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Abstract

For any positive integerq ≥ 2, letFq be a finite field withq elements,Fq..z−1// be the field of all formal
Laurent seriesx = ∑∞

n=v cnz−n in an indeterminatez, I denote the valuation idealz−1
Fq[[z−1]] in the

ring of formal power seriesFq[[z−1]] andP denote probability measure with respect to the Haar measure
on Fq..z−1// normalized byP.I / = 1. For anyx ∈ I , let the series

∑∞
n=1 1=.a1.x/a2.x/ · · · an.x// be

the Engel expansion of Laurent series ofx. Grabner and Knopfmacher have shown that theP-measure
of the setA.Þ/ = {x ∈ I : limn→∞ degan.x/=n = Þ} is 1 whenÞ = q=.q − 1/, where degan.x/
is the degree of polynomialan.x/. In this paper, we prove that for anyÞ ≥ 1, A.Þ/ has Hausdorff
dimension 1. Among other things we also show that for any positive integerm, the following set
B.m/ = {x ∈ I : degan+1.x/− degan.x/ = m for anyn ≥ 1} has Hausdorff dimension 1.

2000Mathematics subject classification: primary 11K55, 11T06; secondary 28A80.

1. Introduction

The most frequently applied operation of mathematics is series representation of
‘numbers’. As a matter of fact, in all practical applications we replace arbitrary
‘numbers’ by their decimal expansions after a certain number of ‘digits’. Recently
Knopfmacher and Knopfmacher [8, 9] introduced and studied some properties of
various unique expansions of formal Laurent series over a fieldF, as the sums of
reciprocals of polynomials, involving ‘digits’a1;a2; : : : lying in a polynomial ring
F[z] overF. In particular, one of these expansions was constructed to be analogous to
the so-called Engel expansion of a real number, discussed in Galambos [5]. A number
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of famous expansions including those of Euler and the Rogers-Ramanujan identities
are, in fact, special cases of Engel expansions of formal Laurent series. Andrews,
Knopfmacher and Knopfmacher [1] and Andrews, Knopfmacher and Paule [2] have
shown how so called Engel expansions of formal Laurent series can be used to give
new and exciting proofs of the Rogers-Ramanujan and related identities.

Erdös, Rényi and Sz¨usz [3] (see also R´enyi [11] or Galambos [5]) have studied
the metric properties for real Engel expansions, and similar metric results for Engel
expansions of Laurent series have been derived by Grabner and Knopfmacher [6]. The
aim of this paper is to discuss the fractal properties of sets related to Engel expansions
of Laurent series. The corresponding results for real Engel expansions have been
obtained by Liu and the author [10].

2. Engel expansions of Laurent series

In order to explain the conclusions, we first fix some notations and describe Engel
expansions to be considered.

LetL = F..z−1// denote the field of all formal Laurent seriesA = ∑∞
n=v cnz−n

in an indeterminatez, with coefficientscn all lying in a given fieldF. (We consider
F..z−1// rather thanF..z// as in [8] and [9] since it turns out to be more convenient
for stating our results.)

We also consider the ringF[z] of polynomials inz with coefficients inF.
If cv 6= 0, we callv = v.A/ the order ofA above, and define thenorm(orvaluation)

of A to be‖A‖ = q−v.A/, where initiallyq > 1 may be an arbitrary constant, but later
will be chosen asq = ].F/, the cardinality ofF, if F is finite. Lettingv.0/ = +∞,
‖0‖ = 0, one then has (see for example, Jones and Thron [7, Chapter 5]).



‖A‖ ≥ 0 with ‖A‖ = 0 if and only if A = 0;

‖AB‖ = ‖A‖ · ‖B‖ and

‖ÞA + þB‖ ≤ max.‖A‖; ‖B‖/ for non-zeroÞ; þ ∈ F

with equality when‖A‖ 6= ‖B‖:
From above, the norm‖ ·‖ is non-Archimedean, and it is well known thatL forms

a complete metric space under the metric² such that².A; B/ = ‖A − B‖.

REMARK 1. Since the metric² is non-Archimedean, it follows that each point of a
disc may be considered its center and thus if two discs intersect, then one contains the
other.

For A = ∑∞
n=v cnz−n ∈ L , let [A] = ∑

v≤n≤0 cnz−n ∈ F[z], and refer to[A] the
integral part ofA ∈ L . Then−v = −v.A/ is the degree deg[A] of [A] relative toz.
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Given A ∈ L , now note that[A] = a0 ∈ F[z] if and only if v.A1/ ≥ 1, where
A1 = A − a0. As in [8, 9], if An 6= 0 (n > 0) is already defined, we then let
an = [1=An] and putAn+1 = an An −1. If An = 0 oran = 0 for somen, this recursive
process stops. It was shown in [8, 9] that this algorithm leads to a finite or convergent
(relative to²) Engel series expansion of Laurent series.

