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Abstract

Generalizing earlier results of Katék, El-Assar and the present author we prove new structure theorems
for l-algebras. We obtain necessary and sufficient conditions for the decomposition of an arbitrary
bounded lattice into a direct product of (finitely) subdirectly irreducible lattices.
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1. Introduction

It is well known that geometric lattices are direct products of subdirectly irreducible
geometric lattices. This result naturally involves the question: ‘Under what conditions
a latticeL can be decomposed into a direct product of subdirectly irreducible lattices?’
In [11] the author of this paper proved:

THEOREM1.1. LetL be a CJ-generated algebraic lattice. Then the following are
equivalent

(i) L isadirect product of subdirectly irreducible lattices.
(i) L enjoys propertfPCC)andConL is an atomic Stone lattice.

We say that a congruence distributive algeBraenjoys propertyPCC), if any
complemented congruenceAfpermutes with its complement.

Katrindk and El-Assar investigated a similar problesh for congruence distribu-
tive algebras. One of their important results is the following:
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THEOREM 1.2 ([8, Theorem 11 (iii)]).Let A be a congruence distributive algebra
with a strong centre and enjoying propef®CC) ThenConA is (atomic and com-
pletely Stonean if and only A is a finite direct product of finitely subdirectly irre-
ducible(subdirectly irreduciblg algebras.

In [8] they applied their results to the class of so callealgebras (see Defini-
tion 2.4 (iii)) too.

Comparing the above two results, it seems that Thedréman be valid in a more
general context. Our main result can be considered as a common generalization o
Theoreml.1land Theoreni.2for |-algebras. This is the following:

THEOREM1.3. Let.# be anl-algebra. Then

(1) s adirect product of finitely subdirectly irreduciblealgebras if and only if
Z enjoys propertyPCC) Con.Z is a Stone lattice and the underlying lattiteis
weakly central-complete with an atomic center.

(2) .2 is a direct product of subdirectly irreduciblealgebras if and only it
enjoys propertyPCC) Con.Z is an atomic Stone lattice and the underlying lattice
is weakly central-complete.

Since any bounded lattice is a particulalgebra, Theorer@.1can be also applied
to bounded lattices.

The proof of this theorem can be found in Secti®n The preliminary notions
and some technical results are contained in Se@iorin Section3 we deal with
product decompositions of congruence distributive algebras. The principal result of
this section is Theorerf.1, which will prove a useful tool in our development. In
Section4 we prove a necessary and sufficient condition for the decomposition of an
arbitrary bounded lattice into a direct product of directly indecomposable lattices. In
Sectionss and7 we apply Theoremni.3to certain classes dfalgebras and complete
lattices.

2. Preliminaries

Let 0 and 1 stand for the least and the greatest element of a boundedllatiite
principal ideal and the principal filter generated byxaa L will be denoted by(x]
and[x), respectively. A bounded lattide is calledatomicif forany x € L, x # 0
the interval[0, x] contains at least one atom bf

DEFINITION 2.1. Let L be a bounded lattice. An elememt L is calleda central
element ofL if a is complemented and for al, y € L the sublattice generated by
{a, X, y} is distributive.
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The central elements of a (bounded) latticeform a Boolean sublattice of
denoted by CeflL). A complement of an elemeate L (if it exists) is denoted bg.
For anyc € CenL), we define the relation

6. ={(X,y) | Xxvy=(XAYy)Vva, forsomea <c}.
Itis easy to check that is a congruence df and that
X,y) €6, ifandonlyif X AT=yAT.

RemMARK 2.2. The following simple observations can be found, for instancel]in [

(i) For anyc,, ¢, € CenL), we haved,, ., = 05,V 6, andb;, .., = O, A O,. If
¢ < ¢, thend,, < 6,,, andf,, = 6, impliesc; = c,.

(i) For anyc € Cenl), 6. andé: form a factor congruence pair df and
conversely, ifo; and 6, are factor congruences of a bounded latticethat is,
L = L/6; x L/6,, then there exists a € CenL) such thaty, = 6., 6, = 6.
MoreoverL /6 = (c].

The following assertion can be easily proved.

LEMMA 2.3. Inany bounded latticé = [
i €1 suchthatl /6 = L;.

L; there exist elements € Cen(L),

iel

Let (S, A, 0, 1) denote a bounded meet-semilattice. Then to every eleaneng
we assign a congruengg as follows:

va={(X,y) e | xAa=yAal.

