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Abstract

The connection between Clifford analysis and the Weyl functional calculus ébtuple of bounded
selfadjoint operators is used to prove a geometric condition due to J. Bazer and D. H. Y. Yen for a point to
be in the support of the Weyl functional calculus for a pair of hermitian matrices. Examples are exhibited
in which the support has gaps.
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1. Introduction

For ad-tuple A = (A, ..., Aq) of noncommuting bounded selfadjoint operators
acting on a Hilbert spackl, there is no direct analogue of the spectral theorem for
a single selfadjoint operatdr, by which a functionf (T) of T can be expressed in
terms of an integraf (T) = [ . f (1) dE(X) with respect to a spectral measie
The Weyl functional calculu®, : f — fyw(A) for A is a means of constructing
functionsfy,(A) of the systenf\ of operators, for suitable smooth functiohslefined
on RY. It was proposed by H. Weyl for the paiP, Q) of unbounded selfadjoint
operators, wherd® is the momentum operator ar@d is the position operator in
guantum mechanics. Inthe noncommuting case, the opéfatdr) is not necessarily
expressible as an integral with respect to an operator-valued measuv, mian
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operator-valued distribution. i consists oboundedperators, thei#, necessarily
has compact support.

A feature of Weyl's functional calculus is that, maps a polynomiap in d
variables to an operatgyy (A) in which symmetrised products in the elementg\of
replace the associated monomial componenis. of

A similar phenomenon emerges in Clifford analysis. mnogenidunction f
defined oriR?*1, and with values in a finite dimensional Clifford algebra, is a function
satisfying a higher dimensional analogue of the Cauchy-Riemann equations. Every
complex valued analytic function bhreal variables has a unique monogenic extension
to an open subset &%+, The monogenic extension of polynomials @A are the
corresponding polynomials in thattuple (zy, ..., z4) of monogenic extensions of
coordinate functions, but with products suitably symmetrised.

The purpose of the present work is to exploit the connection between the Weyl and
Clifford calculi, previously examined irl[7, 18], to obtain a geometric expression for
the support of the Weyl functional calculus for two hermitian matrices. Expressed
otherwise, we describe geometrically the ‘joint spectryti®) of two noncommuting
hermitian matrice®\ = (A1, A,). In the case tha#;, A, do commute, the support
y (A) of the Weyl functional calculu®’, for the pairA is actually the support of the
joint spectral measure fok—the finite set of joint eigenvalues &; and A,. Our
technique uses a generalisation of the Cauchy-Stieltjes transform of a mea®ure on
from the complex plane to higher dimensions. The analogy is as follows.

Let u be a finite Borel measure on the line. T@auchy-Stieltjes transforr is
defined for allz € C \ suppu by

1 d
ﬂ(z):_./ u(X)
R

z—Xx'

The measur@ can be recovered from its Cauchy-Stieltjes transfariy the formula

/¢d,u = Iirg+/ [A(x —ie) — A(x+ie)] p(x)dx,
R & R

valid for all smooth functiong with compact support.

A similar argument applies tospectral measureSuppose thad is a selfadjoint
operator acting in a Hilbert space with a selfadjoint spectral medssigported on
the spectruna (A) of A, thatis,A = fU(A) AdP()). Then for every belonging to the
resolvent sep (A) = C\ o (A), the functional calculus for selfadjoint operators gives

|5(Z) 1 /dP(X) _ i(zl . A)il
R

~ 27 Z—X 27i
in terms of the resolverizl — A)~! of A. Moreover,
1

(1) /¢dP=—_ lim /[((x—ie)l — A= ((x+ig)l = AP (x) dx
R 21l e—0* Jp
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for all smooth functionsp with compact support (sed. ], (iv) page 2168]). The
supporto (A) of the spectral measulReis characterised as the complement of the set
of pointsx € R containedin an open sétin C in whichthe resolvera — (z1—A)™1,
z € U\ R, isthe restriction taJ \ R of a continuous function defined th. Formulas
like (1) are basic to the spectral theory of differential operators and to the construction
of their spectral measures, for example, by the Weyl-Titchmarsh-Kodaira formula for
Sturm-Liouville differential operators.

In the case tha = (A, ..., Ay) is ad-tuple of bounded selfadjoint operators
acting on a Hilbert spacel and, is the Weyl functional calculus associated with
A, the equation

7@ = im [ [Gra(®) - Grn@]600dx ¢ € CXRE,
was established irl[/, Theorem 6.2]. Her&,,(A), w € RY1\ ({0} x SUPP(#4)), is a
higher dimensional analogue of the resolvent family of a single operatoiCatehy
kernel G, (A) takes values in a Clifford module over the space of bounded linear
operators acting od. It can be viewed as a higher dimensional Cauchy-Stieltjes
transform of the distributios?, supported irR¢. The analogue

fw(A) =/ G, (AN(@) f (w) du(w)
Q2

of the Riesz-Dunford formula is also valid for functiofideft monogenic in a neigh-
bourhood inR%*! of the support of#, [17, Corollary 5.5].

Then supp#,) is characterised as the complement of the set on which the function
o — G, (A) is continuous, that s, the ‘spectrum’ sy, ) of the functional calculus
W is precisely the set of singularities of the Cauchy ke@g(A), just as the spectrum
o (T) of asingle operatdrF is the set of singularities of the resolvent> (A1 —T)~L.

Although the Fourier transform#, of the operator-valued distributiofi, is known
explicitly, it does not obviously provide detailed information about the local behaviour
of #,. For example, in the case of a p#ir = (A;, A,) of bounded selfadjoint
operators, an application of the Paley-Wiener theorem shows that the convex hull of
supp#,) coincides with the closure of the numerical range of the bounded linear
operatorA; + i A, [2, Theorem 5.2]. It is difficult to obtain further information from
bounds involving the Fourier transfortfy, of #,.

A simple geometric condition for points to belong to s¢gR) in the case that
A = (A4, Ay) is a pair of hermitian matrices is found in Theorém from the plane
wave decomposition fdg,, (A) [18 Lemma 2.5], as this is adapted to a more detailed
examination of the behaviour &f, around its support.

The argument we use demonstrates why Clifford analysis or, more specifically,
guaternionic analysis is more suited to the problem at hand than the theory of functions
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of several complex variables. The distributi#fy is supported inR? and can be
represented as the boundary values of a function, taking its values in a Clifford module
over the space of matrices, and monogeni®iroff the planeR? = {0} x R? C R®.
However, if we represent the distributiofiy as the boundary values dk? of a
matrix-valued analytic functio® defined inC?, then we find thatb has singularities

on certain algebraic curves studied by Kippenhath in his 1951 investigation into

the numerical range of matrices; this phenomenon complicates the analysis. The
emergence of singularities i@" in the Cauchy transform of smooth scalar-valued
functions inR" for n > 1 is noted in LL0].

The distribution(x, t) > #;{s(X) is actually the fundamental solution of a linear
symmetric hyperbolic system of PDE of a type that arises, for example, in the study
of two-dimensional magnetohydrodynamic waveés [ Part of Theoren®.4has been
obtained by Bazer and Yef,[7] by appealing to a plane wave decomposition#gx
from the method of Herglotz and Raddit], although no connection is made in these
works with Kippenhahn’s characterisatiazf] of the numerical range of matrices.
Our approach also makes explicit the relationship with the ‘spectral theory’ of a finite
collection of noncommuting operators.

A more general study of the support of the fundamental solution of hyperbolic PDE
with constant coefficients originated with the penetrating work of Petrov&Ryand
was advanced by Atiyah, Bott anca@fing [3, 4], see also34]. The lacunas studied
in the present work and ir2[7, 6, 7] are calledstrong lacunasn the terminology of
[3] and [4]. The fundamental solution of a symmetric hyperbolic systerof PDE
may have lacunas stronger than those ofRIg3, page 188]. As in the works$][ 7],
we use the additional features of symmetric hyperbolic systems to obtain results more
directly than those obtained from the general theory of Atiyah, Bott aadliGg
[3,4]. In particular, the formulas of Herglotz-Petrovsky-Ler&Theorem 7.16] for
the fundamental solution of dBtare replaced in the present context by a much simpler
formula of Bazer and Yen for the matrix valued distributigfy, see Lemma.2

The method of the present work demonstrates that the monogenic functional cal-
culus for noncommuting systems of operators is a useful tool to analyse the support
of distributions inRY. It also makes explicit the connection between earlier work
of Kippenhahn 23] and MurnaghanZ5] on the numerical rang&/(A) of the ma-
trix A = A; + i A, and the support of the Weyl functional calculig for a pair
A = (A4, Ay) of hermitian matrices. In particular, lacunas or gaps in the support of
W —the difference between the convex ¥étA) and supp#,)—are already explicit
in the numerical range of certai x 3) matricesA exhibited in R3], see Figured—6.

An outline of Clifford analysis is given in Sectior?s-3. The higher-dimensional
analogue of the Riesz-Dunford functional calculus is outlined in SectionAn
elementary proof of the plane wave decomposition for the Cauchy kernRP in
suitable for the present purpose is given in Secfion
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The geometric condition characterising the monogenic specirgh) and the
support of the Weyl functional calculus is introduced in Sec@ioifhe remainder of
the work is devoted to a proof of Theore® using spectral theory arguments for
systems of operators.

Our arguments from spectral theory have mainly a functional analytic flavour, but
certain geometric ideas, already evident in the pioneering work of Petro2gkyafe
needed to implement the analysis. We include a brief discussion of algebraic curves
in Section7 in an attempt to alleviate the reader’s burden with possibly unfamiliar
ideas already introduced. Some concrete examples of Kippenhahn's plane algebrai
curves for(3 x 3) matrices are exhibited in Secti@ The proof of Theorens.4 is
completed in Sectiof.

Finally, in Section10, we make some suggestions about what extensions to the
arguments advanced may be valid for finite systédms (A, ..., Aq) of matrices, or
bounded linear operators on a Banach space for which the spe@(@ﬁzl Ai§))

of the operatOE‘j’:l A& is a subset of the real numbers for everg R,

2. Clifford algebras

Let F be either the fiel®R of real numbers or the field@ of complex numbers. The
Clifford algebraFg, over F is a 2-dimensional algebra with unit generated by the
standard basis vectoes, e;, .. ., €5 of the vector spac&®™*. Multiplication in Fg,
satisfiess; g + e = —26j for 1 < j, k < d, with §;, denoting the Kronecker delta.
The vectore, serves as the identity element.

A basis ofFq, is given by vectorss, indexed by all subsetS of the finite set
{1,...,d}. For each such subs& the elemengs is the ordered product of the
vectorse; with j € S, with the understanding thaj = e,.

