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Abstract

The higher Lie characters of the symmetric groupSn arise from the Poincaré-Birkhoff-Witt basis of the
free associative algebra. They are indexed by the partitions ofn and sum up to the regular character ofSn.
A combinatorial description of the multiplicities of their irreducible components is given. As a special
case the Kráskiewicz-Weyman result on the multiplicities of the classical Lie character is obtained.
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1. Introduction

At the beginning of the last century Schur studied the structure of the tensor algebra
T.V / over a finite dimensionalK -vector spaceV as a GL.V/-module. In his thesis
([13]) and a famous subsequent paper ([14]) he was able to describe the decomposition
of the homogeneous components

Tn.V / := V ⊗ · · · ⊗ V︸ ︷︷ ︸
n

of degreen in T.V / into irreducible GL.V /-modules using the irreducible represen-
tations of the symmetric groupSn. The usual Lie bracketing[x; y] := xy − yx turns
T.V / into a Lie algebra. The Lie subalgebraL.V / generated byV is free over any
basis ofV by a classical result of Witt ([17]), and Ln.V/ := Tn.V/ ∩ L.V / is a
GL.V/-submodule ofTn.V/ for all n. Let q = q1: : : : :qk be a partition ofn, that is,
q1 ≥ · · · ≥ qk andq1 + · · · + qk = n. Then we define

Lq.V / :=
〈∑
³∈Sk

P1³ · · · Pk³

∣∣∣ Pi ∈ Lqi
.V / for 1 ≤ i ≤ k

〉
K

:
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By the Poincar´e-Birkhoff-Witt theorem,Tn.V/ is the direct sum of these subspaces:

Tn.V/ =
⊕
q`n

Lq.V/;(1)

and this decomposition is GL.V/-invariant.
Meanwhile, different families of idempotentseq in the group algebraK Sn indexed

by partitions have been introduced such thatLq.V/ ∼= eqTn.V/ for all q (see, for
example, [2, 3, 11]). For any decompositioneq K Sn = ⊕

p aq;pMp into irreducible
Sn-modules, we now have

Lq.V/ = eqTn.V/ ∼= eq K Sn ⊗K Sn
Tn.V/ =

⊕
p

aq;p.Mp ⊗K Sn
Tn.V//:

In this decomposition, by Schur’s fundamental result,Mp ⊗K Sn
Tn.V/ is either 0

or an irreducible GL.V/-module. Hence the GL.V/-module structure ofLq.V / is
completely determined by the multiplicitiesaq;p of the higher Lie moduleeq K Sn

of Sn. In this vein, for the special case ofq = n, the problem of describing the
GL.V/-module structure ofLn.V / formulated by Thrall ([16]) could finally be solved
in a satisfying way by works of Klyachko ([8]) and Kraśkiewicz and Weyman ([9]).

Thehigher Lie characters½q of Sn corresponding to the moduleseqK Sn sum up
to the regular character ofSn, by (1), and it is natural to ask for their multiplicities
for arbitrary q. In this paper, a combinatorial description of these multiplicities
is given in terms of alternating sums of numbers of standard tableaux with certain
major index properties (Section3). For q = n, we obtain the Kra´skiewicz-Weyman
result mentioned above. Our approach is based on a generalization of Klyachko’s
result (Section2) combined with the calculus of noncommutative character theory
introduced in [6] (Section4).

2. The reduction to partitions of block type

Let q be a partition ofn. The higher Lie character½q is induced by a certain linear
character of the centralizer of an element of cycle typeq in Sn. For q = n, this result
is due to Klyachko ([8]). In full generality, it is implicitly contained in [1] for the first
time (for details, see [12, Section 8.5]) and will be briefly recalled in two steps in this
section.