Let Z(S) stand for the lattice of all filters &. An elementa € Sis calledcentral
if [a) is a central element of7 (S). Cen(S) is our notation for the set of central
element ofS. If (S, A, V, 0, 1) is bounded lattice, then it is easy to check that the
central elements of the semilattic® (A, O, 1) and of the latticéS, A, Vv, 0, 1) are the
same. Now we have, = 6; for all c € Cen(S).

DEFINITION 2.4. Let (S, A, 0, 1) be a bounded meet-semilattice.

(i) We say that am-ary operationf : S* — Sis centre-preservingf for every
cecCensS), (X, ¥) €p,i=1....,n implies(f(Xs,..., X, f(Y1,..., V) € ¢c.
(i) An algebra(S, A, 0,1, F), whereF is a set of operations defined @) is
called amalgebra with a strong centrié every f € F is centre-preserving.
(i) (L, A,Vv,0,1, F) is called arl-algebraif (L, A, 0, 1, F) is an algebra with a
strong centre andL_, A, Vv, 0, 1) is a bounded lattice.
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The best known examples bilgebras are bounded latticgsalgebrasortholat-
tices(bounded lattices together with the orthocomplementation operation) and Heyting
algebras. Implicative semilattices apesemilatticegthese are bounded semilattices
with pseudocomplementation) are examples for algebras with a strong centre which
are not-algebrasin general. (For details s8E)[ Clearly, anyl-algebrais congruence
distributive and the factor congruences ofl aadgebra and of its underlying lattide
coincide. Thus ah-algebra? is directly indecomposable if and only if its underlying
lattice L is directly indecomposable. These facts together with Leraragead us to
the following:

COROLLARY 2.5. Let.Z = (L, A, Vv, 0, 1, F) be anl-algebra. Then the following
assertions are satisfied

(i) Z =]l &withZ =(i,A,Vv,0,L, F)ifandonly ifL =[], L;.

(i) Zisadirect product of directly indecomposalitalgebras if and only it is
a direct product of directly indecomposable lattices.

A lattice L with O element is called pseudocomplemented lattiééor eachx € L
there exists an elemert € L such that for anyy € L, y A X = 0 is equivalent
toy < x*. If x* vx* = 1 holds for allx € L, thenL is called aStone lattice
In any Stone lattice the identitgx v y)** = x** v y** is also satisfied. A complete
distributive latticeL is calledcompletely Stoné (\/;., %)™ = V., x** holds for
anyx,i € |. If L is a bounded pseudocomplemented lattice, tiem, v, 0, 1,*)
is called ap-algebra

Now let A = [];., Ai be a direct product of algebrdg, i € | and letx; € A
denote the-th coordinate of a € A. The identical and total relations dk(on A))
are denoted by 5, va (by A, v;), respectively. A congrueneee ConA is called
theproduct of the congruenc@s e ConA, if

6 ={(@b)e A|(a,b) co foreachi el}.

We writef = []._, 6, 0r0 = 6; x --- x 6, (whenl = {1,...,n}).

iel
REMARK 2.6. (i) Obviously, the relationg; < 6,,i € | imply
1_[1/fi < l_[ei,
iel iel
moreover] [,_, 6 = A exactly wherg, = A, foralli € |.
(i) For anyd = [],.,6 € ConA and anyy = [],_, ¢¥i € ConA we have
ONY =Tlic, @ Ayp)andd vy < TTig, 6 Vv ).
Letkerr; denote the kernel congruence ofthe natural projeetiof [, _,, A — A,

m (%) =X (i €1). The proof of the following lemma is implicitly contained i, [
Chapter 1V, Section 11].
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LEMMA 2.7. 6 is a product congruence of the algebta= [];_, A if and only if
0 = A\, (0 Vv kerm). In particular if A is congruence distributive anlis finite,
then any congruence dhis a product congruence.

3. Product decompositions of congruence distributive algebras

In this section we deal with congruence distributive algebras. We note that the
congruence lattice of such an algeds always pseudocomplemented. It is also
known that in this casA = []_, A; implies CorA = []"_, ConA;. The main result
of the present section is the following:

THEOREM3.1. LetA = [];., A be a congruence distributive algebra and assume
that all A;, i € | are directly indecomposable. Then the following are equiva-
lent

(i) A enjoys propertyPCC)andConA is a Stone latticéan atomic Stone lattige
(i) AnyA, is finitely subdirectly irreduciblésubdirectly irreduciblé.

