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Abstract

The connection between Clifford analysis and the Weyl functional calculus for ad-tuple of bounded
selfadjoint operators is used to prove a geometric condition due to J. Bazer and D. H. Y. Yen for a point to
be in the support of the Weyl functional calculus for a pair of hermitian matrices. Examples are exhibited
in which the support has gaps.
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1. Introduction

For a d-tuple A = .A1; : : : ; Ad/ of noncommuting bounded selfadjoint operators
acting on a Hilbert spaceH , there is no direct analogue of the spectral theorem for
a single selfadjoint operatorT , by which a functionf .T/ of T can be expressed in
terms of an integralf .T/ = ∫

¦ .T/ f .½/d E.½/ with respect to a spectral measureE.
TheWeyl functional calculusWA : f 7→ fW.A/ for A is a means of constructing

functions fW.A/ of the systemA of operators, for suitable smooth functionsf defined
on Rd. It was proposed by H. Weyl for the pair.P;Q/ of unbounded selfadjoint
operators, whereP is the momentum operator andQ is the position operator in
quantum mechanics. In the noncommuting case, the operatorWA. f / is not necessarily
expressible as an integral with respect to an operator-valued measure, butWA is an
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operator-valued distribution. IfA consists ofboundedoperators, thenWA necessarily
has compact support.

A feature of Weyl’s functional calculus is thatWA maps a polynomialp in d
variables to an operatorpW.A/ in which symmetrised products in the elements ofA
replace the associated monomial components ofp.

A similar phenomenon emerges in Clifford analysis. Amonogenicfunction f
defined onRd+1, and with values in a finite dimensional Clifford algebra, is a function
satisfying a higher dimensional analogue of the Cauchy-Riemann equations. Every
complex valued analytic function ind real variables has a unique monogenic extension
to an open subset ofRd+1. The monogenic extension of polynomials onRd are the
corresponding polynomials in thed-tuple .z1; : : : ; zd/ of monogenic extensions of
coordinate functions, but with products suitably symmetrised.

The purpose of the present work is to exploit the connection between the Weyl and
Clifford calculi, previously examined in [17, 18], to obtain a geometric expression for
the support of the Weyl functional calculus for two hermitian matrices. Expressed
otherwise, we describe geometrically the ‘joint spectrum’ .A/ of two noncommuting
hermitian matricesA = .A1; A2/. In the case thatA1; A2 do commute, the support
 .A/ of the Weyl functional calculusWA for the pairA is actually the support of the
joint spectral measure forA—the finite set of joint eigenvalues ofA1 and A2. Our
technique uses a generalisation of the Cauchy-Stieltjes transform of a measure onR

from the complex plane to higher dimensions. The analogy is as follows.
Let ¼ be a finite Borel measure on the line. TheCauchy-Stieltjes transform̃¼ is

defined for allz ∈ C \ supp¼ by

¼̃.z/ = 1

2³ i

∫
R

d¼.x/

z− x
:

The measure¼ can be recovered from its Cauchy-Stieltjes transform¼̃ by the formula∫
R

� d¼ = lim
"→0+

∫
R

[
¼̃.x − i "/− ¼̃.x + i "/

]
�.x/dx;

valid for all smooth functions� with compact support.
A similar argument applies to aspectral measure. Suppose thatA is a selfadjoint

operator acting in a Hilbert space with a selfadjoint spectral measureP supported on
the spectrum¦.A/ of A, that is,A = ∫

¦ .A/ ½d P.½/. Then for everyz belonging to the
resolvent set².A/ = C \ ¦.A/, the functional calculus for selfadjoint operators gives

P̃.z/ = 1

2³ i

∫
R

d P.x/

z − x
= 1

2³ i
.zI − A/−1

in terms of the resolvent.zI − A/−1 of A. Moreover,∫
R

� d P = 1

2³ i
lim
"→0+

∫
R

[
..x − i "/I − A/−1 − ..x + i "/I − A/−1

]
�.x/dx(1)
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for all smooth functions� with compact support (see [11, (iv) page 2168]). The
support¦.A/ of the spectral measureP is characterised as the complement of the set
of pointsx ∈ R contained in an open setU inC in which the resolventz 7→ .zI−A/−1,
z ∈ U \R; is the restriction toU \R of a continuous function defined inU . Formulas
like (1) are basic to the spectral theory of differential operators and to the construction
of their spectral measures, for example, by the Weyl-Titchmarsh-Kodaira formula for
Sturm-Liouville differential operators.

In the case thatA = .A1; : : : ; Ad/ is a d-tuple of bounded selfadjoint operators
acting on a Hilbert spaceH andWA is the Weyl functional calculus associated with
A, the equation

WA.�/ = lim
"→0+

∫
Rd

[
Gx+"e0.A/− Gx−"e0.A/

]
�.x/dx; � ∈ C∞

c .R
d/;

was established in [17, Theorem 6.2]. HereG!.A/, ! ∈ R
d+1 \ .{0}×supp.WA//, is a

higher dimensional analogue of the resolvent family of a single operator. TheCauchy
kernelG.·/.A/ takes values in a Clifford module over the space of bounded linear
operators acting onH . It can be viewed as a higher dimensional Cauchy-Stieltjes
transform of the distributionWA supported inRd. The analogue

fW.A/ =
∫
@�

G!.A/n.!/ f .!/d¼.!/

of the Riesz-Dunford formula is also valid for functionsf left monogenic in a neigh-
bourhood inRd+1 of the support ofWA [17, Corollary 5.5].

Then supp.WA/ is characterisedas the complement of the set on which the function
! 7→ G!.A/ is continuous, that is, the ‘spectrum’ supp.WA/ of the functional calculus
WA is precisely the set of singularities of the Cauchy kernelG.·/.A/, just as the spectrum
¦.T/ of a single operatorT is the set of singularities of the resolvent½ 7→ .½I −T/−1.

Although the Fourier transform̂WA of the operator-valueddistributionWA is known
explicitly, it does not obviously provide detailed information about the local behaviour
of WA . For example, in the case of a pairA = .A1; A2/ of bounded selfadjoint
operators, an application of the Paley-Wiener theorem shows that the convex hull of
supp.WA/ coincides with the closure of the numerical range of the bounded linear
operatorA1 + i A2 [2, Theorem 5.2]. It is difficult to obtain further information from
bounds involving the Fourier transform̂WA ofWA .

A simple geometric condition for points to belong to supp.WA/ in the case that
A = .A1; A2/ is a pair of hermitian matrices is found in Theorem6.4 from the plane
wave decomposition forG!.A/ [18, Lemma 2.5], as this is adapted to a more detailed
examination of the behaviour ofWA around its support.

The argument we use demonstrates why Clifford analysis or, more specifically,
quaternionic analysis is more suited to the problem at hand than the theory of functions
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of several complex variables. The distributionWA is supported inR2 and can be
represented as the boundary values of a function, taking its values in a Clifford module
over the space of matrices, and monogenic inR

3 off the planeR2 ≡ {0} × R
2 ⊂ R

3.
However, if we represent the distributionWA as the boundary values onR2 of a
matrix-valued analytic function8 defined inC2, then we find that8 has singularities
on certain algebraic curves studied by Kippenhahn [23] in his 1951 investigation into
the numerical range of matrices; this phenomenon complicates the analysis. The
emergence of singularities inCn in the Cauchy transform of smooth scalar-valued
functions inRn for n > 1 is noted in [10].

The distribution.x; t/ 7→ WtA.x/ is actually the fundamental solution of a linear
symmetric hyperbolic system of PDE of a type that arises, for example, in the study
of two-dimensional magnetohydrodynamic waves [35]. Part of Theorem6.4has been
obtained by Bazer and Yen [6, 7] by appealing to a plane wave decomposition forWtA

from the method of Herglotz and Radon [20], although no connection is made in these
works with Kippenhahn’s characterisation [23] of the numerical range of matrices.
Our approach also makes explicit the relationship with the ‘spectral theory’ of a finite
collection of noncommuting operators.

A more general study of the support of the fundamental solution of hyperbolic PDE
with constant coefficients originated with the penetrating work of Petrovsky [27] and
was advanced by Atiyah, Bott and G˚arding [3, 4], see also [34]. The lacunas studied
in the present work and in [27, 6, 7] are calledstrong lacunasin the terminology of
[3] and [4]. The fundamental solution of a symmetric hyperbolic systemP of PDE
may have lacunas stronger than those of detP [3, page 188]. As in the works [6, 7],
we use the additional features of symmetric hyperbolic systems to obtain results more
directly than those obtained from the general theory of Atiyah, Bott and G˚arding
[3, 4]. In particular, the formulas of Herglotz-Petrovsky-Leray [3, Theorem 7.16] for
the fundamental solution of detP are replaced in the present context by a much simpler
formula of Bazer and Yen for the matrix valued distributionWtA, see Lemma9.2.

The method of the present work demonstrates that the monogenic functional cal-
culus for noncommuting systems of operators is a useful tool to analyse the support
of distributions inRd. It also makes explicit the connection between earlier work
of Kippenhahn [23] and Murnaghan [25] on the numerical rangeW.A/ of the ma-
trix A = A1 + i A2 and the support of the Weyl functional calculusWA for a pair
A = .A1; A2/ of hermitian matrices. In particular, lacunas or gaps in the support of
WA—the difference between the convex setW.A/ and supp.WA/—are already explicit
in the numerical range of certain.3×3/ matricesA exhibited in [23], see Figures1–6.

An outline of Clifford analysis is given in Sections2–3. The higher-dimensional
analogue of the Riesz-Dunford functional calculus is outlined in Section4. An
elementary proof of the plane wave decomposition for the Cauchy kernel inR

3

suitable for the present purpose is given in Section5.



[5] The support of the Weyl calculus 89

The geometric condition characterising the monogenic spectrum .A/ and the
support of the Weyl functional calculus is introduced in Section6. The remainder of
the work is devoted to a proof of Theorem6.4 using spectral theory arguments for
systems of operators.

Our arguments from spectral theory have mainly a functional analytic flavour, but
certain geometric ideas, already evident in the pioneering work of Petrovsky [27], are
needed to implement the analysis. We include a brief discussion of algebraic curves
in Section7 in an attempt to alleviate the reader’s burden with possibly unfamiliar
ideas already introduced. Some concrete examples of Kippenhahn’s plane algebraic
curves for.3 × 3/ matrices are exhibited in Section8. The proof of Theorem6.4 is
completed in Section9.

Finally, in Section10, we make some suggestions about what extensions to the
arguments advanced may be valid for finite systemsA = .A1; : : : ; Ad/ of matrices, or
bounded linear operators on a Banach space for which the spectrum¦

( ∑d
j =1 Aj ¾ j

)
of the operator

∑d
j =1 Aj ¾ j is a subset of the real numbers for every¾ ∈ R

d.

2. Clifford algebras

Let F be either the fieldR of real numbers or the fieldC of complex numbers. The
Clifford algebraF.d/ over F is a 2d-dimensional algebra with unit generated by the
standard basis vectorse0;e1; : : : ;ed of the vector spaceFd+1. Multiplication in F.d/
satisfiesej ek + ekej = −2Ž jk for 1 ≤ j; k ≤ d, with Ž jk denoting the Kronecker delta.
The vectore0 serves as the identity element.

A basis ofF.d/ is given by vectorseS, indexed by all subsetsS of the finite set
{1; : : : ;d}. For each such subsetS, the elementeS is the ordered product of the
vectorsej with j ∈ S, with the understanding thate∅ = e0.

The Clifford algebrasR.0/;R.1/ andR.2/ are the real, complex numbers and the
quaternions, respectively.

The conjugateeS of a basis elementeS is defined so thateSeS = eSeS = 1. Denote
the complex conjugate of a numberc ∈ F by c. Then the operation ofconjugation
u 7→ u defined byu = ∑

S uS eS for everyu = ∑
S uSeS;uS ∈ F is an involution

of the Clifford algebraF.d/. Thenu v = vu for all elementsu andv of F.d/. An
inner product is defined onF.d/ by the formula.u; v/ = [uv]0 = ∑

S uSvS for every
u = ∑

S uSeS andv = ∑
SvSeS belonging toF.d/. The corresponding norm is written

as| · |.
The Clifford algebraF.d/ has the appealing property that any nonzero vectorx ∈

R
d+1 has an inversex−1 in the algebra given byx−1 = x=|x|2.
The algebraic tensor productX.d/ = X ⊗ F.d/ of a vector spaceX overF with F.d/

is a two-sided module. Elements ofX.d/ may be viewed as finite sumsu = ∑
S xSeS
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of tensor products of elementsxS of X with basis vectorseS of F.d/. Multiplication
in X.d/ by elements½ of the Clifford algebraF.d/ is defined byu½ = ∑

S xS.eS½/

and½u = ∑
S xS.½eS/. If X is a normed space, then the norm onX.d/ is taken to be

‖u‖ = (∑
S ‖xS‖2

X

)1=2
.