LetN (N0, respectively) be the set of all positive (nonnegative, respectively) integers
andn := {k ∈ N | k ≤ n} for all n ∈ N0. LetN∗ be a free monoid over the alphabetN.
We writeq:r for the concatenation product ofq; r ∈ N∗ in order to avoid confusion
with the ordinary product inN. Accordingly, we denote byd:k the k-th power of a
letter d ∈ N in N∗, for all k ∈ N0. If n ∈ N andq = q1: : : : :qk ∈ N

∗ such that
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q1 + · · · + qk = n, we say thatq is acompositionof n of length|q| := k, and write
q |= n. If, additionally,q1 ≥ · · · ≥ qk and henceq is a partition ofn, we writeq ` n.

Let K be a field of characteristic 0 containing a primitiven-th root of unity"n for
all n ∈ N. For all n ∈ N0, we denote by ClK .Sn/ the ring of class functions of the
symmetric groupSn. Let Cq be the conjugacy class consisting of all permutations³

whose cycle partitionz.³/ is a rearrangement ofq, for all q ∈ N∗. Let chq ∈ ClK .Sn/

such that.�; chq/Sn
= �.Cq/ is the value of� on any element³ ∈ Cq for all

� ∈ ClK .Sn/. Then, up to a certain factor, chq is the characteristic function ofCq in
ClK .Sn/, and we haveCq = Cr and chq = chr wheneverq is a rearrangement ofr , for
all q; r ∈ N∗. Theouter product• on the direct sum Cl:= ⊕

n∈N0
ClK .Sn/ may now

be defined by

chq • chr := chq:r(2)

for all q; r ∈ N∗. It corresponds via Frobenius’ characteristic mapping to the ordinary
multiplication of symmetric functions.

Our starting point is the following part of [12, Theorem 8.23], which already occurs
in [16, Section 8].

LEMMA 2.1. Let n ∈ N andq ` n. Denote byai the multiplicity of the letteri in
q, for all i ∈ n. Then we have½q = ½n:an • · · · • ½1:a1 .

Hence, with� p denoting the irreducible character ofSn corresponding top for
p ` n, the problem of describing the multiplicities

aq;p := .½q; �
p/Sn

may be reduced to the case thatq is of block type, that is,q = d:k is thek-th power of
a single letterd. Indeed, for partitionsq = q1: : : : :qk ` x, r = r1: : : : :rl ` y such
thatqk > r1 andx + y = n, we have

.½q:r ; �
p/Sn

= .½q • ½r ; �
p/Sn

=
∑
s`x

∑
t`y

cp
s;taq;sar;t(3)

by Lemma2.1, wherecp
s;t = .� s • � t; � p/Sn

is the well-known Littlewood-Richardson
coefficient.

For alln;m ∈ N0,  ∈ Sn and¦ ∈ Sm, we define #¦ ∈ Sn+m by

i . #¦/ :=
{

i i ≤ n;

.i − n/¦ + n i > n

for all i ∈ n + m. Furthermore, ford; k ∈ N, n := dk and³ ∈ Sk, we define
³ [d:k ] ∈ Sn by

.d j − i /³ [d:k ] := d. j³/ − i
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for all j ∈ k, i ∈ d − 1 ∪ {0}. That is,³ [d:k ] is permuting thek successive blocks of
lengthd in n according to³ . Now let−d := .1; : : : ;d/ ∈ Sd be the standard cycle of
lengthd in Sd and put

¦d:k := −d # · · · #−d︸ ︷︷ ︸
k

∈ Cd:k ⊆ Sn:

Then the centralizer of¦d:k in Sn is a wreath product of the cyclic group generated by
−d with Sk and may be described as

Cd:k := CSn
.¦d:k / =

{
³ [d:k ].− i1

d # · · · #− i k
d /
∣∣ ³ ∈ Sk; i 1; : : : ; i k ∈ d

}
:

([5, Section 4.1]). With these notations, the remaining part of Theorem 8.23 in [12],
transferred to Cl, reads as follows.