First we prove the following:

LEMMA 3.2. If A =],

i| Ai is a congruence distributive algebra, then the follow-
ing statements are true

(i) Forany@ € ConA, 6* is a product congruence.
(i) 1f6 =[], 6 € ConAwithg, € ConA,, theno* =[], 6.
(i) For any congruencé@ € ConA, 6 # A, there exists a product congruence
¢ = [1i., v withg, € ConA suchthatA, < ¢ < 6.
PrROOF. (i) Clearly,0* < A,

iel

(6* v kerm;). On the other hand, we have

0N |:/\(9* Y kerm)} = /\[9 A (0* v kerm)] = /\(9 A kerm)
iel iel iel
< /\kerm = Ay,

iel

whence/\,_, (6* v kerm;) < 6*. Thus we geb* = A, (6* v kerx;) and in view of
Lemmaz2.7this means thai* is a product congruence.
(i) We have

oA (H@ﬁ) = (]_[ei> A (H@ﬁ) =[]@ ror)=]]a =2a

iel iel iel iel iel
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therefore[ |, _, 67 < 6*. Further, inview of the above (i9;" is of the formo* = []._, B

el Vi =

with 8; € ConA;. Thus

[[@AB)= (]_[ei> A (H,Bi) =0 AO* = Ap,

iel iel iel
whence we gefli A B; = A; providing thatg, < 6* foralli € I. Hence
o =T]s<]eo
iel iel

Summarizing, we obtai* = [, _, 6.
(iii) We haved £ kerm;, for somei, € |, otherwise we would get

0 g /\kerm = Ap,
iel
a contradiction. Sincé\; .,
0 A (A Kerm) # A
Setp =0 A (/\ )kerm). ThenAa < ¢ < 6. We claim thaty is a product
congruence.
Clearly, we havey v kerm; = kers; foralli e | \ {ip} and

@ Vv kerm, = (0 v kerm)) A |:( /\ kerm) \Y, kermo]

iel\{io}

) kerm; is the complement of ker;, in ConA, we have

iel\{io

= (0 v kerm,) A Vo= 0V kerm,.
Now, we can write:

/\ (p v kerm) = (¢ v kerm,) A ( /\ (¢ Vv kerr; ))

iel iel\{io}

= (6 v kerm,)) A ( A\ kerm>

iel\{io}

= [9 A (./}, kerm>} v (ﬁkerni) =pVAs=09.

In view of Lemma2.7 ¢ =[], ¢ for somey; € ConA,. O

PROOF OFTHEOREM 3.1 (i) implies (i). Let A = [],_, Ai with all A; finitely
subdirectly irreducible. According t@] Section 5, Corollary 2] CoA; and ComA
are Stone lattices. In order to prove thavbeys property (PCC) take a complemented
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congruencé € ConA. Thend* = 6 and(6)* = 6. Now, in view of Lemma3.2 (i)
there existd, € ConA;, i € | such thatd = [],_, 6 and Lemma3.2 (ii) gives
0 =0"=T] 6 andd = (0)" =[], 6. AsO* A6 = A; and sinceA; is finitely
subdirectly irreducible, we get that eithér = A; and6™ = V; or 6™ = A; and
6 = () =V, TakeK = {i e | |6* = A;}. Thenl \K ={i e | | 6> = A}
and we obtaiiA /0 = [ A andA/0 =[]« Ai.

Since

ieK iel\K

A=]]A = <l_[Ai) x (]‘[ Ai> = A/0 x AJ6

iel ieK iel\K

canonicallyp andd form a factor congruence pair &, therefore they permute.

Finally, we show thatwhenevereaghi € | issubdirectly irreducible, then Cax
is an atomic lattice. Take € ConA, 6 # A, arbitrary. In view of Lemma3.2 (iii)
there is a product congruenge= [, _, ¢ with ¢; € ConA; andA, < ¢ < 6. Then
we havey;, # A, for someiy € |. We define the congruence= [],_, «; , where
i, is the least nonzero element of CAp anda; = A; fori # ig. Clearly,« is an
atom of ConA satisfyinga < ¢ < 6. Thus CorA is an atomic lattice.

(i) implies (ii). First we prove that for anye |, ConA, is an (atomic) Stone lattice
andA; enjoys property (PCC).

For everyi € |, takeB;, = ]_[kel\{”Ak. ThenA = B; x A; and ColA =
ConB; x ConA;. Now ConA; as a direct factor of the (atomic) Stone lattice @Gon
is also an (atomic) Stone lattice.

Now we prove tha#; enjoys (PCC). Take a complemenied= ConA,. LetB;
denote the same algebra as above. WeAgetB; x A;. Let us consider the product
congruenceg = Vg X o, ¢ = Ag X o. Clearly,¢ andg are complemented and by
hypothesisy o 9 = @ o . Thereforeqg oo = o o «.

