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Abstract

The higher Lie characters of the symmetric gréparise from the PoincarBirkhoff-Witt basis of the

free associative algebra. They are indexed by the partitiongnél sum up to the regular characteSpf

A combinatorial description of the multiplicities of their irreducible components is given. As a special
case the Krgkiewicz-Weyman result on the multiplicities of the classical Lie character is obtained.
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1. Introduction

At the beginning of the last century Schur studied the structure of the tensor algebra
T (V) over a finite dimensionak -vector spac&/ as a GlLV)-module. In his thesis
([13]) and a famous subsequent papér]] he was able to describe the decomposition

of the homogeneous components

(V) =V -’V
NN

of degreen in T (V) into irreducible GI(V)-modules using the irreducible represen-
tations of the symmetric grou,. The usual Lie bracketinx, y] := xy — yx turns
T(V) into a Lie algebra. The Lie subalgebt&V) generated by is free over any
basis ofV by a classical result of Witt {[7]), andL,(V) = T,(V) N L(V) is a
GL(V)-submodule off, (V) for all n. Letq = ¢. ... .gx be a partition of, that is,
gy >--- >0gcandg; + - -- + g« = n. Then we define

Lq(V) = <Z Pir -+ Per

Te&

Pelqg(V)forl<i §k>
K
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By the Poincae-Birkhoff-Witt theoremT,,(V) is the direct sum of these subspaces:

(1) To(V) = P La(V),

qkn

and this decomposition is GV )-invariant.

Meanwhile, different families of idempotergs in the group algebr& S, indexed
by partitions have been introduced such thatV) = g, T,(V) for all q (see, for
example, g, 3, 11]). For any decompositiog;K S, = P, a,.,M, into irreducible
S,-modules, we now have

Lo(V) =& T(V) = 6K S, ®ks, Ta(V) = @D aq,p(M, ®ks, Ta(V)).
p

In this decomposition, by Schur's fundamental resi, @«s, T.(V) is either O
or an irreducible GLV)-module. Hence the GV)-module structure ot 4(V) is
completely determined by the multiplicities, , of the higher Lie moduleg;K S,
of S,. In this vein, for the special case gf = n, the problem of describing the
GL(V)-module structure of ,(V) formulated by Thrall (L6]) could finally be solved
in a satisfying way by works of Klyachkof]) and Kraskiewicz and Weyman ¢]).

The higher Lie characters.q of S, corresponding to the modulegK S, sum up
to the regular character &, by (1), and it is natural to ask for their multiplicities
for arbitrary q. In this paper, a combinatorial description of these multiplicities
is given in terms of alternating sums of numbers of standard tableaux with certain
major index properties (Sectid). Forg = n, we obtain the Krakiewicz-Weyman
result mentioned above. Our approach is based on a generalization of Klyachko's
result (Sectior?) combined with the calculus of noncommutative character theory
introduced in f] (Section4).

2. The reduction to partitions of block type

Letq be a partition of. The higher Lie charactey, is induced by a certain linear
character of the centralizer of an element of cycle type S,. Forq = n, this result
is due to Klyachko (@]). In full generality, it is implicitly contained in1] for the first
time (for details, seel2, Section 8.5]) and will be briefly recalled in two steps in this
section.

LetN (No, respectively) be the set of all positive (nonnegative, respectively) integers
andn := {k € N | k < n}foralln € Ng. LetN* be a free monoid over the alphabét
We writeq.r for the concatenation product qf r € N* in order to avoid confusion
with the ordinary product inN. Accordingly, we denote byg* the k-th power of a
letterd € N in N*, forallk € Ng. If n e Nandq = q;. ... .0k € N* such that
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0. + --- + g« = n, we say that] is acompositionof n of length|q| := k, and write
g = n. If, additionally,q; > - -- > g¢ and hence is a partition ofn, we writeq - n.

Let K be a field of characteristic O containing a primitiveh root of unitye, for
alln € N. For alln € Ny, we denote by GI(S,) the ring of class functions of the
symmetric groufs,. LetC, be the conjugacy class consisting of all permutations
whose cycle partitioa(r) is a rearrangementof, for allq € N*. Letch, € Clk(S,)
such that(x, chy)s, = x(Cy) is the value ofy on any elementt € C, for all
x € Clk(S)). Then, up to a certain factor, £is the characteristic function &, in
Clk(S), and we hav€, = C; and cly = ch wheneven is a rearrangement of for
allg,r e N*. Theouter producte on the direct sum Ci= @, Clk (S,) may now
be defined by

(2) chyech :=chy,

forallg,r € N*. It corresponds via Frobenius’ characteristic mapping to the ordinary
multiplication of symmetric functions.

