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Abstract

For any positive integey > 2, letF, be a finite field withg elementsFq((z™1)) be the field of all formal
Laurent seriex = > o~ c,z™" in an indeterminate, | denote the valuation ideal*Fq[[z~]] in the

ring of formal power serieBq[[z~]] andP denote probability measure with respect to the Haar measure
on Fq((z™Y) normalized byP(1) = 1. For anyx € I, let the serie$ -, 1/(a1(X)ax(X) - - - an(X)) be

the Engel expansion of Laurent seriesxofGrabner and Knopfmacher have shown thatRiaeasure

of the setA(w) = {X € | : limy_ dega,(xX)/n = «} is 1 whena = q/(q — 1), where deg,(x)

is the degree of polynomial,(x). In this paper, we prove that for amy > 1, A(«) has Hausdorff
dimension 1. Among other things we also show that for any positive integehe following set
B(m) = {x € | : degan,1(X) — dega,(x) = mfor anyn > 1} has Hausdorff dimension 1.

2000Mathematics subject classificatioprimary 11K55, 11T06; secondary 28A80.

1. Introduction

The most frequently applied operation of mathematics is series representation of
‘numbers’. As a matter of fact, in all practical applications we replace arbitrary
‘numbers’ by their decimal expansions after a certain number of ‘digits’. Recently
Knopfmacher and Knopfmache8,[9] introduced and studied some properties of
various unigue expansions of formal Laurent series over a fielas the sums of
reciprocals of polynomials, involving ‘digitsy, a,, ... lying in a polynomial ring

F[z] overF. In particular, one of these expansions was constructed to be analogous to
the so-called Engel expansion of a real number, discussed in GalaBbAsijumber
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of famous expansions including those of Euler and the Rogers-Ramanujan identities
are, in fact, special cases of Engel expansions of formal Laurent series. Andrews,
Knopfmacher and Knopfmachet][and Andrews, Knopfmacher and Paul@ have
shown how so called Engel expansions of formal Laurent series can be used to give
new and exciting proofs of the Rogers-Ramanujan and related identities.

Erdos, REnyi and Smsz [3] (see also Rhyi [11] or Galambos §]) have studied
the metric properties for real Engel expansions, and similar metric results for Engel
expansions of Laurent series have been derived by Grabner and Knopfn@chag]
aim of this paper is to discuss the fractal properties of sets related to Engel expansion:
of Laurent series. The corresponding results for real Engel expansions have beel
obtained by Liu and the authot ().

2. Engel expansions of Laurent series

In order to explain the conclusions, we first fix some notations and describe Engel
expansions to be considered.

Let ¥ = F((z'")) denote the field of all formal Laurent serids= ) -~ c,z "
in an indeterminate, with coefficientsc, all lying in a given fieldF. (We consider
F((z'1)) rather tharF((z)) as in B] and [9] since it turns out to be more convenient
for stating our results.)

We also consider the ring{z] of polynomials inz with coefficients inf.

If c, # 0,we callv = v(A) the order ofA above, and define threorm(or valuation
of Ato be||A| = g, where initiallyq > 1 may be an arbitrary constant, but later
will be chosen ag = 4(F), the cardinality off, if F is finite. Lettingv(0) = +o0,
0]l = 0, one then has (see for example, Jones and ThtddHapter 5]).

IA] >0 with ||A|| =0 ifand only if A =0,

IABI =1IAl-lB]l and

la A+ BB| < max(||Al, |B]) fornon-zerooa,B € F
with equality when| A|| # || Bl

From above, the normh- || is non-Archimedean, and it is well known th&t forms
a complete metric space under the metrisuch thato (A, B) = |A— B].

REMARK 1. Since the metrip is non-Archimedean, it follows that each point of a
disc may be considered its center and thus if two discs intersect, then one contains the
other.

