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Abstract

Generalizing earlier results of Katriňák, El-Assar and the present author we prove new structure theorems
for l -algebras. We obtain necessary and sufficient conditions for the decomposition of an arbitrary
bounded lattice into a direct product of (finitely) subdirectly irreducible lattices.

2000Mathematics subject classification: primary 08A05, 06F99, 06B05.

1. Introduction

It is well known that geometric lattices are direct products of subdirectly irreducible
geometric lattices. This result naturally involves the question: ‘Under what conditions
a latticeL can be decomposed into a direct product of subdirectly irreducible lattices?’
In [11] the author of this paper proved:

THEOREM 1.1. Let L be a CJ-generated algebraic lattice. Then the following are
equivalent:

.i/ L is a direct product of subdirectly irreducible lattices.
.ii/ L enjoys property(PCC)andConL is an atomic Stone lattice.

We say that a congruence distributive algebraA enjoys property(PCC), if any
complemented congruence ofA permutes with its complement.

Katriňák and El-Assar investigated a similar problem [8], for congruence distribu-
tive algebras. One of their important results is the following:
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THEOREM 1.2 ([8, Theorem 11 (iii)]).Let A be a congruence distributive algebra
with a strong centre and enjoying property(PCC). ThenConA is (atomic and) com-
pletely Stonean if and only ifA is a finite direct product of finitely subdirectly irre-
ducible(subdirectly irreducible) algebras.

In [8] they applied their results to the class of so calledl -algebras (see Defini-
tion 2.4(iii)) too.

Comparing the above two results, it seems that Theorem1.1can be valid in a more
general context. Our main result can be considered as a common generalization of
Theorem1.1and Theorem1.2for l -algebras. This is the following:

THEOREM 1.3. LetL be anl -algebra. Then

(1) L is a direct product of finitely subdirectly irreduciblel -algebras if and only if
L enjoys property(PCC), ConL is a Stone lattice and the underlying latticeL is
weakly central-complete with an atomic center.
(2) L is a direct product of subdirectly irreduciblel -algebras if and only ifL

enjoys property(PCC), ConL is an atomic Stone lattice and the underlying latticeL
is weakly central-complete.

Since any bounded lattice is a particularl -algebra, Theorem3.1can be also applied
to bounded lattices.

The proof of this theorem can be found in Section5. The preliminary notions
and some technical results are contained in Section2. In Section3 we deal with
product decompositions of congruence distributive algebras. The principal result of
this section is Theorem3.1, which will prove a useful tool in our development. In
Section4 we prove a necessary and sufficient condition for the decomposition of an
arbitrary bounded lattice into a direct product of directly indecomposable lattices. In
Sections6 and7 we apply Theorem1.3to certain classes ofl -algebras and complete
lattices.

2. Preliminaries

Let 0 and 1 stand for the least and the greatest element of a bounded latticeL. The
principal ideal and the principal filter generated by anx ∈ L will be denoted by.x]
and[x/, respectively. A bounded latticeL is calledatomic if for any x ∈ L, x 6= 0
the interval[0; x] contains at least one atom ofL.

DEFINITION 2.1. Let L be a bounded lattice. An elementa ∈ L is calleda central
element ofL if a is complemented and for allx; y ∈ L the sublattice generated by
{a; x; y} is distributive.
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The central elements of a (bounded) latticeL form a Boolean sublattice ofL
denoted by Cen.L/. A complement of an elementa ∈ L (if it exists) is denoted bya.
For anyc ∈ Cen.L/, we define the relation

�c = {.x; y/ | x ∨ y = .x ∧ y/ ∨ a; for some a ≤ c}:

It is easy to check that�c is a congruence ofL and that

.x; y/ ∈ �c if and only if x ∧ c = y ∧ c:

REMARK 2.2. The following simple observations can be found,for instance, in [4]:

.i/ For anyc1; c2 ∈ Cen.L/, we have�c1∨c2 = �c1∨ �c2 and�c1∧c2 = �c1 ∧ �c2 . If
c1 ≤ c2 then�c1 ≤ �c2 , and�c1 = �c2 impliesc1 = c2.
.ii/ For any c ∈ Cen.L/, �c and �c form a factor congruence pair ofL and

conversely, if�1 and �2 are factor congruences of a bounded latticeL, that is,
L ∼= L=�1 × L=�2, then there exists ac ∈ Cen.L/ such that�1 = �c, �2 = �c.
MoreoverL=�c

∼= .c].
The following assertion can be easily proved.

LEMMA 2.3. In any bounded latticeL = ∏
i ∈ I Li there exist elementsci ∈ Cen.L/,

i ∈ I such thatL=�ci
∼= Li .

Let .S;∧;0;1/ denote a bounded meet-semilattice. Then to every elementa ∈ S
we assign a congruence'a as follows:

'a = {.x; y/ ∈ S2 | x ∧ a = y ∧ a}:

LetF .S/ stand for the lattice of all filters ofS. An elementa ∈ S is calledcentral
if [a/ is a central element ofF .S/. Cen.S/ is our notation for the set of central
element ofS. If .S;∧;∨;0;1/ is bounded lattice, then it is easy to check that the
central elements of the semilattice (S;∧;0;1) and of the lattice.S;∧;∨;0;1/ are the
same. Now we have'c = �c for all c ∈ Cen.S/.