THEOREM 2.2. Let d; k ∈ N andn := dk. Then

 d:k : Cd:k −→ K ; ³ [d:k ].− i1
d # · · · #− i k

d / 7−→ "
−.i1+···+i k/

d

is a linear representation ofCd:k , and. d:k/
Sn = ½d:k .

3. Multiplicities

In order to state our main result (Theorem3.1), we need the notion of a standard
Young tableau and its multi major index corresponding to a composition. Letn ∈ N
and p = p1: : : : :pl ` n. The frameR.p/ := {.i; j / ∈ N× N | i ∈ l ; j ∈ pi }
corresponding top may be visualized by its Ferrers diagram, an array of boxes
with p1 boxes in the first (top) row,p2 boxes in the second row and so on. For
example, we have

R.3:2/ ∼ :

The images 1³; : : : ;n³ of any permutation³ ∈ Sn may be entered intoR.p/
row by row, starting at bottom left and ending at top right. Let SYTp be the set
of all permutations which are increasing in rows (from left to right) and columns
(downwards) when entered intoR.p/ in this way. The elements of SYTp are called
standard Young tableauxof shapep. In the above example, the elements of SYT3:2,
entered intoR.3:2/, are

1 2 3
4 5

;
1 2 4
3 5

;
1 3 4
2 5

;
1 3 5
2 4

;
1 2 5
3 4

:
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Accordingly, we obtain

SYT3:2 =
{(

12345

45123

)
;

(
12345

35124

)
;

(
12345

25134

)
;

(
12345

24135

)
;

(
12345

34125

)}
⊆ S5:

For all³ ∈ Sn, D.³/ := {
i ∈ n − 1 | i³ > .i + 1/³

}
is called thedescent setof ³ .

Let q = q1: : : : :qk |= n and putsj := q1 + · · · + qj for all j ∈ k ∪ {0}. Then the
multi major indexof ³ corresponding toq is defined as

majq ³ := m1: : : : :mk ∈ N∗;(4)

where

mj :=
∑

sj−1<i ≤sj

i ∈D.³/

.i − sj −1/(5)

for all j ∈ k. For q = n, we obtain the ordinary major index maj³ := majn ³ of ³ .
If, additionally,r = r1: : : : :rk ∈ N∗, we define

sytpq;r := ∣∣{³ ∈ SYTp | ∀ j ∈ k : .majq.³
−1// j ≡ r j mod qj

}∣∣ :(6)

Here.majq.³
−1// j always denotes thej -th letter of majq.³

−1/, for all j ∈ k. For
arbitraryr = r1: : : : :rl , q = q1: : : : :qk ∈ N∗ we writer | q if and only if l = k and
ri is a divisor ofqi for all i ∈ k. In this case, we define furthermore the following
extension of the number theoretic M¨obius function¼:

¼.q=r / :=
|q|∏

i =1

¼.qi =r i /:(7)

Finally, for k ∈ N andr = r1: : : : :rl ∈ N∗, we putk ? r := .kr1/: : : : :.krl /.

MAIN THEOREM3.1. Let d; k;n ∈ N such thatdk = n. Let p ` n. Then we have

.½d:k ; �
p/Sn

= 1

k!
∑
q`k

|Cq|
∑
r |q
¼.q=r / sytpd?q;r :

The proof will be given in Section5. A description of the multiplicity.½q; �
p/Sn

for arbitraryq ` n may be obtained from Theorem3.1via (3). For k ≤ 3, we obtain
the following specializations of Theorem3.1, the first of which is due to Kra´skiewicz
and Weyman (see the Remark at the end of this section).

COROLLARY 3.2. Let d ∈ N.

(a) For all p ` d, we have.½d; �
p/Sd

= sytpd;1.
(b) For all p ` 2d, we have.½d:d; �

p/S2d
= 1=2.sytpd:d;1:1 + sytp

2d;2 − sytp2d;1/.
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TABLE 1.