Further, observe that in order to prove tiatis finitely subdirectly irreducible,
it is enough to show that; is a meet-irreducible element of CAn. Assume that
there arep, & € ConA; such thaty # A, 6 # A, andgo A0 = A;. Then we
have6* # v; and6* > ¢ > A;. The latter relation implie®** # v,; and we
also haved** > 0 > A;. Thus we gebt*, 6* ¢ {A;, vi}. Since CorA; is a Stone
lattice, we get tha®* and6** are complements of each other. Asobeys (PCC),
6* and6** permute. Thus they form a factor congruence paiApf so we have
A = A;/6* x A;/0**. Since none of these two factor algebras are trivial, we get
thatA; is directly decomposable, a contradiction. Therefaoreés meet-irreducible,
providing thatA; is finitely subdirectly irreducible.

Assume now that CoA is an atomic lattice, then Cdk is also atomic (as we
have already seen), and letbe an atom of it. Since\; is meet-irreducible, we
haved A @ = « for all & € ConA \ {A;}, whence we get that < 6 for all
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0 € ConA;, 6 # A;. Thus any algebraA; is subdirectly irreducible, and the proof is
completed. O

Since any algebra with a finite congruence lattice is a direct product of directly
indecomposable algebras, the following corollary of TheoBirs immediate.

CoRroOLLARY 3.3. A congruence distributive algebrawith finite ConA is a direct
product of subdirectly irreducible algebras if and onlyAifenjoys(PCC)and ConA
is a Stone lattice.

The following consequence of Theorehi can be considered as a completion of
[8, Theorem 1.2].

PrOPOSITION3.4. LetA be a congruence distributive algebra with a strong centre.
Then the following assertions are equivalent

(i) A enjoys(PCC)andConA is a completely Stonegatomiq lattice.
(i) Ais afinite direct product of finitely subdirectly irreduciblsubdirectly irre-
ducible) algebras.

PrOOF. Applying Theoreml.2we get that (i) implies (ii).

Now we prove that (ii) implies (i). In view of Theoref1the assumption of (ii)
implies thatA obeys property (PCC) (and Cénis a Stone lattice). Applying again
Theoreml.2we get that Coi is a completely Stonean (atomic) lattice. O

An other remarkable result o8] is the following (see$, Theorem 6 (iii)]): LetA
be a congruence distributive algebra with a strong centre and lehjoy the property
(PCC) ThenConA is a Boolean lattice if and only iA is a finite direct product of
simple algebras.

By using this result and TheoreBnl we prove:

PrROPOSITION3.5. LetA be a congruence distributive algebra with a strong centre.
ThenA is a finite direct product of simple algebras if and onhAifis congruence
permutable andConA is a Boolean lattice.

PrOOF. In view of the above cited theorem o8][our proof is quite similar to
the proof of Propositior8.4. In addition we have only to prove that a congruence
distributive algebr# = []"_, A; with all A; simple is congruence permutable. Since
now any® € ConA is of the formé = ] ,6 € ConA with 6, € {4, V;}, this
assertion is obvious. O

REMARK 3.6. As anyl-algebra is congruence distributive with a strong centre,
Propositions3.4 and3.5 also apply to the case dtfalgebras. We note that Proposi-
tion 3.5generalizes Dilworth’s result fron®].
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Anelementp € L\{0}of a (complete) latticé is calledcompletely join-irreducible
if forany system ofelements € L,i € | the equalityp = \/{x |i € | }impliesp =
Xi, forsomeig € |. Ifany nonzero element df is a join of completely join-irreducible
elements, theih is called aCJ-generated latticeln view of Libkin's result p], any
CJ-generated algebraic lattice is a direct product of directly indecomposable lattices.
Therefore, by applying Theoreghl we can add to Theorefm1 the following:

COROLLARY 3.7. Let L be a CJ-generated algebraic lattice. Thénis a direct
product of finitely subdirectly irreducible lattices if and onlyLlif enjoys property
(PCC)andConlL is a Stone lattice.

4. Lattices which are direct products of directly indecomposable lattices

The difficulty to apply Theorerfi.1to obtain product decompositionsleélgebras
(where the decomposition may contain an infinite number of factors) is that we do
not even know under what conditions an arbitraalgebra can be written as a direct
product of directly indecomposablealgebras. In view of Corollar®.5 such a
direct decomposition of ahalgebra exists if and only if the underlying lattice is a
direct product of directly indecomposable lattices. Therefore in this section we shall
establish a necessary and sufficient condition (Theateéinfor the existence of the
above mentioned direct decomposition of bounded lattices.

The following notion will play an important role in our investigation.