DEFINITION 2.4. Let .S;∧;0;1/ be a bounded meet-semilattice.

.i/ We say that ann-ary operationf : Sn → S is centre-preservingif for every
c ∈ Cen.S/, .xi ; yi / ∈ 'c, i = 1; : : : ;n, implies. f .x1; : : : ; xn/; f .y1; : : : ; yn// ∈ 'c.
.ii/ An algebra.S;∧;0;1; F/; whereF is a set of operations defined onS; is

called analgebra with a strong centreif every f ∈ F is centre-preserving.
.iii / .L ;∧;∨;0;1; F/ is called anl -algebraif .L ;∧;0;1; F/ is an algebra with a

strong centre and.L ;∧;∨;0;1/ is a bounded lattice.
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The best known examples ofl -algebras are bounded lattices,p-algebras,ortholat-
tices(bounded lattices together with the orthocomplementation operation) and Heyting
algebras. Implicative semilattices andp-semilattices(these are bounded semilattices
with pseudocomplementation) are examples for algebras with a strong centre which
are notl -algebras in general. (For details see [8].) Clearly, anyl -algebra is congruence
distributive and the factor congruences of anl -algebra and of its underlying latticeL
coincide. Thus anl -algebraL is directly indecomposable if and only if its underlying
lattice L is directly indecomposable. These facts together with Lemma2.3 lead us to
the following:

COROLLARY 2.5. LetL = .L ;∧;∨;0;1; F/ be anl -algebra. Then the following
assertions are satisfied:

.i/ L =∏
i ∈ I Li withLi = .Li ;∧;∨;0i ;1i ; F/ if and only if L = ∏

i ∈ I Li .
.ii/ L is a direct product of directly indecomposablel -algebras if and only ifL is

a direct product of directly indecomposable lattices.

A lattice L with 0 element is called apseudocomplemented latticeif for eachx ∈ L
there exists an elementx∗ ∈ L such that for anyy ∈ L, y ∧ x = 0 is equivalent
to y 5 x∗. If x∗ ∨ x∗∗ = 1 holds for allx ∈ L, then L is called aStone lattice.
In any Stone lattice the identity.x ∨ y/∗∗ = x∗∗ ∨ y∗∗ is also satisfied. A complete
distributive latticeL is calledcompletely Stoneif

(∨
i ∈ I xi

)∗∗ = ∨
i ∈ I x∗∗

i holds for
any xi , i ∈ I . If L is a bounded pseudocomplemented lattice, then.L ;∧;∨;0;1;∗ /
is called ap-algebra.

Now let A = ∏
i ∈ I A i be a direct product of algebrasA i ; i ∈ I and letxi ∈ Ai

denote thei -th coordinate of anx ∈ A. The identical and total relations onA (on Ai )
are denoted by4A, 5A (by 4i , 5i ), respectively. A congruence� ∈ ConA is called
theproduct of the congruences�i ∈ ConA i if

� = {
.a;b/ ∈ A2 | .ai ;bi / ∈ �i for eachi ∈ I

}
:

We write� = ∏
i ∈ I �i or � = �1 × · · · × �n (whenI = {1; : : : ;n}).

REMARK 2.6. .i/ Obviously, the relations i 5 �i , i ∈ I imply∏
i ∈ I

 i 5
∏
i ∈ I

�i ;

moreover
∏

i ∈ I �i = 4A exactly when�i = 4i for all i ∈ I .
.ii/ For any � = ∏

i ∈ I �i ∈ ConA and any = ∏
i ∈ I  i ∈ ConA we have

� ∧ = ∏
i ∈ I .�i ∧  i / and� ∨ 5∏

i ∈ I .�i ∨  i /.

Let ker³i denote the kernel congruence of the natural projection³i : ∏i ∈ I Ai → Ai ,
³i .xi / = xi (i ∈ I ). The proof of the following lemma is implicitly contained in [1,
Chapter IV, Section 11].



[5] The direct decomposition ofl -algebras 45

LEMMA 2.7. � is a product congruence of the algebraA = ∏
i ∈ I A i if and only if

� = ∧
i ∈ I .� ∨ ker³i /. In particular if A is congruence distributive andI is finite,

then any congruence onA is a product congruence.

3. Product decompositions of congruence distributive algebras

In this section we deal with congruence distributive algebras. We note that the
congruence lattice of such an algebraA is always pseudocomplemented. It is also
known that in this caseA = ∏n

i =1 A i implies ConA ∼= ∏n
i =1 ConA i . The main result

of the present section is the following:

THEOREM 3.1. LetA = ∏
i ∈ I A i be a congruence distributive algebra and assume

that all A i , i ∈ I are directly indecomposable. Then the following are equiva-
lent:

.i/ A enjoys property(PCC)andConA is a Stone lattice(an atomic Stone lattice).
.ii/ AnyAi is finitely subdirectly irreducible(subdirectly irreducible).

First we prove the following:

LEMMA 3.2. If A = ∏
i ∈ I A i is a congruence distributive algebra, then the follow-

ing statements are true:

.i/ For any� ∈ ConA, �∗ is a product congruence.
.ii/ If � = ∏

i ∈ I �i ∈ ConA with �i ∈ ConA i , then�∗ = ∏
i ∈ I �

∗
i .

