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Abstract
Given twom-tuples of commuting spectral operators on a Hilbert space; (Ty, ..., Tm) andS =
S, ..., Shn), an extended version of Henrici perturbation theorem is obtained for the joint approximate

spectrum ofS under perturbation by . We also derive an extended version of Bauer-Fike theorem for
such tuples of operators. The method used involves Clifford algebra techniques introduced by Mcintosh
and Pryde.
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1. Introduction

The study of tuples of commuting operators was the subject of a wide literature
carrying out many resemblances with the single case. Various kinds of spectra were
introduced, namely by Hartel(, 11], Taylor [21] and Coburin and Schechte®]|

Even more, TaylorZ0] has introduced a functional calculus for tuples of operators,
while Harte [L1] established ‘Spectral mappings theorems’ for them. For more about
joint spectral theory, the reader is referred to the survey paper of Cijrto [

Later on many authors focused on perturbations of tuples of operators. The use
of analytic ‘multi-functions’ enabled Klimek1[3] to prove the results known for
single analytic perturbations. The turning point in this theory was the formulation by
Mclntosh and Prydel4] of a functional calculus using tools from Clifford Analysis.
Using these tools, Prydd§] generalized the theorem of Bauer-Fike for commuting
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tuples of matrices, while those of Henrici and Hoffman-Wielandt were extended by
Bhatia and Bhattacharyy&,[2]. We also note that other properties were proved by
Ming [16] and Muiller [17].

Our aim in this paper is to extend Henri&id, Theorem 1.9, page 172] and Bauer-
Fike [19, Theorem 1.6, page 171] theorems for tuples of commuting spectral operators
defined on a complex Hilbert space. In fact, we establish boumikgsto the matrix
case given by PrydelB] and by Bhatia-Bhattacharyy&][which are inspired by the
Bauer-Fike and Henrici bounds for single matrices. This will be done using Clifford
analysis.

The paper is organized as follows: Followintg], we first give some necessary
tools and definitions, then we establish the Henrici theorem for tuples of operators
having real spectra. At the end we consider operators with complex spectra.

2. Preliminaries

We denote byH a nontrivial complex Hilbert space and By(H) the algebra of
bounded linear operators d# with respect to the uniform norm. All the operators
considered in this paper areli{H). We will denote byR, (respectivelyC) the scalar
field of real, (respectively of complex) numbers.

Let us consider am-tuple of commuting operatorsT = (Ty,..., T,,), where
T, e B(H), TjTc = T,T; for j,k=1,2,... ,m. Thejoint approximate spectrurof
T is defined by:

Spp(T) = {A = (A, ...,An) € C"; inf { Z ||zj—ij||} =0}.
1

Ix=1 -
=J=m

For a single operatof, the approximate spectrum will be denotedday(T). The
joint compression spectrufor right spectrum of T is defined by

SPon(T) = {A =1y hm) € C™, Z (T, — A DB(H) # [B(H)}.

1<j<m

The set ofjoint eigenvaluesf T which we denote by ST) is defined as follows:
A= (A, ..., m) € Sp,(T) if there isx € H,x # 0 such thafTjx = A;x for
j =12,...,m. Onethenhas §PT) C Sp,(T). For a single operatdr, Sp,(T)
will be denoted by, (T).

Naturally thejoint spectrumof T is Sp(T) = Sp,(T) U Sp,,,(T). We mention
that the definitions of spectra are those of Hattd,[so the joint spectra consideredin
this paper are the Harte spectra. Let us emphasize that it is kpwhthat Sp,,(T)
is a compact nonempty subset@t.
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We are always interested to know whether or not an operator has eigenvalues. Ir
case of general commuting tuples of operators we do not know so far of any answer.
However, if the operators are algebraic or compact having certain property, then the
answer is affirmative. We recall that an operafoe B(H) is algebraicif there is a
nontrivial polynomialP such thatP(T) = 0.

ProPOSITION2.1. Let T = (Ty,..., T,,) be a commuting tuple of compact op-
erators. Suppose that eadh has at least one nonzero point in its spectrum, then

Spy(T) # 0.

PROOF. Pick 0# X141 € 0p(Ty), then there i € H, x # 0 with T;x — A1 ;X = 0.
Now, by assumption and by the properties of compact operators, there is*, |, €
N* such tha(T, — A}, 21)27*x # 0 and(T, — 1,,)"2x = 0.

Putu; = X, U = (T, — Aj,21)"2 MUy, thenTou, — 4, oUp, = 0 @andTyu, — Aq 1Up=0.
By induction we construct a joint eigenvector: suppose we bigve, thenT U3 —
AjokUn—g = O fork = 1,...,m— 1 with j; = 1. Then there iy, j, such that

(T = Ajm D)™ U1 # 0 @nd(Ty — A, ml)"™Um_1 = 0. Set
Unp = (Tm - )\jm,ml )Umilum—l,
then
Tmum - )\jm,mum =0= Tm—lum - )\jm,l,m—lum == Tlum - Al,lum'
Thereby(Ay 1, ..., Aj,.m) € Sp,(T). O

For algebraic operators the proof is essentially the same.