Our starting point is the following part o1, Theorem 8.23], which already occurs
in [16, Section 8.

LeEmmA 2.1. Letn € N andqg F n. Denote byg, the multiplicity of the letter in
q, foralli € n. Thenwe havé, = Aqw @ --- @ Ay,

Hence, with P denoting the irreducible character §f corresponding tgp for
p = n, the problem of describing the multiplicities

agp = (hq: ¢ P)s,
may be reduced to the case thas of block typethat is,q = d* is thek-th power of
a single letted. Indeed, for partitions) = ;. ... .Qx = X, r =r4. ... .r =y such
thatge > r; andx + y = n, we have
(3) (hqr-EP)s = (g @ A EP)g = Y Y Cqshs
sx  thy

by Lemma2.1, wherec; = (¢S e &t, £P)g, is the well-known Littlewood-Richardson
coefficient.
For alln,m e Ny, ¥ € §, ando € S, we definey #0 € S, by

iy i<n
i—mo+n i>n

(Y #o) = {

for alli € n4+m. Furthermore, fod,k € N, n := dk andn € &, we define
714 e § by

dj — i) :=d(jr) —i
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forall j € k,i € d — 14U {0}. Thatis, 7' is permuting thex successive blocks of
lengthd in n according tar. Now letty := (1, ... ,d) € S be the standard cycle of
lengthd in S and put

Ogk = Tg#- - #7q € Cqx C §..
k
Then the centralizer afy« in §, is a wreath product of the cyclic group generated by
74 With S, and may be described as
C¥ := Cgq (0gx) = {n[d’k](t(if#- S #TE) | e Soin, .. ik E g} )

([5, Section 4.1]). With these notations, the remaining part of Theorem 8.2%]n [
transferred to Cl, reads as follows.

THEOREM2.2. Letd, k € N andn := dk. Then
1/fd,k . Cd.k — 5 K, ﬂ[d’k](r(ijl#- __#.[(ijk) s 85“”"'““)

is a linear representation d8%", and (¥q)$ = Aq«.

3. Multiplicities

In order to state our main result (Theor&n), we need the notion of a standard
Young tableau and its multi major index corresponding to a compositionn ke
andp = p.....p = n. The frameR(p) := {(,)) e NxNJiel,]ep}
corresponding top may be visualized by its Ferrers diagram, an array of boxes
with p; boxes in the first (top) rowp, boxes in the second row and so on. For
example, we have

R(3.2) ~ ‘

The images #, ... ,nz of any permutationt € S, may be entered intdR(p)

row by row, starting at bottom left and ending at top right. Let SYde the set

of all permutations which are increasing in rows (from left to right) and columns
(downwards) when entered inf(p) in this way. The elements of SYTare called
standard Young tableawf shapep. In the above example, the elements of S¥,T
entered intdR(3.2), are

w
N

1]2[3] [1]2]4] [1]3]4] [1]3]5] |1

5]
g 35| ° [2(5] ° [2(4]  [3]4]
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Accordingly, we obtain

SYTR2 — 1234 1234 1234 1234 1234 cs
| \45123/° \35124/° \25134/° \24135/° \34125/| — ™

Forallr € S, D() := {i en—1inm>({+ 1)71} is called thedescent setf .
Letq =h. ... .Gk = nandputs; := g, +--- +q; forall j € kU {0}. Then the
multi major indexof 7 corresponding tq is defined as

(4) majqﬂ =M. ... .M € N*,
where
%) m; = Z (i —sj_1)
Sj_1<i <Sj
ieD(r)

for all j € k. Forq = n, we obtain the ordinary major index nmaj:= maj, = of .
If, additionally,r =r;. ... .r, € N*, we define

(6) syt == |{m € SYT? | Vj e k: (maj,(x™H); =r; modg;}|.

Here(maL(n*l))j always denotes the¢-th letter of maj(n*l), forall j € k. For
arbitraryr =rq4. ... .1, g =0q;. ... .0k € N* we writer | g if and only if| = k and

ri is a divisor ofq; for all i € k. In this case, we define furthermore the following
extension of the number theoreticdidiis function:

lal

(7) u(a/ry = [T r@/m.

i=1

Finally, fork e Nandr =ry. ... .r, € N*, we putk xr := (kry). ... .(kn).

