE 1. Take A = C[—1, 1] with the usual operations and order. For every
f,g e A, we put

IX+1/3[f0gx) if —1=x=-1/3;

if —1/3 2/3;
(txgo0=1" T —13=x=2/
fHg)dt if 2/3<x=<1

2/3—x
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It is easy to show thatA, %) is an Archimedean almost-algebra. Consider now
a, B € A, defined by

-1 if —1<x=<-1/3;
aX)=13x if —1/3<x<1/3;
1 if 1/3<x<1
and
0 if —1<x<-1/3;
3x+1 if —1/3<x<0;
-3x+1 if0<x<1/3
0 if 1/3<x<1

B(X) =

A straightforward computation shows that g = 0. However,

1/3
(ol % 1B)(L) = 6/ {3t + 1)dt > 0,
0

Atthis point, let(A, x) be a uniformly complete almos$talgebraB be a semiprime
f-algebra such thaf is a vector sublattice oB and 3 < p be a natural number.
According to TheorenB.4, there exists a positive operatdg from l'I,Ej(A) into A
defined byT,(fy--- fy) = fy*x-.-x f,forall f,,..., f, € A The topic of the
following proposition is the kernel, keF,), of T,.

PrOPOSITION4.3. Let B be an Archimedean semiprimie-algebra, (A, x) be a
uniformly complete almost-algebra such thatA is a vector subltdice of B and
3 < p be a natural number. Theker(T,) is an order ideal inl'I,Ej(A).

PROOF. Let fy, ..., fy € Asuch thafl,(f;--- f;) = 0. Then
foseoow fp=Tp(fy--- fp) =0.
It follows from Corollary4.2 that
Toll oo fol) = Tp( ful -+ [fp) = [ fal - [ fp] = 0.

The restis obvious. O

The following example shows that Propositiér8 fails in the casg = 2.

ExaMPLE 2. Itis known thatB = C[—1, 1], equipped by the usual algebra opera-
tions and order is a uniformly complete unital (and therefore semipriiralgebra.
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Consider(A, %) the almostf-algebra defined in Example The operatof, is, in
this case, defined by

X+ 1/3]f(x) if —1<x<-1/3;
0 if —1/3<x<2/3;

x—2/3

f(Hdt if 2/3<x<1

T (x) =

2/3—x

forall f € A. Itis shown in Exampld that To(¢f) = a x 8 = 0 andTL(JaB|) =
la| % |B] # 0. Therefore, kdiT,) is not an order ideal.

5. The range of the operatorT,

We start this section by mentioning some well-known facts concerning ordered
vector spaces. Consider an operdidrom a vector latticeE into an arbitrary vector
spaceF such that keiT) is an order ideal oE. The rangeT (E) of T is a vector
lattice with T(E*) as positive cone. The lattice operationsTiGE) are given by
sugT(f), T(@}=T(f vg)andinfT(f), T(g)} = T(f A g). In other words,T
is a lattice homomorphism fror& into T(E). Furthermore, ifF is, in addition, an
ordered vector space then the orderinglait) inherited fromF coincides with the
initial ordering onT(E) if and only if F* N T(E) = T(E*) (more details can be
found in [14, Section 18]).

Throughout this sectiorfA, *) designates a uniformly complete almdstlgebra,
B an Archimedean semiprimé-algebra such thad is a vector sublattice oB and
3 < panatural number. Recall thEIt,Ej(A) ={f;---fp: fxe Ak=1...,p}isa
vector sublattice oB with ©3(A) = {f?: f € A"} as positive cone (Theore@n2)
and there exists a positive operalgrirom thel‘I,Ej(A) into A defined by

To(fy-- fp) = fox---x f, forall f,..., f,eA
(Theorem3.4). Observe that
To(MH(A) = {fyx--x fy: ke Ak=1,...,p}
and
To(Zo(A) = {f*P: f e AT}

Since ke(T)) is an order ideal oﬂfj(A) (Proposition4.3), Tp(l'I,Ej(A)) is a vector
lattice witth(Zg(A)) as positive cone anf, is a lattice homomorphism froimi ,Ej(A)
into Tp(l'I,Ej(A)). We obtain the following theorem.
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THEOREMS5.1. Let B be an Archimedean semiprimfealgebra, (A, x) be a uni-
formly complete almost-algebra such tha# is a vector subldice of B and3 < p
be a natural number. Then

0 Tp(l'I,Ej(A)) is a vector latice under the ordering inherited fronA with
Tp(Z5(A)) as positive cone.
(i) T, is a lattice homomorphism frorﬁ,Ej(A) to Tp(l'I,Ej(A)). In particular, the
absolute value of  x - - x fyin Ty (TS (A)) is | fy| % - x| fy[ forall fy, ..., f.
(i) To(TI5(A)) is uniformly complete.