The Clifford algebraR o), R;, and R, are the real, complex numbers and the
quaternions, respectively.

The conjugat@s of a basis elemerg is defined so thagéses = €ses = 1. Denote
the complex conjugate of a numbere F by T. Then the operation afonjugation
u — U defined byt = )  Us®s for everyu = ) quses, Us € [ is an involution
of the Clifford algebraF. ThenTUv = vu for all elementsu andv of Fg,. An
inner product is defined ofg, by the formula(u, v) = [uv]y = ) gusvs for every
u=> gsusesandv =) g vses belonging toF g . The corresponding norm is written
as| - |[.

The Clifford algebraF 4, has the appealing property that any nonzero vextar
R has an invers& ! in the algebra given by~ = X/|x|2.

The algebraic tensor produli;, = X ® F, of a vector spac& over F with [F g,
is a two-sided module. Elements ¥f;, may be viewed as finite sunis= ) "4 Xs€s
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of tensor products of elements of X with basis vectorgs of Fg,. Multiplication
in X by elements. of the Clifford algebraF g, is defined byur = ) ¢ Xs(esh)

andiu = ) ¢Xs(reg). If X is a normed space, then the normXp, is taken to be
1/2

lull = (Xslixsl%) ™

Let X be a Banach space arif(X) the space of continuous linear operators acting
onX. The space?(X)q, and the spac&q (X)) of all right module homomorphisms
of X4, are identified by defining the operation®f= ) Tsesonu = ) quses as
T(u) = Y g5 Ts(us)eses. The norm ofT is given by || T| = (> g ||T5||f?(x))1/2.
The space? (X) is identified with the subspace &f (X)4, consisting of all elements
Te, T € Z(X). Anelementl of £ (X)q has aninvers&if ST=TS=1e,. If
such an inverse exists, it is written &s?.

3. Clifford analysis

What is usually callecClifford analysisis the study of functions of finitely many
real variables, which take values in a Clifford algebra, and which satisfy higher
dimensional analogues of the Cauchy-Riemann equations.

A function f : U — [, defined in an open subskt of R%* has a unique

representatiodf = ) ¢ fsesin terms off-valued functionsfs, SC {1, ..., d} in the
sensethaf (x) = ) ¢ fs(X)esforallx € U. Thenf is continuous, differentiable and
so on, in the normed spaégy,, if and only if for all finite subsetSof {1, ..., d}, its

scalar component functiorfg have the corresponding property. ldebe the operator
of differentiation of a scalar function in thgh coordinate inR%+*—the coordinates
of x € R¥?! are written asx = (Xo, X4, ..., Xq). For a continuously differentiable
function f : U — [F, defined in an open subsetof R with f = > fses, the
function Df is defined by settinfpf = > ¢ Z‘j’:o(aj fs)ejes and f D is specified by
fD =Y s> o3 foese.

Now suppose that is anF g -valued, continuously differentiable function defined
in an open subsed of R%*1, Thenf is said to bdeft monogenién U if Df (x) =0
for all x € U andright monogenidn U if fD(x) = 0 forallx € U. The definition
extends to functiong with values in a Clifford module ovef ).

For eachy € R%*%, the functionG, : R4\ {y} — F, defined by

1 y—x

(2) X Gy(X) = g Ty — Xot’

for all x # y is both left and right monogenic. Here the volume of the drsphere
in R%*?! has been denoted lay andR%+! is identified with a subspace &fy,. In [9],
the notationE(y — x) = G,(x) for y # x is used. In the present work, we replace
by ad-tuple A of matrices or operators, so the given notation is more convenient.
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The function ) plays a special role in Clifford analysis. Suppose that R is
a bounded open set with smooth boundafyand exterior unit normai(w) defined
for all w € 3Q2. For any left monogenic functiof defined in a neighbourhodd of
Q, theCauchy integral formula

f(x), If xeg;

3 G f(w)d = —
3 /m »(XN(@) T () du(w) {0’ it xcU\Q

isvalid. Hereu is the surface measure@f2. The resultis provedirg] Corollary 9.6].
If gis right monogenic irJ thenfm g(w)n(w) f (w) du(w) = 0[9, Corollary 9.3].

4. The monogenic calculus

Suppose thaf = (A4, ..., Ay) is ad-tuple of hermitian operators acting on a
Hilbert spaceH. For eaclt € RY, set(A, &) = Z‘j’:l Aj§;.

The Weyl functional calculu$2, 26, 33] is a means of forming function§, (A,
..., Ay) of thed-tupleA = (A, ..., Ay) of operators. There exists a unique operator
valued distribution#, : f — fw(A), f € C®(RY), defined over the test function
spaceC>(RY) of all infinitely differentiable functions, such that the restrictior;f
to . (RY) is given by

@) Wa(t) = 21)9 /

R

e f(g) deg.

The integral converges as a Bochner integra#iiH) with the operator norm. The
support supp#,) of this distribution is contained in the closed ballRf centred at
zero and with radius = (35_, [|A; 12)"% [33, Theorem 1].

By virtue of the standard techniques of distribution theory, the distribufipmlso
applies to any smooth functioh: U — [, defined in an open neighbourhobddof
supf#,) in R, by applying#, to each of the components défrestricted to the
open neighbourhodd N RY of supp#,) in RY,

Then theZ (H)q,-valued functiorw — G, (A) defined by

(5) G,(A) = #4(G,),  forallw e R\ ({0} x SUPE¥/A)),

is called theCauchy kernefor thed-tupleA. Itis the Cauchy-Stieltjes transform of the
operator-valued distributio#’, in the sense of Clifford analysi® [ Definition 27.6].

By an elementary argumernit{, Corollary 5.5], the Cauchy integral formuld)(
ensures that

®) Wa(f) = / G (AN() f (@) du(@)
02
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for any functionf left monogenic in a neighbourhood of the closure of the re@ion
in R9+! containing the support supga) of #4 in RY = {0} x RY,
Themonogenic spectruimf A is the subsef (A) of RY off which the function

wi=> G,(A), e R\ ({0} x y(A))

is aleft and right monogenic function. Itis proved irv] that the sey/ (A) is precisely
the support supf,) of the distribution#;.

For example, any analytic functioh of d real variables defined in an open neigh-
bourhoodU of y(A) in RY is the restriction tdJ of a left monogenic functionf’
defined in an open subset®f** [9, Proposition 14.4]. Then formul®) defines the
operatorf (A) := f(A) in such away that for any polynomiglin d real variables, the
operatorp(A) is formed fromp by replacing terms;, - - - x;, by symmetric products
in the bounded linear operato#s,, ..., A

i
5. The plane wave decomposition of the Cauchy kernel

We now restrict ourselves to the case whare 2 andA = (A, Ay) is a pair of
hermitian operators in a finite dimensional Hilberasp.

Throughout the followingT denotes the unit circle centred at zerdfandu is
the arc length measure @f The inverse in the integrand of the following formula is
understood as an inverse in the Clifford algeRyg.

The following elementary calculation is a special case of a general forrBgja [
page 111], 80, 24] for the plane wave decomposition of the Cauchy kernddn’.

LEMMA 5.1. Lety € R? and suppose that, € R is nonzero. Then

1 )2 du(t 0;
Yo—V —Z/T((y,5>—%) n)  Yo>0;

OB+ | L / (1) — Yo 2dut) Yo <O.
T

PrOOF. Let us calculate

2
2> du(t)

7 1) — yot) 2 dpu(t =/
(7) /T(<y> Yot) = dpu(t) RIEERY:

T

((y,t> + Yot

for nonzeroy € R? andy, € R. Choose coordinates such thgtt) = |y| cos.
Then (7) is equal to

®) /2” ly|?cos 0 — yi + 2y,y cos 0
0

(|yl2cog6 + y3)? a0
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The term involving si has integral zero, so it does not contribute to the inte@al (
Because

/2” cog6 5 T
o (a2cog6 +b2)2 " |b|(a2+ b2)¥2’

2 1 _ x@+20)
we have
/ cosh 4o — 2y san
WY | yrcose + y2r = (yr+ ypor 9
and
/2” lyl’co$6 —ys ., _ 27|yl
o (YPcogo+ Y22  (YP+YD¥? =

The plane wave representation of the Cauchy ke®)gh) given next was proved
in [18] for d-tuples of operators. Itis critical for the subsequent calculations. The
inverse in the integrand is taken in the Clifford modi#&C") ,,.

THEOREMb5.2. Let A = (A4, Ay») be two (n x n) hermitian matrices. Then for
y € R?andy, # 0, the Cauchy kerndb,, . (A) = #a(Gy,ye) admits the repre-
sentation

59”Yo

9 Gyiyoe (A) = /( (yl —A,t) — yotl)~ Zdu(t).

PrROOF. According to Lemmab.1, if y, # 0 andx € R® is not equal toy + Y&,
then

Gytyoe (X) = -2 yo/( — X, t) — Yos) 2 du(t).

The functionx > Gy, e (X)is C* for x € R3\ {y + Yo&o}, S0 if yo # 0O, then we have

_sgn
Gyyoe(A) = #a(Cyayoe) = g yo% (/( — Yob) dM(U)
sgn
B g ZO/%(W_"U — Yot) 2 dpu(t)
e JT
_ Sgnyo

82

/<<yl C A — yot D2 du(t).
i

The first of the equalities above is the definitids) 6f Gy, (A). The second
follows from Lemmab.1 The continuous linear operatéf, can be passed from
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outside the integral to inside the integral by appealing to a property of Bochner
integrals (seel7)).

The last equality can be seen from the equafy(p({-, £))) = p((A, &)), valid
for any polynomialp on C and anyé € R An appeal to Runge’s theorem and
continuity shows thap can be replaced by any complex functibrwhich is analytic
on the compact subsésup#,), &) of R. In particular, for eactt € T, yo # 0
andy € R?, theR,-valued functionf, : X > ({y — X, t) — yot)"2, X € R? may be
expressed a (x) = ®((x,1)), x € R?, with

D2) = ((y,t) — 2+ Yob) (((y, 1) — 22 + y2) .

The function® is analytic at all pointz € C for which ({(y,t) — 22+ y¢ # 0, so it
is analytic in the open strifz| < |yo| containing(supg#a,),t) C R for eacht € T.
Hence,

Wa(f) = ZA(@((-, 1) = (Yl —A,t) — yotl)~?
for everyt € T. O

For allw € R® with || sufficiently large,G,,(x) has an expansion in terms of
monogenic polynomials ix € R3. Replacing the monogenic polynomials with
symmetrised products of the operatésand A,, we obtainG,(A) = #A(G,,) for
all w outside a sufficiently large ball iR®[17, Equation (5)], L8, Equation (5)]. This
is the analogue of the Neumann series(for — A)~%, |A| > || A}, in the case thaA
is a single operatoA. The right hand side o) has the same representation for all
o outside a sufficiently large ball iR3.