³ ³−1 maj6 ³
−1 maj3:3³

−1 maj2:2:2 ³
−1 maj4:2³

−1

1 2
3 4
5 6

(
123456

563412

)
6 2.1 0.0.0 2.0

1 2
3 5
4 6

(
123456

563142

)
10 2.2 0.1.1 5.1

1 3
2 4
5 6

(
123456

536412

)
8 1.1 1.1.0 4.0

1 3
2 5
4 6

(
123456

536142

)
9 1.2 1.1.1 4.1

1 4
2 5
3 6

(
123456

531642

)
12 3.3 1.0.1 3.1

(c) For all p ` 3d, we have

.½d:d:d; �
p/S3d

= 1

6

(
sytpd:d:d;1:1:1 +3.sytp.2d/:d;2:1 − sytp.2d/:d;1:1/+ 2.sytp3d;3 − sytp3d;1/

)
:

We will illustrate Corollary3.2 in the case ofp = 2:2:2. The standard Young
tableaux³ of shapep are listed in Table1 together with their multi major indices in
question. The descents of³−1 are underlined in each case.

By Corollary3.2, we obtain.½6; �
2:2:2/S6 = 0 and furthermore

.½3:3; �
2:2:2/S6 = 1

2
.1 + 1 − 0/ = 1

and

.½2:2:2; �
2:2:2/S6 = 1

6
.1 + 3.0 − 1/ + 2.1 − 0// = 0:

For p ` d ∈ N and³ ∈ SYTp, note thati ∈ d − 1 is a descent of³−1 if and only
if i stands strictly abovei + 1 in ³ , entered intoR.p/. Hence Corollary3.2 (a)
indeed coincides with the original result of Kra´skiewicz and Weyman on the Lie
character½d ([9]).
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4. Noncommutative character theory

Let n ∈ N. Thedescent algebraDn is defined as the linear span of the elements
ŽD := ∑ {³ ∈ Sn | D.³/ = D} (D ⊆ n − 1

)
in K Sn. Due to Solomon ([15]), Dn is

a subalgebra ofK Sn, and there exists a certain epimorphism of algebrascn : Dn →
ClK .Sn/, for all n. The direct sumK S := ⊕

n∈N K Sn is a graded algebra with
respect to the convolution product• (see [6, 1.3] for a combinatorial description),
andD := ⊕

n∈NDn is a•-subalgebra ofK S (see [12]). In [6], a (noncommutative)
•-subalgebraR of K Sand a•-homomorphismc : R → Cl are introduced such that
D ⊆ R andc|Dn

= cn for all n. Furthermore, a (bilinear) scalar product.·; ·/ on K S
is defined by

.³; ¦ / :=
{

1 ³ = ¦−1;

0 ³ 6= ¦−1

for all permutations³ , ¦ , and it is shown that

.'; / = .c.'/; c. //S(8)

for all '; ∈ R, where the scalar product on the right hand side is the canonical
orthogonal extension of the ordinary scalar products.·; ·/Sn

on ClK .Sn/, n ∈ N. For
any partitionp ∈ N∗, Zp := ∑

³∈SYTp ³ is an element ofR such that

c.Zp/ = � p(9)

is the irreducible character ofSn corresponding top. For example, forp = 3:2, we
obtainZ3:2 = (12345

45123

) + (12345
35124

) + (12345
25134

) + (12345
24135

) + (12345
34125

)
. These results provide the

following general concept for describing multiplicities: Given an arbitrary character
� ∈ ClK .Sn/, any inverse image' ∈ R of � underc may be understood as a
noncommutative charactercorresponding to� . By (8) and (9), for each such', it
follows that

.�; � p/Sn
= .c.'/; c.Zp//Sn

= .';Zp/:(10)

The right-hand side of (10) gives different combinatorial descriptions of the multi-
plicity on the left-hand side, according to the choice of', simply by the definition of
Zp and the scalar product onR.