DeFINITION 4.1. Abounded latticd. is calledweakly central-compleiéfor any set
{ax € Cen(L) | k € K} of distinct atoms of Cefl) and for any sefx € L | x < a,
k € K} of elements the join/,_, X« exists inL.

Obviously, any complete lattice and any bounded lattice whose center contains a
finite number of atoms is weakly central-complete. The following theorem clarifies
the role of the above notion.

THEOREM4.2. LetL be a bounded nontrivial lattice. Then the following assertions
are equivalent

(i) L=T]., Li with directly indecomposabl@ontrivial) L;’s.

(i) CenlL) is an atomic latticeL is weakly central-complete and for any set of
elementg; € Cen(L), j € J there isau € Cen(L) such that/\jEJ Oc, = Oy

ProOF. (i) implies (ii). Clearly, we can restrict our consideration to the case
L =[], Li. For eachM C | we define the element' € [],_, Li by (c"); = 1,
for alli € M, otherwise(cM); = 0. It can be easily seen thal ¢ CenlL) and
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L; = (cl'], providing that every sublattice!'] is directly indecomposable (see also
Lemma2.3). It is also easy to see that an{’ is an atom of Ce(L). (Indeed, if an
elementc € Cen(L) with 0 < ¢ < ¢!’ would exist, therc andt A ¢!’ would form a
complemented pair of central elements of the sublattitg.)

Take anya € Cen(L), a # 0. We claim that = c" for someM C |. Ascilis
an atom of Ce(L) anda A ¢! € Cen(L), we get for each < | eithera Acl! =0 or
ancli =cl thatis,a; =0 ora = 1,. Thena=c", whereM ={i €| | & = 1}.
Since any nonzero element of Gén is of the formc" with M # ¢ andcfe < cM
for anyi, € M, we deduce thagc!’ | i € 1} is the set of all atoms of Ce&h) and
CenL) is atomic.

Now take the elements; € Cen(L), j € J; thenc; = c™ for someM; C I.
It is easy to check thatw = {(X,y) € L2 | (x vV y) = (xAYy); forall i ¢ M}.
In consequencém = {(X,y) € L? | x, = y; forall i ¢ M}. We claim that
Ajes0c, = 6u, whereu = cMi™ . Indeed,

/\ch = ﬂ{(x, y) e L? | x =y foreachi e 1\ M}

jed jed

= {(x, y) € L2

x =y forall i e U(I \Mj)}

jed

xi =y forall i el\(ﬂ%)}:@u.

jed

= {(x, y) € L2

Finally, a nonempty set of distinct atoms of Gencan be written as = {c | keK},
wherefl = K C . Take any setx € L | k € K} with X, < c®. Now we have:

(%) Xk 1 and (%) < (c™); =0 foralli #k.

Definex™ e L as follows: (x™); = Q; foralli € I \ K and (x™); = (x); for
alli € K. Then, in view of ), we have(x,); < (x™); for alli € | and this gives
x« < x"forallk € K. Lety € L be an arbitrary upper bound ¢f, | k € K}. Then

(x)i <y foralli € | andk € K, whence we getx)x < Vi forall k € K. Now
we havex <y, by the definition ofx™. Thereforex™ is the least upper bound of
{xx € L | k e K}in L, thatis,x™ =\/,_« %. ThusL is weakly central-complete.

(i) implies (i). First we show that Cdh) is a complete sublattice df. Take
¢ € CenlL), k € K; then, by our assumptiof),_, 6, = 6, for someu € CenL).
Sinced, < 6, impliesu < ¢, k € K, we get thatu is a lower bound of the set
{cc | k € K}. On the other hand, for any lower bouhdt L of {c, | k € K} we
have(0,1) € 6., k € K. Thus(0,1) € A« 65 = 6u, Wwhence we get < u proving
U= A G Therefore/\,_, ¢ exists inL and A\,_, ¢k = u € Cen(L), moreover
we obtained that\,_, 0, = O, a-
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Now takev = A\, C. Thenv € CenlL) and sov 2 ¢, k € K, thusv is
a upper bound fofc, | k € K}. Leta € L with a 2 ¢, k € K, then we have
(@, 1) € Ak b = 6,, according to the defition of congruencess. So we get
avuv =1, implyingv = (avv) AT = aAv. Hencev < a. Therefore\/, _, ¢
exists inL and\/,_, ¢k =7 € Cen(L).

Since CeliL) is an atomic complete Boolean lattice, it is atomistic and infinitely
distributive too. (Even more it is completely distributive.) Lat | i € 1} be the set
of all atoms of CeqlL). Then\/,_, & = 1 and we prove that = [T, _, (al.