6. The monogenic spectrum

Let A = (Ay, A,) be a pair of hermitian matrices. Where convenient, we shall
represent thén x n) matrix associated witlhh as A = A, + i A, in order to avoid
hats and tildes. In the same spifitjs identified withR? andR? is identified with the
subspacg0} x R? of R3. We adopt the convention that a pointe R? is written as
Y + Yo& for y € R2andy, € R. For ad-tuple B = (B, ..., By) of (n x n) matrices
and¢ e CY, the notation(B, £) is used to denote the matrE‘j’:l Bj§;.

We are concerned with the compact géf) C R? of points at which the Cauchy
kernelw — G, (A) has a discontinuity as® € R® approaches the subspa x R?
of R3 from above {, — 0") and below {, — 07).

To this end, we examine the integré) fnore closely. Lety = (y1, y») € R We
interpreB(y) = yl —A asthe pai(B,(y), Bx(y)) of matrices withB; (y) = y; | — A,
for j = 1, 2. Then, appealing to the identity = —1 fort € T C R, with respectto
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multiplication in the Clifford algebra, foy, # 0 the integrand ofg) can be written
down explicitly as

(10) (B(Y), t) — yot1) 2 = ((B(Y), t) + Yot D2((B(y), t)2 + Y1) 2
= ((B(Y), t)* — Y DH((B(y), t)* + yz1) 2
+ 2y6t (B(y), ) ((B(y), t)2 + Y1) 2.

The pointst € T, where(B(y), t) is not invertible, will dominate the integradX
asy, — 0" andy, — 0, respectively. This suggests to investigate the zeros of

detB(y), t) = det(Bi(y)t1 + Bx(Y)t).

Now suppose that= (ty, t,) = (cosf, sinf) for -7 < 6 < 7 and letz = €’. Then
t, = (z+zYH/2andt, = (z— z1)/2i, so that

detB(y), t) = (22) " detBy(y)(Z + 1) —iBy(y)(Z — 1))
= (22)7" det((B.(y) — iBa(y)Z + (Bui(y) +iBa(¥)))
= (22)" det(B.(y) —iBa(y))
x det(Z’l + (By(y) — iBa(y) " (By(y) +1iBa(y)))

if B1(y) —iBy(y) is invertible.

Fix y € R? and letT = B, (y) +iB,(y). Then in the case that and henceT *, is
invertible, the set of points e T where detB(y), t) = 0 is in two-to-one correspon-
dence with[o (—(T*)7*T)] N T: if ¢ is an element of the s¢t-(—(T*)'T)| N T,
then the correspondirtge T is ¢ %2,

Fort e T, the equation déB(y),t) = detyl — A,t) = 0 has a geometric
interpretation. Let* € T be orthogonal to in R?. Then the line

(11) Lye={y+att |1 e R}

passes through € R? and has the property that, t) € o ((A,t)) forall x € Ly;.

As we will see later, the number of such lines that exist for a pwiind for
all points in a neighbourhood of, is decisive for whether the point belongs to
supp#4). We introduce the following definition to isolate those poigts R? for
which this is the maximum number possible.

DEFINITION 6.1. Let A be a(n x n) matrix and letR(A) be the set of all points
A € p(A) such that in some neighbourhoddc p(A) of & in C,

(12) o (G =A@l =A)CT

foreach; e U.
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The seR(A) is necessarily an open set. If the matridgandA, commute, thatis,
if A= A;+iA,isanormal matrix, thenthe sB(A) is readily described. In this case
(€1 — AL — A)is a unitary matrix forll £ € p(A), so thatR(A) = p(A).

Condition (L2) may be restated by saying tHR¢A) is the set of alk. € C such that
in some neighbourhodd of A in C, every solutiore € C of the equation

(13) det((Z1 — A'z+ (¢l — A) =0

with ¢ € U satisfiegz| = 1.

If £ € 0(A), thenz = 0is a solution of {3)—such points are excluded. Note that,
in the notation above, this covers the case wiiR(g) — i B,(y) is not invertible. For
y € p(A), we have

det((yl — A*z+ (yl — A)) = delyl — Aydet(zl + ((yl — Ayl — A).

Hence de((yl — A*z+ (yl — A)) is a polynomial of degrea in z and there are
n solutionsz € C of (13) counting multiplicity. Toeachz € T, there corresponds
alineLy - in R2 If all the solutionsz € C satisfy|z| = 1, that is, ify € R(A),
then this says that the number of lineg,, t € T, passing througly € R? = C, is
the maximum possible. In particular, counting multiplicity, the maximum number of
linesLy;,t € T, that can possibly pass throughs n.

The following simple condition guarantees that a pgint R? belongs toR(A).
Let W(A) denote the numerical randéAv, v) | v € C", |lv]| = 1} of the (n x n)
matrix A = A; +iA,.

PROPOSITIONG.2. Let A be a(n x n) matrix. ThenC\ W(A) € R(A). Conse-
qguently,C \ R(A) is a nonempty compact subset of the numerical ratgé) of the
matrix A.

PrOOF. Firstly, o (A) € W(A), so if A € C lies outsideW(A) theni € p(A).
Moreover, for every € C, the inclusion

o((Al = A'z+ (Al — A) SW(AI — A'z+ (Al — A)

holds. Hence, for any complex numbefor which 0 € o (A1 — A*z+ (A1 — A)),
there existy € C" with |v| = 1 such that (Al — A)*zv, v) + (Al — A)v,v) = 0.
Here(-, -) is the inner product of". Because. — (Au, u) # 0 for allu € C" with
lul = 1, the complex number

_A — (Av, v)

1= ——c
A — (Av, v)

has modulus one. Consequentlys R(A). O
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REMARK 6.3. The same proof works with the analogous definitiofRoB) if Ais
a bounded linear operator on a Hilbert spaceA 1§ normal, therR(A) = p(A) and
W, is the spectral measure éfsupported o (A).

Our aim is to prove the following result strengthening Proposigictand providing
a geometric characterisation of the support s#fp of the Weyl functional calculus
and for the monogenic spectruniA) of a pair of hermitian matrices.

THEOREM6.4. LetA = (A, A,) be apair of hermitian matrices antl = A;+i A..
Then the equalitiesupp#a) = ¥ (A) = R? \ R(A) hold.

The equality sup@?,) = y(A) is proved in [L7] for any d-tuple A of bounded
selfadjoint operators, so this work is concerned with the second equality for hermitian
matricesA;, A,—thegeometriccharacterisation of (A).

The spectrunv (A) of the matrix A = A, + i A, is clearly contained in the
numericalrang®/ (A) = co(supf#a)) of A. The following immediate consequence
of Theorem6.4and the fact thaR(A) C p(A) strengthens this observation.

COROLLARY 6.5. Let A = (A4, Ay) be a pair of hermitian matrices ané =
A; +iA,. Theno (A) C supa#a).

A bounded linear operator on a Hilbert space is catlednalif it commutes with
its adjoint. The following consequence of Theorém characterises the situation in
which the inclusion in Corollar$.5is an equality.

COROLLARY 6.6. Let A = (A, Ay) be a pair of hermitian matrices. Seét =
A; + i A,. The following conditions are equivalent

(i) Alis anormal matrix.

(i) supp#a) has empty interior.
(i) o (A1 —AH Al — A) cTforall » € p(A).
(iv) o (A) = SUpp74).

PrOOF. If A is a normal matrix, then the distributioft, is associated with the
spectral measure ok supported by the finite set of joint eigenvalues/Afso the
implication (i) = (ii) is immediate. The definition of the s&(A) and Theoren®.4
shows that (iv) follows from (iii). The implication (i} (i) is proved in L2, 29], so
it remains to establish (ig= (iii).

Suppose that the negation of (iii) holds and that p (A) has an eigenvalue of the
matrix (A1 — A)*)~1(A1 — A) lying outside the unit circl&. Then the same holdsin a
neighbourhood of because the unorderaeuple of eigenvalues of the matrix valued
functioni — ((A1 — A*)"1(Al — A) dependgontinuouslyon the parameter [22,
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Theorem 11.5.1]. Hencé, \ R(A) has nonempty interior. According to Theorérm,
supp#a) has nonempty interior. O

7. The numerical range of matrices

LetA = (A1, Ay) be a pair of(n x n) hermitian matrices. Sek = A; +iA,. An
application of the Paley-Wiener Theorem yields that the convex hull of the support
supp#,) of the associated Weyl distributiofi, coincides with the numerical range
W(A) = {{AX, x) | x € C", |Ix|| = 1} of the matrixA. For more precise information
on the location of sup#,) within the numerical range ok, we need to have a closer
look at the fine structure aV(A).

Of particular interest are certain plane algebraic curves associatedwitit were
first investigated by R. Kippenhahn in 1952. We briefly recall the concepts involved.

LetF = R or C. For 0 < k < 3, theGrassmanniarG;F, defined as the set of
all k-dimensionalF-subspaces df?, is a compact analytie-manifold of dimension
k(3—Kk). It hasanatural topology, induced by the differential structure of the manifold,
which is determined, for example, by the mettion G; ,F with

h(U,V) = sup inf Ju—v]| forall U,V e GzyF.

veV,|v|l=1ueU,|u|=1

The projective planePG(F®) over [ is given by PGF®) = J,.,.; GaxF. The 1-
and 2-dimensional subspaceskfare usually called thpointsandlinesin PG(F?),
respectively.

By a common abuse of notation we introduoemogeneous coordinatésr the
points in PGF) as(u; : U, : U3) = F(uy, Uy, Ug). The coordinates of a vector i
are expressed with respect to the standard basiE for

A polarity of PG(F®) is a bijection on P@?) which reverses the inclusion of
subspaces and the square of which equals theifg@mapping. Thestandard polarity
m is characterised by = {v € F° | }_7_; ujv; = 0} for all u € Gs;F, which gives
u™ € Gs,F. Using the polarityr, we can also introduce homogeneous coordinates
for the lines in PGF®) by setting[v; : v, : v3] = (v1 : V5 @ v3)™.

A nonempty subset of Gs;F is called aplaneF-algebraic curvef it is the zero
locus of a homogeneous 3-variate polynomial dveilhe defining polynomial o€
is not uniquely determined: if defines the curve, then so does, for examplefor
anyk > 1. However, every curv€ has a defining polynomial of minimal degree
which is unique up to a constant factor. A curve is said tdrleglucible if it has
an irreducible defining polynomial. Since a polynomial ring over a field is a unique
factorisation domain, each algebraic cu€vés the union of finitely many irreducible
curves. IfCy, ..., Cy are the irreducible components Gfwith irreducible defining
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polynomialsfy, ..., fi,thenf = f;... f  is a defining polynomial o€ of minimal
degree. We calf aminimal polynomial ofC. Note that an irreducible real algebraic
curve is not necessarily connected.