Let X be a Banach space andL .X/ the space of continuous linear operators acting
onX. The spaceL .X/.d/ and the spaceL.d/.X.d//of all right module homomorphisms
of X.d/ are identified by defining the operation ofT = ∑

S TSeS on u = ∑
S uSeS as

T.u/ = ∑
S;S′ TS.uS′/eSeS′. The norm ofT is given by‖T‖ = (∑

S ‖TS‖2
L .X/

)1=2
.

The spaceL .X/ is identified with the subspace ofL .X/.d/ consisting of all elements
T e0, T ∈ L .X/. An elementT of L .X/.d/ has an inverseS if ST = T S= I e0. If
such an inverse exists, it is written asT−1.

3. Clifford analysis

What is usually calledClifford analysisis the study of functions of finitely many
real variables, which take values in a Clifford algebra, and which satisfy higher
dimensional analogues of the Cauchy-Riemann equations.

A function f : U → F.d/ defined in an open subsetU of Rd+1 has a unique
representationf = ∑

S fSeS in terms ofF-valued functionsfS; S⊆ {1; : : : ;d} in the
sense thatf .x/ = ∑

S fS.x/eS for all x ∈ U . Then f is continuous, differentiable and
so on, in the normed spaceF.d/, if and only if for all finite subsetsSof {1; : : : ;d}, its
scalar component functionsfS have the corresponding property. Let@ j be the operator
of differentiation of a scalar function in thej th coordinate inRd+1—the coordinates
of x ∈ R

d+1 are written asx = .x0; x1; : : : ; xd/. For a continuously differentiable
function f : U → F.d/ defined in an open subsetU of Rd+1 with f = ∑

S fSeS, the
function D f is defined by settingD f = ∑

S

∑d
j =0.@ j fS/ej eS and f D is specified by

f D = ∑
S

∑d
j =0.@ j fS/eSej .

Now suppose thatf is anF.d/-valued, continuously differentiable function defined
in an open subsetU of Rd+1. Then f is said to beleft monogenicin U if D f .x/ = 0
for all x ∈ U andright monogenicin U if f D.x/ = 0 for all x ∈ U . The definition
extends to functionsf with values in a Clifford module overF.d/.

For eachy ∈ R
d+1, the functionGy : Rd+1 \ {y} → F.d/ defined by

x 7→ Gy.x/ = 1

¦d

y − x

|y − x|d+1
;(2)

for all x 6= y is both left and right monogenic. Here the volume of the unitd-sphere
in Rd+1 has been denoted by¦d andRd+1 is identified with a subspace ofF.d/. In [9],
the notationE.y − x/ = Gy.x/ for y 6= x is used. In the present work, we replacex
by ad-tupleA of matrices or operators, so the given notation is more convenient.
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The function (2) plays a special role in Clifford analysis. Suppose that� ⊂ R
d+1 is

a bounded open set with smooth boundary@� and exterior unit normaln.!/ defined
for all ! ∈ @�. For any left monogenic functionf defined in a neighbourhoodU of
�, theCauchy integral formula∫

@�

G!.x/n.!/ f .!/d¼.!/ =
{

f .x/; if x ∈ �;

0; if x ∈ U \�(3)

is valid. Here¼ is the surfacemeasure of@�. The result is proved in [9, Corollary 9.6].
If g is right monogenic inU then

∫
@�

g.!/n.!/ f .!/d¼.!/ = 0 [9, Corollary 9.3].

4. The monogenic calculus

Suppose thatA = .A1; : : : ; Ad/ is a d-tuple of hermitian operators acting on a
Hilbert spaceH . For each¾ ∈ R

d, set〈A; ¾ 〉 = ∑d
j =1 Aj ¾ j .

TheWeyl functional calculus[2, 26, 33] is a means of forming functionsfW.A1;

: : : ; Ad/ of thed-tupleA = .A1; : : : ; Ad/ of operators. There exists a unique operator
valued distributionWA : f 7→ fW.A/, f ∈ C∞.Rd/, defined over the test function
spaceC∞.Rd/ of all infinitely differentiable functions, such that the restriction ofWA

toS .Rd/ is given by

WA. f / = .2³/−d

∫
Rd

ei 〈A;¾〉 f̂ .¾/d¾:(4)

The integral converges as a Bochner integral inL .H / with the operator norm. The
support supp.WA/ of this distribution is contained in the closed ball inRd centred at
zero and with radiusr = (∑d

j =1 ‖Aj ‖2
)1=2

[33, Theorem 1].
By virtue of the standard techniques of distribution theory, the distributionWA also

applies to any smooth functionf : U → F.d/ defined in an open neighbourhoodU of
supp.WA/ in Rd+1, by applyingWA to each of the components off restricted to the
open neighbourhoodU ∩ R

d of supp.WA/ in Rd.
Then theL .H /.d/-valued function! 7→ G!.A/ defined by

G!.A/ = WA.G!/; for all ! ∈ R
d+1 \ .{0} × supp.WA//;(5)

is called theCauchy kernelfor thed-tupleA. It is the Cauchy-Stieltjes transform of the
operator-valued distributionWA in the sense of Clifford analysis [9, Definition 27.6].

By an elementary argument [17, Corollary 5.5], the Cauchy integral formula (3)
ensures that

WA. f / =
∫
@�

G!.A/n.!/ f .!/d¼.!/(6)
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for any function f left monogenic in a neighbourhood of the closure of the region�

in Rd+1 containing the support supp.WA/ of WA in Rd ≡ {0} ×R
d.

Themonogenic spectrumof A is the subset .A/ of Rd off which the function

! 7→ G!.A/; ! ∈ R
d+1 \ .{0} ×  .A//

is a left and right monogenic function. It is proved in [17] that the set .A/ is precisely
the support supp.WA/ of the distributionWA .

For example, any analytic functionf of d real variables defined in an open neigh-
bourhoodU of  .A/ in R

d is the restriction toU of a left monogenic functionf̃
defined in an open subset ofRd+1 [9, Proposition 14.4]. Then formula (6) defines the
operatorf .A/ := f̃ .A/ in such a way that for any polynomialp in d real variables, the
operatorp.A/ is formed fromp by replacing termsxj1 · · · xjk by symmetric products
in the bounded linear operatorsAj1; : : : ; Ajk .

5. The plane wave decomposition of the Cauchy kernel

We now restrict ourselves to the case whered = 2 andA = .A1; A2/ is a pair of
hermitian operators in a finite dimensional Hilbert space.

Throughout the following,T denotes the unit circle centred at zero inR2 and¼ is
the arc length measure ofT. The inverse in the integrand of the following formula is
understood as an inverse in the Clifford algebraR.2/.

The following elementary calculation is a special case of a general formula [32,
page 111], [30, 24] for the plane wave decomposition of the Cauchy kernel inR

d+1.

LEMMA 5.1. Let y ∈ R
2 and suppose thaty0 ∈ R is nonzero. Then

y0 − y

.y2
0 + |y|2/3=2 =


− 1

2³

∫
T

.〈y; s〉 − y0t/−2 d¼.t/ y0 > 0;

1

2³

∫
T

.〈y; t〉 − y0t/−2 d¼.t/ y0 < 0:

PROOF. Let us calculate∫
T

.〈y; t〉 − y0t/−2 d¼.t/ =
∫
T

( 〈y; t〉 + y0t

〈y; t〉2 + y2
0

)2

d¼.t/(7)

for nonzeroy ∈ R
2 and y0 ∈ R. Choose coordinates such that〈y; t〉 = |y| cos� .

Then (7) is equal to ∫ 2³

0

|y|2 cos2 � − y2
0 + 2y0y cos2 �

.|y|2 cos2 � + y2
0/

2
d�:(8)
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The term involving sin� has integral zero, so it does not contribute to the integral (8).
Because ∫ 2³

0

cos2 �

.a2 cos2 � + b2/2
d� = ³

|b|.a2 + b2/3=2
;∫ 2³

0

1

.a2 cos2 � + b2/2
d� = ³.a2 + 2b2/

|b|3.a2 + b2/3=2
;

we have

2y0y
∫ 2³

0

cos2 �

.|y|2 cos2 � + y2
0/

2
d� = 2³y

.|y|2 + y2
0/

3=2
sgny0

and ∫ 2³

0

|y|2 cos2 � − y2
0

.|y|2 cos2 � + y2
0/

2
d� = − 2³ |y0|

.|y|2 + y2
0/

3=2
:

The plane wave representation of the Cauchy kernelG!.A/ given next was proved
in [18] for d-tuples of operators. It is critical for the subsequent calculations. The
inverse in the integrand is taken in the Clifford moduleL .Cn/.2/.

THEOREM 5.2. Let A = .A1; A2/ be two.n × n/ hermitian matrices. Then for
y ∈ R

2 and y0 6= 0, the Cauchy kernelGy+y0e0.A/ = WA.Gy+y0e0/ admits the repre-
sentation

Gy+y0e0.A/ = − sgny0

8³2

∫
T

.〈y I − A; t〉 − y0t I /−2 d¼.t/:(9)

PROOF. According to Lemma5.1, if y0 6= 0 andx ∈ R
3 is not equal toy + y0e0,

then

Gy+y0e0.x/ = − sgny0

8³2

∫
T

.〈y − x; t〉 − y0s/−2 d¼.t/:

The functionx 7→ Gy+y0e0.x/is C∞ for x ∈ R
3 \ {y+ y0e0}, so if y0 6= 0, then we have

Gy+y0e0.A/ = WA.Gy+y0e0/ = −sgny0

8³2
WA

(∫
T

.〈y − ·; t〉 − y0t/−2 d¼.t/

)
= −sgny0

8³2

∫
T

WA.〈y − ·; t〉 − y0t/−2 d¼.t/

= −sgny0

8³2

∫
T

.〈y I − A; t〉 − y0t I /−2 d¼.t/:

The first of the equalities above is the definition (5) of Gy+y0e0.A/. The second
follows from Lemma5.1. The continuous linear operatorWA can be passed from
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outside the integral to inside the integral by appealing to a property of Bochner
integrals (see [17]).

The last equality can be seen from the equalityWA.p.〈 · ; ¾ 〉// = p.〈A; ¾ 〉/, valid
for any polynomialp on C and any¾ ∈ R

2. An appeal to Runge’s theorem and
continuity shows thatp can be replaced by any complex functionf which is analytic
on the compact subset〈supp.WA /; ¾ 〉 of R. In particular, for eacht ∈ T, y0 6= 0
andy ∈ R

2, theR.2/-valued functionft : x 7→ .〈y − x; t〉 − y0t/−2, x ∈ R
2 may be

expressed asft.x/ = 8.〈x; t〉/, x ∈ R
2, with

8.z/ = .〈y; t〉 − z+ y0t/
(
.〈y; t〉 − z/2 + y2

0

)−1
:

The function8 is analytic at all pointsz ∈ C for which .〈y; t〉 − z/2 + y2
0 6= 0, so it

is analytic in the open strip|=z| < |y0| containing〈supp.WA/; t〉 ⊂ R for eacht ∈ T.
Hence,

WA. ft/ = WA.8.〈 · ; t〉// = .〈y I − A; t〉 − y0t I /−2

for everyt ∈ T.

For all ! ∈ R
3 with |!| sufficiently large,G!.x/ has an expansion in terms of

monogenic polynomials inx ∈ R
3. Replacing the monogenic polynomials with

symmetrised products of the operatorsA1 and A2, we obtainG!.A/ = WA.G!/ for
all ! outside a sufficiently large ball inR3 [17, Equation (5)], [18, Equation (5)]. This
is the analogue of the Neumann series for.½I − A/−1, |½| > ‖A‖, in the case thatA
is a single operatorA. The right hand side of (9) has the same representation for all
! outside a sufficiently large ball inR3.

6. The monogenic spectrum

Let A = .A1; A2/ be a pair of hermitian matrices. Where convenient, we shall
represent the.n × n/ matrix associated withA as A = A1 + i A2 in order to avoid
hats and tildes. In the same spirit,C is identified withR2 andR2 is identified with the
subspace{0} × R

2 of R3. We adopt the convention that a point! ∈ R
3 is written as

y + y0e0 for y ∈ R
2 andy0 ∈ R. For ad-tuple B = .B1; : : : ; Bd/ of .n × n/ matrices

and¾ ∈ C
d, the notation〈B; ¾ 〉 is used to denote the matrix

∑d
j =1 Bj ¾ j .