Letus definethemap : L — [],_, (a1, by setting(f (x))i = x Aa,i € | forall
X € L (wherex stands for the-th coordinate of ax € [, (a]). Itis not hard to
check thatf is a homomorphism.

In order to prove thatf is one to one take,y € L with f(x) = f(y); then
XAg =YyAag implies(x,y) € 6gforalli e |. Hence(x,y) € A\, 05 =0, =-
Since Ceql) is an infinitely distributive Boolean latticd\;_, & € Cen(L) is the
complement of\/,_, & = 1. Thus we have\,_, & = 0, and this impliegx, y) €
6o = AL. Hence we gex = y.

To prove thatf is onto, take & = (y)ici € [],.,(&]. Sincey, < a,i € | and
sincelL is weakly central-complete, the join= \/,_, y; exists inL. We claim that
f(z) =vy.

Indeed, we have, < (\/,,, ¥i) Aa = zAa forallk € I. On the other hand we
can write:

T v e U

Since Cell) is infinitely distributive, we have

(\/ a)Aak= \/ @Aa0=0,

iel\{k) iel\(k}

iel

Now yi < & implies thatz A a < yk. Thusz A & = yi forallk € I, whence we get
f(2) = (ZA adker = Yker = Y, Providing thatf is onto. Hence the map is an
isomorphism and this completes the proof. O

5. The proof of main theorem

To presentthe proof of TheorehiBwe need some essential remarks on the Boolean
part of a pseudocomplemented lattice.

If L is a pseudocomplemented lattice, then the{get L | x** = x} is called
the Boolean partof L and it is denoted by 8.). Since the identity/\,_, x* =
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(Aic xi**)** is satisfied in any complete pseudocomplemented latticé,) Bs a
completen-subsemilattice of any complete If L is a Stone lattice, then®) is a
Boolean sublattice of (see #]). (We note that BL) is not necessarily a complete
sublattice ofL, since forx; € B(L), i € | the relation\/;_, x; € B(L) is not true in
general.) Now we formulate:

LeEmmMA 5.1. LetA be a congruence distributive algebra, then

(i) If ConA is an atomic lattice, theB(ConA) is also atomic.
(i) If A enjoys property(PCC) and ConA is a Stone lattice, the®(ConA)
coincides with the set of all factor congruence#\of

PrOOF. (i) Let & € ConA be an atom. We claim that* is an atom of BConA).
Really, leta < B = g < 6* anda is an atom of BConA), « # 6 implies
a ANO = A. ThereforeA = A = (a A 0)** = a** A 0% = o**, a contradiction.
Now o = 6 and it followsg** = 6**, proving that** is an atom of BConA).

Now, take any € B(ConA). As ConA is atomic, there exists an ataime ConA
such that < ¢, whence we get™ < ¢** = ¢.

(ii) Since ConA is a pseudocomplemented distributive lattice, for any factor con-
gruenced € ConA we haved* = 0 and(9)* = (9) = 0, that is6** = 6. Hence
6 € B(ConA).

Conversely, take ang € B(ConA). As ConA is a Stone lattice and = 6**,
we can write:0 v 0* = 6* v 6* = V, therefored and6*are the complements of
each other. Now property (PCC) implieés 6* = 6* o 6, providing tha® is a factor
congruence oA. O

We note that the above result (i) is contained8hifi an implicit form.

PROOF OFTHEOREM 1.3 Let & = (L, A, Vv, 0,1, F) be anl-algebra such that
L =1, L with & = (Li,A,Vv,0,1, F),all Z,i €| being finitely subdirectly
irreducible. Since finitely subdirectly irreducible algebras are directly indecomposable
and anyl-algebra is congruence distributive, we can apply The@drand this gives
that < enjoys property (PCC) and Cd# is a Stone lattice. Moreover, if al;
are subdirectly irreducible then Theor&m gives in addition that Cor is atomic.

By Corollary 2.5 we haveL = [];., L; with directly indecomposablé;’s. Now
Theoremit.2implies thatl is a weakly central-complete lattice with an atomic center.
Thus we have verified the ‘only if’ part for both of assertions (1) and (2).

Now we prove the converse implications.