MAIN THEOREM 3.1. Letd, k, n € N such thatdk = n. Letp - n. Then we have

(hae, £P)s, = %Z ICal D 1(@/1) SYthug,r -
q-k riq
The proof will be given in Sectiob. A description of the multiplicity(Aq, £ P)s,
for arbitraryq = n may be obtained from TheoreBnl via (3). Fork < 3, we obtain
the following specializations of Theore®nl, the first of which is due to Kigkiewicz
and Weyman (see the Remark at the end of this section).

COROLLARY 3.2. Letd € N.
(a) Forall ptd,we havelrq, £P)s, = St ;.
(b) Forall pt2d, we havgiyg,¢P)s, = 1/2(Syt<’j).d,1.1 + Sytgd,z - Sytgd,l)-



14 Manfred Schocker [6]

TABLE 1.

1 1

Q
S

Maj 7~ | M, * | Mapy,m L | maj,

6 2.1 0.0.0 2.0

10 2.2 0.1.1 51

9 1.2 111 4.1

12 3.3 1.0.1 3.1

WINIER[ | BN O NIk DI |[|o]Ww|=
ol || o]loflw| || O[] O|lOoTIN] || Ol ([IN

(seaa12
(sea140
(29 s | 11| 110 | 40
(sa6149
(sat649

(c) Forall pk 3d, we have

1
(Addd, EPsy = 5 (Syrg,d.d,l.l.l +3(5yt(p2d).d,2.1 - Syt(pZd).d,l.l) + 2(sythy 5 — Sytgd,l)) .

We will illustrate Corollary3.2in the case ofp = 2.2.2. The standard Young
tableauxr of shapep are listed in Tablé together with their multi major indices in
question. The descentsof?! are underlined in each case.

By Corollary 3.2, we obtain(ie, £ >%?)s, = 0 and furthermore

(has, £2%%)g = %(1 +1-0)=1
and
(h222,¢**%)g = %(1 +30—1) +2(1-0) =0.

Forptd e Nandr € SYTP, note that € d — 1 is a descent ofr * if and only
if i stands strictly above + 1 in &, entered intoR(p). Hence Corollary3.2 (a)
indeed coincides with the original result of Kkaéwicz and Weyman on the Lie
charactehq ([9]).
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4. Noncommutative character theory

Letn € N. Thedescent algebr&, is defined as the linear span of the elements

=) {r € S| D(r) =D} (D Cn—1)inKS,. Due to Solomon ([5]), Z, is
a subalgebra oK S,, and there exists a certain epimorphism of algebyas, —
Clk(S), for all n. The direct sumKS := @@,y KS, is a graded algebra with
respect to the convolution produet(see p, 1.3] for a combinatorial description),
and? := @, . Z, is ae-subalgebra oK S (see [L2]). In [6], a (noncommutative)
e-subalgebra? of K Sand ae-homomorphisnt : # — Cl are introduced such that
2 C Z andc|g, = ¢, for all n. Furthermore, a (bilinear) scalar prodyct) onK S
is defined by

1

(7. 0) 1 n=0"";
o) =
’ 0 m+#o01

for all permutationsr, o, and it is shown that

8 (@, ¥) = (C(p), C(¥))s

for all ¢, v € #, where the scalar product on the right hand side is the canonical
orthogonal extension of the ordinary scalar prodictgs on Clk (S,), n € N. For
any partitionp € N*, ZP := 3" o » 7 is an element ofZ such that

9 c(ZP) =¢P

is the irreducible character &, corresponding tg. For example, fop = 3.2, we

H 1234 1234 1234 1234 1234 H
Obtaln_232 = 45123 + 35123 + (25133_ + 24133 + 341.23' Th_ese reSUIts_ prOVIde the
following general concept for describing multiplicities: Given an arbitrary character
x € Clk(S), any inverse image € # of x underc may be understood as a
noncommutative charactaorresponding tg¢. By (8) and @), for each sucly, it

follows that

(10) (X, &P)s, = (clp), c(ZP))s, = (9. Z").

The right-hand side of1Q) gives different combinatorial descriptions of the multi-
plicity on the left-hand side, according to the choiceppsimply by the definition of
ZP and the scalar product o#.