PrOOF. (i) The only point that needs some details is the fact that the initial ordering
on Tp(l'I,Ej(A)) coincides with the ordering inherited frof To this end, we need to
show thafT,(£E(A)) = A* N TL(TTE(A)).

The inclusionT,(Z5(A)) C A* N T,(T13(A)) being obvious, prove the second
one. Letf,,..., f, e AsuchthatO< f;%---x f, (in A) and consider the lattice and
algebrahomomorphismfrom Ainto the f -algebras (A) = {r; : f € A} defined by
o(f)(9) = m:(g9) = fxgforall f,g e A(see Sectiod). Hence 0< o (fy)--- o (fp)
ino(A). Aso (A) is an f-algebra, we get

o(fis-xfy)y=o(f)---o(fy) =lo(f)---o(f)l =lo(f)]---lo(fp)]
=o([fi)---o(foh) = o (I ful* - x| fp])

and thug fy| % --- % | f,| — fy%--- % f, € ker(o).

Using multilinearity,| f1| % - - - x| fo| — fy % - % f, is a sum of products (undej
of p positive elements oA. It follows from Lemma3.3that there exists & g € A
such thag*® = | fy| % --- x| f,| — fy%--- % f,. Observe now that

kero) ={f e A:o(f)=0={f € A:o(f)(g) =0forallg e A}
={feA:fxg=_0forallge A} = NJ(A) C N*(A).

Thereforeg € N*(A) = N;(A) and thugg*® = 0. Sincep > 3, g*? = 0. This gives,
via Lemmas3.3, that

frseees fp= [fal s ox [ ol = ((Fal - [ FoDYP)P € To(ZB(A)

which is the desired result.

(i) This follows immediately from the introduction made in the beginning of this
section.

(i) This is a straightforward inference from the fact that the range of a lattice
homomorphism defined on a uniformly complete vector lattice is also a uniformly
complete vector latticel[3, Theorem 59.3]. O
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In the following example, we show that the previous result is not true in the case
p= 2.

ExamMPLE 3. The setB = C[—1, 1] is a uniformly complete unital (and then
semiprime)f -algebra under the usual algebra operations and order. Aakd3 and
put

0 if —1<x<0;

f — x—1
(T*)x) / f(Hgt)dt if0<x<1
-1

forall f,g € A. A simple calculation shows th&#, ) is an almostf -algebra under
the multiplications. In this caseT, is defined by

0 if —1<x<0;
To(F)(X) = /X

1

1
f(Hhdt fO0<x<1

forall f € A. Anelementf € T,(IT8(A)) ifand only if f (x) = Ofor allx € [—1, 0]
and the restriction of to [0, 1] belongs taC*[0, 1]. ThereforeT,(I1E(A)) can not be
a vector lattice under the ordering inherited frém

We said in Theorer.1(i) thatif p > 3 thenTp(l'I,Ej(A)) is a vector lattice under the
ordering inherited fromA. However, in generaT[p(l'I,Ej(A)) is not a vector sublattice
of A as it shown in the next example.

ExampLE 4. Consider the uniformly complete unitdtalgebraB = C([—1, 1]).
Take A = B and definex € A by

—x if —1<x<0;
a(X) = .
0 if 0 <x<1.

For f,g € A we put
axX)f(x)gx) if —1<x<0;

f X) = 0
(T*9x) / fhgmdt if 0<x <1
It is not hard to show thaf is a uniformly complete almost-algebra under the
multiplication . In this case, the operat®s is defined by

a(X)? f(x) if —1<x<0;

Ta(F)x) = o
(D) /a(t)f(t)dt if0o<x<1
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forall f € A. Define nowp € Aby p(x) = 2x + 1 forall x € [—1, 1]. By a simple
calculation, we get

1 1
[Ta(@) (D) = 10 # (lol * ol * [ (D) = 8
This translates that the absolute valu&jar1s (A)) doesn't coincide with the absolute
value inA.

Assume now thatA, =) is, in addition, ad-algebra (in other wordgA, ) is an
uniformly complete commutative-algebra) or, in particular, ah-algebra. Then the
situation improves, in this case the propdrty« g| = | f| % |g| holds inA. We obtain
straightforwardly the following corollary.