Let f be aminimal polynomial of the algebraic cu@e= {u € G5 F | f(u) = 0}.
A point u € C is calledsingular or a singularity of C if (3f /ou;)(u) = O for
j = 1,2,3. Observe thaC has at most finitely many singular points. These are
the singular points of the irreducible componentsofogether with the points of
intersection of any two of these components. A nonsingular poiatC is called a
simplepoint of C. The curveC is the topological closure of its simple points. Also,
to every simple pointl € C, there exists a neighbourhoodwin which C admits a
smooth parametrization.

LetC be anirreducible plane algebraic curve with minimal polynonfiaAt each
simple pointu € C, we have a unique tangent line@which is given by

F.C = [aa—ljl(u) : aa—ljz(u) : aa—lL(u)} .

If C is not a projective line or a point, then it is well-known that the{$6{,C)™ | u €
C simplg is contained in a unique irreducible algebraic cub’e the so-callediual
curveof C. In fact, since an algebraic curve has at most finitely many singularities,
the dual curve is the topological closure of the §e,C)™ | u € C simplg}. We have
C* = C. If Cis a projective line, thefi((Z,C)™ | u € C} consists of a single point
uin PG(F). In this case, we s&@* = {u} and defineC** to be the image under of
the set of all lines in PG?) which pass through. This again yield<** = C. The
dual curve of a general plane algebraic cudves the union of the dual curves of its
irreducible components. In particul&,andC* have the same number of irreducible
components.

In general, it is difficult to derive an explicit equation for the dual cuBrefrom
the given equation of a curv@. However, from the above we obtain the following
criterion for a point in PGF®) to belong toC*.

LEMMA 7.1. Let(X; : Xo : 1) € Gg4F. If there exists a smooth local parametriza-
tion¢ — (c(¢) : s(¢) : n()) of C, for & in an open set C F, and a pointz € U
such thatx;c(z) + x,5(2) + «(z) = 0 and x,¢'(2) + x,8'(2) + ' (z2) = 0, then the
point (x; : X, : 1) belongs taC*.

PrROOF. The two points(c(2) : s(z) : u(2) and(c(z) : S(2) : 4/ (2) span the
tangent lineZ,).s..2)C t0 C at(c(2) : s(2) : 1(2)). The equations

X1C(2) + %8(2) + w(z2) =0 and x,¢'(2) +x,8(2) + ' (z) =0

imply that(X; : X2 : 1) = (Ze@s@u@)C)" - Hence(x; : X, : 1) belongs to the dual
curveC* of C. O
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The details and further information on complex algebraic curves can be found, for
example, in B1]. The literature for the real case is somewhat less eaagtess. As
a general reference to the theory of real algebraic geometrygsee [

Let A= A, +iA; € Z(C"). Following Kippenhahn3], we define the complex
algebraic curveC¢(A) in the complex projective plane RG®) by setting its dual
curve to be

Dc(A) ={(c:d: ) € Gg;,C | detcA +dA, +ul) =0}.

In [23], Kippenhahn showed that the real p@gt(A) of the curveCg(A) = D¢ (A)*
is contained in the affine subplafe= {(a; : o, : 1) | (a1, @p) € R?} of PG(R®) and,
identifying F with R? in the canonical way, that the convex hul€g (A)) of Cy (A)
is precisely the numerical range Af

The curveCy (A) considered as a real algebraic curve in(R& is the dual curve
of the real part oD¢(A) given by

Dr(A) ={(c:d:u) € Gg R | defcA +d A, + ul) = 0}.

Every pointu € D (A) has a representatiqoost : sind : ) for somed € [0, 7)
andu € R. Asuisazeroof dgt A +d A, + ), itfollows that—pu is an eigenvalue
of the operators (6) = cosd A, + Sind A,.

Note that the points iDg (A) are in one-to-one correspondence with the libgs
in R? defined in (1), satisfying(x,t) € o ((A,t)) forall x € Ly,. Foru = (cosd :
sind : ) € Dr(A), taket = (cosd, sinf) € T andy € R? such that(y, t) = —u.
Thenu™ is the two dimensional subspaté{(x; : X, : 1) | (X, X2) € Ly} of R3,
thatis, L, x {1} is the line in which the plane™ normal tou in R* cuts the plane
{Xs = 1}.

With the following result due to Rellich2@g], [22, Theorem 6.1, page 120], we
obtain local parametrizations of the cuidg (A). Let S(C") = {x € C" | |x| = 1} be
the unit sphere ir".

LEMMA 7.2 (see 28, Satz 1]).Let the maps : R — £ (C") be given by (0) =
Cos9A; + Sinf A, for 6 € R. Leth, € R and iy be an eigenvalue with multiplicity
of the operatorw (6y). Then there exists a neighborhoddof 6, and regular analytic
functionsp; : U — Randx; : U — S(C") with1 < j <r, such thatu;(6y) = wo,
A (0)X;(0) = nj(0)x;(0) and(x;(0), x.(8)) = 5 foreveryy e Uandl < j, k <r.

Given a pointuy = (CoShy : Sinéy : —ug) € Dr(A), any of the map8 — (coso :
sing : —u(0)) with 6 in the neighbourhootd of 6, as given by Lemma.2, is then
a smooth local parametrization of a componenbgi{ A) in a neighbourhood di,.
With Lemma?.1, this yields immediately a complete characterisation of the curve
Cxr(A).
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LEMMA 7.3. Apoint(X, : X, : 1) € Gg4[F belongs to the curv€g (A) if and only if
there exists a poiniy = (CosY, : Sinby : —g) € Dr(A), and a local parametrization
0 +— (cosH : sind : —u(0)) of a component oDy (A) in a neighbourhood) of uy
such thatx, cosfy + X, Sinfy — w(Gy) = 0 and —x; Sinfy + X, c0sHy — ' (Gy) = O.
Then

(14) (X1, X2) = 1(6y)(COSHy, SiNBy) + 1’ (6y) (— Sinby, COSHy).

The lineL,; associated witlu7, as described above, is therefore tangential to the
image ofCy (A) in R? at (X;, X,) except in the case that(d) = a; cosd + a, sind in
a neighbourhootl of 6,. Then the sef(cosd : sind : u(0))™ | 6 € U} corresponds
to a family of lines passing through the poimt, x») = (a4, a,).

LEMMA 7.4. With the exception of a finite set of pointsGR(A), if (X1 : X2 : 1) €
G341 F belongs toCg (A), andu, = (C0St, : Sinéy : o) is one of the corresponding
points inDg (A) andé +— (cost : sind : —u(0)), 6 € U, is one of the corresponding
local parametrizations of a componentBf(A) in a neighbourhood ofiy as given
by Lemma/.3, then the equation

(15) (X1 — t sinfy) cosh + (X, + t coshy) sind — (@) =0

has two real solutiong € U for either small positive or small negativeé and none
in U for t of the opposite sign.

PrROOF. By Lemma7.3, the image of the curv€ (A) in R? has the local parametri-
zation(x,(0), X2(0)) = u(0)(cosh, sinh) + 1/ (0)(—sinH, cosh) with® € U. Hence,
its signed curvature aky, X,) is given by|u(do) + 1’ (¢o)| 7! (see, for example,7]
formula (3.9)]). So ifu(¢o) + 1" (¢o) # 0, then the image oy (A) in R? is a smooth
curve with nonzero curvature in a neighbourhoodxf, x,). Hence, there are two
tangents with points of tangencylih on one side of the curve and none on the other
for |t| > 0 small enough. The solutiose U of (15) correspond to the directions of
the normals to the tangents.

The points ofCy (A) that we have to exclude correspond to the ones at which the
image ofCg(A) in R? has infinite curvature. Unlegs + 1" vanishes identically,
there exist at most finitely many solutiodsof 1« (6) + 1’(6) = 0 in any compact
interval. If (x; : X, : 1) € Cg(A) is a point for which the analytic function + ©”
vanishes in a neighbourhodd of 6, in C, there exists(a;, a,) € R? such that
n(0) = a cosd + a, sind forall & € U. However, inspection ofl4) shows that then
X = (X1, X2) = (&4, &) is a point ofCx(A) through which the family of linet, .,

t € T, passes. In particulax,belongs to the finite set(A;) x o (Ay). O
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Local coordinates. Define the functiors : C \ {0} — C? by

1 1
(16) s(z) = (E(Z+ 1/2), E(Z — 1/z)> , for ze C\ {0}

From now on, we drop the subscriptfrom the Kippenhahn curves; (A) and denote
them byC(A). Furthermore, we identifyy; : y» : 1) € Cr(A) with y = (y1, Y») €
R?, so thatC(A) is a subset oR?.

According to the discussion preceding Défon 6.1 we have the following alter-
native formulation of the séR(A).

PROPOSITION7.5. LetA = (A, Ay) be a pair of(n x n) hermitian matrices. Then
R(A) is the set of all. € R? for which there exists a neighbourhobtlof A in R?,
with the property that for eack € U, every solutiorz € C \ {0} of the equation

det((xl —A,s(2))) =0
satisfiegz| = 1.

Lety € R? and suppose thgte C \ {0} is a point at which

(17) det((yl — A, s(¢))) =0.

If y € R(A), thens necessarily belongs i, and the seZ, of all suchs € T is finite.

Suppose thaf € T. Thens(¢) € T and the matrixA, s(¢)) is hermitian. By a
result of Rellich P2, Theorem 11.6.1], there exists a neighbourhagaf ¢ in €\ {0},
a positive integem < n, analytic.Z(C")-valued projection$?,(2), ..., Py(2) with
ernzl P;(2) = | and analytic functiong(2), . .., um(2) defined forz € V, such that
foreachj =1, ..., m, the equation

det(u;(2)l — (A,s(2))) =0, ze,

holds, (y, s(¢)) — pa(¢) = 0 and
(A.s@2) =) n@P@. zeV.
j=1

HereP; (2) is the projection onto an eigenspace for the eigenvalie) of (A, s(2)).
Seti; (2) = (y,s(2)) —u;(z) forj =1,...,mandz e V,. Then

(18) (Yl —A.s2) =) x,@P@. zeV,.

=1
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It turns out that the functiong; and projection®;, j =1, ..., m, can be analyti-
cally continued along any arc that avoids a certain finite exceptional set of pgjnts [
Theorem 3.3.12]. Therefore, formulag) may also be valid in a neighbourhodf
of points¢ € €\ {0} not on the unit circleT.