ForA=3" cz"e 2 let[Al =) _ Gz " € F[z], and refer to A] the
integral part ofA € .. Then—v = —v(A) is the degree d¢d\] of [ A] relative toz.
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Given A € &, now note thalA] = a, € F[z] if and only if v(Ay) > 1, where
A = A—a. Asin|8, 9], if A, # 0 (n > 0) is already defined, we then let
a, = [1/A.] and putA,,; = a, A, — 1. If A, = 0 ora, = 0 for somen, this recursive
process stops. It was shown B) P] that this algorithm leads to a finite or convergent
(relative top) Engel series expansion of Laurent series.

THEOREM1 ([8, 9]). Everyx € £ has a finite or convergetftelative top) series
expansion of the form

1 1
a0 mar T amme e

wherea, (X) € F[z], a,(X) = [X], and

(1) x=ax)+

)

2 dega,(x) > n and dedga,.1(X)) > dega,(x))+1 for n> 1
The seriegl) is unique forx subject to the preceding coitidns on the digits' a,(x).

From now on we assuntg> 2 is a positive integer antl= [, is a finite field with
exactlyg elements. Let denote the valuation ideat*F[[z1]] in the ring of formal
power serie§,[[z *]], thenl is compact under the metric LetP denote probability
measure with respect to the Haar measurezbnormalized byP(1) = 1. The Haar
measure or is the product measure dr,-, F, defined byP({x}) = q* for each
factor and any elemente [.

Analogous to Engel series representation for real numbers, Grabner and Knopf-
macher (p]) have studied metric properties of Engel properties of Engel expansions
of Laurent series and proved the following result.

THEOREM 2 ([6]). For anyx € 1, let
1 1 1

X = + + -+ + ...
a(x)  a(x)a(x) (X))@ (X) - - - an(X)
be the Engel expansion of Laurent seriexofrhen

(i) foralmostallx € I,
®3) lan ()" — q¥@P  asn— oo.
(i) Foralmostallx € I,

1’
o0 log, n

and

(5) Iirr]n inf dega,.1(X) — dega,(xX) = 1.
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(i) For almostallx € I,
—(qr?/2(q—21))(1+o(1
(6) X — Pn/Gnll = q @r/2@-1)1+oM) g5 n — 00,

wherep, /gy = 3 p_; 1/ (@ (X)a(X) - - - &(X)), G = 31(X)@(X) - - - 3y(X).

The definition of Hausdorff measure éns the same as oR". Givens > 0 and a
subsetE of |, the Hausdorf§-measure is given by

H(E) = lim {inf > (diam DJ)S} ,
i

where the infimum is over all covers & by discsD; of diameter (in the metrip)
at mosts and diam denotes the diameter of a set. The Hausdorff dimensiBnsof
defined by dinE = inf{s : 5#5(E) = 0}.

REMARK 2. From the definition of Hausdorff dimension, it is easy to see that for
any Borel subseE of |, if P(E) > 0, then dimE = 1.

Note that for any € Fq[z], ||| = q?%, thus for almost alk € I, the formula 8)
is equivalent to

1
@) - dega,(x) — qi—l asn — oo.

Also note that since degy(x) > n, it is natural to consider the following set
1
(8) Ala) = {x el :lim - dega,(X) = a}

foranya > 1. In Sectior3, we discuss the Hausdorff dimensionAf«) and obtain
the following result.

THEOREM 3. Foranya > 1, dim A(x) = 1.

If @ is an integer in Theorei®, we can get the following quite strong result.
For any positive integamn, let

9) B(m) = {x € | : dega,.1(X) — dega,(x) = m forany n > 1}.

THEOREM4. For any positive integem, dim B(m) = 1.

As corollaries of Theorem, both the Hausdorff dimension of the set whesg (
(4) and 6) fail and the Hausdorff dimension of the set wheggféils are 1.
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3. Proof of Theorem3 and Theorem4

The aim of this section is to prove the main results of this paper.
We first state the mass distribution principte Proposition 4.2] that will be used
later.

LEMMA 1. SupposeE C | and u is a measure withu(E) > 0. If there exist
constant > 0andé$ > Osuch thatu(D) < c(diamD)® for all disc D with diameter
diamD < §. ThendimE > s.