We are concerned with the compact set .A/ ⊂ R
2 of points at which the Cauchy

kernel! 7→ G!.A/ has a discontinuity as! ∈ R
3 approaches the subspace{0} × R

2

of R3 from above (!0 → 0+) and below (!0 → 0−).
To this end, we examine the integral (9) more closely. Lety = .y1; y2/ ∈ R

2. We
interpretB.y/ = y I −A as the pair.B1.y/; B2.y// of matrices withBj .y/ = yj I − Aj

for j = 1;2. Then, appealing to the identityt2 = −1 for t ∈ T ⊂ R.2/ with respect to
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multiplication in the Clifford algebra, fory0 6= 0 the integrand of (9) can be written
down explicitly as

.〈B.y/; t〉 − y0t I /−2 = .〈B.y/; t〉 + y0t I /2.〈B.y/; t〉2 + y2
0 I /−2(10)

= .〈B.y/; t〉2 − y2
0 I /.〈B.y/; t〉2 + y2

0 I /−2

+ 2y0t〈B.y/; t〉.〈B.y/; t〉2 + y2
0 I /−2:

The pointst ∈ T, where〈B.y/; t〉 is not invertible, will dominate the integral (9)
asy0 → 0+ andy0 → 0−, respectively. This suggests to investigate the zeros of

det〈B.y/; t〉 = det.B1.y/t1 + B2.y/t2/:

Now suppose thatt = .t1; t2/ = .cos�; sin�/ for −³ < � < ³ and letz = ei � . Then
t1 = .z + z−1/=2 andt2 = .z − z−1/=2i , so that

det〈B.y/; t〉 = .2z/−n det.B1.y/.z
2 + 1/− i B2.y/.z

2 − 1//

= .2z/−n det..B1.y/− i B2.y//z
2 + .B1.y/+ i B2.y///

= .2z/−n det.B1.y/− i B2.y//

× det.z2I + .B1.y/− i B2.y//
−1.B1.y/+ i B2.y///

if B1.y/− i B2.y/ is invertible.
Fix y ∈ R

2 and letT = B1.y/+ i B2.y/. Then in the case thatT and hence,T∗, is
invertible, the set of pointst ∈ T where det〈B.y/; t〉 = 0 is in two-to-one correspon-
dence with

[
¦.−.T∗/−1T/

] ∩ T: if � is an element of the set
[
¦.−.T∗/−1T/

] ∩ T,
then the correspondingt ∈ T is ±� 1=2.

For t ∈ T, the equation det〈B.y/; t〉 = det〈y I − A; t〉 = 0 has a geometric
interpretation. Lett⊥ ∈ T be orthogonal tot in R2. Then the line

L y;t = {
y + ½t⊥ | ½ ∈ R

}
(11)

passes throughy ∈ R
2 and has the property that〈x; t〉 ∈ ¦.〈A; t〉/ for all x ∈ Ly;t .

As we will see later, the number of such lines that exist for a pointy and for
all points in a neighbourhood ofy, is decisive for whether the pointy belongs to
supp.WA/. We introduce the following definition to isolate those pointsy ∈ R

2 for
which this is the maximum number possible.

DEFINITION 6.1. Let A be a.n × n/ matrix and letR.A/ be the set of all points
½ ∈ ².A/ such that in some neighbourhoodU ⊂ ².A/ of ½ in C,

¦
(
..� I − A/∗/−1

.� I − A/
) ⊂ T(12)

for each� ∈ U .
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The setR.A/ is necessarily an open set. If the matricesA1 andA2 commute, that is,
if A = A1+ i A2 is a normal matrix, then the setR.A/ is readily described. In this case
..� I − A/∗/−1.� I − A/ is a unitary matrix forall � ∈ ².A/, so thatR.A/ = ².A/.

Condition (12) may be restated by saying thatR.A/ is the set of all½ ∈ C such that
in some neighbourhoodU of ½ in C, every solutionz ∈ C of the equation

det..� I − A/∗z + .� I − A// = 0(13)

with � ∈ U satisfies|z| = 1.
If � ∈ ¦.A/, thenz = 0 is a solution of (13)—such points are excluded. Note that,

in the notation above, this covers the case whereB1.y/− i B2.y/ is not invertible. For
y ∈ ².A/, we have

det..y I − A/∗z+ .y I − A// = det.y I − A/ det
(
zI + ..y I − A/∗/−1.y I − A/

)
:

Hence det
(
.y I − A/∗z + .y I − A/

)
is a polynomial of degreen in z and there are

n solutionsz ∈ C of (13) counting multiplicity. Toeachz ∈ T, there corresponds
a line L y;z1=2 in R

2. If all the solutionsz ∈ C satisfy |z| = 1, that is, if y ∈ R.A/,
then this says that the number of linesL y;t , t ∈ T, passing throughy ∈ R

2 ≡ C, is
the maximum possible. In particular, counting multiplicity, the maximum number of
lines L y;t , t ∈ T, that can possibly pass throughy is n.

The following simple condition guarantees that a pointy ∈ R
2 belongs toR.A/.

Let W.A/ denote the numerical range{〈Av; v〉 | v ∈ C
n; ‖v‖ = 1} of the .n × n/

matrix A = A1 + i A2.

PROPOSITION6.2. Let A be a.n × n/ matrix. ThenC \ W.A/ ⊆ R.A/. Conse-
quently,C \ R.A/ is a nonempty compact subset of the numerical rangeW.A/ of the
matrix A.

PROOF. Firstly, ¦.A/ ⊂ W.A/, so if ½ ∈ C lies outsideW.A/ then½ ∈ ².A/.
Moreover, for everyz ∈ C, the inclusion

¦..½I − A/∗z + .½I − A// ⊆ W..½I − A/∗z+ .½I − A//

holds. Hence, for any complex numberz for which 0∈ ¦..½I − A/∗z + .½I − A//,
there existsv ∈ C

n with |v| = 1 such that〈.½I − A/∗zv; v〉 + 〈.½I − A/v; v〉 = 0.
Here〈 ·; ·〉 is the inner product ofCn. Because½ − 〈Au;u〉 6= 0 for all u ∈ Cn with
|u| = 1, the complex number

z = −½ − 〈Av; v〉
½ − 〈Av; v〉

has modulus one. Consequently,½ ∈ R.A/.
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REMARK 6.3. The same proof works with the analogous definition ofR.A/ if A is
a bounded linear operator on a Hilbert space. IfA is normal, thenR.A/ = ².A/ and
WA is the spectral measure ofA supported on¦.A/.

Our aim is to prove the following result strengthening Proposition6.2and providing
a geometric characterisation of the support supp.WA/ of the Weyl functional calculus
and for the monogenic spectrum .A/ of a pair of hermitian matrices.

THEOREM 6.4. LetA = .A1; A2/be a pair of hermitian matrices andA = A1+i A2.
Then the equalitiessupp.WA/ =  .A/ = R

2 \ R.A/ hold.

The equality supp.WA/ =  .A/ is proved in [17] for any d-tuple A of bounded
selfadjoint operators, so this work is concerned with the second equality for hermitian
matricesA1; A2—thegeometriccharacterisation of .A/.

The spectrum¦.A/ of the matrix A = A1 + i A2 is clearly contained in the
numerical rangeW.A/ = co.supp.WA// of A. The following immediate consequence
of Theorem6.4and the fact thatR.A/ ⊆ ².A/ strengthens this observation.

COROLLARY 6.5. Let A = .A1; A2/ be a pair of hermitian matrices andA =
A1 + i A2. Then¦.A/ ⊆ supp.WA/.

A bounded linear operator on a Hilbert space is callednormal if it commutes with
its adjoint. The following consequence of Theorem6.4characterises the situation in
which the inclusion in Corollary6.5 is an equality.

COROLLARY 6.6. Let A = .A1; A2/ be a pair of hermitian matrices. SetA =
A1 + i A2. The following conditions are equivalent:

.i/ A is a normal matrix.
.ii/ supp.WA/ has empty interior.
.iii / ¦

(
..½I − A/∗/−1 .½I − A/

) ⊂ T for all ½ ∈ ².A/.
.iv/ ¦ .A/ = supp.WA/.

PROOF. If A is a normal matrix, then the distributionWA is associated with the
spectral measure ofA supported by the finite set of joint eigenvalues ofA, so the
implication (i)⇒ (ii) is immediate. The definition of the setR.A/ and Theorem6.4
shows that (iv) follows from (iii). The implication (iv)⇒ (i) is proved in [12, 29], so
it remains to establish (ii)⇒ (iii).

Suppose that the negation of (iii) holds and that½ ∈ ².A/ has an eigenvalue of the
matrix..½I − A/∗/−1.½I − A/ lying outside the unit circleT. Then the same holds in a
neighbourhood of½ because the unorderedn-tuple of eigenvalues of the matrix valued
function½ 7→ ..½I − A/∗/−1.½I − A/ dependscontinuouslyon the parameter½ [22,
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Theorem II.5.1]. Hence,C \ R.A/ has nonempty interior. According to Theorem6.4,
supp.WA/ has nonempty interior.

7. The numerical range of matrices

Let A = .A1; A2/ be a pair of.n × n/ hermitian matrices. SetA = A1 + i A2. An
application of the Paley-Wiener Theorem yields that the convex hull of the support
supp.WA/ of the associated Weyl distributionWA coincides with the numerical range
W.A/ = {〈Ax; x〉 | x ∈ C

n; ‖x‖ = 1} of the matrixA. For more precise information
on the location of supp.WA/ within the numerical range ofA, we need to have a closer
look at the fine structure ofW.A/.

Of particular interest are certain plane algebraic curves associated withA that were
first investigated by R. Kippenhahn in 1952. We briefly recall the concepts involved.

Let F = R or C. For 0 ≤ k ≤ 3, theGrassmannianG3;kF, defined as the set of
all k-dimensionalF-subspaces ofF3, is a compact analyticF-manifold of dimension
k.3−k/. It has a natural topology, induced by the differential structure of the manifold,
which is determined, for example, by the metrich on G3;kF with

h.U;V/ = sup
v∈V;|v|=1

inf
u∈U;|u|=1

‖u − v‖ for all U;V ∈ G3;kF:

Theprojective planePG.F3/ overF is given by PG.F3/ = ⋃
0≤k≤3 G3;kF. The 1-

and 2-dimensional subspaces ofF
3 are usually called thepointsandlines in PG.F3/,

respectively.
By a common abuse of notation we introducehomogeneous coordinatesfor the

points in PG.F3/ as.u1 : u2 : u3/ = F.u1;u2;u3/. The coordinates of a vector inF3

are expressed with respect to the standard basis forF
3.

A polarity of PG.F3/ is a bijection on PG.F3/ which reverses the inclusion of
subspaces and the square of which equals the identity mapping. Thestandard polarity
³ is characterised byu³ = {

v ∈ F
3 | ∑3

j =1 ujv j = 0
}

for all u ∈ G3;1F, which gives
u³ ∈ G3;2F. Using the polarity³ , we can also introduce homogeneous coordinates
for the lines in PG.F3/ by setting[v1 : v2 : v3] = .v1 : v2 : v3/

³ .
A nonempty subsetC of G3;1F is called aplaneF-algebraic curveif it is the zero

locus of a homogeneous 3-variate polynomial overF. The defining polynomial ofC
is not uniquely determined: iff defines the curve, then so does, for example,f k for
any k ≥ 1. However, every curveC has a defining polynomial of minimal degree
which is unique up to a constant factor. A curve is said to beirreducible if it has
an irreducible defining polynomial. Since a polynomial ring over a field is a unique
factorisation domain, each algebraic curveC is the union of finitely many irreducible
curves. IfC1; : : : ;Ck are the irreducible components ofC with irreducible defining
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polynomials f1; : : : ; fk, then f = f1 · · · fk is a defining polynomial ofC of minimal
degree. We callf aminimal polynomial ofC. Note that an irreducible real algebraic
curve is not necessarily connected.

Let f be a minimal polynomial of the algebraic curveC = {u ∈ G3;1F | f .u/ = 0}.
A point u ∈ C is calledsingular or a singularity of C if .@ f =@uj /.u/ = 0 for
j = 1;2;3. Observe thatC has at most finitely many singular points. These are
the singular points of the irreducible components ofC together with the points of
intersection of any two of these components. A nonsingular pointu ∈ C is called a
simplepoint of C. The curveC is the topological closure of its simple points. Also,
to every simple pointu ∈ C, there exists a neighbourhood ofu in which C admits a
smooth parametrization.