.iii / For any congruence� ∈ ConA, � 6= 4A there exists a product congruence
' = ∏

i ∈ I 'i with 'i ∈ ConA i such that4A < ' 5 � .

PROOF. (i) Clearly,�∗ 5
∧

i ∈ I .�
∗ ∨ ker³i /. On the other hand, we have

� ∧
[∧

i ∈ I

.�∗ ∨ ker³i /

]
=
∧
i ∈ I

[� ∧ .�∗ ∨ ker³i /] =
∧
i ∈ I

.� ∧ ker³i /

5
∧
i ∈ I

ker³i = 4A;

whence
∧

i ∈ I .�
∗ ∨ ker³i / 5 �∗. Thus we get�∗ = ∧

i ∈ I .�
∗ ∨ ker³i / and in view of

Lemma2.7this means that�∗ is a product congruence.
(ii) We have

� ∧
(∏

i ∈ I

�∗
i

)
=
(∏

i ∈ I

�i

)
∧
(∏

i ∈ I

�∗
i

)
=
∏
i ∈ I

(
�i ∧ �∗

i

) =
∏
i ∈ I

4i = 4A;
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therefore
∏

i ∈ I �
∗
i 5 �∗. Further, in view of the above (i),�∗ is of the form�∗ = ∏

i ∈ I þi

with þi ∈ ConA i . Thus

∏
i ∈ I

.�i ∧ þi / =
(∏

i ∈ I

�i

)
∧
(∏

i ∈ I

þi

)
= � ∧ �∗ = 4A;

whence we get�i ∧ þi = 4i providing thatþi 5 �∗
i for all i ∈ I . Hence

�∗ =
∏
i ∈ I

þi 5
∏
i ∈ I

�∗
i :

Summarizing, we obtain�∗ = ∏
i ∈ I �

∗
i .

(iii) We have� 
 ker³i0 for somei0 ∈ I , otherwise we would get

� 5
∧
i ∈ I

ker³i = 4A;

a contradiction. Since
∧

i ∈ I \{i 0} ker³i is the complement of ker³i0 in ConA, we have
� ∧ (∧i ∈ I \{i 0} ker³i

) 6= 4A.
Set' = � ∧ (∧

i ∈ I \{i 0} ker³i

)
. Then4A < ' 5 � . We claim that' is a product

congruence.
Clearly, we have' ∨ ker³i = ker³i for all i ∈ I \ {i 0} and

' ∨ ker³i0 = .� ∨ ker³i0/ ∧
[( ∧

i ∈ I \{i 0}
ker³i

)
∨ ker³i0

]

= .� ∨ ker³i0/ ∧ ∇A = � ∨ ker³i0:

Now, we can write:∧
i ∈ I

.' ∨ ker³i / = (
' ∨ ker³i0

) ∧
( ∧

i ∈ I \{i 0}
.' ∨ ker³i /

)

= (
� ∨ ker³i0

) ∧
( ∧

i ∈ I \{i 0}
ker³i

)

=
[
� ∧

( ∧
i ∈ I \{i 0}

ker³i

)]
∨
(∧

i ∈ I

ker³i

)
= ' ∨ 4A = ':

In view of Lemma2.7' = ∏
i ∈ I 'i for some'i ∈ ConA i .

PROOF OFTHEOREM 3.1. (ii) implies (i). Let A = ∏
i ∈ I A i with all A i finitely

subdirectly irreducible. According to [8, Section 5, Corollary 2] ConA i and ConA
are Stone lattices. In order to prove thatA obeys property (PCC) take a complemented
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congruence� ∈ ConA. Then�∗ = � and.� /∗ = � . Now, in view of Lemma3.2 (i)
there exist�i ∈ ConA i , i ∈ I such that� = ∏

i ∈ I �i and Lemma3.2 (ii) gives
� = �∗ = ∏

i ∈ I �
∗
i and� = .�/∗ = ∏

i ∈ I �
∗∗
i . As �∗

i ∧ �∗∗
i = 4i and sinceA i is finitely

subdirectly irreducible, we get that either�∗
i = 4i and�∗∗

i = ∇i or �∗∗
i = 4i and

�∗
i = .�∗∗

i /
∗ = ∇i . TakeK = {i ∈ I | �∗

i = 4i }. ThenI \ K = {i ∈ I | �∗∗
i = 4i }

and we obtainA=� ∼= ∏
i ∈K A i andA=� ∼= ∏

i ∈ I \K A i .
Since

A =
∏
i ∈ I

A i
∼=
(∏

i ∈K

A i

)
×
(∏

i ∈ I \K

A i

)
∼= A=� × A=�

canonically,� and� form a factor congruence pair ofA, therefore they permute.
Finally, we show that whenever eachA i , i ∈ I is subdirectly irreducible, then ConA

is an atomic lattice. Take� ∈ ConA, � 6= 4A arbitrary. In view of Lemma3.2 (iii)
there is a product congruence' = ∏

i ∈ I 'i with 'i ∈ ConA i and4A < ' 5 � . Then
we have'i0 6= 4i0 for somei0 ∈ I . We define the congruenceÞ = ∏

i ∈ I Þi , where
Þi0 is the least nonzero element of ConA i0 andÞi = 4i for i 6= i 0. Clearly,Þ is an
atom of ConA satisfyingÞ 5 ' 5 � . Thus ConA is an atomic lattice.