It can happen that two of the eigenvalugs,(z) and A, y(z) of (yl — A, s(2))
are equal at a particular complex numfizerin particular, there may exist an integer
1 <k <msuchthat; () =0forallj =1,...,k. According to the interpretation
preceding Defiition 6.1 and the definition ofC(A), if ¢ € T, then there exisk
coincident tangent lines fromto C(A) with normals .

LEMMA 7.6. Letx € R?, let; € €\ {0} be acomplex numberang an open neigh-
bourhood ot; in C for which(18) is an analytic parametrization iW, withx; ,(¢) =0
and1},(¢) # 0. Then there exists a uniqu&>-function¢ : U, — C defined in a
neighbourhoodJ, of (0, x) in R® such thaty (0, X) = ¢ and i, ,(¢ (&, y)) = i& for
all (¢,y) € U,.

Moreover, fory fixed, the functiort — ¢ (&,y), (€,y) € U, is one-to-one and
A1, (@&, y)) is nonzero for all(§,y) € Uy. If ¢ € T, theng(0,y) € T for all
0, y) € Uy,

PROOF. LetU C R*be the setU =V, x R?and letd : U — R* be defined by

P(z,y) = (A1y(D),Y) = (¥, 8(2)) — 11(2), y)

for all (z, y) € U. Here we identifyC with R? on the right hand side of the equation.
The derivatived'(¢, x) of the functiond® on the open subsét of R*, as a function of
four real variables, is nonsingular @t x) € U because

det(@'(, X)) = |17, (&)I* # 0.

By the inverse function theorem, there exists an open neighboutbaod (0, x)
in R*, an open neighbourhodd’ of (¢, x) in R* and a diffeomorphisnf : W — U’
such that® o f(a,y) = («, y) for all (o, y) € W. In particular,®’ is nonsingular
onU’.

Then¢(&,y) € C is defined on the set), of all (¢, y:,y,) € R® such that
(0., y1.¥2) € W, by f(0,&,y1.¥2) = (¢(£,Y),Y), so thatr, (&, y)) = i&.
Becausef is a diffeomorphism, the functio(€, y) — ¢ (&, y) is C* on U,. Fur-
thermore, (¢ (£, Y),y) € U’, s0|A] (¢ (&, y)I* = det( @' (# (&, Y),y)) # O for all
(&,y) € Uy.

Now suppose that € T. There exists an open neighbourhodd of ¢ in T on
which A, 4 is defined. Let : N, x R? — R3 be defined by

V(s y) = (Aay(D),y) = (Y. 1) — wa(t), y)
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for all (t,y) € N, x R% ThenW¥(, x) = (0, x) and the derivative
W', X) 1 Ten(T x R?) — R®

of Wat(z, x) € TxR?isnonsingular. Her& (T x R?) is the tangent space &fx R?

at (¢, x). As above, there exists a diffeomorphignfrom an open neighbourhood of
(0, x) in R® onto an open neighbourhood @f x) is T x R? such that¥ o g = Id.
Becausel = @ | N, x R?, we must havg(a, y) = f(a, 0, y). Hence

@0, y),y) = f(0,0,y) € T x R%,
proving thaty (0, y) € T. O

If @ :V, x C2 — C3is defined byd(z, n) = (X5_, 7;5(2) — pa(2). ) for all
z € V, andy e C?, then a similar argument to that above, but replacinigy ® and
appealing to the inverse function theorem for analytic functions of several variables,
shows that is actually the restriction ttJ, of a function analytic in an open subset
of C3.

According to a rephrasing of Lemma3 in terms of our local coordinates, the
Kippenhahn curveS (A) for a matrixA are characterised by the following proposition.

PROPOSITION7.7. The Kippenhahn curveS(A) consist of all pointsy € R? for
which there exists a poirt belonging to the unit circl& and a neighbourhooW, of
¢ in € such that there exists an analytic parametrizat{@8) on V;, for which

(19) hay(@) =2y, (&) = 0.

Of course, in any such parametrizatid8), we are at liberty to choose the indices
j = 1,...,m for the analytic functions.;, : V. — C. In particular, for any
y € C(A), we can choose a neighbourhogdof ¢ in C and indices for whichX9)
holds forj = 1.

COROLLARY 7.8. Letx € R?\ C(A), let¢ € C\ {0} be a complex number and
V, a neighbourhood of in € for which (1L8) is a parametrization with; () = O.
Then there exists a unique>-function¢ : U, — C defined in a neighbourhood
Uy of (0, x) in R® such that such thap(0,x) = ¢ and Ay (¢ (&, y)) = i& for all
(€.y) € Uy

Moreover, fory fixed, the functiort — ¢ (&,y), (€,y) € U, is one-to-one and
A1, y)isnonzeroforall§, y) € Uy. If ¢ € T, thenz(0, y) € Tforall (0, y) € Uy.

PROOF. By Proposition7.7, A1, (¢) # 0, so Lemm&.6is applicable. O
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The following result describes the relation between thérgét) and the Kippen-
hahn curve£ (A).

COROLLARY 7.9. 0R(A) C C(A) C R(A).

PROOF. Letx € R(A). All solutionss of det((x, £)1 — (A, ¢)) = O satisfy|s| = 1
because the set-valued functign—~ o (((yl — A*)"X(yl — A)), y € p(A), is
continuous in the metric of unorderaduples P2, Theorem I1.5.1] and by definition,
o(((yl — A" Yyl — A) c Tforally e R(A).

For any such¢ € T, there exists an analytic parametrizatidi8)( such that
A1x(&) = 0. Supposei;,(¢) # 0. Then by Lemma’.6, for all y in an open
neighbourhood ofk, we can find¢(0,y) € T such thati,,(¢(0,y)) = 0 and
Ky (@ (0. ) # 0.

It follows that if A7, (&) # 0 holds for the parametrizations of all solutianghen
there is a neighbourhodd of x such that for every € U, all nhonzero complex
solutionsz of det((y, s(2)})| — (A,s(2))) = O satisfy|z] = 1. This means that
X € R(A).

Therefore, for every element of dR(A) = R(A) \ R(A), there must exist a
solution and an analytic parametrizatioh) such thak; ,(¢) = O andx; (¢) = 0.
Proposition7.7yields thatx € C(A).

To establish the inclusioB (A) € R(A)¢, suppose that € C(A). By Lemmar .4,
except possibly for a finite subsdtof C(A), there exists a neighbourhotd of x
in R? in which not every solutiorz € C of det(yl — A,s(z))) = 0fory € U,
belongs toT. More precisely, fory on one side ofC(A), there exist at least two
solutions belonging tar—two unit normal vectors to the local tangentsGgA)
passing througly—and fory on the other side o€ (A), two solutions that do not
belong toT. Moreover, ifx € J, then eithei is isolated, or any neighbourhoodxf
contains a poiny € C(A) \ J to which the conclusion above applies. In either case,
X € R(A)Y. O

By considering the direct sum of suitable matrices, the inclusions of Cordilary
can be made to bgroperinclusions.
We informally state alternative characterisations of the Kippenhahn cOif\&s

e The real part of the curv®¢(A)* dual toD¢(A) = {(c : d : u) € G3,C |
det(cA; +dA; + ul) = 0}, identifying (a1, an) € R? with (e : a0y : 1) € G3,C.

e The real algebraic curve dual @z (A) = {(c: d : u) € G31R | detlcA; +
dA; + pul) = 0}, identifying (a1, ap) € R? with (a; : @y : 1) € G311 R.

e All points y € R? for which there existg € T and a neighbourhoo¥,
of ¢ in C such that there exists an analytic parametrizatits) on V, for which
A1y(¢) = A1, (&) = 0 [Proposition7.7].
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e The envelope of all line&,  given by (L1) for eachy € R? ands € T such
that(y, s) € o ({A, s)).

e The singular values of the numerical range mapssociated with the matrix
(see [L4] and [21]), with the possible exception of “double tangent&1[Theorem 3.5].

8. Examples

The Weyl functional calculu®/, for a pairA = (A, Ay) of (2 x 2) hermitian
matrices can be calculated explicitly. The suppaid) of #, is either the numerical
rangeW (A) of the matrixA = A; + i A,, an elliptical plane region with nonempty
interior in the case thaf\;, A, do not commute with each other, @i(A) consists
of a single pointoc € R? if A = o1, or otherwise, two distinct joint eigenvalues
01,0, € R% Calculations of this nature follow fron2] and are given explicitly
in [19].

The case of a paiA of noncommuting3 x 3) hermitian matrices reveals greater
geometric structure. IA has a joint eigenvalue < R?, theny (A) consists ofo
together with the support of the Weyl functional calculus associated with the pair of
reduced?2 x 2) matrices, possibly consisting of the pointtogether with a disjoint
elliptical region.

In the following diagrams, Figures-6, we plot the lines irR? corresponding to
points(c : d : 1) € Dg(A) after the fashion described in Sectién The displayed
lines are tangent to the algebraic curé@6A) or pass through the isolated points
belonging toC(A). Such an isolated point exists in Figutealthough it is not a
joint eigenvalue—the two matrices written under Figuteve no nontrivial common
invariant subspace. The numerical rany&€A) of A and the suppory (A) of the
Weyl functional calculus are equal to the elliptical region—a convex set. This is also
an example whergy (A) = dR(A) is a proper subset & (A), see Corollary ..

There is a joint eigenvaluél, 0) in Figure2 and an ellipse corresponding to the
pair of reduced?2 x 2) matrices. The numerical ran§fé(A) of A= A, +iA,is the
convex hull of the pointl, 0) and the ellipse. The suppgrtA) of the Weyl functional
calculus is the union of the elliptical region and the isolated pdin®). The convex
hull of y (A) coincides withW (A), as required by the Paley-Wiener Theorem.

Figures3-6 display the Kippenhahn curvé&3(A) associated with various pertur-
bations of the matriced;, A, in Figure2. The boundary of the lightly shaded regions
with single lines passing through them are the algebraic cut@s. The convex
hull of C(A) is the numerical rangd/(A) of A, +1A,. Theorenbt.4says that, in each
diagram, thdightly shaded regioris actually the suppost(A) of the Weyl functional
calculus¥, for A.

By way of comparison with the general theory 8f f], the support of the funda-



107

\

/

The support of the Weyl calculus
FIGURE 1.

>

1 O
0 -1
0 O

FIGURE 2.

(23]

A

i

v <
4
=7 - A
—o@,_,__&\
?-hﬂ o | =

u—Q







[25] The support of the Weyl calculus

I

RIS

XXX
JXXXXX R RRR

E,
<
b
3
A
%
A

1 0 O 0 0 1/10
A=|lo -1 o |, 0o o 1
0 0 -32/ \1y10 1 0

FIGURE5.