5. Klyachkos’s idempotent and Ramanujan sums

In the sequel, following the concept described in Secfiam inverse image ofy«
underc in & is constructed. It leads to a short proof of our main result Thed@dm
by means of 10).
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Letn € N. We puti,(x) := Y __. x™¥" 7 (x a variable) and

TES

My = Z T € 9,

TES
majr=i modn

for alli € No. Then, up to the factor/h, «,(e,) = Y1, M,; € %, is a Lie

i=1%n
idempotent, thatis;? = nk, andL,(V) = k,T,(V). This remarkable result is due to
Klyachko ([8]).

LEMMA 5.1. Letn,i € N andd be the order of!. Then we have

nlEl) = Ka(gh) @ - @ kcg(eh) .

n/d

In particular, c(kq(¢')) = chyna.

The main part of the preceding lemma is a special casé®@ffroposition 4.1],
while the additional claim on the-image follows from [, Proposition 1]. For
n, m € N, we denote by gaeh, m) the greatest common divisor nfandm.

COROLLARY 5.2. Letn € N andi, j € Ny such thatgcd(i, n) = gcd(j, n). Then
C(Mn,i) = C(Mn,j)-

PrOOF. As gcdi, n) = gcd(j, n), we can find an integen € N such thaf = jm

modulon and gcdm, n) = 1. For allk € N, we have gctkm, n) = gcdk, n) and
hencec(x, (X)) = c(kn(e™)), by Lemma5. 1. It follows that

nc(M,;) =c¢ (i Xn:(glni)an,l) =C (Z SnikKn(EI;))
k=1

I=1 k=1

=cC (Z snik/cn(zs:]“k)> =cC (Z Xz(é‘ln'mi )an,l)
k=1 I=1 k=1

=c (Z ((s'n“)'i)ka) = nc(My,)). O
I=1 k=1

Letn, m € N. TheRamanujan surnorresponding ta andm is defined by

o(n,m) := Z g™,

where the sum is taken over all primitiveth roots of unitye. In the particular case
of m = 1 (m = n, respectively)p(n, m) yields the Mobius functionu(n) = o(n, 1)
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(Euler’s functiong(n) = o(n, n), respectively). We write | m, if X € N is a divisor
of m, and put

(11) R, m) := Y " o(n, x)o(m/x, 1).

X|m

Now, foralld,k e Nandp = p;. ... .p € N*, let

(12) Ma(k) := ) R(dK/y. d) Mgy
yldk
and

My(p) := Mgy(p1) o --- @« My(p).

Note thatMy(p) € &, as¥ is closed under the convolution product.

LEMMA 5.3. For all d, k € N, we have

1 1
Agk = C (E Z de(z(”))> .

Te

(Recall thatz(r) denotes the cycle partition af for any permutationr.)

PrOOE We write

Z(]T, il7 ey |k) = Z(n[d-k](l_(i;#_ . #-[(Ijk))
forallm € § i1, ... ik € d =L U{0}. By Theoren?.2, we then have
1
Agk = _lcd_kl Z Z VYax(p) | chy
q-dk <p€Cd'k
Z(<p> qa
Z dk Z g0 =" Chugmi.iv
T meS i1,...,ik=0

By induction on the number = |z(x)| of cycles inm € &, we show that

R 1
(%) dk Z eq =" Chyri i, =c<§Md(z<n>)),

ig=0

which implies our claim. We will use some basic facts about cycle partitions of
elements ofC®" which can be found ing, 4.2]. Letz = 1. Thenr € S is a long
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cycle. Puttingn := &4 and applying b, 4.2.17], Lemméb.1 and Corollary5.2, we
obtain

1 d-1 o]
J Z 8 Chz(n HEPR
i 0

I1,.4..ik:

1 d-1
= a Z 8 Ch(*z(fd) - Z Q(d/x l) Chsz(vcd )
i=0

x|d
dk—1
( > o(d/x, Digaln* )) = C( D> o@/x, 1)nJX|v|<”)
x|d x|d j=0
( D M e(d/x. Do(dk/y, X)) = C< > MR(dk/y, d))
y|dk x|d y|dk
= c(Mq(k)/d).