(i) implies (ii). First we prove that for anyi ∈ I , ConA i is an (atomic) Stone lattice
andA i enjoys property (PCC).

For every i ∈ I , take Bi = ∏
k∈ I \{i } Ak. Then A ∼= Bi × A i and ConA ∼=

ConBi × ConA i . Now ConA i as a direct factor of the (atomic) Stone lattice ConA
is also an (atomic) Stone lattice.

Now we prove thatA i enjoys (PCC). Take a complementedÞ ∈ ConA i . Let Bi

denote the same algebra as above. We getA ∼= Bi × A i . Let us consider the product
congruences' = ∇Bi

× Þ, ' = 4Bi
× Þ. Clearly,' and' are complemented and by

hypothesis' ◦ ' = ' ◦ '. Therefore,Þ ◦ Þ = Þ ◦ Þ.
Further, observe that in order to prove thatA i is finitely subdirectly irreducible,

it is enough to show that4i is a meet-irreducible element of ConA i . Assume that
there are'; � ∈ ConA i such that' 6= 4i , � 6= 4i and' ∧ � = 4i . Then we
have�∗ 6= 5i and �∗ ≥ ' > 4i . The latter relation implies�∗∗ 6= 5i and we
also have�∗∗ ≥ � > 4i . Thus we get�∗; �∗∗ =∈ {4i ;5i }. Since ConA i is a Stone
lattice, we get that�∗ and�∗∗ are complements of each other. AsA i obeys (PCC),
�∗ and �∗∗ permute. Thus they form a factor congruence pair ofA i , so we have
A i

∼= A i=�
∗ × A i=�

∗∗. Since none of these two factor algebras are trivial, we get
that A i is directly decomposable, a contradiction. Therefore4i is meet-irreducible,
providing thatA i is finitely subdirectly irreducible.

Assume now that ConA is an atomic lattice, then ConA i is also atomic (as we
have already seen), and letÞ be an atom of it. Since4i is meet-irreducible, we
have � ∧ Þ = Þ for all � ∈ ConAi \ {4i }, whence we get thatÞ 5 � for all
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� ∈ ConA i , � 6= 4i . Thus any algebraA i is subdirectly irreducible, and the proof is
completed.

Since any algebra with a finite congruence lattice is a direct product of directly
indecomposable algebras, the following corollary of Theorem3.1 is immediate.

COROLLARY 3.3. A congruence distributive algebraA with finiteConA is a direct
product of subdirectly irreducible algebras if and only ifA enjoys(PCC)andConA
is a Stone lattice.

The following consequence of Theorem3.1can be considered as a completion of
[8, Theorem 1.2].

PROPOSITION3.4. LetA be a congruence distributive algebra with a strong centre.
Then the following assertions are equivalent:

.i/ A enjoys(PCC)andConA is a completely Stonean(atomic) lattice.
.ii/ A is a finite direct product of finitely subdirectly irreducible(subdirectly irre-

ducible) algebras.

PROOF. Applying Theorem1.2we get that (i) implies (ii).
Now we prove that (ii) implies (i). In view of Theorem3.1 the assumption of (ii)

implies thatA obeys property (PCC) (and ConA is a Stone lattice). Applying again
Theorem1.2we get that ConA is a completely Stonean (atomic) lattice.

An other remarkable result of [8] is the following (see [8, Theorem 6 (iii)]): ‘LetA
be a congruence distributive algebra with a strong centre and letA enjoy the property
(PCC). ThenConA is a Boolean lattice if and only ifA is a finite direct product of
simple algebras.’

By using this result and Theorem3.1we prove:

PROPOSITION3.5. LetA be a congruence distributive algebra with a strong centre.
ThenA is a finite direct product of simple algebras if and only ifA is congruence
permutable andConA is a Boolean lattice.

PROOF. In view of the above cited theorem of [8] our proof is quite similar to
the proof of Proposition3.4. In addition we have only to prove that a congruence
distributive algebraA = ∏n

i =1 A i with all A i simple is congruence permutable. Since
now any� ∈ ConA is of the form� = ∏n

i =1 �i ∈ ConA with �i ∈ {4i ;∇i }, this
assertion is obvious.

REMARK 3.6. As any l -algebra is congruence distributive with a strong centre,
Propositions3.4 and3.5 also apply to the case ofl -algebras. We note that Proposi-
tion 3.5generalizes Dilworth’s result from [2].
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An elementp ∈ L\{0}of a (complete) latticeL is calledcompletely join-irreducible
if for any system of elementsxi ∈ L, i ∈ I the equalityp = ∨{xi | i ∈ I } implies p =
xi0 for somei0 ∈ I . If any nonzero element ofL is a join of completely join-irreducible
elements, thenL is called aCJ-generated lattice. In view of Libkin’s result [9], any
CJ-generated algebraic lattice is a direct product of directly indecomposable lattices.
Therefore, by applying Theorem3.1we can add to Theorem1.1the following:

COROLLARY 3.7. Let L be a CJ-generated algebraic lattice. ThenL is a direct
product of finitely subdirectly irreducible lattices if and only ifL enjoys property
(PCC)andConL is a Stone lattice.