=

S

A XY KL

et

1 0 O 0 0 110
A=[lo -1 o].[ 0o o 1
0 0 -1/ \1/10 1 0

FIGURE6.

109



110 Brian Jefferies and Bernd Straub [26]

mental solutionE(x, t) of the hyperbolic differential operator

a a a
det(l p + Ala—Xl + Aza_x2>
att = 1 is the numerical rangé&/(A) [4, Theorem 7.7]. The triangular regions inside
W(A) in Figures2—6 correspond to Petrovsky lacunas Example 10.6], sd(x, t)
is a homogeneous polynomial of degree- 3 = 0 there, that is, a nonzero constant
function. Because the matrix valued distributi#f, can be expressed in terms of
derivatives ofE, it vanishes in these regions.

A further illustration for a pair of 7 x 7) hermitian matrices associated with the
linearised Lundquist equations of magnetogasdynamics is givef Figures la—b].
The numerical ranges of certain matrices are displayed in a fashion similar to that
above in [L3, Figures 1-9, pages 139-147]. Unfortunately, the interior structure of
the numerical range is omitted from these diagrams.

9. Proof of Theorem6.4

We first show thatR(A) € y(A)F. Letx € R(A). We must find an open
neighbourhood) of (0, x) in R® such that the function

(€, ) > Gyie(A), (6, y) €U\ ({0} x R?)

is the restriction tdJ \ ({0} x R?) of a continuous function defined ld. Then by
Painle’s Theorem, Theorem 10.6]G,,(A) is monogenic in a heighbourhood of
(0, x), becaus&,, (A) is monogenic above and beld@} x R?. Hencex € y (A)°.

We start by examining the plane wave decompositi@n (Lety € R? and set
B(y) = yl — A. First, we convert the integra®)to a contour integral

(20) /((B(Y), s) —esD?du(s) = —i /((B(Y), s(2) —es(2)1)?z ' dz
T T

for the functions : C\ {0} — C? defined by (6). The integral 20) may be evaluated
using Cauchy’s Residue Theorem by finding the residues of the function

(21) Z> ((B(Y), 28(2)) — ezs(2)1) ?z"*

in the open unit diskD = {z € C | |z| < 1}. The formula L0) holds foranys € T
ande # 0. We split the integral40) accordingly into its scalar part belonging to the
linear subspac€T g, | T € £ (C")} of £(C"), and its vector part belonging to the
linear subspacgrl,e; + Toe; | Ty, T, € £(C")} of £(C"),). There is no component
belonging to the linear subspafkee, | T € £ (C")} of £(C")y.
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We make a few observations. If the limit of the scalar part
(22) i / (BY), 912 — 21)((B(y), 82 + €21) 22 dz
T

of the integral 20) exists in.Z (C") and is nonzero as — 0, then by formula9), the
Cauchy kerneG,, .,(A) has a jump discontinuity at € R? ase — 0. In this case
y € y(A). The formula

740 = Im [ [6,0() =G0 WAy, @ € CTR),
£— R2
mentioned in the proof ofl[7, Theorem 6.2] shows that the jump
y = 8'L”3+[Gy+seg(A) - Gyfseg(A)]v

where it exists, is the Schwartz kernel of the matrix valued distributipnThe vector
part

i e
47T2 T

(23) s(B(Y), s)((B(y), 8)* + €*1) 2 1 dz

of the integral 20) depends only ofk| for ¢ # 0, so the vector part of

Gy+seg (A) - Gyfseg (A)

is zero for alle > 0, in accordance with the fact that the distributigfy takes its
values in the subspac® (C") of Z(C") .

The strategy used to prove that y (A)¢ is to show that the matrix-valued integral
(22) converges to zero as— 0+, whereas the integraPg) converges inZ (C")
uniformly for all y € R? in a neighbourhood of.

We first examine the residues of the matrix-valued integrand

(24) zi— ((B(Y), 8(2))* — € )((B(Y), s(2))* + €’ )2z

of (22). Note thatify belongs to an open neighbourhooddh R(A) C p(A), thenthe
pointz = 0 is aremovable singularity, f@,(y) +iB.(y) = (s +iy2)| — (A1 +iAy)
is invertible and we may writé(B(y), s(2))? — €21)((B(Y), s(2))* + €?l )2zt as

((B(Y), z8(2))* — ze?1) ((B(y), 28(2))* + z¢?1) 22,

where((B(y), 28(2))* — ze?1 )((B(Y), z8(2))* + ze?1) 2 — 4(By(y) +iBy(y))* as
z— 0.
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LEMMA 9.1. Lete > 0. If z # Qs a solution ofdet(B(y), s(z)) +iel) = 0, then
Z ' satisfieddet((B(y), s(z 1)) —iel) = 0. In particular, if ¢ is the function defined
in Corollary 7.8, theng (—¢, y) = ¢ (e, y) 2.

ProoFr. The identity (B(y), s(z 1)) = (B(y), s(2))* holds becausé, and A, are
hermitian matrices, so

det((B(y), s(Z ™) —iel) = det((B(y), s(2))* —iel)
= det((B(y),s(2)) +iel).

Leti,x : V; = Cand¢ : U, — C be the functions defined in Corollary8. Then
Z > Mx(ZY), z € V; is analytic and equal ta; , on V. N T wherei, has real
values. By analytic continuation, it follows that,(Z-1) = 1,4(2) forall z € V,.
According to the definition o we havei, (¢ (e, ) ™) = A1x(¢ (€, y)) = —ie and
rix(¢(—€,y)) = —ie. The uniqueness af ensures thap(—e, y) = ¢(e, y)~* for
all (¢,y) € Uy O

Hence, solutiong € C\ {0} of
det((B(y), s(2))* + €°1) = det((B(y), s(2)) +iel) det((B(y), s(z)) —iel) =0

either satisfyz € T (if ¢ = 0) or come in pairg = £ andz = £ ¢, one inside the open
unit disk D and the other outside the closed unit di3k

The following representation was obtained iy Equation (4.4a)] using a plane
wave decomposition different to the one used here.

LEMMA 9.2. Suppose thak € R?\ o(A) does not belong to the Kippenhahn
curvesC(A). Thenthere exists an open neighbourhbloaf x in R? disjoint fromC (A)
and two contours[’;(x) surroundingD andI',(x) contained inD, both anticlockwise
oriented, such thatB(y), s(2)) is invertible inZ(C") for all z € T';(x) U T'>(x) and
y € U, and the limit

|irg+/(<B(Y), s(2))? — €€ ((B(Y), s(2)* + €’1)?z *dz
€ T

(25a) = }Iim / ((B(Y), s(2))* — €’ 1)({B(Y), s(2))* + €*1)*z *dz
2 =0 J1 ()40

(250) =1 / I — A, s@) 2z dz
2 T1(x)+T2(x)

exists and the convergence is uniform foryak U.
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PROOF. Suppose that € D satisfies
(26) det((xI — A, s(¢))) = 0.

If ¢ € T, then we know that an analytic parametrizatid®)(exists in an open
neighbourhood/, of ¢ in C for which;(¢) = 0. By assumptionx € R?\ C(A),
so Corollary7.8implies that there exists a smooth functipr> ¢ (0, y) defined in a
neighbourhood) of x in R? disjoint fromC(A), such that (0, x) = ¢, ¢(0,y) € T
andi, y(¢(0,y)) =0forally e U.

Furthermore, the solution (¢, y) of A1 ,(¢(£,y)) = i€ is a smooth function for
(¢,y) ina neighbourhood af, x) in R®. Hence, given any contour (x) andl',(X)
satisfying the conditions above, there exists an open neighbouithaddo, x) € R3
such thatp (+e, y) lies in the region between the contodrgx) and I'(x) for all
(e, y) € V. According to Corollary’.8, the complex numbes(+te, y) are distinct
and both converge (0, y) ase — 0+.

On the other handX, = {z € D | det((x] — A, s(2))) = 0} is a finite subset
(g“j)'j‘:l of the open unit diskD. We claim that there exists an open neighbourhood
W of (0, x) and disjoint closed disk®; C D centred at; € X, such that for every
(&,y) € W, all solutionsz of the equation

27) det((yl —A,s(2)) +i&l)=0

lie in the unionUX_, D; of the disjoint closed disks.

This would again follow from Corollary.8if we knew that an analytic parametriza-
tion (18) exists in an open neighbourhod@ of ¢ € X,. We have already noted that,
except for a finite set of points, such an analytic parametrization is possjbl@¢o-
rem 3.3.12]. More simply, settinB(y) =yl — A, (27) can be written as

det(yl —A,s(2) +i&l)
= (227" det((B(y), 2z9(2)) +i2z£1)
= (22)"" det(B,(y) — i By(y)) det(Z Al
— (Bu(y) — iBa(y) H(Bu(y) +iBa(y) +i2z&(Bi(y) — i Bo(y) ™)
= (220" det(B.(y) — iBy(y)) det[(z| +i&(By(y) —iBa(y)™)?
— (Bu(y) — iBa(y) H(Bi(y) +iBa(y) + E*(Bi(y) — i Ba(y) ]
=0,

provided thaty € p(A). By assumptiork € p(A), so the equation is valid for ail

in a neighbourhood ot and the solutionz of (27) can be expressed in terms of the
eigenvalues of ain x n) matrix depending continuously g, y). The unordered
n-tuple of eigenvalues of this matrix valued function depeadstinuouslyon the
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parametersé, y) [22, Theorem 11.5.1] facilitating the construction of the required
disjoint closed disk®;, j = 1,... k.

According to Lemmad.1, poles of the functiond4) come in pairs(z, z* ) lying
either inside the open unit disR or outside the closed unit disR for all y in a
neighbourhood ok. Now choose the inner contolin(x) to surround every closed
disk D;, and choosé&";(x) to lie between and pointz ™, z € U'j‘:le, outsideD.
Next choose the intersection of all open neighbourhdbd$ (0, x) corresponding to
the finitely many solutiong € T of (26) and take the intersection’ of this open set
with the open se4V corresponding to the finitely many solutiofise D, j =1,...,k
of (27).

Then for every(e, y) € V’, the contour integral
/ ((B(Y), s(2))* — €’1)((B(Y), 5(2))* + €*1)?Z *dz
T1()+T2(X)

is 2ri times the sum of the residues of the integrand at the distinct gales, y)
and 4ri times the sum of the residues at poles near solugoasD of (26), because
both contourd™;(x) andI',(x) surround these. The possibility of a pole at zero in the
case thay € o (A) is excluded.