Let C be an irreducible plane algebraic curve with minimal polynomialf . At each
simple pointu ∈ C, we have a unique tangent line toC which is given by

TuC =
[
@ f

@u1
.u/ : @ f

@u2
.u/ : @ f

@u3
.u/

]
:

If C is not a projective line or a point, then it is well-known that the set{.TuC/³ | u ∈
C simple} is contained in a unique irreducible algebraic curveC∗, the so-calleddual
curveof C. In fact, since an algebraic curve has at most finitely many singularities,
the dual curve is the topological closure of the set{.TuC/³ | u ∈ C simple}. We have
C∗∗ = C. If C is a projective line, then{.TuC/³ | u ∈ C} consists of a single point
u in PG.F3/. In this case, we setC∗ = {u} and defineC∗∗ to be the image under³ of
the set of all lines in PG.F3/ which pass throughu. This again yieldsC∗∗ = C. The
dual curve of a general plane algebraic curveC is the union of the dual curves of its
irreducible components. In particular,C andC∗ have the same number of irreducible
components.

In general, it is difficult to derive an explicit equation for the dual curveC∗ from
the given equation of a curveC. However, from the above we obtain the following
criterion for a point in PG.F3/ to belong toC∗.

LEMMA 7.1. Let .x1 : x2 : 1/ ∈ G3;1F. If there exists a smooth local parametriza-
tion � 7→ .c.� / : s.� / : ¼.� // of C, for � in an open setU ⊆ F, and a pointz ∈ U
such thatx1c.z/ + x2s.z/ + ¼.z/ = 0 and x1c′.z/ + x2s′.z/ + ¼′.z/ = 0, then the
point .x1 : x2 : 1/ belongs toC∗.

PROOF. The two points.c.z/ : s.z/ : ¼.z// and .c′.z/ : s′.z/ : ¼′.z// span the
tangent lineT.c.z/:s.z/:¼.z//C to C at .c.z/ : s.z/ : ¼.z//. The equations

x1c.z/+ x2s.z/+ ¼.z/ = 0 and x1c′.z/ + x2s′.z/ + ¼′.z/ = 0

imply that.x1 : x2 : 1/ = .T.c.z/:s.z/:¼.z//C/³ . Hence.x1 : x2 : 1/ belongs to the dual
curveC∗ of C.
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The details and further information on complex algebraic curves can be found, for
example, in [31]. The literature for the real case is somewhat less easy toaccess. As
a general reference to the theory of real algebraic geometry, see [8].

Let A = A1 + i A2 ∈ L .Cn/. Following Kippenhahn [23], we define the complex
algebraic curveCC.A/ in the complex projective plane PG.C3/ by setting its dual
curve to be

DC.A/ = {
.c : d : ¼/ ∈ G3;1C | det.cA1 + d A2 + ¼I / = 0

}
:

In [23], Kippenhahn showed that the real partCR.A/ of the curveCC.A/ = DC.A/∗

is contained in the affine subplaneF = {.Þ1 : Þ2 : 1/ | .Þ1; Þ2/ ∈ R
2} of PG.R3/ and,

identifying F with R2 in the canonical way, that the convex hull co.CR.A// of CR.A/
is precisely the numerical range ofA.

The curveCR.A/ considered as a real algebraic curve in PG.R3/ is the dual curve
of the real part ofDC.A/ given by

DR.A/ = {
.c : d : ¼/ ∈ G3;1R | det.cA1 + d A2 + ¼I / = 0

}
:

Every pointu ∈ DR.A/ has a representation.cos� : sin� : ¼/ for some� ∈ [0; ³/
and¼ ∈ R. Asu is a zero of det.cA1+d A2 +¼I /, it follows that−¼ is an eigenvalue
of the operatorA .�/ = cos�A1 + sin�A2.

Note that the points inDR.A/ are in one-to-one correspondence with the linesLy;t

in R2 defined in (11), satisfying〈x; t〉 ∈ ¦.〈A; t〉/ for all x ∈ Ly;t . For u = .cos� :
sin� : ¼/ ∈ DR.A/, taket = .cos�; sin�/ ∈ T andy ∈ R

2 such that〈y; t〉 = −¼.
Thenu³ is the two dimensional subspace

⋃{.x1 : x2 : 1/ | .x1; x2/ ∈ Ly;t} of R3,
that is, L y;t × {1} is the line in which the planeu³ normal tou in R3 cuts the plane
{x3 = 1}.

With the following result due to Rellich [28], [22, Theorem 6.1, page 120], we
obtain local parametrizations of the curveDR.A/. Let S.Cn/ = {x ∈ C

n | |x| = 1} be
the unit sphere inCn.

LEMMA 7.2 (see [28, Satz 1]).Let the mapA : R → L .Cn/ be given byA .�/ =
cos�A1 + sin�A2 for � ∈ R. Let�0 ∈ R and¼0 be an eigenvalue with multiplicityr
of the operatorA .�0/. Then there exists a neighborhoodU of �0 and regular analytic
functions¼ j : U → R andxj : U → S.Cn/ with 1 ≤ j ≤ r , such that¼ j .�0/ = ¼0,
A .�/xj .�/ = ¼ j .�/xj .�/ and〈xj .�/; xk.�/〉 = Ž jk for every� ∈ U and1 ≤ j; k ≤ r .

Given a pointu0 = .cos�0 : sin�0 : −¼0/ ∈ DR.A/, any of the maps� 7→ .cos� :
sin� : −¼.�// with � in the neighbourhoodU of �0 as given by Lemma7.2, is then
a smooth local parametrization of a component ofDR.A/ in a neighbourhood ofu0.
With Lemma7.1, this yields immediately a complete characterisation of the curve
CR.A/.
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LEMMA 7.3. A point.x1 : x2 : 1/ ∈ G3;1F belongs to the curveCR.A/ if and only if
there exists a pointu0 = .cos�0 : sin�0 : −¼0/ ∈ DR.A/, and a local parametrization
� 7→ .cos� : sin� : −¼.�// of a component ofDR.A/ in a neighbourhoodU of u0

such thatx1 cos�0 + x2 sin�0 − ¼.�0/ = 0 and−x1 sin�0 + x2 cos�0 − ¼′.�0/ = 0.
Then

.x1; x2/ = ¼.�0/.cos�0; sin�0/ + ¼′.�0/.− sin�0; cos�0/:(14)

The lineL y;t associated withu³0 , as described above, is therefore tangential to the
image ofCR.A/ in R2 at .x1; x2/ except in the case that¼.�/ = a1 cos� + a2 sin� in
a neighbourhoodU of �0. Then the set{.cos� : sin� : ¼.�//³ | � ∈ U } corresponds
to a family of lines passing through the point.x1; x2/ = .a1;a2/.

LEMMA 7.4. With the exception of a finite set of points inCR.A/, if .x1 : x2 : 1/ ∈
G3;1F belongs toCR.A/, andu0 = .cos�0 : sin�0 : ¼0/ is one of the corresponding
points inDR.A/ and� 7→ .cos� : sin� : −¼.�//, � ∈ U , is one of the corresponding
local parametrizations of a component ofDR.A/ in a neighbourhood ofu0 as given
by Lemma7.3, then the equation

.x1 − t sin�0/ cos� + .x2 + t cos�0/ sin� − ¼.�/ = 0(15)

has two real solutions� ∈ U for either small positivet or small negativet and none
in U for t of the opposite sign.

PROOF. By Lemma7.3, the image of the curveCR.A/ inR2 has the local parametri-
zation.x1.�/; x2.�// = ¼.�/.cos�; sin�/+¼′.�/.− sin�; cos�/ with � ∈ U . Hence,
its signed curvature at.x1; x2/ is given by|¼.�0/ + ¼′′.�0/|−1 (see, for example, [7,
formula (3.9)]). So if¼.�0/+¼′′.�0/ 6= 0, then the image ofCR.A/ in R2 is a smooth
curve with nonzero curvature in a neighbourhood of.x1; x2/. Hence, there are two
tangents with points of tangency inU on one side of the curve and none on the other
for |t | > 0 small enough. The solutions� ∈ U of (15) correspond to the directions of
the normals to the tangents.

The points ofCR.A/ that we have to exclude correspond to the ones at which the
image ofCR.A/ in R

2 has infinite curvature. Unless¼ + ¼′′ vanishes identically,
there exist at most finitely many solutions� of ¼.�/ + ¼′′.�/ = 0 in any compact
interval. If .x1 : x2 : 1/ ∈ CR.A/ is a point for which the analytic function¼ + ¼′′

vanishes in a neighbourhoodU of �0 in C, there exists.a1;a2/ ∈ R
2 such that

¼.�/ = a1 cos� + a2 sin� for all � ∈ U . However, inspection of (14) shows that then
x = .x1; x2/ = .a1;a2/ is a point ofCR.A/ through which the family of linesLx;t ,
t ∈ T, passes. In particular,x belongs to the finite set¦.A1/× ¦.A2/.
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Local coordinates. Define the functions : C \ {0} → C
2 by

s.z/ =
(

1

2
.z + 1=z/;

1

2i
.z − 1=z/

)
; for z ∈ C \ {0}:(16)

From now on, we drop the subscriptR from the Kippenhahn curvesCR.A/ and denote
them byC.A/. Furthermore, we identify.y1 : y2 : 1/ ∈ CR.A/ with y = .y1; y2/ ∈
R

2, so thatC.A/ is a subset ofR2.
According to the discussion preceding Definition 6.1we have the following alter-

native formulation of the setR.A/.

PROPOSITION7.5. LetA = .A1; A2/ be a pair of.n × n/ hermitian matrices. Then
R.A/ is the set of all½ ∈ R

2 for which there exists a neighbourhoodU of ½ in R
2,

with the property that for eachx ∈ U , every solutionz ∈ C \ {0} of the equation

det.〈x I − A; s.z/〉/ = 0

satisfies|z| = 1.

Let y ∈ R
2 and suppose that� ∈ C \ {0} is a point at which

det.〈y I − A; s.� /〉/ = 0:(17)

If y ∈ R.A/, then� necessarily belongs toT, and the setZy of all such� ∈ T is finite.
Suppose that� ∈ T. Thens.� / ∈ T and the matrix〈A; s.� /〉 is hermitian. By a

result of Rellich [22, Theorem II.6.1], there exists a neighbourhoodV� of � in C \ {0},
a positive integerm ≤ n, analyticL .Cn/-valued projectionsP1.z/; : : : ; Pm.z/ with∑m

j =1 Pj .z/ = I and analytic functions¼1.z/; : : : ; ¼m.z/ defined forz ∈ V� such that
for eachj = 1; : : : ;m, the equation

det.¼ j .z/I − 〈A; s.z/〉/ = 0; z ∈ V� ;

holds,〈y; s.� /〉 − ¼1.� / = 0 and

〈A; s.z/〉 =
m∑

j =1

¼ j .z/Pj .z/; z ∈ V� :

HerePj .z/ is the projection onto an eigenspace for the eigenvalue¼ j .z/ of 〈A; s.z/〉.
Set½ j ;y.z/ = 〈y; s.z/〉 − ¼ j .z/ for j = 1; : : : ;m andz ∈ V� . Then

〈y I − A; s.z/〉 =
m∑

j =1

½ j ;y.z/Pj .z/; z ∈ V� :(18)
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It turns out that the functions¼ j and projectionsPj , j = 1; : : : ;m, can be analyti-
cally continued along any arc that avoids a certain finite exceptional set of points [5,
Theorem 3.3.12]. Therefore, formula (18) may also be valid in a neighbourhoodV�
of points� ∈ C \ {0} not on the unit circleT.

It can happen that two of the eigenvalues½ j ;y.z/ and½`;y.z/ of 〈y I − A; s.z/〉
are equal at a particular complex numberz. In particular, there may exist an integer
1< k ≤ m such that½ j ;y.� / = 0 for all j = 1; : : : ; k. According to the interpretation
preceding Definition 6.1 and the definition ofC.A/, if � ∈ T, then there existk
coincident tangent lines fromy to C.A/ with normal� .

LEMMA 7.6. Letx ∈ R
2, let� ∈ C\{0} be a complex number andV� an open neigh-

bourhood of� inC for which(18) is an analytic parametrization inV� with½1;x.� / = 0
and½′

1;x.� / 6= 0. Then there exists a uniqueC∞-function� : Ux → C defined in a
neighbourhoodUx of .0; x/ in R3 such that�.0; x/ = � and½1;y.�.¾; y// = i ¾ for
all .¾; y/ ∈ Ux.