4. Lattices which are direct products of directly indecomposable lattices

The difficulty to apply Theorem3.1to obtain product decompositions ofl -algebras
(where the decomposition may contain an infinite number of factors) is that we do
not even know under what conditions an arbitraryl -algebra can be written as a direct
product of directly indecomposablel -algebras. In view of Corollary2.5 such a
direct decomposition of anl -algebra exists if and only if the underlying lattice is a
direct product of directly indecomposable lattices. Therefore in this section we shall
establish a necessary and sufficient condition (Theorem4.2) for the existence of the
above mentioned direct decomposition of bounded lattices.

The following notion will play an important role in our investigation.

DEFINITION 4.1. A bounded latticeL is calledweakly central-completeif for any set
{ak ∈ Cen.L/ | k ∈ K } of distinct atoms of Cen.L/ and for any set{xk ∈ L | xk 5 ak;

k ∈ K } of elements the join
∨

k∈K xk exists inL.

Obviously, any complete lattice and any bounded lattice whose center contains a
finite number of atoms is weakly central-complete. The following theorem clarifies
the role of the above notion.

THEOREM 4.2. Let L be a bounded nontrivial lattice. Then the following assertions
are equivalent:

.i/ L ∼= ∏
i ∈ I Li with directly indecomposable(nontrivial) Li ’s.

.ii/ Cen.L/ is an atomic lattice,L is weakly central-complete and for any set of
elementscj ∈ Cen.L/, j ∈ J there is au ∈ Cen.L/ such that

∧
j ∈J �cj

= �u.

PROOF. (i) implies (ii). Clearly, we can restrict our consideration to the case
L = ∏

i ∈ I Li . For eachM j I we define the elementscM ∈ ∏
i ∈ I Li by .cM/i = 1i

for all i ∈ M , otherwise.cM/i = 0i . It can be easily seen thatcM ∈ Cen.L/ and



50 Śandor Radeleczki [10]

Li
∼= .c{i }], providing that every sublattice.c{i }] is directly indecomposable (see also

Lemma2.3). It is also easy to see that anyc{i } is an atom of Cen.L/. (Indeed, if an
elementc ∈ Cen.L/ with 0 < c < c{i } would exist, thenc andc ∧ c{i } would form a
complemented pair of central elements of the sublattice.c{i }].)

Take anya ∈ Cen.L/, a 6= 0. We claim thata = cM for someM j I . As c{i } is
an atom of Cen.L/ anda ∧ c{i } ∈ Cen.L/, we get for eachi ∈ I eithera ∧ c{i } = 0 or
a ∧ c{i } = c{i }, that is,ai = 0i or ai = 1i . Thena = cM , whereM = {i ∈ I | ai = 1}.
Since any nonzero element of Cen.L/ is of the formcM with M 6= ∅ andc{i0} 5 cM

for any i0 ∈ M , we deduce that{c{i } | i ∈ I } is the set of all atoms of Cen.L/ and
Cen.L/ is atomic.

Now take the elementscj ∈ Cen.L/, j ∈ J; thencj = cM j for someM j j I .
It is easy to check that�cM = {.x; y/ ∈ L2 | .x ∨ y/i = .x ∧ y/i for all i =∈ M}.
In consequence�cM = {.x; y/ ∈ L2 | xi = yi for all i =∈ M}. We claim that∧

j ∈J �cj
= �u, whereu = c

⋂
j∈J M j . Indeed,∧

j ∈J

�cj
=
⋂
j ∈J

{.x; y/ ∈ L2 | xi = yi for each i ∈ I \ M j }

=
{
.x; y/ ∈ L2

∣∣∣∣ xi = yi for all i ∈
⋃
j ∈J

.I \ Mj /

}

=
{
.x; y/ ∈ L2

∣∣∣∣ xi = yi for all i ∈ I \
(⋂

j ∈J

M j

)}
= �u:

Finally, a nonempty set of distinct atoms of Cen.L/ can be written asA = {c{k} | k∈K },
where∅ 6= K j I . Take any set{xk ∈ L | k ∈ K } with xk 5 c{k}. Now we have:

.xk/k 5 1k and .xk/i 5 .c{k}/i = 0i for all i 6= k:(∗)

Define x5 ∈ L as follows: .x5/i = 0i for all i ∈ I \ K and .x5/i = .xi /i for
all i ∈ K . Then, in view of (∗), we have.xk/i 5 .x5/i for all i ∈ I and this gives
xk 5 x5 for all k ∈ K . Let y ∈ L be an arbitrary upper bound of{xk | k ∈ K }. Then
.xk/i 5 yi for all i ∈ I andk ∈ K , whence we get.xk/k 5 yk for all k ∈ K . Now
we havex5 5 y, by the definition ofx5. Thereforex5 is the least upper bound of
{xk ∈ L | k ∈ K } in L, that is,x5 = ∨

k∈K xk. ThusL is weakly central-complete.
(ii) implies (i). First we show that Cen.L/ is a complete sublattice ofL. Take

ck ∈ Cen.L/, k ∈ K ; then, by our assumption,
∧

k∈K �ck
= �u for someu ∈ Cen.L/.