5. Klyachkos’s idempotent and Ramanujan sums

In the sequel, following the concept described in Section4, an inverse image of½d:k

underc in D is constructed. It leads to a short proof of our main result Theorem3.1,
by means of (10).



16 Manfred Schocker [8]

Let n ∈ N. We put�n.x/ := ∑
³∈Sn

xmaj³³ (x a variable) and

Mn;i :=
∑
³∈Sn

maj³≡i mod n

³ ∈ Dn

for all i ∈ N0. Then, up to the factor 1=n, �n."n/ = ∑n
i =1 "

i
n Mn;i ∈ Dn is a Lie

idempotent, that is,�2
n = n�n andLn.V / = �nTn.V/. This remarkable result is due to

Klyachko ([8]).

LEMMA 5.1. Letn; i ∈ N andd be the order of" i
n. Then we have

�n."
i
n/ = �d."

i
n/ • · · · • �d."

i
n/︸ ︷︷ ︸

n=d

:

In particular, c.�n."
i
n// = chd:n=d .

The main part of the preceding lemma is a special case of [10, Proposition 4.1],
while the additional claim on thec-image follows from [7, Proposition 1]. For
n;m ∈ N, we denote by gcd.n;m/ the greatest common divisor ofn andm.

COROLLARY 5.2. Let n ∈ N and i; j ∈ N0 such thatgcd.i;n/ = gcd. j;n/. Then
c.Mn;i / = c.Mn; j /.

PROOF. As gcd.i;n/ = gcd. j;n/, we can find an integerm ∈ N such thati ≡ jm
modulon and gcd.m;n/ = 1. For allk ∈ N, we have gcd.km;n/ = gcd.k;n/ and
hencec.�n."

k
n// = c.�n."

mk
n //, by Lemma5.1. It follows that

nc.Mn;i / = c

(
n∑

l=1

n∑
k=1

."l−i
n /k Mn;l

)
= c

(
n∑

k=1

"−i k
n �n."

k
n/

)

= c

(
n∑

k=1

"−i k
n �n."

mk
n /

)
= c

(
n∑

l=1

n∑
k=1

."lm−i
n /k Mn;l

)

= c

(
n∑

l=1

n∑
k=1

.."m
n /

l− j /k Mn;l

)
= nc.Mn; j /:

Let n;m ∈ N. TheRamanujan sumcorresponding ton andm is defined by

%.n;m/ :=
∑

"m;

where the sum is taken over all primitiven-th roots of unity". In the particular case
of m = 1 (m = n, respectively),%.n;m/ yields the Möbius function¼.n/ = %.n;1/
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(Euler’s function'.n/ = %.n;n/, respectively). We writex | m, if x ∈ N is a divisor
of m, and put

R.n;m/ :=
∑
x|m
%.n; x/%.m=x;1/:(11)

Now, for all d; k ∈ N and p = p1: : : : :pl ∈ N∗, let

Md.k/ :=
∑
y|dk

R.dk=y;d/Mdk;y(12)

and

Md.p/ := Md.p1/ • · · · • Md.pl /:

Note thatMd.p/ ∈ D , asD is closed under the convolution product.

LEMMA 5.3. For all d; k ∈ N, we have

½d:k = c

(
1

k!
∑
³∈Sk

1

d|z.³/| Md.z.³//

)
:

(Recall thatz.³/ denotes the cycle partition of³ for any permutation³ .)