PrROOF OFTHEOREM 3. For anyn > 1, let [Fgm[z] denote the polynomials ify[z]
with degreen, that is,

[F;”>[z] = {x € Fylz] : x = chzk, celq, (1<i<n) andc, # 0} )

k=0

For anyn > 1 andb, € [Fg”‘(k"”[z], k = 1,...,n, where inta) denotes the integer
part for any real numbea, define

Jby, ... .bp)={xel :a(x)=by,...,a,(X) =b,}.

We callJ(b,, ... , b,) ann-order disc. Note that iitn + 1)«) > int(na) + 1 for any
n > 1, by Theoreni, we havel(b;, ... , b,) is adisc with center g, _, 1/(b; - - - by)
and diametegq~ Tk ko —inte)-1 - Al by Theorent, we have

() If(by,...,by) # (b, ..., b)), Iy, ..., b)) IMbL, ..., b)) =40
@iy Jby,...,by, by € Iy, ..., b, foranyn > 1.

LetE, = J J(by,...,b,), where the union is over ai|, € [Fg”‘(k"”[z], k=1 ...,n.
Then

(20) E,={x el :dega;(x) = int(x), ... , dega,(x) = int(na)},

andE, consists ofq — 1)"qXi=: "k disjoint discs with diametey— Xt intke)—int(ne -1
DefineE = N, En. Itis obvious that

(12) E ={x e | :degax(x) = int(ka) forany k > 1}.

ThusE C A(a). Now we estimate the Hausdorff dimensionkf
Let u be a mass distribution supported &nsuch that for anyn > 1 andby €
Fimtenz], k =1,...,n,

(12) w3y, ..., by) = (q — 1)"g~ Zkeainttke
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For anye > 0, chooseg large enough such that for any> ny,

(13) N —3n4+2> M +3n+2)(1—e).

For anyx € | andm > int(«) + int(2¢) + - - - + int(Nger), choosek > ng such that
int(a) + - -- + int(ka) < m < int(a) - - - + int((k + D).

This implies
(14) —int(@) —--- —int((k + Da)

<-m< —int(a) —--- —int((k — D) — int((k — Dx) — 1,
thusB(x,g™ :={y € | : |ly — x| < q ™ can intersect at most on& — 1)-

order disc. In fact, if there exidh, b e F{™*’[z], 1 < i < k — 1 such that
(by, by, ... b g) # (B, b, ... b ), BX,g ™ () I(by, by, ... ,be 1) # ¥ and
Bix,g™ M I, b, ... b)) # @, thenB(x,q™ < J(by, by, ..., b;) and
B(x,q™™) c J(b}, b, ... ,b_,). Thus by Remark,

JM,....b ) C I ....bey) or
Iy ... by € I, ... b)),

and this contradicts(by, ... , b)) IS, ... b)) = . Therefore, by 13)
and (L4),

M(B(X qu)) < (q _ 1)—(k—1)q—int(a)—int(2a)—m—int((k—1)a)
< qfint(ot)fin[(2a)7~~~7int((kfl)a) < qf(k(kfl)/Z)Obkkfl < qf(k(kfl)/Z)Obk(kfl)a

K243k _ _ . oy 1o
_ q( k2+3k—2/2)a <q (k+1) (k+2)/2) (1—e)er < (dlamB(x, q m)) ¢

By Lemmal, we have dinE > 1 — ¢. Sincee is arbitrary, we have dirk = 1.
Note thatE C A(w), thus dimA(e) = 1. The proof of Theorerf is finished. O

PROOF OFTHEOREM 4. For any positive integem, leta« = m andE,, E be con-
structed in the same way as in the proof of Theor@mThenE c B(m) and
dimE = 1 by the proof of Theorem3. Thus dimB(m) = 1 and we complete the
proof of Theoremi. O

By Theorem, we can get the following corollaries immediately.
CoROLLARY 1. The Hausdorff dimension of the set whésg (4) and(5) fail is 1.
COROLLARY 2. For any positive integem, let

Cm) ={xel:[x—p/aull = q "D/ forany n > 1} .

Thendim C(m) = 1. In particular, the Hausdorff dimension of the set whSgfails
is 1.
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