The function

(€,Y) = ((B(y), 5(2))* — €’1)((B(Y), 8(2))* + €*1)"?z *dz
T1(X)+T2(x)
is continuous o1V’, so equality 25b) is immediate. To prove equalit2%d, we need
to look separately at those polesf (24) satisfying 6) lying inside the open disP
and those lying off.
The sum of the residues of the functidtv) belonging toU'j‘:le c Disequalto

i/ (B(Y), s(2))* — €)({B(y), S(2))* + €*1) ?z  dz
271 Jry0

for all (¢, y) € V', so this is uniformly continuous ite, y) € V.

Now we need to show that the sum of the residues of the functi§ro¢er all the
poles¢ (Le, y) converges uniformly ity ase — 0+ to twice the sum of the residues
of z— (B(Y), s(2)) "2z ! over all the pole® (0, y). According to Lemm@.1, one of
the polesy (+e, y) lies in D and the other is outsidB, so then equalityd59 will be
established.

The setZ, of all solutions¢ € T of (26), is finite for eacty in a neighbourhood of
X, so it suffices to prove that each residue®f)(at ¢ (¢, y) converges uniformly to
the residue of — (B(y), s(2)) 2zt at¢(0, y).

For every solutiog € Z,, there exists a neighbourho®din C such thai/; N (Z,\
{¢}) = ¥ and the parametrizatioi§) holds. Then, writingk; for the eigenvalues
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Ajy(2) of (yl — A, s(2)) in (18), the equality

m

(28) ((B(y).s(2)* — €2)((B(y).5@)* +€2) 2z =)

=1

)"j (2)2 —¢e?
Gy@r e P

holds for allz € V;.

By assumption, the eigenvalue functionave at mostone zero= ¢, in V,. We
may suppose that for some intederl < k <m, we haver,;(¢) = - = () =0
andi;(¢) # O for j > k. The terms in the sun®g) corresponding to the latter are
analytic in the open sé,.

By Corollary 7.8, there exists a neighbourhot} of (0, x) in R® such that for
all j with 1 < j <Kk, ¢j(e,y) = Ajfl(ie) defines aC>-function onU, satisfying
Xi(¢j(e,y)) # 0forall (e, y) € Uy. In particular, the set of aly € R? such that
(&,y) € U, for somet € R, is disjoint fromC(A). Then fore > 0, we have

es )"J (2)2 —¢e?
(()»J'(Z)2 + €?)%z

[ (A p )]
N(e,y)? Ldz \ (A () +ie)yz ' by
2 (@i (€,Y) P(¢(e, y)
M@ y)3ey)

P;(2); ¢ (e, Y)>

Here we have writte:; (2)% + €2)? = (1;(2) +i€)?(2;(2) — i€)? and noted that

A (2) — X (P (e, )
Z— ¢J (67 Y)

gives rise to a pole of order two & (e, y). Now

2
(2 —ie? = ( ) (z— ¢j(e, )

d A2—e2 LA +ie)— (A2 —€?) ) Ao—ie
R Y 7 — dien, L ——
dz (A +ie€)? ! (A +1ie)d (v +ie)®

is zero a®; (¢, y). According to Corollary.8, the function(e, y) = 1}(¢; (e, y)) is
C* and nonzero in a neighbourhood@f x). It follows that the matrix

)\.j(Z)Z—EZ .

@ 1 ez P (2); ¢; (e, y))

1 [ d pj(z)] @€ y) P (@i, )
T2 y?ldz z ., 5@ @ yh ey

(29) Res(

converges uniformly for aly in a neighbourhood of ase — 0.
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The residue at each of the polgg+e, y) contributes to the integral over; (x) +
I',(X), so in the limit, we obtain twice the sum of the residues of the matrix-valued
functionz — (B(Yy),s(2)) 2z ! at polest € T and insideT. We have proved the
required formula. O

The nextlemma establishes that the scalar componentefG,, (A) is continuous
in a neighbourhood of € R(A) in R3,

LEMMA 9.3. For everyx € R(A) the matrix valued function
y = Gy+ea;(A) - Gyfea;(A)» ye [RZ,
converges to zero as— 0+, uniformly for ally in a neighbourhood ox.

PrOOF. By Corollary7.8 x € C(A)¢ andR(A) C p(A), so the representation of
Lemma9.2is valid. But there are no poles interior Toor exterior toT. Hence, the
integral overl’»(x) is zero and we can deforii; (x) to co. It follows that integral
(25b) is zero. O

The following argument treats the residues of the integrand
(30) z+— s(2)(B(Y), S()((B(Y). 5(2))* + €*1) 2!

of the contour integral43), the vector part of the Cauchy kernel.

Letx € R?\ (C(A)Uao (A)). Asinthe proof of Lemma.2, there exists an open set
V. c D about each solutiof € D of det(x| — A, s(z))) = 0 and a neighbourhood
W of (0, x) in R3, such that for everyé,y) € W, all solutionsz of the equation
det((yl —A,s(z)) —i&l) = 0 belong toU, V.. Moreover, the closures of the open
setsV; are pairwise disjoint.

The sumR; (¢, y) of the residues of the functioB() at poles inV, is a continuous
function of(e, y), because it can be represented as a contour integral of the continuous
function 30) over a contour inside the open unit diBksurroundingv;. Then

eanoLE R.(e,y)=0

uniformly for y in a neighbourhood of.

Now let¢ € T be a solution of détx| — A, s(2))) = 0. Suppose thaj, 1 <
j < m, is an index for whichk;(¢) = 0 and¢(e,y) = Ajfl(ie) lies in D for all
0 < € < §, otherwise, replacées by —ie. Such a solution exists by Corollai#8
and the assumption thate R?\ C(A). Furthermore(e, y) — ¢(e,y) isC>® in a
neighbourhood of0, x) and|| (¢ (e, y))| is bounded below.
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LEMMA 9.4. Letx € R?\C(A) and suppose that(e, y) is a pole of(30) belonging
to the open unit dislD, as defined above. Then

2 21\-2
. ReS<S(Z)(B(Y),S(Z))((BZ(Y),S(Z)) +€°1)

@ (e, y))
converges as — 0+, uniformly for ally in a neighbourhood ox.

PrROOF. As in the proof of Lemm@.2, it suffices to prove that

€ Res( sS4,

mpj (2); (e, y))

converges as — 0+ uniformly for y in a neighbourhood of.
By assumptiong (¢, y) = )Ljfl(ie) lies in the open unit dislo for all 0 < ¢ < 4.
Then

; Res( TR y))
¢ d / s@ )}
- - |2 (=AY p
L (@ (e, y))? [d2<()~j(2)+'€)22 e pey)
I1](p (e, Y)S(@(e, V)P (@ (e, y))
43 (¢ (e, Y)PPp (€, Y) '

Note that
dZ()\.j+i€)2 ! ()\.J+|€)3 J()\.j+i€)3

is zero aip (¢, y). On the other hand,

eh (@ (e, Y)) g(@, )] __i_[i<ﬁp. )}
(A (p(e, ) +ie)? [dz z "1@ sy 4ldz\ z i ey

and the other terms in the residue formula converge uniformly fioe neighbourhood
of x ase — O+. O

Consequently, for every € R(A), the matrix-valued integraP@) convergesto zero
ase — 0, whereasthe integré28) converges inZ’ (C") uniformly in a neighbourhood
of x. The Cauchy kerneb — G, (A) is therefore continuous in a neighbourhood of
(0, x) in R?, proving thatx € y (A)C.

To complete the proof of Theoref4, it still remains to prove thax € y(A)
for all x € R?\ R(A). We essentially follow the somewhat abbreviated proof7of |
Theorem 4.3] after noting that Condition Il of,[ Theorem 4.3] is superfluous by
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appealing to our Lemma 1 As mentioned inT, page 316], the proof is based on a
closely related argument of Petrovsir[ page 348].

Let A(A) be the set of atk € R?\ C(A) such that lim_o:[Gyce(A) — Gy_e, (A)]
converges uniformly to zero for ajt in an open neighbourhood of disjoint from
C(A). ThenA(A) is an open subset d&? containingy (A)°, because for every
x € y(A)¢, the Cauchy kerneb— G, (A) is continuous for every in a neighbour-
hood of (0, x) in R3.

Suppose that

(31) (R*\ (R(A) UC(A) N A(A) # 0.
We shall obtain a contradiction from the assumptidi) (so showing that
R?\ (R(A) UC(A)) € AA)F C y(A).
Because
(32) ((R?\ (RCA)UC(A) NAA)) \ o (A)

is a nonempty open set, there exists a nonempty open subséthe set 82) such
that lim._, o+ [Gy .6, (A) — Gy_.e,(A)] converges uniformly to zero forajl € U.

Now U is disjoint fromR(A) ando (A). If for everyx € U, every pole of the
function

(33) z— (xI —A,s(2))t

lies onT , thenU c R(A). By Lemma9.1, polesz ¢ T of (33) come in pairz € D
andz ! € D', so there must exist € U such that83) has a pole insid®. Moreover,
by the argument of Lemna2, the sefy € R? | o (Yl —A)*)"X(yl —A)ND # @}
is an open subset @2, so for everyy belonging to some neighbourhood xf the
functionz — (yl — A, s(2))~! has poles insid®. By shrinkingU if necessary, we
suppose thdt has this property.

Then the calculation of the residues in Lemrdsand9.4is still valid becauséJ
is disjoint from botho (A) andC(A). By Lemma9.2, the limit

Iim/((yl — A, 82 =2yl —A,s)?+£%1)2du(s)
T

e—0
i
= ——/ (yl —A,s(2)) %z dz
2 Jri00+To00)
is a matrix-valued real analytic function for glin a neighbourhood, of x contained
in U—a constant times the function

Y M (Gy.ia(A) = Gy (A, Y€ Us.
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By assumptionlJ, c A(A), so for ally € U,, we have

(34) / (yl —A,s(z)) 2z tdz=0.
T1(x)+T2(x)

The pointz = 0 is a removable singularity of the integrand in equati®f) pecause
y € Uy C p(A).

Up until this point, we have worked locally with solutions= ¢ (y) of the equation
det(yl — A, s(2))) = 0 for ¢ (y) belonging to a neighbourhood &f

Now let us consider all solutiors= ¢ (y) € C of the simultaneous equations

(35) detul — (A,s(2))) =0,
(36) n—{y,s(2) =0,
fory € R?.

Forz £ 0, equation5) is equivalentto dézu | — (A, z(2))) = 0 and the function
(n,2) — detizu — (A, z5(2))) is a polynomial in two variables. EquatioB5)
therefore determines an algebraic functigrn(z) of z [1, Chapter 8, Definition 2].
Except for a finite sek of points inC, each function elemer, ) of u can be
continued along any arc not passing through one of the exceptional points belonging
to X [1, page 294]. It follows from Rellich’s Theorem and equatidg)(that X is
disjoint fromT.