PROOF. We write

z.³ ; i1; : : : ; i k/ := z.³ [d:k ].− i1
d # · · · #− i k

d //

for all ³ ∈ Sk, i1; : : : ; i k ∈ d − 1 ∪ {0}. By Theorem2.2, we then have

½d:k = 1

|Cd:k|
∑
q`dk


∑
'∈Cd:k

z.'/=q

 d:k.'/


 chq

= 1

k!
∑
³∈Sk

1

dk

d−1∑
i1;::: ;i k=0

"
−∑

i j

d chz.³ ;i1;::: ;i k/ :

By induction on the numberz = |z.³/| of cycles in³ ∈ Sk, we show that

1

dk

d−1∑
i1;::: ;i k=0

"
−∑

i j

d chz.³ ;i1;::: ;i k/ = c

(
1

dz
Md.z.³//

)
;(∗)

which implies our claim. We will use some basic facts about cycle partitions of
elements ofCd:k which can be found in [5, 4.2]. Letz = 1. Then³ ∈ Sk is a long
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cycle. Putting� := "kd and applying [5, 4.2.17], Lemma5.1 and Corollary5.2, we
obtain

1

dk

d−1∑
i1;::: ;i k=0

"
−∑

i j

d chz.³ ;i1;::: ;i k/

= 1

d

d−1∑
i =0

"−i
d chk?z.−:id /

= 1

d

∑
x|d
%.d=x;1/ chk?z.−:xd /

= c

(
1

d

∑
x|d
%.d=x;1/�kd.�

x/

)
= c

(
1

d

∑
x|d

dk−1∑
j =0

%.d=x;1/� j x M . j /
dk

)

= c

(
1

d

∑
y|dk

M .y/
dk

∑
x|d
%.d=x;1/%.dk=y; x/

)
= c

(
1

d

∑
y|dk

M .y/
dk R.dk=y;d/

)

= c.Md.k/=d/:

Now let z > 1, say,³ = ³̃¦ for a cycle¦ of length l in ³ . Then we have, by [5,
4.2.19], (2) and our induction hypothesis,

1

dk

d−1∑
i1;::: ;i k=0

"
−∑

i j

d chz.³ ;i1;::: ;i k/

=
(

1

dk−l

d−1∑
i1;::: ;i k−l =0

"
−∑

i j

d chz.³̃ ;i1;::: ;i k−l /

)
•
(

1

dl

d−1∑
i k−l+1;::: ;i k=0

"
−∑

i j

d chz.¦ ;i k−l+1;::: ;i k/

)

= c

(
1

dz−1
Md.z.³̃ // • 1

d
Md.z.¦ //

)
= c

(
1

dz
Md.z.³//

)
:

This completes the proof of (∗).

The inverse image of½d:k underc constructed in the preceding lemma may be
simplified by means of a short analysis of the numbersR.n;m/. This will be done in
three steps.

PROPOSITION5.4. Letn1;n2;m1;m2 ∈ N such that

gcd.n1;n2/ = gcd.m1;m2/ = gcd.n1;m2/ = gcd.n2;m1/ = 1:

Then we haveR.n1n2;m1m2/ = R.n1;m1/R.n2;m2/.

PROOF. By [4, Theorem 67], the Ramanujan sums have the following factorizing
property:%.a1a2;b/ = %.a1;b/%.a2;b/ for all a1;a2;b ∈ N such that gcd.a1;a2/ = 1.
Furthermore, we have%.a;b1b2/ = %.a;b1/ for all a;b1;b2 ∈ N such that.a;b2/ = 1,
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as in this case taking theb2-th power induces an automorphism of the group ofa-th
roots of unity. These two observations imply that

R.n1n2;m1m2/ =
∑
x1|m1

∑
x2|m2

%.n1n2; x1x2/%

(
m1

x1

m2

x2

;1
)

=
∑
x1|m1

∑
x2|m2

%.n1; x1x2/%.n2; x1x2/%

(
m1

x1
;1

)
%

(
m2

x2
;1

)

=
∑
x1|m1

%.n1; x1/%

(
m1

x1
;1

)∑
x2|m2

%.n2; x2/%

(
m2

x2
;1

)
= R.n1;m1/R.n2;m2/:

LetP be the set of all prime numbers.