COROLLARY 5.2. Let B be an Archimedean semiprimie-algebra, (A, x) be a
uniformly complete commutatigkalgebra (respectivelyf -algebra) such tha is a
vector subl#ice of B and2 < p be a natural number. Then

0] Tp(l'I,Ej(A)) is a vector subltice of A with Tp(Z,Ej(A)) as positive cone.
(i) T, is alattice homomorphism fror}ﬂfj(A) into A.
(i) Tp(IT5(A)) is uniformly complete.

Note that the casp = 2 in the previous corollary follows immediately fror, [
Corollary 2].

In the last paragraph of this sectigm, ) is a given uniformly completé-algebra.
For every natural numbegry > 3, we put

(A ={fi*--xfp: fre Ak=1...,p}

andZj(A) = {f*P: f e ATL

A classical result of vector lattices theory is that there exists an Archimedean
unital (and then semiprimej-algebra havingA as a vector sublattice (we refer
to [9] for a Zorn Lemma-free proof of this existence dj for an approach using
orthomorphisms). LeB be such anf-algebra, whose multiplication is denoted by
juxtaposition. According to Theoret1and Corollary5.2, we obtain the following
result.

COROLLARY 5.3. Let (A, %) be a uniformly completé-algebra andp be a natural
number.

(i) If (A, %) isanalmostf -algebraandp > 3thenIT; (A) is auniformly complete
semiprimef -algebra under the ordering and the multiplication inherited frédmvith
T} (A) as positive cone and with the following supremum and infimum.

fPArgP=(f AQ™ and fPv,gP=(fvg* forall 0<f,geA.
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The absolute value ifil,(A) is given by| fy - fol, = [fi] % - % [fy], for all
fi,..., fpe A

(i) If (A, %) is a commutativel-algebra andp > 3 then T, (A) is a uniformly
complete semiprimé-subalgebra ofA.

(i) If (A, *) is a commutatived-algebra thenIT;(A) is a uniformly complete
f-subalgebra ofA.

(iv) If (A %) is an f-algebra andp > 2 thenIT;(A) is a uniformly complete
semiprimef -subalgebra ofA.

PROOF. (i) We prove only thatl,(A) is a semiprimef -algebra, the rest of the proof
is a simple inference from Theoresnl. Obviously,IT;(A) is an¢-algebra under the
multiplication inherited fromA. Let0 < f, g € A such thatf*? A, g*P = 0. Hence
(f Ag)*P=0andf A ge N*(A) = Nj(A). Consequently,

fPusg® = (fxg)x(fxg)P?
=(fAQ=*(fvg*(fxg PP =0

We deduce thatIT;(A), *) is an almostf -algebra. It suffices therefore to show that
it is semiprime. To do this, choose € f € A such that(f*P)" = 0 for some
ne{l, 2, ...}. Thisimplies thatf *P" = 0 and thusf € N*(A) = Nj(A). We infer
that f** =0and,asp > 3, f*P =0.

(i) We obtain this assertion by combining (i) with Corollasy2.

(iii) The fact thatIT;(A) is a uniformly complete vector lattice follows immediately
from Corollary5.2. For the remainder, lef, g,h € A* such thatf? A g = 0.
Therefore,

<hxfxg=hx(fvg=*(fAQ.

Observe now thatf A g)* = f2 A g* = 0. Hencef A g € N*(A) and thus
hx (fvg) *(fAg) =0. Finally (h* f?) A g* = 0. We deduce thdi;(A) is an
f-algebra.

(iv) It only remains thafT;(A) is semiprime. For this, take @ f € A such that
(f*»" = 0 for somen € {1, 2,...}. Hencef € N*(A) = N;(A). Finally, f** =0
and we may conclude. O

Remark that Examplé shows that, in generall} (A) is not a vector sublattice of
Awhen(A, x) is a uniformly complete almost-algebra.

In the end of this paper, we present an example of a uniformly complete commutative
d-algebra(A, x) such that, contrary to thé-algebras case, the-subalgebrdl;(A)
is not semiprime
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ExamMPLE 5. Let A be the set of all real sequences with the usual addition, scalar
multiplication, partial ordering and the multiplicatierdefined by

(Un)n=0 * (Un)n=0 = (Wn)n=0

with wg = Uovp, w; = Uv; andw, = 0 for alln > 2. It is easily verified that
(A, %) is a uniformly complete commutativat-algebra andT;(A) = {(Uy)nso : Uy =
Oforalln > 2}. Now that(1,0,...) € II3(A) and(1,0,...)*> = 0. Therefore
IT5(A) is not semiprime.
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