Since�u 5 �ck
implies u 5 ck, k ∈ K , we get thatu is a lower bound of the set

{ck | k ∈ K }. On the other hand, for any lower boundl ∈ L of {ck | k ∈ K } we
have.0; l / ∈ �ck

, k ∈ K . Thus.0; l / ∈ ∧k∈K �ck
= �u, whence we getl 5 u proving

u = ∧
k∈K ck. Therefore

∧
k∈K ck exists inL and

∧
k∈K ck = u ∈ Cen.L/, moreover

we obtained that
∧

k∈K �ck
= �∧

k∈K ck
.
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Now takev = ∧
k∈K ck. Thenv ∈ Cen.L/ and sov = ck, k ∈ K , thusv is

a upper bound for{ck | k ∈ K }. Let a ∈ L with a = ck, k ∈ K , then we have
.a;1/ ∈ ∧

k∈K �ck
= �v, according to the definition of congruences�ck

. So we get
a ∨ v = 1, implying v = .a ∨ v/ ∧ v = a ∧ v. Hencev 5 a. Therefore

∨
k∈K ck

exists inL and
∨

k∈K ck = v ∈ Cen.L/.
Since Cen.L/ is an atomic complete Boolean lattice, it is atomistic and infinitely

distributive too. (Even more it is completely distributive.) Let{ai | i ∈ I } be the set
of all atoms of Cen.L/. Then

∨
i ∈ I ai = 1 and we prove thatL ∼= ∏

i ∈ I .ak].
Let us define the mapf : L → ∏

i ∈ I .ai ], by setting. f .x//i = x ∧ ai , i ∈ I for all
x ∈ L (wherexi stands for thei -th coordinate of anx ∈ ∏

i ∈ I .ai ]). It is not hard to
check thatf is a homomorphism.

In order to prove thatf is one to one takex; y ∈ L with f .x/ = f .y/; then
x ∧ ai = y ∧ ai implies.x; y/ ∈ �ai for all i ∈ I . Hence.x; y/ ∈ ∧i ∈ I �ai = �∧

i∈ I ai .
Since Cen.L/ is an infinitely distributive Boolean lattice

∧
i ∈ I ai ∈ Cen.L/ is the

complement of
∨

i ∈ I ai = 1. Thus we have
∧

i ∈ I ai = 0, and this implies.x; y/ ∈
�0 = 4L . Hence we getx = y.

To prove thatf is onto, take ay = .yi /i ∈ I ∈ ∏
i ∈ I .ai ]. Sinceyi 5 ai , i ∈ I and

sinceL is weakly central-complete, the joinz = ∨
i ∈ I yi exists inL. We claim that

f .z/ = y.
Indeed, we haveyk 5

(∨
i ∈ I yi

) ∧ ak = z ∧ ak for all k ∈ I . On the other hand we
can write:

z∧ak =
(∨

i ∈ I

yi

)
∧ak5

[
yk ∨

( ∨
i ∈ I \{k}

ai

)]
∧ ak = .yk ∧ ak/∨

[( ∨
i ∈ I \{k}

ai

)
∧ ak

]
:

Since Cen.L/ is infinitely distributive, we have( ∨
i ∈ I \{k}

ai

)
∧ ak =

∨
i ∈ I \{k}

.ai ∧ ak/ = 0:

Now yk 5 ak implies thatz∧ ak 5 yk. Thusz∧ ak = yk for all k ∈ I , whence we get
f .z/ = .z ∧ ak/k∈ I = .yk/k∈ I = y, providing that f is onto. Hence the mapf is an
isomorphism and this completes the proof.

5. The proof of main theorem

To present the proof of Theorem1.3we need some essential remarks on the Boolean
part of a pseudocomplemented lattice.

If L is a pseudocomplemented lattice, then the set{x ∈ L | x∗∗ = x} is called
the Boolean partof L and it is denoted by B.L/. Since the identity

∧
i ∈ I x∗∗

i =
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i ∈ I x∗∗

i

)∗∗
is satisfied in any complete pseudocomplemented lattice, B.L/ is a

complete∧-subsemilattice of any completeL. If L is a Stone lattice, then B.L/ is a
Boolean sublattice ofL (see [4]). (We note that B.L/ is not necessarily a complete
sublattice ofL ; since forxi ∈ B.L/, i ∈ I the relation

∨
i ∈ I xi ∈ B.L/ is not true in

general.) Now we formulate:

LEMMA 5.1. LetA be a congruence distributive algebra, then

.i/ If ConA is an atomic lattice, thenB.ConA/ is also atomic.
.ii/ If A enjoys property(PCC) and ConA is a Stone lattice, thenB.ConA/

coincides with the set of all factor congruences ofA.

PROOF. (i) Let � ∈ ConA be an atom. We claim that�∗∗ is an atom of B.ConA/.
Really, letÞ < þ = þ∗∗ 5 �∗∗ andÞ is an atom of B.ConA/, Þ 6= � implies
Þ ∧ � = 4. Therefore,4 = 4∗∗ = .Þ ∧ �/∗∗ = Þ∗∗ ∧ �∗∗ = Þ∗∗, a contradiction.
Now Þ = � and it followsþ∗∗ = �∗∗, proving that�∗∗ is an atom of B.ConA/.