Since the tool we use is Clifford analysis we now make a brief incursion into it.
Let (e, ... , &, be the canonical basis ®&". The Clifford algebraR,, overR™ is
the real algebra of maximal dimension with identity 1 contairthgndR™ as sub-
algebras and such that = — ||x||? for everyx € R™. It follows thate? = —1 and
ae = —eefork# j. Nowwesee, =1landifE ={s;,... ,s} C{l ..., m}
defineeg = (-1)e,---&, = (-1)7€,.4, Where 1< t; < --- < t, ando is the
number of inversions in the permutation

(tl tk)
T = .
Clearly R, has dimension 2 and has a basis consisting ef, E = ¢ or E =
{S1, ..., s} with thes;’s ordered in a natural way.
A full description of the real Clifford algebra®,, for m < 4 is given in B]. There

R, is seen under many aspects, involution and conjugation are constructed over it. We
recall thatR is isomorphic to botlC, the matrix algebr& O(2) and to Spiti2), the
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spinor real algebraR, is isomorphic toH the quaternions algebra and to the matrix
algebraSU(2). Form = 3, R is isomorphic toH @ H andR, is isomorphic toH (2),
the algebra of 2« 2 matrices oveH. For more details the reader is referreddp [

We define a new Hilbert space denotedih® R, whose elements are of the form
Y sXs®es, Xs € H, S {1,..., m} endowed with the inner productx, y) =
Y ss(Xs. ¥s) for x,y € H ® Ry, and the normj|x|[|> = Y ¢ [IXs[|®. Let B(H ® Rp)
denote the algebra of bounded linear operatorslad R, together with the operator
norm| - |. ThenB(H) ® R, may be identified with a sub-algebraBfH ® R, as
follows:

(Z Ts® es) (Z Xg ® es«) = Z Ts(Xs),
B S ss

so thatB(H) ¢ B(H) ® R, ¢ B(H ® R,,). For a commutingn-tuple of B(H),
T = (Ty, ..., Ty) we define theClifford operatorof T by

Cliff M) =i Y T/ ®ej € B(H) ® Ry C B(H ® Ryy).
1<j<m

If x € H, then
Cliff Mx =i > Tix®e.
1<j<m
We also define thadjoint of Cliff (T) by
Cliff (M) =i Y T'®e;.

1<j<m

Later on we denote by Cliff (T)|| the operator norm of CIiffT) and byy(T) the
spectral set

)/(T) = {)\. = ()\.1, ,)\.m) S [Rm, Z (TJ —)\.Jl)z iS Singula} .

1<j<m

Mclintosh and Pryde proved ii] thaty (T) = Sp(T) N R™, and if theT;’s have real
spectra, therr(T) = Sp(T). In this situation 0¢ Sp(T) if and only if CIiff (T) is
regular and

-1
(Cliff (T))™ = ( > TJ.Z) Cliff (T).

1<j<m
We also define th@int spectral radiusof T

r(T) =max|xr|, » € SP(T)}.
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PrROPOSITION2.2. Let T = (Ty,..., T,) be anm-tuple of commuting bounded
operators, where every, is normal, then
() CIiff(T) is normal.
(b) r(Cliff (T)) =r(T).
(©) | Cliff (T)[I =r(T).

The proof is the same as the one 8] Proposition 3.2], so we omit it.

We are now in a position to give the desired generalization of the results given
by Pryde [L8] and Bhatia and Bhattacharyyd][ Following them we first consider
perturbations of real spectra then of complex spectra.

3. Perturbations of real spectra

The class of operators in which we are interested are spectral operators:

DerINITION 3.1 ([9, page 1939]) We say that a bounded operaibris a spectral
operatorif it is the sumT = S+ N of a scalar operato and a quasi-nilpotent
operatorN commuting withS.

For the definition of a scalar and quasi-nilpotent operator the reader is referred to
[9]. Itis known that such decomposition of a spectral operator is unique and is called
the canonical decomposition @f. For a single spectral operatdr= S+ N, it is
known thato (T) = o(S). We will first extend this property for tuples of spectral
operators having real spectra.

PROPOSITION3.2. LetT = (T4, ..., T,) be a commuting tuple of spectral opera-
tors having real spectra. Fot < j < m, let A; be the scalar part of the canonical
decomposition off; and N; its quasi-nilpotent part. Set = (A4, ..., Ap), then
Sp(T) = Sp(A).