THEOREM 1 ([8, 9]). Everyx ∈ L has a finite or convergent(relative to²) series
expansion of the form

x = a0.x/+ 1

a1.x/
+ 1

a1.x/a2.x/
+ · · · + 1

a1.x/a2.x/ · · · an.x/
+ · · · ;(1)

wherean.x/ ∈ F[z], a0.x/ = [x], and

degan.x/ ≥ n and deg.an+1.x// ≥ deg.an.x// + 1 for n ≥ 1:(2)

The series(1) is unique forx subject to the preceding conditions on the‘digits’ an.x/.

From now on we assumeq ≥ 2 is a positive integer andF = Fq is a finite field with
exactlyq elements. LetI denote the valuation idealz−1

F[[z−1]] in the ring of formal
power seriesFq[[z−1]], thenI is compact under the metric². LetP denote probability
measure with respect to the Haar measure onL normalized byP.I / = 1. The Haar
measure onI is the product measure on

∏∞
n=1 Fq defined byP.{x}/ = q−1 for each

factor and any elementx ∈ Fq.
Analogous to Engel series representation for real numbers, Grabner and Knopf-

macher ([6]) have studied metric properties of Engel properties of Engel expansions
of Laurent series and proved the following result.

THEOREM 2 ([6]). For anyx ∈ I , let

x = 1

a1.x/
+ 1

a1.x/a2.x/
+ · · · + 1

a1.x/a2.x/ · · · an.x/
+ · · ·

be the Engel expansion of Laurent series ofx. Then

.i/ for almost allx ∈ I ,

‖an.x/‖1=n → qq=.q−1/ as n → ∞:(3)

.ii/ For almost allx ∈ I ,

lim sup
n→∞

degan+1.x/ − degan.x/

logq n
= 1;(4)

and

lim inf
n→∞

degan+1.x/− degan.x/ = 1:(5)
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.iii / For almost allx ∈ I ,

‖x − pn=qn‖ = q−.qn2=2.q−1//.1+o.1// as n → ∞;(6)

wherepn=qn = ∑n
k=1 1=.a1.x/a2.x/ · · · ak.x//, qn = a1.x/a2.x/ · · · an.x/.

The definition of Hausdorff measure onI is the same as onRn. Givens> 0 and a
subsetE of I , the Hausdorffs-measure is given by

H
s.E/ = lim

Ž→0

{
inf

∑
j

.diamDj /
s

}
;

where the infimum is over all covers ofE by discsD j of diameter (in the metric²)
at mostŽ and diam denotes the diameter of a set. The Hausdorff dimension ofE is
defined by dimE = inf{s :H s.E/ = 0}.

REMARK 2. From the definition of Hausdorff dimension, it is easy to see that for
any Borel subsetE of I , if P.E/ > 0, then dimE = 1.

Note that for anyx ∈ Fq[z], ‖x‖ = qdegx, thus for almost allx ∈ I , the formula (3)
is equivalent to

1

n
degan.x/ → q

q − 1
as n → ∞:(7)

Also note that since degan.x/ ≥ n, it is natural to consider the following set

A.Þ/ =
{

x ∈ I : lim
n→∞

1

n
degan.x/ = Þ

}
(8)

for anyÞ ≥ 1. In Section3, we discuss the Hausdorff dimension ofA.Þ/ and obtain
the following result.

THEOREM 3. For anyÞ ≥ 1, dim A.Þ/ = 1.

If Þ is an integer in Theorem3, we can get the following quite strong result.
For any positive integerm, let

B.m/ = {x ∈ I : degan+1.x/− degan.x/ = m for any n ≥ 1}:(9)

THEOREM 4. For any positive integerm, dim B.m/ = 1.

As corollaries of Theorem4, both the Hausdorff dimension of the set where (3),
(4) and (5) fail and the Hausdorff dimension of the set where (6) fails are 1.
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3. Proof of Theorem3 and Theorem4

The aim of this section is to prove the main results of this paper.
We first state the mass distribution principle [4, Proposition 4.2] that will be used

later.

LEMMA 1. SupposeE ⊂ I and¼ is a measure with¼.E/ > 0. If there exist
constantsc > 0 andŽ > 0 such that¼.D/ ≤ c.diamD/s for all disc D with diameter
diamD ≤ Ž. Thendim E ≥ s.

PROOF OFTHEOREM 3. For anyn ≥ 1, letF.n/q [z] denote the polynomials inFq[z]
with degreen, that is,

F
.n/
q [z] =

{
x ∈ Fq[z] : x =

n∑
k=0

ckzk; ci ∈ Fq; .1 ≤ i ≤ n/; and cn 6= 0

}
:

For anyn ≥ 1 andbk ∈ F
.int.kÞ//
q [z], k = 1; : : : ;n, where int.a/ denotes the integer

part for any real numbera, define

J.b1; : : : ;bn/ = {x ∈ I : a1.x/ = b1; : : : ;an.x/ = bn}:
We call J.b1; : : : ;bn/ ann-order disc. Note that int..n + 1/Þ/ ≥ int.nÞ/+ 1 for any
n ≥ 1, by Theorem1, we haveJ.b1; : : : ;bn/ is a disc with center at

∑n
k=1 1=.b1 · · · bk/

and diameterq− ∑n
k=1 int.kÞ/−int.nÞ/−1. Also by Theorem1, we have

.i/ If .b1; : : : ;bn/ 6= .b′
1; : : : ;b′

n/, J.b1; : : : ;bn/
⋂

J.b′
1; : : : ;b′

n/ = ∅.
.ii/ J.b1; : : : ;bn;bn+1/ ⊂ J.b1; : : : ;bn/ for anyn ≥ 1.