Now, take any' ∈ B.ConA/. As ConA is atomic, there exists an atom� ∈ ConA
such that� 5 ', whence we get�∗∗ 5 '∗∗ = '.

(ii) Since ConA is a pseudocomplemented distributive lattice, for any factor con-

gruence� ∈ ConA we have�∗ = � and.�/∗ = .�/ = � , that is�∗∗ = � . Hence
� ∈ B.ConA/.

Conversely, take any� ∈ B.ConA/. As ConA is a Stone lattice and� = �∗∗,
we can write:� ∨ �∗ = �∗∗ ∨ �∗ = ∇, therefore� and�∗are the complements of
each other. Now property (PCC) implies� ◦ �∗ = �∗ ◦ � , providing that� is a factor
congruence ofA.

We note that the above result (ii) is contained in [8] in an implicit form.

PROOF OFTHEOREM 1.3. Let L = .L ;∧;∨;0;1; F/ be anl -algebra such that
L = ∏

i ∈ I Li with Li = .Li ;∧;∨;0;1; F/, allLi , i ∈ I being finitely subdirectly
irreducible. Since finitely subdirectly irreducible algebras are directly indecomposable
and anyl -algebra is congruence distributive, we can apply Theorem3.1and this gives
thatL enjoys property (PCC) and ConL is a Stone lattice. Moreover, if allLi

are subdirectly irreducible then Theorem3.1gives in addition that ConL is atomic.
By Corollary 2.5 we haveL = ∏

i ∈ I Li with directly indecomposableLi ’s. Now
Theorem4.2implies thatL is a weakly central-complete lattice with an atomic center.
Thus we have verified the ‘only if’ part for both of assertions (1) and (2).

Now we prove the converse implications.
Let L = .L ;∧;∨;0;1; F/ be anl -algebra satisfying property (PCC) and such

that L is weakly central-complete and ConL is a Stone lattice. Takecj ∈ Cen.L/,
j ∈ J; then the congruences�cj

, j ∈ J are factor congruences ofL and thereby of
the whole algebraL . Thus, in view of Lemma5.1 (ii), we have�cj

∈ B.ConL /
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for all j ∈ J. Since B.ConL / is a complete∧-subsemilattice of ConL , we get∧
j ∈J �cj

∈ B.ConL /. Using Lemma5.1 (ii) again we obtain that
∧

j ∈J �cj
is a

factor congruence of the algebraL , and so it is a factor congruence of the latticeL.
Therefore, there is an elementu ∈ Cen.L/ such that∧

j ∈J

�cj
= �u:(∗∗)

Let us observe also, that the map : � 7→ �c in this case is a Cen.L/ → B.ConL /
isomorphism. Indeed, in view of Remark2.2 and Corollary2.5  is an injective
homomorphism and the above argument gives that any� ∈ B.ConL / is of the form
� = �c, c ∈ Cen.L/, that is, is onto.

Case (1). Since Cen.L/ is atomic andL is weakly central-complete and sat-
isfies (∗∗), Theorem4.2 implies that L ∼= ∏

i ∈ I Li with all Li , i ∈ I directly
indecomposable. Therefore, Corollary2.5 gives thatL ∼= ∏

i ∈ I Li , where all
Li = .Li ;∧;∨;0i ;1i ; F/ are directly indecomposablel -algebras. Since the algebra∏

i ∈ I Li enjoys (PCC) and its congruence lattice is Stonean, applying Theorem3.1we
get that allLi , i ∈ I are finitely subdirectly irreducible, completing the proof of (1).

Case (2). NowL is weakly central-complete and ConL is atomic, moreover we
alreadyhave shown thatL satisfies the property (∗∗). Further, in view of Lemma5.1(i)
the lattice B.ConL / is atomic. As we have already seen that Cen.L/ ∼= B.ConL /,
we obtain that Cen.L/ is also atomic.

Using the facts that Cen.L/ is atomic andL is weakly central-complete and thatL
satisfies (∗∗) we can repeat the argument in the ‘if’ part of the proof of assertion (1)
providing thatL is a direct product of directly indecomposablel -algebras. Since
L obeys (PCC) and ConL is an atomic Stone lattice, Theorem3.1 implies that the
above direct factors ofL are subdirectly irreduciblel -algebras. This completes the
proof.

REMARK 5.2. .i/ Applying Proposition3.4to l -algebras we get that the product
decomposition given by Theorem1.3consists of finite factors if and only ifL admits
(PCC) and ConL is completely Stonean (and atomic in case (2)).
.ii/ We note that in [8] it is also proved (see [8, Theorem 6 (i)]) that Cen.L / is

finite wheneverL obeys (PCC) and ConL is completely Stonean. Since Cen.L/ =
Cen.L /, in this case Cen.L/ is atomic andL is weakly central-complete.

6. Applications to certain classes ofl-algebras and lattices

In [8] it was established that double p-algebras, ortholattices and Heyting algebras
enjoy property (PCC). (Adouble p-algebrais an l -algebra.L ;∧;∨;∗ ;+ /, where
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.L ;∧;∨;∗ / is a p-algebra and.L ;∨;∧;+ / is a dual p-algebra.) Combining the
above observations and Theorem1.3we obtain

COROLLARY 6.1. LetL be any doublep-algebra(ortholattice, Heyting algebra).
Then the following are equivalent:

.i/ ConL is Stonean, the underlying latticeL is weakly-central complete and
Cen.L/ (ConL) is atomic.
.ii/ L is a direct product of finitely subdirectly irreducible (subdirectly irreducible)

algebras.