PROPOSITION5.5. For all a;b ∈ N0 and p ∈ P, we have

R.pa; pb/ =
{
¼.pa−b/pb b ≤ a;

0 b > a:

PROOF. For all n;m ∈ N, the Ramanujan sum corresponding ton andm may be
expressed in terms of the M¨obius and the Euler function as follows:

%.n;m/ = ¼.n=gcd.n;m//
'.n/

'.n=gcd.n;m//

([4, Theorem 272]). Letc := min{a;b} andd := min{a;b − 1}. Then

R.pa; pb/ =
b∑

i =0

%.pa; pi /%.pb−i ;1/

= %.pa; pb/− %.pa; pb−1/

= ¼.pa−c/
'.pa/

'.pa−c/
− ¼.pa−d/

'.pa/

'.pa−d/

and henceR.pa; pb/ = 0 for b > a, asc = d = a in this case. Letb ≤ a. Then we
havec = b andd = b − 1, that is,

R.pa; pb/ = ¼.pa−b/
'.pa/

'.pa−b/
− ¼.pa−b+1/

'.pa/

'.pa−b+1/
:

For b < a − 1, this showsR.pa; pb/ = 0 as asserted. Forb = a − 1 it follows
that R.pa; pb/ = −'.pb+1/='.p/ = −pb, while, for b = a, we may conclude that
R.pa; pb/ = '.pb/ − '.pb/='.p/ = pb.
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LEMMA 5.6. For all n;m ∈ N, we have

R.n;m/ =
{
¼.n=m/m m | n;

0 otherwise.

PROOF. Chooseap;bp∈N0 for all p∈P such thatn=∏p∈P pap andm=∏p∈P pbp .
Applying Propositions5.4and5.5we obtain

R.n;m/ =
∏
p∈P

R.pap; pbp/

=
{∏

p∈P¼.p
ap −bp/pbp ∀p ∈ P : bp ≤ ap;

0 otherwise

=
{
¼.n=m/m m | n;

0 otherwise.

COROLLARY 5.7. Let d; k ∈ N. ThenMd.k/ = d
∑

y|k¼.k=y/Mdk;y.

PROOF. Let y be a divisor ofdk. Then Lemma5.6 implies that

R.dk=y;d/ =
{
¼.dk=dy/d d | dk=y;

0 otherwise
=
{
¼.k=y/d y | k;

0 otherwise.

We are now in a position to give the proof of the Main Theorem3.1.

PROOF OF THEMAIN THEOREM 3.1. By Lemma5.3and (10), we have

.½d:k ; �
p/Sn

= 1

k!
∑
³∈Sk

1

d|z.³/| .Md.z.³//;Zp/:

But, for ³ ∈ Sk andq = q1: : : : :qk := z.³/, we may conclude from Corollary5.7
that

1

d|z.³/| .Md.z.³//;Z
p/ = 1

dk
.Md.q1/ • · · · • Md.qk/;Z

p/

=
∑
r1|q1

· · ·
∑
rk|qk

¼.q1=r1/ · · · ¼.qk=rk/.Mdq1;r1 • · · · • Mdqk;rk
;Zp/

=
∑
r |q
¼.q=r /.Mdq1;r1 • · · · • Mdqk;rk

;Zp/:

This completes the proof, as.Mdq1;r1 • · · · • Mdqk;rk
;Zp/ = sytpd?q;r for all r | q, simply

by definition of the scalar product.·;·/ and the convolution product• in [6, 1.3].
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[9] W. Kraśkiewicz and J. Weyman, ‘Algebra of invariants and the action of a Coxeter element’,Bayr.

Math. Schr.63 (2001), 265–284.
[10] B. Leclerc, T. Scharf and J.-Y. Thibon, ‘Noncommutative cyclic characters of symmetric groups’,

J. Combin. Theory Ser. A (1)75 (1996), 55–69.
[11] F. Patras and C. Reutenauer, ‘Higher Lie Idempotents’,J. Algebra222(1999), 51–64.
[12] C. Reutenauer,Free Lie algebras, London Math. Soc. Monographs 7 (Oxford University Press,

Oxford, 1993).
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