Let ¥ = (L, A, V,0,1, F) be anl-algebra satisfying property (PCC) and such
that L is weakly central-complete and Cdfi is a Stone lattice. Take € CenL),

j € J; then the congruenceés, j € J are factor congruences &f and thereby of
the whole algebr&Z. Thus, in view of Lemma.1 (ii), we haved, € B(Con.¥)
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forall j € J. Since BCon.%) is a completen-subsemilattice of Co¥’, we get
Njesbe, € B(Con.Z). Using Lemma5.1 (ii) again we obtain thaf\,_; 6 is a
factor congruence of the algehf4, and so it is a factor congruence of the lattice
Therefore, there is an elemant Cen(L) such that

(%) /\ch = 6.

jed

Letus observe also, that the m@p 6 — 6. in this caseis a Céh) — B(Con.%)
isomorphism. Indeed, in view of Remagk2 and Corollary2.5 ¢ is an injective
homomorphism and the above argument gives thabaayB(Con.¥) is of the form
0 =6, c e CenlL), thatis,y is onto.

Case (1). Since Ceéh) is atomic andL is weakly central-complete and sat-
isfies =), Theorem4.2 implies thatL = [],_, L; with all L;, i e | directly
indecomposable. Therefore, Corolla®y5 gives that. = [],_, -4, where all
< = (L, A, Vv, 0,1, F) are directly indecomposablealgebras. Since the algebra
[1i., -4 enjoys (PCC) and its congruence lattice is Stonean, applying Thebfame
getthatall%,i e | are finitely subdirectly irreducible, completing the proof of (1).

Case (2). NowL is weakly central-complete and Cdfi is atomic, moreover we
already have shown thatsatisfies the property¢). Further, in view of Lemma.1(i)
the lattice BCon.¥) is atomic. As we have already seen that @er= B(Con.?),
we obtain that Cefb) is also atomic.

Using the facts that Ce&h) is atomic and. is weakly central-complete and thiat
satisfies £x) we can repeat the argument in the ‘if’ part of the proof of assertion (1)
providing that# is a direct product of directly indecomposalialgebras. Since
% obeys (PCC) and Caf’ is an atomic Stone lattice, Theoredrl implies that the
above direct factors o are subdirectly irreduciblealgebras. This completes the
proof. O

REMARK 5.2. (i) Applying Propositior8.4tol-algebras we getthat the product
decomposition given by Theorehi3 consists of finite factors if and only # admits
(PCC) and CotZ is completely Stonean (and atomic in case (2)).

(i) We note that in§] it is also proved (see8] Theorem 6 (i)]) that Ce®?) is
finite whenever? obeys (PCC) and Caf is completely Stonean. Since Gén =
Cen?), in this case Cefl) is atomic and. is weakly central-complete.

6. Applications to certain classes of-algebras and lattices

In [8] it was established that double p-algebras, ortholattices and Heyting algebras
enjoy property (PCC). (Adouble p-algebras anl-algebra(L, A, v,*,*), where
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(L, A, Vv,*) is a p-algebra andL, v, A,7) is a dual p-algebra.) Combining the
above observations and Theoré&r we obtain

COROLLARY 6.1. Let ¢ be any doublep-algebra(ortholattice, Heyting algebra
Then the following are equivalent

(i) Con%Z is Stonean, the underlying lattide is weakly-central complete and
CenL) (Conl) is atomic.

(i) Zisadirectproduct of finitely subdirectly irreducible (subdirectly irreducible)
algebras.

Since any bounded lattice is dralgebra, Theorem.1 also can be applied to
bounded lattices. Inlf1] the present author proved the equivalence of the following
conditions:

(i) L enjoys property (PCC) and Canis a Stone lattice,
(i) For any® € ConlL, there exists & € Cen(L) such that* = 6.

Thus we obtain the following

COROLLARY 6.2. Let L be a bounded lattice. Then the following assertions are
equivalent

(i) Lisadirectproduct of finitely subdirectly irreducib{subdirectly irreduciblg
lattices.
(i) L is weakly central-complete, enjoys propeifdCC) ConL is a Stone lattice
andCen(L) (ConlL) is atomic.
(i) L is weakly central-complete, for aye ConL there is ac € CenL) such
thato* = 6. andCen(L) (Conl) is atomic.

COROLLARY 6.3. A Boolean latticel is isomorphic to a power set latticg? (1) if
and only ifConL is an atomic Stone lattice.

PrOOF. Obviously, any Boolean lattice obeys (PCC) and ByQonL is a Stone
lattice if and only if L is complete. (See als®] and [7].) Since a subdirectly
irreducible Boolean lattice is isomorphic #(the two element chain), is a direct
product of subdirectly irreducible lattices exactly wHers= 2' for somel # ¢. As
2' = (1), our result can be derived from CorollaBy?. O

7. Applications to certain classes of complete lattices

In [6] Janowitz proved that any complemented lattice enjoys property (PCC) and
exhibited several classes of lattices with Stonean congruence lattice. Here we mentior
some examples:
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— uniquely complemented complete lattices,
— weakly modular sectionally complemented complete lattices.
Since any complete lattice is bounded and weakly central-complete, Coréltary
implies

COROLLARY 7.1. Let L be a lattice from one of the above classes. Theis a
direct product of finitely subdirectly irreduciblgsubdirectly irreduciblg lattices if
and only ifCenL) (Conl) is atomic.