Suppose thatu;, ;) is a function element oft such that; is disjoint from
X U{0}. Thens — (s1(¢) : $(¢) - —j(£)), ¢ € Q;j, is asmooth local parametriza-
tion of the algebraic curv€ (A)* of Section?. If y € R? andz € C satisfy 36) for
w = uj(2),andu’(z) —(y,s)'(2) = 0,then by Lemma.1, y € C(A). Consequently,
if y ¢ C(A), then any solutiorz, of (35—(36) with . = 1 (2) has the property that

wi(zo) — (Y, ) () # 0.

Suppose thay ¢ C(A). By the remark after Lemm@.6, there exists an open
neighbourhood/, of y in R? and an analytic functiom +— ¢;(w), w € V,, of two
real variables such th&t, s(¢; (w))) = u;(¢;(w)) forall w € V,. Hence,

det((w, s(¢; (w)) 1 — (A, s(¢j(w)))) =0
and for everyw € V, the complex numbep; (w) is a pole of the function
z (wl —A,s(2)

Now according to31), we are assuming that poles of functi@3) exist insideD.
So there exist a nonzero integerand X functionsy — +¢;(y), j = 1,....Kk,
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defined fory € U,, that are analytic in two real variables and poles3§) pelonging
to D. We can also assume that they have the propertydtigaty) ¢ X U {0} for all
y € U, and that they are constructed, as above, from the algebraic furzgtian

This is valid, because to any nonzero exceptional poiat:, there corresponds a
unique solutiony € R? of (36) satisfying the equations

(37) Y181(2) + ¥:%(2) = u¥191(2) — ¥.%(2) = 1.

Here we use the observation th%€2)s,(Z) + $1(Z)s(z2) = 0 if and only if |z] = 1
and X is disjoint fromT. The pointz = 0 is associated with points € o (A) with
y1+iy, = ¢ and lim._.zu;(2) = ¢ /2, for some function elemerig;, ;) of u with
0e Q.

With these preliminary observations out of the way, we will obtain a contradiction
from the assumption tha8¢) holds in a neighbourhoadd, of x.

Let x; € R(A) and suppose that— y(t), 0 <t < 1, is a smooth curve ifR?
such thaty(0) = x andy (1) = X. Suppose further that whepye crosses a curve
belonging toC(A), it does so nontangentially and avoids all intersections, cusps and
isolated points. This is possible because there are only finitely many such points.
Furthermore, we suppose thatlso avoids the image iR? of the exceptional points
> and the spectrum(A) of A. Then in a neighbourhood of any pointtg[0, 1]), the
functions{¢, 'J.‘:l defined by the algebraic functiam (z) from (35—(36) in the manner
described above, do not take valuesit {0}. Moreover, we have; (y (1)) € T and
¢j(y(0) eU,cDforj=1,...,k Let

to =supt > 0:¢;(y(s)) € D forevery O<s<t and j=1,...,k}.

ThenO< ty < 1and, by continuity, forsomm = 1, ..., k, we must have,,(y (t)) €
T. If i1 (@m(y () — (¥ (), S) (dm(y (L)) # O, then by Rellich’s Theorem and
Lemma?.6, there exist$ > 0 such that,,(y(t)) € T forallt € (ty — 8,1ty + 9),
contradicting the definition df. Hencey (ty) € C(A) by Propositiory.7.

According to our assumption, equatid¥y, the sum Reg) of the residues of the
functionz i~ (yl — A, s(2)) 2z at+¢;(y) and+e;(Y) %, j = 1,..., Kk, is zero for
all y € U,. The outer integral about the contddy(x) in (34) surroundstg; (y)™
and the integral is calculated from the residues-a{(y)~* by the Cauchy integral
formula.

For each O< t < to, there exist contourB;(y (t)) ¢ D®andI',(y(t)) ¢ D and
neighbourhood¥, , of y (t) such thatf;(y (1)) surrounds{ﬁ(y)*l}'j‘:l andly(y (b))
surrounds{¢; (y)}'j‘:l forall y € V,«, and the contours do not surround any other
poles of function §3) for anyy € V, .

To see that this construction is possible, suppose ¢has some other distinct
solution of simultaneous equatior&s—(36) such that = ¢,(y (1)) = ¢ (¥ (1)) € D,
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say, for some O< t < to. Then(y(t),s(¢)) = w, (&) = u1(¢) for two eigenvalues
we(2) and uq(2) of the matrix (A, s(z)), for all z € C in a neighbourhood of.
Then¢ must be a branch point of the eigenvalues of the matrix valued function
z+— (A,s(2)), thatis,; € X. This contradicts our choice of the arc Hence, all
solutions of simultaneous equatio¥$)—(36) have distinct values at each pointjof
By continuity, for each O< t < t, we can choose a neighbourhoWdg, of y(t) in
which solutions of 85)—(36) have this property and contours(y (t)) andT>(y (1))
with the properties described above.

Then the function

1 —-2,-1
Regy) = —/ (yl —A,s(2)“z"dz
2701 Jryg 400

defined for ally € V,, and 0< t < t, agrees orJ, N V, with the sum Regy) of
residues defined above fgre U,. Clearly, Regy) is an analytic function of the two
real variables/, so by analytic continuation, Res(t)) = Oforall0<t < t,.

The pointgn(y (1)) € T corresponds to wherg crosses the curv€(A) at ty
with ¢n(y (to)) the direction of the unit normal. As mentioned aboyemay have
crossed a curve i@ (A) earlier, leading to the appearance of poles of the func88h (
additional to{¢; (y)}'j‘:l fory € V,«, but the chosen contours do not surround these.

Because’ avoids all intersections, isolated points and cusps, for ¢aehi, ..., k
with j # m, we haveg; (v (t)) # ¢ém(y () ande;(y (1)) is bounded away froni
forall0 <t <ty (the unit normal is unique). Any other polgsy (1)) of (33) are not
associated with function elementsgofat which (L9) holds fory = y (t;). Otherwise,
by Proposition7.7, y (t;) would lie on the intersection of curves belongingQoA)
with ¢ (y (1)) € T, the unit normal to one of the curves.

However, it is impossible that Res(t)) = 0 for all 0 < t < t,, because the
residues diverge &, (y (to)) € T, but are uniformly bounded & (y (1)), 0<t <t
for j # m. This follows from an asymptotic analysis &f9) asy — y(ty) alongy.
The asymptotic analysis is facilitated by the fact thatand P; are analytic in a
neighbourhood od.,,(y (1)) by Rellich’s theorem. Rather than repeat the calculation
here, see’, Equation (4.24)], and the references there that follow that equation. The
original assumption that Reg = 0 for all y in a neighbourhoodl, of x must be
false so that 81) is false. We have shown the inclusiBA\ (R(A) UC(A)) C y(A).

If x € R(A)* NR(A) = dR(A), then by Corollary’.9, x is an element o€ (A),
so it only remains to treat the cagec C(A). In this case, the asymptotic analysis
mentioned above ensures that we can actually make Gy, ., (A) — Gy_.e,(A)]
diverge asy — x in some direction irC(A)¢, namely, from the direction into which
the curvature vector points, proving that y (A). We have established the inclusion
RZ\R(A) C y(A). U



122 Brian Jefferies and Bernd Straub [38]

10. Further developments

In this section, we consider which of the preceding arguments are applicable to a
more general situation. A plane wave decomposition formula similar to forrela (
has been obtained forchtuple A = (A4, ..., Ay) of bounded linear operators acting
on a Banach spac¥ just under the assumption that the spectr, A)) of the
bounded linear operats, A) = Z‘j’:l g A, is realfor eacl§ € R?[18, Lemma 2.5].
Actually, the plane wave decomposition is adopted asdfaition of the Cauchy
kernelG,(A) off R in the case that the Weyl calculus does not exist, that is, when
the necessary exponential bounds fordkeiple A of operators fail. It agrees with the
power series expansioh§, Equation (5)] outside a sufficiently large ball and it agrees
with the Cauchy-Stieltjes transform of the Weyl functional calculus when this exists
[17, Equation (5)]. The same formula will work foragxtuple A = (A, ..., Ag) of
unbounded linear operators if tieosure (&, A) of (¢, A) is densely defined and has
real spectrum for eache RY.

The monogenic spectrum(A) of the d-tuple A is the set of singularities of the
Cauchy kerneG,(A), that is to sayy (A) is the complement of the largest set in
R4 on whichw — G, (A) is a monogenic function with values in a Clifford module
Z(X)q, over the bounded linear operators on the Banach siace

In the Hilbert space setting witd = 2 andA = (A;, A;) bounded selfadjoint
operators, Definitior6.1 and the proof of Propositiof.2 still make sense, so that
R(A)¢ is contained in the numerical rany#(A) of the bounded linear operator
A = A; +iA,. The convex hull ofy(A) is equal to the numerical rangt/(A).
However, we have no information about the relationshifRoA) andy (A) in the
infinite dimensional setting.

If we assume only thad = (A;, Ay) is a pair of matrices such that((¢, A)) is
real for eacht € R?, then we can no longer appeal to Rellich’s Theorem, crucial to
the proofs of Sectiong and9. A pair of simultaneously triangularisable matrices,
each with real spectrum, falls into this category—such matrices need notrbiiaer
Moreover, the algebraic functiczu(z) defined in Sectior® may now have a finite
number of singularities on the unit circle

Rather than use the Rellich formulag), we could attempt to express the matrix

(yl —A,s(2)

in terms of the resolventul — (A,s(2)™% u € p((A,s(2)), of (A, s(z) for
suitablez € C. The Cauchy kerneG,(A) of A can also be expressed in terms

of resolvent operatorg.l — (A, s))~* by means of the plane wave decomposition.
This approach has the advantage of being applicabledtduale of linear operators
acting in a Banach space. The preceding analysis applies to pair of matrices satisfying
the spectral condition just mentioned, although singularities of the algebraic function
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zu(z) defined in Sectio® on the unit circlel must now be accounted for. A similar
remark was made in7[ Footnote 1]. The observation thatdauple A of matrices
with the property that ((£, A)) is real for eacl§ € RY has a Weyl functional calculus
is proved in [L6] by operator-theoretic methods.

Finally, we note that for the triple = (o4, 05, 03) Of (2 x 2) Pauli matrices,
the monogenic spectrum(a) of o is the unit spheres in R® [2, Theorem 4.1].
Points exterior tdS belong to infinitely many tangent planes$o but points inside
S have none. Nevertheless, the interiorSofs a lacuna ofy (o) corresponding to
the fundamental solution of Weyl's equation. The simple equali%) = R(A)°,
suitably interpreted, does not go over to higher order systéms (A4, ..., Aq),

d > 2, without some additional connection betwekand the size of the matrices

A, ..o Ag.
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