PrROOF. It is known [14, Proposition 10.1] that Sg) = y(T), SOA = (A4, ...,
Am) € SP(T) ifand only if 0 € o(ZlSjsm(Tj — xj1)?). The latter operator is equal
to

DA =P =2 (A=A DN+ Y N2

1<j=m 1<j=m 1<j=m

Since the operator 2, . (A —A;)N; + 3, N?, is quasi-nilpotent and com-
mutes with the operator [, (A; — A;1)?, then Oe o(Y_,_,_(T; — 4;1)?) if and
only if 0 € o(X_,_;_n(A; — 4;1)?) which means that € y(S) = Sp(S) and this
completes the proof. O
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From now on, the symbola andS have the meaning specified in Proposita.
The first relevant result we are going to establish is an extension of Bauer-Fike
theorem L9, page 171].

PROPOSITION3.3. LetT = (Ty, ..., Ty andS= (S, ..., Sy be twom-tuples of
commuting operators. i € Sp,,(S) \ SP(T) and A € B(H) is regular then

| A [Cliff (T — D] 2 A ™ < | AL CIiff (T — S)A| .
PrOOF. By the hypothesis, there is a sequelicg C H, ||| = 1 such that
IS =2 Xl — 0
j=1
and CIiff(T — A1) is regular. Now

Cliff (T —ADx, =i Y (Tj =1 X ®¢

j=1
= CIiff (T — S)x, + CIiff (S— A1)X,,
which leads to

X, = [CIiff (T — A1)] L Cliff (T — S)x, + [CIiff (T — A1)]"* Cliff (S— A1)X,.
InsertingAA™! = |, we get

Xn = AAL[CIiff (T —AD)] " AALCIiff (T — S AA X,
+ AAL[CIiff (T — AD)] L CIiff (S— A1),
and then
B1) A < [ATCIiff (T — AD] ™ Al AT Ciff (T — S)A|I| A X
+ | A7[Ciff (T — AD] L Cliff (S— Al)X, |-

From 3.1) follows that
limsup || A~*x,| < | AT [CIiff (T — AD] A

x | AT Cliff (T — S)A| limsup | A%, | .
n—oo

Since|| A7*x,|| < [|A7| and limsup_ ., [|A~*x,|| > 0 we get

1< |ATH[Cliff (T —AD] ™ A A Cliff (T — A

’

which completes the proof. O
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In the remaining part of this section we suppose that all the operators under con-
sideration have real spectra.

Now we are going to give the version of Henrici’'s bound extended to our situation,
generalizing thereby the result stated by Bhatia and Bhattacha3yya¢orem 3.2]
to the case of tuples of spectral operators. This will be done without defining the
measure of nonnormality as it was the case3jn [

THEOREM3.4. LetT = (Ty, ..., Tp) and S= (S, ..., S, be twom-tuples of
commuting spectral operators. L& = A + N; be the canonical decomposition of
theT;’s, whereA ; is scalarand\; is quasi-nilpotent. Then givehe Sp,(S)\Sp(T),
there is a self-adjoint bounded invertible opera®isuch that for

K = [BCIiff (A — gl1)B~1"1BCIiff (N)B™1,
we have

— < |IBCIiff (T — S)B7Y|,
1+ K)L|

wheres = min{|a — 8|, « € SP(T)}.

PROOF. Let B € Spy(S) \ Sp(T), then by Propositio.2, B € Sp,,(S) \ Sp(A).
Now the A;’s is a family of commuting scalar operators, hence ByTheorem 4,
page 1947], there is a bounded invertible self-adjoint opef&tsuch hatBA;B™*
are normal, hencB(A; — B;1)B* are also normal. A direct computation gives:

B Cliff (T — g1)B™*
= BCIiff (A — B1)B~*[I + [BCIliff (A — 81)B~}" !B Cliff (N)B™].

PutK = [BCIiff (A — g1)B~1]7B Cliff (N)B™%, thenK is quasi-nilpotent. Thus
| + K is invertible and we have

B[CIiff (T — g1)]17*B~! = (I + K)"'B[CIiff (A — g1)]"1B~™.
Now putu = ||B[Cliff (A — B1)]71B~1||1, then we get

M ; —1p-1|-1
_ B[CIiff (T — BI B .
[0+ k) = I BICHT (T = A1

Hence using PropositioB.3, we get

[t ; -1
———— < ||BCIiff (T — B
I+ K)=H|

It remains to prove thgt = § = min{|ja — B|, @ € SP(T)}.
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SinceB(A; —B;1)B~* = A; arenormalfoij = 1,... , mthen by Propositio2.2,
B Cliff (A — g1)B~tis normal, and therebB|[Cliff (A — B1)]"*B~!is also normal.
It follows that

|BICIiff (A — B1)]*B7*|| = r (B[CIiff (A — B1)]"'B™).