Since any bounded lattice is anl -algebra, Theorem3.1 also can be applied to
bounded lattices. In [11] the present author proved the equivalence of the following
conditions:

.i/ L enjoys property (PCC) and ConL is a Stone lattice,
.ii/ For any� ∈ ConL, there exists ac ∈ Cen.L/ such that�∗ = �c.

Thus we obtain the following

COROLLARY 6.2. Let L be a bounded lattice. Then the following assertions are
equivalent:

.i/ L is a direct product of finitely subdirectly irreducible(subdirectly irreducible)
lattices.
.ii/ L is weakly central-complete, enjoys property(PCC), ConL is a Stone lattice

andCen.L/ (ConL) is atomic.
.iii / L is weakly central-complete, for any� ∈ ConL there is ac ∈ Cen.L/ such

that �∗ = �c andCen.L/ (ConL) is atomic.

COROLLARY 6.3. A Boolean latticeL is isomorphic to a power set latticeP.I / if
and only ifConL is an atomic Stone lattice.

PROOF. Obviously, any Boolean lattice obeys (PCC) and by [3] ConL is a Stone
lattice if and only if L is complete. (See also [6] and [7].) Since a subdirectly
irreducible Boolean lattice is isomorphic to2 (the two element chain),L is a direct
product of subdirectly irreducible lattices exactly whenL ∼= 2I for someI 6= ∅. As
2I ∼=P.I /, our result can be derived from Corollary6.2.

7. Applications to certain classes of complete lattices

In [6] Janowitz proved that any complemented lattice enjoys property (PCC) and
exhibited several classes of lattices with Stonean congruence lattice. Here we mention
some examples:
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– uniquely complemented complete lattices,
– weakly modular sectionally complemented complete lattices.

Since any complete lattice is bounded and weakly central-complete, Corollary6.2
implies

COROLLARY 7.1. Let L be a lattice from one of the above classes. ThenL is a
direct product of finitely subdirectly irreducible(subdirectly irreducible) lattices if
and only ifCen.L/ (ConL) is atomic.

A lattice L with 0 is calledsection semicomplemented(SeSC) if for everya;b ∈ L ;
a < b there is an element 0< u 5 b such thata ∧ u = 0. L is dually section
complemented(DSeSC) if its dualL.d/ is section semicomplemented (see [10]). If L
is a complete lattice then for any' ∈ ConL we definew.'/ ∈ L as thesupremum
of its kernel: w.'/ = ∨{x ∈ L | .0; x/ ∈ '}. Janowitz proved that wheneverL
is both SeSC and DSeSC then we havew.'/ ∈ Cen.L/ for any' ∈ ConL (see [5,
Theorem 4.17 (ii)]). He also proved that the congruence lattice of a lattice which is
both SeSC and DSeSC is a Stone lattice. Now we can proceed further:

PROPOSITION7.2. LetL be a complete lattice which is both SeSC and DSeSC. Then
L is a direct product of finitely subdirectly irreducible(subdirectly irreducible) lattices
if and only ifCen.L/ (ConL) is atomic.

PROOF. Take any' ∈ ConL. We only have to prove'∗ = �w.'∗/, and then the
statement of the proposition follows by applying Corollary6.2.

Let us show first that'∗ 5 �w.'∗/. Clearly, �w.'∗/ ∨ �w.'∗/ = ∇L . As we have
'∗ = .'∗ ∧ �w.'∗// ∨ .'∗ ∧ �w.'∗//, the relation'∗ ∧ �w.'∗/ = 1L implies'∗ 5 �w.'∗/.
Thus it is sufficient to verify that'∗ ∧ �w.'∗/ = 1L .

Contrary, suppose that there exista;b ∈ L, a < b such that.a;b/ ∈ '∗ ∧ �w.'∗/.
SinceL is section semicomplemented, there is au ∈ L, 0< u 5 b such thata∧u = 0.
Then.0;u/ ∈ '∗ ∧ �w.'∗/, so we get.0;u/ ∈ '∗ andu 5 w.'∗/. Now .0;u/ ∈ '∗

givesu 5 w.'∗/, whence we obtain thatu 5 w.'∗/ ∧ w.'∗/ = 0, a contradiction.
Further, we have to show that�w.'∗/ 5 '∗. If it is not the case, then there existc;d ∈

L, c < d such that.c;d/ ∈ �w.'∗/ ∧ '. As L is dually section semicomplemented,
there is av ∈ L, c 5 v < 1 such thatd ∨ v = 1. Then.v;1/ ∈ �w.'∗/ ∧ ' and
this means thatv ∨ w.'∗/ = 1 and.v;1/ ∈ '. Observe, that for everyx ∈ L with
.0; x/ ∈ '∗ we have now.v ∧ x; x/ ∈ ' ∧ '∗ = 4L , whence we get thatx = v ∧ x,
that is,x 5 v. Therefore we obtainw.'∗/ 5 v, implying thatv ∨ w.�∗/ = v 6= 1, a
contradiction.

Hence we conclude that'∗ = �w.'∗/, and this completes the proof.
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