Moreover, fory fixed, the function¾ 7→ �.¾; y/, .¾; y/ ∈ Ux is one-to-one and
½′

1;y.�.¾; y// is nonzero for all.¾; y/ ∈ Ux. If � ∈ T, then�.0; y/ ∈ T for all
.0; y/ ∈ Ux.

PROOF. Let U ⊂ R
4 be the setU = V� ×R

2 and let8 : U → R
4 be defined by

8.z; y/ = .½1;y.z/; y/ = .〈y; s.z/〉 − ¼1.z/; y/

for all .z; y/ ∈ U . Here we identifyC with R2 on the right hand side of the equation.
The derivative8′.�; x/ of the function8 on the open subsetU of R4, as a function of
four real variables, is nonsingular at.�; x/ ∈ U because

det.8′.�; x// = |½′
1;x.� /|2 6= 0:

By the inverse function theorem, there exists an open neighbourhoodW of .0; x/
in R4, an open neighbourhoodU ′ of .�; x/ in R4 and a diffeomorphismf : W → U ′

such that8 ◦ f .Þ; y/ = .Þ; y/ for all .Þ; y/ ∈ W. In particular,8′ is nonsingular
onU ′.

Then �.¾; y/ ∈ C is defined on the setUx of all .¾; y1; y2/ ∈ R
3 such that

.0; ¾; y1; y2/ ∈ W, by f .0; ¾; y1; y2/ = .�.¾; y/; y/, so that½1;y.�.¾; y// = i ¾ .
Becausef is a diffeomorphism, the function.¾; y/ 7→ �.¾; y/ is C∞ on Ux. Fur-
thermore,.�.¾; y/; y/ ∈ U ′, so |½′

1;y.�.¾; y//|2 = det.8′.�.¾; y/; y// 6= 0 for all
.¾; y/ ∈ Ux.

Now suppose that� ∈ T. There exists an open neighbourhoodN� of � in T on
which½1;x is defined. Let9 : N� ×R

2 → R
3 be defined by

9.s; y/ = .½1;y.t/; y/ = .〈y; t〉 − ¼1.t/; y/



104 Brian Jefferies and Bernd Straub [20]

for all .t; y/ ∈ N� × R
2. Then9.�; x/ = .0; x/ and the derivative

9 ′.�; x/ : T.�;x/.T× R
2/ → R

3

of9 at.�; x/ ∈ T×R2 is nonsingular. HereT.�;x/.T×R2/ is the tangent space ofT×R2

at .�; x/. As above, there exists a diffeomorphismg from an open neighbourhood of
.0; x/ in R

3 onto an open neighbourhood of.t; x/ is T × R
2 such that9 ◦ g = Id.

Because9 = 8 | N� ×R
2, we must haveg.Þ; y/ = f .Þ;0; y/. Hence

.�.0; y/; y/ = f .0;0; y/ ∈ T×R
2;

proving that�.0; y/ ∈ T.

If 8̃ : V� × C2 → C3 is defined by8̃.z; �/ = (∑2
j =1 � j sj .z/ − ¼1.z/; �

)
for all

z ∈ V� and� ∈ C
2, then a similar argument to that above, but replacing8 by 8̃ and

appealing to the inverse function theorem for analytic functions of several variables,
shows that� is actually the restriction toUx of a function analytic in an open subset
of C3.

According to a rephrasing of Lemma7.3 in terms of our local coordinates, the
Kippenhahn curvesC.A/ for a matrixAare characterised by the following proposition.

PROPOSITION7.7. The Kippenhahn curvesC.A/ consist of all pointsy ∈ R
2 for

which there exists a point� belonging to the unit circleT and a neighbourhoodV� of
� in C such that there exists an analytic parametrization(18) on V� for which

½1;y.� / = ½′
1;y.� / = 0:(19)

Of course, in any such parametrization (18), we are at liberty to choose the indices
j = 1; : : : ;m for the analytic functions½ j ;y : V� → C. In particular, for any
y ∈ C.A/, we can choose a neighbourhoodV� of � in C and indices for which (19)
holds for j = 1.

COROLLARY 7.8. Let x ∈ R
2 \ C.A/, let � ∈ C \ {0} be a complex number and

V� a neighbourhood of� in C for which (18) is a parametrization with½1;x.� / = 0.
Then there exists a uniqueC∞-function� : Ux → C defined in a neighbourhood
Ux of .0; x/ in R

3 such that such that�.0; x/ = � and ½1;y.�.¾; y// = i ¾ for all
.¾; y/ ∈ Ux.

Moreover, fory fixed, the function¾ 7→ �.¾; y/, .¾; y/ ∈ Ux is one-to-one and
½′

1;y.¾; y/ is nonzero for all.¾; y/ ∈ Ux. If � ∈ T, thenz.0; y/ ∈ T for all .0; y/ ∈ Ux.

PROOF. By Proposition7.7, ½′
1;x.� / 6= 0, so Lemma7.6 is applicable.
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The following result describes the relation between the setR.A/ and the Kippen-
hahn curvesC.A/.

COROLLARY 7.9. @R.A/ ⊆ C.A/ ⊆ R.A/c.

PROOF. Let x ∈ R.A/. All solutions� of det.〈x; � 〉I −〈A; � 〉/ = 0 satisfy|� | = 1
because the set-valued functiony 7→ ¦...y I − A/∗/−1.y I − A//, y ∈ ².A/, is
continuous in the metric of unorderedn-tuples [22, Theorem II.5.1] and by definition,
¦...y I − A/∗/−1.y I − A// ⊂ T for all y ∈ R.A/.

For any such� ∈ T, there exists an analytic parametrization (18) such that
½1;x.� / = 0. Suppose½′

1;x.� / 6= 0. Then by Lemma7.6, for all y in an open
neighbourhood ofx, we can find�.0; y/ ∈ T such that½1;y.�.0; y// = 0 and
½′

1;y.�.0; y// 6= 0.
It follows that if ½′

1;x.� / 6= 0 holds for the parametrizations of all solutions� , then
there is a neighbourhoodU of x such that for everyy ∈ U , all nonzero complex
solutions z of det.〈y; s.z/〉I − 〈A; s.z/〉/ = 0 satisfy |z| = 1. This means that
x ∈ R.A/.

Therefore, for every elementx of @R.A/ = R.A/ \ R.A/, there must exist a
solution� and an analytic parametrization (18) such that½1;x.� / = 0 and½′

1;x.� / = 0.
Proposition7.7yields thatx ∈ C.A/.

To establish the inclusionC.A/ ⊆ R.A/c, suppose thatx ∈ C.A/. By Lemma7.4,
except possibly for a finite subsetJ of C.A/, there exists a neighbourhoodU of x
in R

2 in which not every solutionz ∈ C of det.〈y I − A; s.z/〉/ = 0 for y ∈ U ,
belongs toT. More precisely, fory on one side ofC.A/, there exist at least two
solutions belonging toT—two unit normal vectors to the local tangents toC.A/
passing throughy—and for y on the other side ofC.A/, two solutions that do not
belong toT. Moreover, ifx ∈ J, then eitherx is isolated, or any neighbourhood ofx
contains a pointy ∈ C.A/ \ J to which the conclusion above applies. In either case,
x ∈ R.A/c.

By considering the direct sum of suitable matrices, the inclusions of Corollary7.9
can be made to beproper inclusions.

We informally state alternative characterisations of the Kippenhahn curvesC.A/:

• The real part of the curveDC.A/∗ dual to DC.A/ = {.c : d : ¼/ ∈ G3;1C |
det.cA1 + d A2 + ¼I / = 0}, identifying .Þ1; Þ2/ ∈ R

2 with .Þ1 : Þ2 : 1/ ∈ G3;1C.
• The real algebraic curve dual toDR.A/ = {.c : d : ¼/ ∈ G3;1R | det.cA1 +

d A2 + ¼I / = 0}, identifying.Þ1; Þ2/ ∈ R
2 with .Þ1 : Þ2 : 1/ ∈ G3;1R.

• All points y ∈ R
2 for which there exists� ∈ T and a neighbourhoodV�

of � in C such that there exists an analytic parametrization (18) on V� for which
½1;y.� / = ½′

1;y.� / = 0 [Proposition7.7].
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• The envelope of all linesL y;s given by (11) for eachy ∈ R
2 ands ∈ T such

that〈y; s〉 ∈ ¦.〈A; s〉/.
• The singular values of the numerical range mapnAassociated with the matrixA

(see [14] and [21]), with the possible exception of “double tangents” [21, Theorem 3.5].

8. Examples

The Weyl functional calculusWA for a pairA = .A1; A2/ of .2 × 2/ hermitian
matrices can be calculated explicitly. The support .A/ ofWA is either the numerical
rangeW.A/ of the matrixA = A1 + i A2, an elliptical plane region with nonempty
interior in the case thatA1; A2 do not commute with each other, or .A/ consists
of a single point¦ ∈ R

2 if A = ¦ I , or otherwise, two distinct joint eigenvalues
¦1; ¦2 ∈ R

2. Calculations of this nature follow from [2] and are given explicitly
in [19].

The case of a pairA of noncommuting.3 × 3/ hermitian matrices reveals greater
geometric structure. IfA has a joint eigenvalue¦ ∈ R

2, then .A/ consists of¦
together with the support of the Weyl functional calculus associated with the pair of
reduced.2 × 2/ matrices, possibly consisting of the point¦ together with a disjoint
elliptical region.

In the following diagrams, Figures1–6, we plot the lines inR2 corresponding to
points.c : d : ½/ ∈ DR.A/ after the fashion described in Section7. The displayed
lines are tangent to the algebraic curvesC.A/ or pass through the isolated points
belonging toC.A/. Such an isolated point exists in Figure1, although it is not a
joint eigenvalue—the two matrices written under Figure1 have no nontrivial common
invariant subspace. The numerical rangeW.A/ of A and the support .A/ of the
Weyl functional calculus are equal to the elliptical region—a convex set. This is also
an example where@ .A/ = @R.A/ is a proper subset ofC.A/, see Corollary7.9.

There is a joint eigenvalue.1;0/ in Figure2 and an ellipse corresponding to the
pair of reduced.2× 2/ matrices. The numerical rangeW.A/ of A = A1 + i A2 is the
convex hull of the point.1;0/ and the ellipse. The support .A/ of the Weyl functional
calculus is the union of the elliptical region and the isolated point.1;0/. The convex
hull of  .A/ coincides withW.A/, as required by the Paley-Wiener Theorem.

Figures3–6 display the Kippenhahn curvesC.A/ associated with various pertur-
bations of the matricesA1; A2 in Figure2. The boundary of the lightly shaded regions
with single lines passing through them are the algebraic curvesC.A/. The convex
hull of C.A/ is the numerical rangeW.A/ of A1+ i A2. Theorem6.4says that, in each
diagram, thelightly shaded regionis actually the support .A/ of the Weyl functional
calculusWA for A.

By way of comparison with the general theory of [3, 4], the support of the funda-
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mental solutionE.x; t/ of the hyperbolic differential operator

det

(
I
@

@ t
+ A1

@

@x1
+ A2

@

@x2

)
at t = 1 is the numerical rangeW.A/ [4, Theorem 7.7]. The triangular regions inside
W.A/ in Figures2–6 correspond to Petrovsky lacunas [3, Example 10.6], soE.x; t/
is a homogeneous polynomial of degreen − 3 = 0 there, that is, a nonzero constant
function. Because the matrix valued distributionWA can be expressed in terms of
derivatives ofE, it vanishes in these regions.

A further illustration for a pair of.7 × 7/ hermitian matrices associated with the
linearised Lundquist equations of magnetogasdynamics is given in [7, Figures 1a–b].
The numerical ranges of certain matrices are displayed in a fashion similar to that
above in [13, Figures 1–9, pages 139–147]. Unfortunately, the interior structure of
the numerical range is omitted from these diagrams.