Now letz > 1, say,m = 7o for a cycleo of lengthl in 7. Then we have, by5]
4.2.19], @) and our induction hypothesis,

-
dk Z &g Chz(n;il,.u.ik)
I

ig=0

1 d-1 1 d-1 3
—Yij =i
B (F § : €q JC*E(ﬁ;il,.”.iH)) ° (J E €q JChZ(“ﬂkHl;-m“))
|k—0

i1y ik =0 Tt L sik=
1 1 1
( T Ma(2(E)) o Md(z<o>)> ( = Md(zm)))

This completes the proof of. O

The inverse image of4« underc constructed in the preceding lemma may be
simplified by means of a short analysis of the numb(s, m). This will be done in
three steps.

PrROPOSITIONS.4. Letny, n,, my, m, € N such that
gcding, ny) = gcdm,, my) = ged(ng, my) = gedn,, my) = 1.
Then we hav&(nin,, mym,) = R(ny, my) R(N,, my).

PrROOF. By [4, Theorem 67], the Ramanujan sums have the following factorizing
property:o(a;a,, b) = o(ay, b)o(ay, b) foralla;, a, b € Nsuchthatgeth, a,) = 1.
Furthermore, we hawg(a, b;b,) = o(a, by) foralla, by, b, € N suchthata, b,) = 1,
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as in this case taking th®-th power induces an automorphism of the grougah
roots of unity. These two observations imply that

my
R(nin,, mymy,) = Ny{Ns, X1 X —1—1
(NN, MiMy) = ZZQ(lz 12)Q< X )

2
X1|My Xz My

= Z Z 0(Ng, X1X2)0 (N, X1X2)0 <— 1) Q (T 1)

2
X1|My Xz My

= o, x)e (— 1) > oM, xo)0 ( )

X1|My X2|My

= R(ny, mp) RNz, my). O
Let P be the set of all prime numbers.
PrOPOSITIONS.5. For all a,b € Ny and p € P, we have

w(p*®)p® b<a

R a’ b:
(P P {O b> a.

PrOOF. For alln, m € N, the Ramanujan sum correspondingitandm may be
expressed in terms of theddius and the Euler function as follows:

()
@(n/gedin, m))

([4, Theorem 272]). Let := min{a, b} andd := min{a, b — 1}. Then

o(n, m) = u(n/gedn, m))

b
R(p?, p*) = Y o(p*, phe(p™, 1)
i=0
=o(p*, P*) —o(p*, P
p(p*) _ay (P
n(p* ) ——— (P9
R T a0,
and henceR(p?, p°) = 0 forb > a, asc = d = ain this case. Leb < a. Then we
havec = bandd = b — 1, that is,

p(p*) o(p*)
@(p*) p(prth)”
Forb < a — 1, this showsR(p?, p°) = 0 as asserted. Fdr = a — 1 it follows

that R(p?, p°) = —e(p**1)/o(p) = —p°, while, forb = a, we may conclude that
R(p?, p*) = ¢(p°) — 0(p)/¢(p) = P°. 0

R(p%, p°) = u(p*®)——— — u(p* ™)
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LEMMA 5.6. For all n,m € N, we have

RN, m) = {g(n/m)m mijn;

otherwise.

PROOF. Choosea,, byeN, for all peP such than=T]_, p* andm=]]_, p*.
Applying Proposition$.4and5.5we obtain

R, m) = [ [ R(p*, p)

peP
_ [Tpep (P P)p> VpeP:b, <ay;
0 otherwise

_Jp(/mm  min;
o otherwise. n

COROLLARY 5.7. Letd, k € N. ThenMy(K) =d }_,, 1£(K/Y) My y-
PROOF. Lety be a divisor odk. Then Lemm&b.6implies that

k k/y; k k;
Rdk/y. d) = p(dk/dy)d d|d /}h _ Juk/yd y ik |
0 otherwise 0 otherwise. O

We are now in a position to give the proof of the Main Theoffn

PROOF OF THEMAIN THEOREM 3.1 By Lemma5.3and (L0), we have

1 1
(o, €5, = 15 D 2o (Ma(2(1)), Z°),
" reS

But, form € S andq = ;. ... .0k := z(r), we may conclude from Corollary.7
that

1 1
Famr (Ma(2(1)), 2°) = - (Ma(ch) @ -+ @ Mg (00, Z°)
=3 3 @) (/T (Mg, @ -+ @ Maq.r,. ZP)

r1]qu e

=Y 1(@/r)(Mag,r, ® -+ ® Mg, Z°).

rlq

This completes the proof, @ gq,r, ® - - - ® Myq.r,, ZP) = sy1;’,’*q,r forallr | g, simply
by definition of the scalar produ¢t -) and the convolution produetin [6, 1.3]. O
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