A lattice L with O is calledsection semicomplement®@ESC) if for every, b € L,
a < b there is an element & u < b such thata Au = 0. L is dually section
complemente(DSeSC) if its duaL @ is section semicomplemented (s&€]). If L
is a complete lattice then for agy € ConL we definew(¢) € L as thesupremum
of its kernel w(p) = \/{x € L | (0,x) € ¢}. Janowitz proved that whenever
is both SeSC and DSeSC then we hav@) € CenL) for any¢ € ConL (see b,
Theorem 4.17 (ii)]). He also proved that the congruentekof a lattice which is
both SeSC and DSeSC is a Stone lattice. Now we can proceed further:

PROPOSITION7.2. LetL be a complete lattice which is both SeSC and DSeSC. Then
L is a direct product of finitely subdirectly irreducib{subdirectly irreduciblglattices
if and only ifCenL) (ConL) is atomic.

PrROOF. Take anyg € ConL. We only have to prove* = 6,,+, and then the
statement of the proposition follows by applying Coroll&r§.

Let us show first thap* < 6,. Clearly, 6, Vv 0555 = V.. As we have
@* = (@* A Ou) V (9" A O35, the relationp* A 65 = AL impliesg* < 0,,).
Thus it is sufficient to verify thap* A 0555 = AL.

Contrary, suppose that there exasb € L, a < b such that(a, b) € ¢* A 0555.
SincelL is section semicomplemented, thereisa L, 0 < u < bsuchthaaAu = 0.
Then (0, u) € ¢* A b5, SO we get(0, u) € ¢* andu < w(g*). Now (O,u) € ¢*
givesu < w(g*), whence we obtain that < w(¢*) A w(e*) = 0, a contradiction.

Further, we have to show th@t,., < ¢*. Ifitis notthe case, then there existd €
L, ¢ < d such that(c, d) € 6, A ¢. As L is dually section semicomplemented,
thereisav € L, ¢ £ v < 1suchthad vv = 1. Then(v,1) € 6,4, A ¢ and
this means that v w(p*) = 1 and(v, 1) € ¢. Observe, that for every € L with
(0, X) € ¢* we have now(v A X, X) € ¢ A ¢* = A, whence we getthat = v A X,
that is,x < v. Therefore we obtaim(¢*) < v, implying thatv v w(@*) =v # 1, a
contradiction.

Hence we conclude that = 6,,,+, and this completes the proof. O



56 Sandor Radeleczki [16]

Acknowledgment

The author wishes to express his gratitude to professor T.n&kirivho drew his
attention to this field of research and whose results had a decisive role in preparing
this paper. The author would also like to thank professors E. T. Schmidt and J. Szigeti
for their several suggestions and support.

References

[1] S.Burris and H. P. SankappanavArcourse in universal algebrgspringer, New York, 1981).
[2] R. P. Dilworth, ‘The structure of relatively complemented latticesiin. of Math.51 (1950),
348-359.
[3] O. Frink, ‘Pseudo-complements in semi-latticé3uke Math. J29 (1962), 505-514.
[4] G. Gratzer,General lattice theoryAcademic Press, New York, 1978).
[5] M. F. Janowitz, ‘Section semicomplemented latticé4ath. Z.108(1968), 63—76.
[6] , ‘Complemented congruences on complemented lattiPasific J. Math73(1977), 87-90.
[7] T.KatriRak, ‘Notes on Stone lattices [IMat. Fyz.Casop. SAM7 (1967), 20-37 (In Russian).
[8] T.Katrinak and S. El-Assar, ‘Algebras with Boolean and Stonean congruence latficesMath.
Hungar.48 (1986), 301-316.
[9] L. Libkin, ‘Direct decomposition of atomistic algebraic latticeAlgebra Universalis33 (1995),
127-135.
[10] F. Maeda and S. Maedaheory of symmetric lattic§Springer, Berlin, 1970).
[11] S. Radeleczki, ‘Maeda-type decomposition of CJ-generated algebraic latBoesh) East Asian
Bull. Math.25(2001), 503-513.

Institute of Mathematics

University of Miskolc-Egyetemaros
3515 Miskolc

Hungary

e-mail: matradi@gold.uni-miskolc.hu


mailto:matradi@gold.uni-miskolc.hu