9. Proof of Theorem6.4

We first show thatR.A/ ⊆  .A/c. Let x ∈ R.A/. We must find an open
neighbourhoodU of .0; x/ in R3 such that the function

.ž; y/ 7→ Gy+že0.A/; .ž; y/ ∈ U \ .{0} ×R
2/

is the restriction toU \ .{0} × R
2/ of a continuous function defined inU . Then by

Painlevé’s Theorem [9, Theorem 10.6],G!.A/ is monogenic in a neighbourhood of
.0; x/, becauseG!.A/ is monogenic above and below{0} ×R

2. Hencex ∈  .A/c.
We start by examining the plane wave decomposition (9). Let y ∈ R

2 and set
B.y/ = y I − A. First, we convert the integral (9) to a contour integral∫

T

.〈B.y/; s〉 − žs I/−2d¼.s/ = −i
∫
T

.〈B.y/; s.z/〉 − žs.z/I /−2z−1 dz(20)

for the functions : C \ {0} → C
2 defined by (16). The integral (20) may be evaluated

using Cauchy’s Residue Theorem by finding the residues of the function

z 7→ .〈B.y/; zs.z/〉 − žzs.z/I /−2z−1(21)

in the open unit diskD = {z ∈ C | |z| < 1}. The formula (10) holds for anys ∈ T

andž 6= 0. We split the integral (20) accordingly into its scalar part belonging to the
linear subspace{T e0 | T ∈ L .Cn/} of L .Cn/.2/ and its vector part belonging to the
linear subspace{T1e1 + T2e2 | T1;T2 ∈ L .Cn/} ofL .Cn/.2/. There is no component
belonging to the linear subspace{T e1e2 | T ∈ L .Cn/} ofL .Cn/.2/.
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We make a few observations. If the limit of the scalar part

−i
∫
T

.〈B.y/; s〉2 − ž2 I /.〈B.y/; s〉2 + ž2 I /−2z−1 dz(22)

of the integral (20) exists inL .Cn/ and is nonzero asž → 0, then by formula (9), the
Cauchy kernelGy+že0.A/ has a jump discontinuity aty ∈ R

2 asž → 0. In this case
y ∈  .A/. The formula

WA.�/ = lim
"→0+

∫
R2

[Gy+"e0.A/ − Gy−"e0.A/]�.y/dy; � ∈ C∞
c .R

2/;

mentioned in the proof of [17, Theorem 6.2] shows that the jump

y 7→ lim
"→0+

[Gy+"e0.A/− Gy−"e0.A/];

where it exists, is the Schwartz kernel of the matrix valued distributionWA. The vector
part

i |ž|
4³2

∫
T

s〈B.y/; s〉.〈B.y/; s〉2 + ž2I /−2z−1 dz(23)

of the integral (20) depends only on|ž| for ž 6= 0, so the vector part of

Gy+"e0.A/− Gy−"e0.A/

is zero for all" > 0, in accordance with the fact that the distributionWA takes its
values in the subspaceL .Cn/ ofL .Cn/.2/.

The strategy used to prove thatx ∈  .A/c is to show that the matrix-valued integral
(22) converges to zero asž → 0+, whereas the integral (23) converges inL .Cn/.2/
uniformly for all y ∈ R

2 in a neighbourhood ofx.
We first examine the residues of the matrix-valued integrand

z 7→ .〈B.y/; s.z/〉2 − ž2 I /.〈B.y/; s.z/〉2 + ž2I /−2z−1(24)

of (22). Note that ify belongs to an open neighbourhood ofx in R.A/ ⊂ ².A/, then the
pointz = 0 is a removable singularity, forB1.y/+ i B2.y/ = .y1 + iy2/I − .A1 + i A2/

is invertible and we may write.〈B.y/; s.z/〉2 − ž2I /.〈B.y/; s.z/〉2 + ž2 I /−2z−1 as

.〈B.y/; zs.z/〉2 − zž2I /.〈B.y/; zs.z/〉2 + zž2 I /−2z;

where.〈B.y/; zs.z/〉2 − zž2 I /.〈B.y/; zs.z/〉2 + zž2 I /−2 → 4.B1.y/ + i B2.y//−2 as
z → 0.
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LEMMA 9.1. Let ž > 0. If z 6= 0 is a solution ofdet.〈B.y/; s.z/〉 + i ž I / = 0, then
z−1 satisfiesdet.〈B.y/; s.z−1/〉 − i ž I / = 0. In particular, if � is the function defined
in Corollary 7.8, then�.−ž; y/ = �.ž; y/−1.

PROOF. The identity〈B.y/; s.z−1/〉 = 〈B.y/; s.z/〉∗ holds becauseA1 and A2 are
hermitian matrices, so

det.〈B.y/; s.z−1/〉 − i ž I / = det.〈B.y/; s.z/〉∗ − i ž I /

= det.〈B.y/; s.z/〉 + i ž I /:

Let ½1;x : V� → C and� : Ux → C be the functions defined in Corollary7.8. Then
z 7→ ½1;x.z−1/, z ∈ V� is analytic and equal to½1;x on V� ∩ T where½1;x has real
values. By analytic continuation, it follows that½1;x.z−1/ = ½1;x.z/ for all z ∈ V� .
According to the definition of� we have½1;x

(
�.ž; y/−1

) = ½1;x.�.ž; y// = −i ž and
½1;x.�.−ž; y// = −i ž. The uniqueness of� ensures that�.−ž; y/ = �.ž; y/−1 for
all .ž; y/ ∈ Ux

Hence, solutionsz ∈ C \ {0} of

det
(〈B.y/; s.z/〉2 + ž2 I

) = det.〈B.y/; s.z/〉 + i ž I / det.〈B.y/; s.z/〉 − i ž I / = 0

either satisfyz ∈ T (if ž = 0) or come in pairsz = ¾ andz = ¾−1, one inside the open
unit disk D and the other outside the closed unit diskD.

The following representation was obtained in [7, Equation (4.4a)] using a plane
wave decomposition different to the one used here.

LEMMA 9.2. Suppose thatx ∈ R
2 \ ¦.A/ does not belong to the Kippenhahn

curvesC.A/. Then there exists an open neighbourhoodU ofx inR2 disjoint fromC.A/
and two contours,01.x/ surroundingD and02.x/ contained inD, both anticlockwise
oriented, such that〈B.y/; s.z/〉 is invertible inL .Cn/ for all z ∈ 01.x/ ∪ 02.x/ and
y ∈ U , and the limit

lim
ž→0+

∫
T

.〈B.y/; s.z/〉2 − ž2I /.〈B.y/; s.z/〉2 + ž2 I /−2z−1 dz

= 1

2
lim
ž→0

∫
01.x/+02.x/

.〈B.y/; s.z/〉2 − ž2 I /.〈B.y/; s.z/〉2 + ž2 I /−2z−1 dz(25a)

= 1

2

∫
01.x/+02.x/

〈y I − A; s.z/〉−2z−1 dz;(25b)

exists and the convergence is uniform for ally ∈ U .
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PROOF. Suppose that� ∈ D satisfies

det.〈x I − A; s.� /〉/ = 0:(26)

If � ∈ T, then we know that an analytic parametrization (18) exists in an open
neighbourhoodV� of � in C for which½1;x.� / = 0. By assumption,x ∈ R

2 \ C.A/,
so Corollary7.8implies that there exists a smooth functiony 7→ �.0; y/ defined in a
neighbourhoodU of x in R2 disjoint fromC.A/, such that�.0; x/ = � , �.0; y/ ∈ T

and½1;y.�.0; y// = 0 for all y ∈ U .
Furthermore, the solution�.¾; y/ of ½1;y.�.¾; y// = i ¾ is a smooth function for

.¾; y/ in a neighbourhood of.0; x/ in R3. Hence, given any contours01.x/ and02.x/
satisfying the conditions above, there exists an open neighbourhoodV of .0; x/ ∈ R

3

such that�.±ž; y/ lies in the region between the contours01.x/ and02.x/ for all
.±ž; y/ ∈ V. According to Corollary7.8, the complex numbers�.±ž; y/ are distinct
and both converge to�.0; y/ asž → 0+.

On the other hand,Xx = {z ∈ D | det.〈x I − A; s.z/〉/ = 0} is a finite subset
〈� j 〉k

j =1 of the open unit diskD. We claim that there exists an open neighbourhood
W of .0; x/ and disjoint closed disksDj ⊂ D centred at� j ∈ Xx such that for every
.¾; y/ ∈ W, all solutionsz of the equation

det.〈y I − A; s.z/〉 + i ¾ I / = 0(27)

lie in the union∪k
j =1Dj of the disjoint closed disks.

This would again follow from Corollary7.8if we knew that an analytic parametriza-
tion (18) exists in an open neighbourhoodV� of � ∈ Xx. We have already noted that,
except for a finite set of points, such an analytic parametrization is possible [5, Theo-
rem 3.3.12]. More simply, settingB.y/ = y I − A, (27) can be written as

det.〈y I − A; s.z/〉 + i ¾ I /

= .2z/−n det.〈B.y/;2zs.z/〉 + i 2z¾ I /

= .2z/−n det.B1.y/− i B2.y//det
(
z2 AI

− .B1.y/ − i B2.y//
−1.B1.y/+ i B2.y// + i 2z¾.B1.y/− i B2.y//

−1
)

= .2z/−n det.B1.y/− i B2.y//det
[
.zI + i ¾.B1.y/− i B2.y//

−1/2

− .B1.y/ − i B2.y//
−1.B1.y/+ i B2.y// + ¾2.B1.y/− i B2.y//

−2
]

= 0;

provided thaty ∈ ².A/. By assumptionx ∈ ².A/, so the equation is valid for ally
in a neighbourhood ofx and the solutionsz of (27) can be expressed in terms of the
eigenvalues of an.n × n/ matrix depending continuously on.¾; y/. The unordered
n-tuple of eigenvalues of this matrix valued function dependscontinuouslyon the
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parameters.¾; y/ [22, Theorem II.5.1] facilitating the construction of the required
disjoint closed disksDj , j = 1; : : : ; k.

According to Lemma9.1, poles of the function (24) come in pairs.z; z−1/ lying
either inside the open unit diskD or outside the closed unit diskD for all y in a
neighbourhood ofx. Now choose the inner contour02.x/ to surround every closed
disk Dj , and choose01.x/ to lie betweenT and pointsz−1, z ∈ ∪k

j =1Dj , outsideD.
Next choose the intersection of all open neighbourhoodsV of .0; x/ corresponding to
the finitely many solutions� ∈ T of (26) and take the intersectionV ′ of this open set
with the open setW corresponding to the finitely many solutions� j ∈ D, j = 1; : : : ; k
of (27).

Then for every.ž; y/ ∈ V ′, the contour integral∫
01.x/+02.x/

.〈B.y/; s.z/〉2 − ž2I /.〈B.y/; s.z/〉2 + ž2 I /−2z−1 dz

is 2³ i times the sum of the residues of the integrand at the distinct poles�.±ž; y/
and 4³ i times the sum of the residues at poles near solutions� ∈ D of (26), because
both contours01.x/ and02.x/ surround these. The possibility of a pole at zero in the
case thaty ∈ ¦.A/ is excluded.

The function

.ž; y/ 7→
∫
01.x/+02.x/

.〈B.y/; s.z/〉2 − ž2I /.〈B.y/; s.z/〉2 + ž2 I /−2z−1 dz

is continuous onV ′, so equality (25b) is immediate. To prove equality (25a), we need
to look separately at those poles� of (24) satisfying (26) lying inside the open diskD
and those lying onT.

The sum of the residues of the function (24) belonging to∪k
j =1Dj ⊂ D is equal to

1

2³ i

∫
02.x/

.〈B.y/; s.z/〉2 − ž2I /.〈B.y/; s.z/〉2 + ž2 I /−2z−1 dz

for all .ž; y/ ∈ V ′, so this is uniformly continuous in.ž; y/ ∈ V ′.
Now we need to show that the sum of the residues of the function (24) over all the

poles�.±ž; y/ converges uniformly iny asž → 0+ to twice the sum of the residues
of z 7→ 〈B.y/; s.z/〉−2z−1 over all the poles�.0; y/. According to Lemma9.1, one of
the poles�.±ž; y/ lies in D and the other is outsideD, so then equality (25a) will be
established.

The setZy of all solutions� ∈ T of (26), is finite for eachy in a neighbourhood of
x, so it suffices to prove that each residue of (24) at�.±ž; y/ converges uniformly to
the residue ofz 7→ 〈B.y/; s.z/〉−2z−1 at�.0; y/.

For every solution� ∈ Zy, there exists a neighbourhoodV� inC such thatV� ∩.Zy \
{� }/ = ∅ and the parametrization (18) holds. Then, writing½ j for the eigenvalues
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½ j ;y.z/ of 〈y I − A; s.z/〉 in (18), the equality

.〈B.y/; s.z/〉2 − ž2 I /.〈B.y/; s.z/〉2 + ž2 I /−2z−1 =
m∑

j =1

½ j .z/2 − ž2

.½ j .z/2 + ž2/2z
Pj .z/(28)

holds for allz ∈ V� .
By assumption, the eigenvalue functions½ j have at most one zero,z = � , in V� . We

may suppose that for some integerk, 1 ≤ k ≤ m, we have½1.� / = · · · = ½k.� / = 0
and½ j .� / 6= 0 for j > k. The terms in the sum (28) corresponding to the latter are
analytic in the open setV� .