Let En = ⋃
J.b1; : : : ;bn/, where the union is over allbk ∈ F

.int.kÞ//
q [z], k = 1; : : : ;n.

Then

En = {x ∈ I : dega1.x/ = int.Þ/; : : : ;degan.x/ = int.nÞ/};(10)

andEn consists of.q−1/nq
∑n

k=1 int.kÞ/ disjoint discs with diameterq− ∑n
k=1 int.kÞ/−int.nÞ/−1.

DefineE = ⋂∞
n=1 En. It is obvious that

E = {x ∈ I : degak.x/ = int.kÞ/ for any k ≥ 1}:(11)

ThusE ⊂ A.Þ/. Now we estimate the Hausdorff dimension ofE.
Let ¼ be a mass distribution supported onE such that for anyn ≥ 1 andbk ∈

F
.int.kÞ//
q [z], k = 1; : : : ;n,

¼.J.b1; : : : ;bn// = .q − 1/−nq− ∑n
k=1 int.kÞ/:(12)
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For any" > 0, choosen0 large enough such that for anyn ≥ n0,

n2 − 3n + 2 ≥ .n2 + 3n + 2/.1 − "/:(13)

For anyx ∈ I andm ≥ int.Þ/+ int.2Þ/ + · · · + int.n0Þ/, choosek ≥ n0 such that

int.Þ/+ · · · + int.kÞ/ ≤ m< int.Þ/ · · · + int..k + 1/Þ/:

This implies

− int.Þ/− · · · − int..k + 1/Þ/(14)

< −m ≤ − int.Þ/ − · · · − int..k − 1/Þ/− int..k − 1/Þ/− 1;

thus B.x;q−m/ := {y ∈ I : ‖y − x‖ ≤ q−m} can intersect at most one.k − 1/-
order disc. In fact, if there existbi ;b′

i ∈ F
.int.iÞ//
q [z], 1 ≤ i ≤ k − 1 such that

.b1;b2; : : : ;bk−1/ 6= .b′
1;b′

2; : : : ;b′
k−1/, B.x;q−m/

⋂
J.b1;b2; : : : ;bk−1/ 6= ∅ and

B.x;q−m/
⋂

J.b′
1;b′

2; : : : ;b′
k−1/ 6= ∅, then B.x;q−m/ ⊂ J.b1;b2; : : : ;bk−1/ and

B.x;q−m/ ⊂ J.b′
1;b′

2; : : : ;b′
k−1/. Thus by Remark1,

J.b′
1; : : : ;b′

k−1/ ⊂ J.b1; : : : ;bk−1/ or

J.b1; : : : ;bk−1/ ⊂ J.b′
1; : : : ;b′

k−1/;

and this contradictsJ.b1; : : : ;bk−1/
⋂

J.b′
1; : : : ;b′

k−1/ = ∅. Therefore, by (13)
and (14),

¼.B.x;q−m// ≤ .q − 1/−.k−1/q− int.Þ/−int.2Þ/−···−int..k−1/Þ/

≤ q− int.Þ/−int.2Þ/−···−int..k−1/Þ/ ≤ q−.k.k−1/=2/Þ+k−1 ≤ q−.k.k−1/=2/Þ+.k−1/Þ

= q.−k2+3k−2=2/Þ ≤ q−..k+1/.k+2/=2/.1−"/Þ ≤ (
diamB.x;q−m/

)1−"
:

By Lemma1, we have dimE ≥ 1 − ". Since" is arbitrary, we have dimE = 1.
Note thatE ⊂ A.Þ/, thus dimA.Þ/ = 1. The proof of Theorem3 is finished.

PROOF OFTHEOREM 4. For any positive integerm, let Þ = m and En, E be con-
structed in the same way as in the proof of Theorem3. Then E ⊂ B.m/ and
dim E = 1 by the proof of Theorem3. Thus dimB.m/ = 1 and we complete the
proof of Theorem4.

By Theorem4, we can get the following corollaries immediately.

COROLLARY 1. The Hausdorff dimension of the set where(3), (4) and(5) fail is 1.

COROLLARY 2. For any positive integerm, let

C.m/ = {
x ∈ I : ‖x − pn=qn‖ = q−.m.n+1/.n+2//=2 for any n ≥ 1

}
:

ThendimC.m/ = 1. In particular, the Hausdorff dimension of the set where(6) fails
is 1.
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