By Corollary 7.8, there exists a neighbourhoodUx of .0; x/ in R
3 such that for

all j with 1 ≤ j ≤ k, � j .ž; y/ = ½−1
j .i ž/ defines aC∞-function onUx satisfying

½′
j .� j .ž; y// 6= 0 for all .ž; y/ ∈ Ux. In particular, the set of ally ∈ R

2 such that
.¾; y/ ∈ Ux for some¾ ∈ R, is disjoint fromC.A/. Then forž > 0, we have

Res

(
½ j .z/2 − ž2

.½ j .z/2 + ž2/2z
Pj .z/;� j .ž; y/

)
= 1

½′
j .� j .ž; y//2

[
d

dz

(
½ j .z/2 − ž2

.½ j .z/ + i ž/2z
Pj .z/

)]
� j .ž;y/

− ½′′
j .� j .ž; y// Pj .� j .ž; y//

½′
j .� j .ž; y//3� j .ž; y/

:

Here we have written.½ j .z/2 + ž2/2 = .½ j .z/ + i ž/2.½ j .z/− i ž/2 and noted that

.½ j .z/ − i ž/2 =
(
½ j .z/ − ½ j .� j .ž; y//

z − � j .ž; y/

)2

.z − � j .ž; y//2

gives rise to a pole of order two at� j .ž; y/. Now

d

dz

½2
j − ž2

.½ j + i ž/2
= 2½′

j

½ j .½ j + i ž/− .½2
j − ž2/

.½ j + i ž/3
= 2i ž½′

j

½ j − i ž

.½ j + i ž/3

is zero at� j .ž; y/. According to Corollary7.8, the function.ž; y/ 7→ ½′
j .� j .ž; y// is

C∞ and nonzero in a neighbourhood of.0; x/. It follows that the matrix

Res

(
½ j .z/2 − ž2

.½ j .z/2 + ž2/2z
Pj .z/;� j .ž; y/

)
(29)

= 1

2½′
j .� j .ž; y//2

[
d

dz

Pj .z/

z

]
� j .ž;y/

− ½′′
j .� j .ž; y// Pj .� j .ž; y//

2½′
j .� j .ž; y//3� j .ž; y/

:

converges uniformly for ally in a neighbourhood ofx asž → 0+.
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The residue at each of the poles� j .±ž; y/ contributes to the integral over01.x/+
02.x/, so in the limit, we obtain twice the sum of the residues of the matrix-valued
function z 7→ 〈B.y/; s.z/〉−2z−1 at poles� ∈ T and insideT. We have proved the
required formula.

The next lemma establishes that the scalar component of! 7→ G!.A/ is continuous
in a neighbourhood ofx ∈ R.A/ in R3.

LEMMA 9.3. For everyx ∈ R.A/ the matrix valued function

y 7→ Gy+že0.A/− Gy−že0.A/; y ∈ R
2;

converges to zero asž → 0+, uniformly for all y in a neighbourhood ofx.

PROOF. By Corollary7.8, x ∈ C.A/c andR.A/ ⊆ ².A/, so the representation of
Lemma9.2 is valid. But there are no poles interior toT or exterior toT. Hence, the
integral over02.x/ is zero and we can deform01.x/ to ∞. It follows that integral
(25b) is zero.

The following argument treats the residues of the integrand

z 7→ s.z/〈B.y/; s.z/〉.〈B.y/; s.z/〉2 + ž2 I /−2z−1(30)

of the contour integral (23), the vector part of the Cauchy kernel.
Let x ∈ R

2\.C.A/∪¦.A//. As in the proof of Lemma9.2, there exists an open set
V� ⊂ D about each solution� ∈ D of det.〈x I − A; s.z/〉/ = 0 and a neighbourhood
W of .0; x/ in R

3, such that for every.¾; y/ ∈ W, all solutionsz of the equation
det.〈y I − A; s.z/〉 − i ¾ I / = 0 belong to∪�V� . Moreover, the closures of the open
setsV� are pairwise disjoint.

The sumR� .ž; y/ of the residues of the function (30) at poles inV� is a continuous
function of.ž; y/, because it can be representedas a contour integral of the continuous
function (30) over a contour inside the open unit diskD surroundingV� . Then

lim
ž→0+

ž R� .ž; y/ = 0

uniformly for y in a neighbourhood ofx.
Now let � ∈ T be a solution of det.〈x I − A; s.z/〉/ = 0. Suppose thatj , 1 ≤

j ≤ m, is an index for which½ j .� / = 0 and�.ž; y/ = ½−1
j .i ž/ lies in D for all

0 < ž < Ž, otherwise, replacei ž by −i ž. Such a solution exists by Corollary7.8
and the assumption thatx ∈ R

2 \ C.A/. Furthermore,.ž; y/ 7→ �.ž; y/ is C∞ in a
neighbourhood of.0; x/ and|½′

j .�.ž; y//| is bounded below.
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LEMMA 9.4. Letx ∈ R
2\C.A/ and suppose that�.ž; y/ is a pole of(30) belonging

to the open unit diskD, as defined above. Then

ž Res

(
s.z/〈B.y/; s.z/〉.〈B.y/; s.z/〉2 + ž2 I /−2

z
;�.ž; y/

)
converges asž → 0+, uniformly for all y in a neighbourhood ofx.

PROOF. As in the proof of Lemma9.2, it suffices to prove that

ž Res
(

s.z/½ j .z/

.½ j .z/2 + ž2/2z
Pj .z/;�.ž; y/

)
converges asž → 0+ uniformly for y in a neighbourhood ofx.

By assumption,�.ž; y/ = ½−1
j .i ž/ lies in the open unit diskD for all 0 < ž < Ž.

Then

ž Res

(
s.z/½ j .z/

.½ j .z/2 + ž2/2z
Pj .z/;�.ž; y/

)
= ž

½′
j .�.ž; y//2

[
d

dz

(
s.z/½ j .z/

.½ j .z/ + i ž/2z
Pj .z/

)]
�.ž;y/

+ i½′′
j .�.ž; y//s.�.ž; y//Pj .�.ž; y//

4½′
j .�.ž; y//3�.ž; y/

:

Note that
d

dz

½ j

.½ j + i ž/2
= ½′

j

.½ j + i ž/− 2½ j

.½ j + i ž/3
= −½′

j

½ j − i ž

.½ j + i ž/3

is zero at�.ž; y/. On the other hand,

ž½ j .�.ž; y//

.½ j .�.ž; y// + i ž/2

[
d

dz

(
s.z/

z
Pj .z/

)]
�.ž;y/

= − i

4

[
d

dz

(
s.z/

z
Pj .z/

)]
�.ž;y/

and the other terms in the residue formula converge uniformly fory in a neighbourhood
of x asž → 0+.

Consequently, for everyx ∈ R.A/, the matrix-valued integral (22) converges to zero
asž → 0, whereas the integral (23) converges inL .Cn/ uniformly in a neighbourhood
of x. The Cauchy kernel! 7→ G!.A/ is therefore continuous in a neighbourhood of
.0; x/ in R3, proving thatx ∈  .A/c.

To complete the proof of Theorem6.4, it still remains to prove thatx ∈  .A/
for all x ∈ R

2 \ R.A/. We essentially follow the somewhat abbreviated proof of [7,
Theorem 4.3] after noting that Condition II of [7, Theorem 4.3] is superfluous by
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appealing to our Lemma7.1. As mentioned in [7, page 316], the proof is based on a
closely related argument of Petrovsky [27, page 348].

Let1.A/ be the set of allx ∈R2 \ C.A/ such that lim"→0+[Gy+"e0.A/− Gy−"e0.A/]
converges uniformly to zero for ally in an open neighbourhood ofx disjoint from
C.A/. Then1.A/ is an open subset ofR2 containing .A/c, because for every
x ∈  .A/c, the Cauchy kernel! 7→ G!.A/ is continuous for every! in a neighbour-
hood of.0; x/ in R3.

Suppose that (
R

2 \ .R.A/ ∪ C.A//
) ∩1.A/ 6= ∅:(31)

We shall obtain a contradiction from the assumption (31), so showing that

R
2 \ (

R.A/ ∪ C.A/
) ⊆ 1.A/c ⊂  .A/:

Because ((
R

2 \ .R.A/ ∪ C.A//
) ∩1.A/) \ ¦.A/(32)

is a nonempty open set, there exists a nonempty open subsetU of the set (32) such
that lim"→0+[Gy+"e0.A/ − Gy−"e0.A/] converges uniformly to zero for ally ∈ U .

Now U is disjoint fromR.A/ and¦.A/. If for every x ∈ U , every pole of the
function

z 7→ 〈x I − A; s.z/〉−1(33)

lies onT , thenU ⊂ R.A/. By Lemma9.1, polesz =∈ T of (33) come in pairsz ∈ D
andz−1 ∈ D

c
, so there must existx ∈ U such that (33) has a pole insideD. Moreover,

by the argument of Lemma9.2, the set{y ∈ R
2 | ¦...y I − Ã/∗/−1.y I − Ã//∩ D 6= ∅}

is an open subset ofR2, so for everyy belonging to some neighbourhood ofx, the
functionz 7→ 〈y I − A; s.z/〉−1 has poles insideD. By shrinkingU if necessary, we
suppose thatU has this property.

Then the calculation of the residues in Lemmas9.2and9.4is still valid becauseU
is disjoint from both¦.A/ andC.A/. By Lemma9.2, the limit

lim
"→0

∫
T

.〈y I − A; s〉2 − "2I /.〈y I − A; s〉2 + "2I /−2 d¼.s/

= − i

2

∫
01.x/+02.x/

〈y I − A; s.z/〉−2z−1 dz

is a matrix-valued real analytic function for ally in a neighbourhoodUx of x contained
in U—a constant times the function

y 7→ lim
"→0+

[Gy+"e0.A/ − Gy−"e0.A/]; y ∈ Ux:
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By assumption,Ux ⊂ 1.A/, so for ally ∈ Ux, we have∫
01.x/+02.x/

〈y I − A; s.z/〉−2z−1 dz = 0:(34)

The pointz = 0 is a removable singularity of the integrand in equation (34) because
y ∈ Ux ⊂ ².A/.

Up until this point, we have worked locally with solutionsz = �.y/ of the equation
det.〈y I − A; s.z/〉/ = 0 for �.y/ belonging to a neighbourhood ofT.

Now let us consider all solutionsz = �.y/ ∈ C of the simultaneous equations

det.¼I − 〈A; s.z/〉/ = 0;(35)

¼− 〈y; s.z/〉 = 0;(36)

for y ∈ R
2.

Forz 6= 0, equation (35) is equivalent to det.z¼I −〈A; zs.z/〉/ = 0 and the function
.¼; z/ 7→ det.z¼ − 〈A; zs.z/〉/ is a polynomial in two variables. Equation (35)
therefore determines an algebraic functionzµ.z/ of z [1, Chapter 8, Definition 2].
Except for a finite set6 of points inC, each function element.¼;�/ of µ can be
continued along any arc not passing through one of the exceptional points belonging
to 6 [1, page 294]. It follows from Rellich’s Theorem and equation (18) that6 is
disjoint fromT.

Suppose that.¼ j ;� j / is a function element ofµ such that� j is disjoint from
6 ∪ {0}. Then� 7→ .s1.� / : s2.� / : −¼ j .� //, � ∈ � j , is a smooth local parametriza-
tion of the algebraic curveC.A/∗ of Section7. If y ∈ R

2 andz ∈ C satisfy (36) for
¼ = ¼ j .z/, and¼′

j .z/−〈y; s〉′.z/ = 0, then by Lemma7.1, y ∈ C.A/. Consequently,
if y =∈ C.A/, then any solutionz0 of (35)–(36) with ¼ = ¼ j .z/ has the property that

¼′
j .z0/− 〈y; s〉′.z0/ 6= 0:

Suppose thaty =∈ C.A/. By the remark after Lemma7.6, there exists an open
neighbourhoodVy of y in R2 and an analytic functionw 7→ � j .w/, w ∈ Vy, of two
real variables such that〈w; s.� j .w//〉 = ¼ j .� j .w// for all w ∈ Vy. Hence,

det.〈w; s.� j .w//〉I − 〈A; s.� j .w//〉/ = 0

and for everyw ∈ Vy the complex number� j .w/ is a pole of the function

z 7→ 〈w I − A; s.z/〉−1:

Now according to (31), we are assuming that poles of function (33) exist insideD.
So there exist a nonzero integerk and 2k functions y 7→ ±� j .y/, j = 1; : : : ; k,
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defined fory ∈ Ux, that are analytic in two real variables and poles of (33) belonging
to D. We can also assume that they have the property that±� j .y/ =∈ 6 ∪ {0} for all
y ∈ Ux and that they are constructed, as above, from the algebraic functionzµ.z/.

This is valid, because to any nonzero exceptional pointz ∈ 6, there corresponds a
unique solutiony ∈ R

2 of (36) satisfying the equations

y1s1.z/+ y2s2.z/ = ¼y1s1.z/− y2s2.z/ = ¼:(37)

Here we use the observation thats1.z/s2.z/ + s1.z/s2.z/ = 0 if and only if |z| = 1
and6 is disjoint fromT. The pointz = 0 is associated with points� ∈ ¦.A/ with
y1 + iy2 = � and limz→0 z¼ j .z/ = �=2; for some function element.¼ j ;� j / of µ with
0 ∈ � j .

With these preliminary observations out of the way, we will obtain a contradiction
from the assumption that (34) holds in a neighbourhoodUx of x.

Let x1 ∈ R.A/ and suppose thatt 7→  .t/, 0 ≤ t ≤ 1, is a smooth curve inR2

such that .0/ = x and .1/ = x1. Suppose further that where crosses a curve
belonging toC.A/, it does so nontangentially and avoids all intersections, cusps and
isolated points. This is possible because there are only finitely many such points.
Furthermore, we suppose that also avoids the image inR2 of the exceptional points
6 and the spectrum¦.A/ of A. Then in a neighbourhood of any point in .[0;1]/, the
functions{� j }k

j =1 defined by the algebraic functionzµ.z/ from (35)–(36) in the manner
described above, do not take values in6 ∪ {0}. Moreover, we have� j . .1// ∈ T and
� j . .0// ∈ Ux ⊂ D for j = 1; : : : ; k. Let

t0 = sup{t > 0 : � j . .s// ∈ D for every 0≤ s ≤ t and j = 1; : : : ; k}:

Then 0< t0 ≤ 1 and, by continuity, for somem = 1; : : : ; k, we must have�m. .t0// ∈
T. If ¼′

j .�m. .t0/// − 〈 .t0/; s〉′.�m. .t0/// 6= 0, then by Rellich’s Theorem and
Lemma7.6, there existsŽ > 0 such that�m. .t// ∈ T for all t ∈ .t0 − Ž; t0 + Ž/,
contradicting the definition oft0. Hence .t0/ ∈ C.A/ by Proposition7.7.

According to our assumption, equation (34), the sum Res.y/ of the residues of the
functionz 7→ 〈y I − A; s.z/〉−2z−1 at±� j .y/ and±� j .y/−1, j = 1; : : : ; k, is zero for
all y ∈ Ux. The outer integral about the contour01.x/ in (34) surrounds±� j .y/−1

and the integral is calculated from the residues at±� j .y/−1 by the Cauchy integral
formula.

For each 0< t < t0, there exist contours01. .t// ⊂ Dc and02. .t// ⊂ D and
neighbourhoodsV .t/ of  .t/ such that01. .t// surrounds{� j .y/−1}k

j =1 and02. .t//
surrounds{� j .y/}k

j =1 for all y ∈ V .t/, and the contours do not surround any other
poles of function (33) for any y ∈ V .t/.

To see that this construction is possible, suppose that�` is some other distinct
solution of simultaneous equations (35)–(36) such that� = �`. .t// = �1. .t// ∈ D,
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say, for some 0< t < t0. Then〈 .t/; s.� /〉 = ¼`.� / = ¼1.� / for two eigenvalues
¼`.z/ and¼1.z/ of the matrix 〈A; s.z/〉, for all z ∈ C in a neighbourhood of� .
Then � must be a branch point of the eigenvalues of the matrix valued function
z 7→ 〈A; s.z/〉, that is,� ∈ 6. This contradicts our choice of the arc . Hence, all
solutions of simultaneous equations (35)–(36) have distinct values at each point of .
By continuity, for each 0≤ t < t0 we can choose a neighbourhoodV .t/ of  .t/ in
which solutions of (35)–(36) have this property and contours01. .t// and02. .t//
with the properties described above.

Then the function

Res.y/ = 1

2³ i

∫
01. .t//+02. .t//

〈y I − A; s.z/〉−2z−1 dz

defined for ally ∈ V .t/ and 0≤ t < t0 agrees onUx ∩ Vx with the sum Res.y/ of
residues defined above fory ∈ Ux. Clearly, Res.y/ is an analytic function of the two
real variablesy, so by analytic continuation, Res. .t// = 0 for all 0 ≤ t < t0.

The point�m. .t0// ∈ T corresponds to where crosses the curveC.A/ at t0
with �m. .t0// the direction of the unit normal. As mentioned above, may have
crossed a curve inC.A/ earlier, leading to the appearance of poles of the function (33)
additional to{� j .y/}k

j =1 for y ∈ V .t/, but the chosen contours do not surround these.
Because avoids all intersections, isolated points and cusps, for eachj = 1; : : : ; k

with j 6= m, we have� j . .t0// 6= �m. .t0// and� j . .t// is bounded away fromT
for all 0 ≤ t ≤ t0 (the unit normal is unique). Any other poles�. .t0// of (33) are not
associated with function elements ofµ at which (19) holds fory =  .t0/. Otherwise,
by Proposition7.7,  .t0/ would lie on the intersection of curves belonging toC.A/
with �. .t0// ∈ T, the unit normal to one of the curves.

However, it is impossible that Res. .t// = 0 for all 0 ≤ t < t0, because the
residues diverge at�m. .t0// ∈ T, but are uniformly bounded at� j . .t//, 0 ≤ t ≤ t0
for j 6= m. This follows from an asymptotic analysis of (29) asy →  .t0/ along .
The asymptotic analysis is facilitated by the fact that¼ j and Pj are analytic in a
neighbourhood of�m. .t0// by Rellich’s theorem. Rather than repeat the calculation
here, see [7, Equation (4.24)], and the references there that follow that equation. The
original assumption that Res.y/ = 0 for all y in a neighbourhoodUx of x must be
false, so that (31) is false. We have shown the inclusionR2 \ (

R.A/∪ C.A/
) ⊂  .A/.

If x ∈ R.A/c ∩ R.A/ = @R.A/, then by Corollary7.9, x is an element ofC.A/,
so it only remains to treat the casex ∈ C.A/. In this case, the asymptotic analysis
mentioned above ensures that we can actually make lim"→0+[Gy+"e0.A/− Gy−"e0.A/]
diverge asy → x in some direction inC.A/c, namely, from the direction into which
the curvature vector points, proving thatx ∈  .A/. We have established the inclusion
R

2 \ R.A/ ⊆  .A/.
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10. Further developments

In this section, we consider which of the preceding arguments are applicable to a
more general situation. A plane wave decomposition formula similar to formula (9)
has been obtained for ad-tupleA = .A1; : : : ; Ad/ of bounded linear operators acting
on a Banach spaceX just under the assumption that the spectrum¦.〈¾;A〉/ of the
bounded linear operator〈¾;A〉 = ∑d

j =1 ¾ j Aj is real for each¾ ∈ R
d [18, Lemma 2.5].

Actually, the plane wave decomposition is adopted as thedefinitionof the Cauchy
kernelG.·/.A/ off Rd in the case that the Weyl calculus does not exist, that is, when
the necessary exponential bounds for thed-tupleA of operators fail. It agrees with the
power series expansion [18, Equation (5)] outside a sufficiently large ball and it agrees
with the Cauchy-Stieltjes transform of the Weyl functional calculus when this exists
[17, Equation (5)]. The same formula will work for ad-tupleA = .A1; : : : ; Ad/ of
unbounded linear operators if theclosure〈¾;A〉 of 〈¾;A〉 is densely defined and has
real spectrum for each¾ ∈ R

d.
The monogenic spectrum .A/ of the d-tuple A is the set of singularities of the

Cauchy kernelG.·/.A/, that is to say, .A/ is the complement of the largest set in
R

d+1 on which! 7→ G!.A/ is a monogenic function with values in a Clifford module
L .X/.d/ over the bounded linear operators on the Banach spaceX.

In the Hilbert space setting withd = 2 andA = .A1; A2/ bounded selfadjoint
operators, Definition6.1 and the proof of Proposition6.2 still make sense, so that
R.A/c is contained in the numerical rangeW.A/ of the bounded linear operator
A = A1 + i A2. The convex hull of .A/ is equal to the numerical rangeW.A/.
However, we have no information about the relationship ofR.A/ and .A/ in the
infinite dimensional setting.

If we assume only thatA = .A1; A2/ is a pair of matrices such that¦.〈¾;A〉/ is
real for each¾ ∈ R

2, then we can no longer appeal to Rellich’s Theorem, crucial to
the proofs of Sections7 and9. A pair of simultaneously triangularisable matrices,
each with real spectrum, falls into this category—such matrices need not be hermitian.
Moreover, the algebraic functionzµ.z/ defined in Section9 may now have a finite
number of singularities on the unit circleT.

Rather than use the Rellich formula (18), we could attempt to express the matrix

〈y I − A; s.z/〉
in terms of the resolvent.¼I − 〈A; s.z/〉/−1, ¼ ∈ ².〈A; s.z/〉/, of 〈A; s.z/〉 for
suitablez ∈ C. The Cauchy kernelG.·/.A/ of A can also be expressed in terms
of resolvent operators.¼I − 〈A; s〉/−1 by means of the plane wave decomposition.
This approach has the advantage of being applicable to ad-tuple of linear operators
acting in a Banach space. The preceding analysis applies to pair of matrices satisfying
the spectral condition just mentioned, although singularities of the algebraic function
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zµ.z/ defined in Section9 on the unit circleT must now be accounted for. A similar
remark was made in [7, Footnote 1]. The observation that ad-tuple A of matrices
with the property that¦.〈¾;A〉/ is real for each¾ ∈ R

d has a Weyl functional calculus
is proved in [16] by operator-theoretic methods.

Finally, we note that for the tripleσ = .¦1; ¦2; ¦3/ of .2 × 2/ Pauli matrices,
the monogenic spectrum .σ / of σ is the unit sphereS in R

3 [2, Theorem 4.1].
Points exterior toS belong to infinitely many tangent planes toS, but points inside
S have none. Nevertheless, the interior ofS is a lacuna of .σ / corresponding to
the fundamental solution of Weyl’s equation. The simple equality .A/ = R.A/c,
suitably interpreted, does not go over to higher order systemsA = .A1; : : : ; Ad/,
d > 2, without some additional connection betweend and the size of the matrices
A1; : : : ; Ad.

References

[1] L. Ahlfors, Complex analysis, 2nd Edition (McGraw Hill, New York, 1966).
[2] R. F. V. Anderson, ‘The Weyl functional calculus’,J. Funct. Anal.4 (1969), 240–267.
[3] M. Atiyah, R. Bott and L. G̊arding, ‘Lacunas for hyperbolic differential operators with constant

coefficients I’,Acta Math.124(1970), 109–189.
[4] , ‘Lacunas for hyperbolic differential operators with constant coefficients II’,Acta Math.

131(1973), 145–206.
[5] H. Baumg̈artel,Analytic perturbation theory for matrices and operators, Operator Theory: Ad-

vances and Applications 15 (Birkhäuser, Basel, 1985).
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[28] F. Rellich, ‘Sẗorungstheorie der Spektralzerlegung I’,Math. Ann.113(1937), 600–619.
[29] W. Ricker, ‘The Weyl calculus, joint spectra and commutativity of compact, selfadjoint operators’,

Integral Equations Operator Theory22 (1995), 333–338.
[30] J. Ryan, ‘Plemelj formulae and transformations associated to plane wave decompositions in com-

plex Clifford analysis’,Proc. London Math. Soc.64 (1992), 70–94.
[31] I. R. Shafarevich,Basic algebraic geometry(Springer, New York, 1977).
[32] F. Sommen, ‘Plane wave decompositions of monogenic functions’,Ann. Polon. Math.49 (1988),

101–114.
[33] M. E. Taylor, ‘Functions of several self-adjoint operators’,Proc. Amer. Math. Soc.19 (1968),

91–98.
[34] V. A. Vassiliev,Ramified integrals, singularities and lacunas, Mathematics and its Applications

315 (Kluwer, Dordrecht, 1995).
[35] H. Weitzner, ‘Green’s function for two-dimensional magnetohydrodynamic waves, I, II’,Phys.

Fluids4 (1961), 1238–1245, 1246–1250.

School of Mathematics
The University of New South Wales
Sydney NSW 2052
Australia
e-mail: b.jefferies@unsw.edu.au, bernd@maths.unsw.edu.au

mailto:b.jefferies@unsw.edu.au
mailto:bernd@maths.unsw.edu.au