SinceBI[Cliff (A — B1)]7*B~* and[Cliff (A — B1)]~! have the same joint spectra, we
getu = max|é|™t, & € o(Cliff (A — B1))}. Observing that (Cliff (A — B1)) =
y(A — Bl), we get

p=max|E|™, & € y(A— B =max|r— B & € y(A) = Sp(A)}.

Recall that by Propdson 3.2, we have SpA) = Sp(T), which implies that
w=max|r—B|™L A e y(A) =SpT)} =8, which completes the proof. O

In case where the operators are self-adjoint we hayg(Bp= Sp(T). Indeed,
if A = (A,...,Am) & Sp,(T) then there isS,, ... , §, in B(H) such that(T, —
MDS A+ 4 (Tn—AnDSe =1, henceSi(Ty — A1) + - + S(Tn — Aml) =1,
thusi ¢ Sp(T). On the other hand, every self-adjoint operator is a spectral operator
whose quasi-nilpotent part is zero. Thus, in TheoBedwe haveK = 0 and we can
choseB = |. Applying TheorenB.4to bothT andS (by symmetry) wherd andS
are tuples of commuting self-adjoint operators, we get

min{|je — B, @ € SP(T)} < || Cliff (T — 9)||
for everyg € Sp(S) and

min{le — B|, « € SP(S} < || Cliff (T — )|
for everyp € Sp(T). We have thus proved the following:

PrOPOSITION3.5. LetT and Sbe twom-tuples of commuting self-adjoint operators
and letA(Sp(T), Sp(S)) be the Hausdorff distance betwesp(T) andSp(S). Then:

(3.2) A(SP(T), SNS)) < |ICIiff (T — ).

ExampLE 1. Let us give an example were the bourlZ is attained. LetP
be a nontrivial self-adjoint projection. Takg = P, T, = | — P, T = (T;, To)
andS = (0,0). Then SgT) c {(0,0), (0,1),(1,0),(1,1)}. SinceT? + T? =
(Ty — )2+ (T, — 1)2 = |, we conclude that the point®, 0) and(1, 1) do not belong
to SE(T). On the other hand, we have

T2+ (T —1)?>=2P, and (T,—-1*+T7=2(1 — P),

whichyields SPT) = {(0, 1), (1, 0)}. WhenceA(Sp(T), SpS)) = 1 = || Cliff (T)].



[9] Henrici Theorem 241

To visualize how Theorer.4 extends Henrici's theorem, known for tuples of
matrices B], we will consider a special case of operators. From the point of view of
spectral properties the algebraic operators may be the ‘nearest’ operators to matrice:

PROPOSITION3.6. LetT = (Ty, ..., T andS= (S, ..., S, be twom-tuples
of commutingrespectivelyalgebraic and spectral operators. L& = A + N; be
the canonical decomposition of thg's whereA ; is scalar andN; is nilpotent. Then
givenp € Sp,,(S) \ Sp(T), there is a self-adjoint bounded invertible opera®and
an integerv € N such that

)
Zoikswl(u B Cliff (N)B-1||k/8k

wheres = min{|a — 8|, « € SP(T)}.

= IB Cliff (T — B,

ReEMARK. According to the proof of Theore®@.4, if T andS are tuples of com-
muting matrices thef can be chosen unitary and we thus get Henrici theorem for
tuples of matricesd, Theorem 3.2], with respect to the operator norm. If moredver
is a single normal matrix then we get the Bauer-Fike theordm [

PROOF. Let B € Sp,,(S) \ SP(T), denote byK the operator
K = [BCliff (A — 1)B™*] " B Cliff (N)B™™.

ThenK = >0, TN, ® ee,, where

-1
m
T = <Z(BAJ B — ﬂj|)2> (BA B — Bil)

j=1
andN, = BN,B~. HenceN, is nilpotent andl,N, = TN, fork,p=1,...,m
(this is becauseA N, = NpAy). It follows that TyN, ® e, is nilpotent for
k =1,2,...,mand thereforeK is nilpotent: there i € N such thatK* = 0.
Thus(l + K)™* = Y —a(—1¥KX, which gives as in the last proof

B [CIliff (T — g1)]*Bt= (I + K)'B[Cliff (A — B1)]*B7%;

this leads to the following inequality
v—1
| BLCIiff (T — 1)1 7*B~Y| < Y || BICIiff (A — g1)] 2B~
k=0

x || B Cliff (N)B™[ || BCIiff (A — 1)1 *BY|

2 | B CIiff (N)B~L| X

_ o1
=4 5

k=0
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Then using Propositio.3we get

v—1 . -1
| B Cliff (N)B~1||¥ . _
5<§ 5 < ||BCIiff (T — S)B7Y|. O
k=0

4. Perturbations of tuples with complex spectra

Following Pryde L8], to remove the assumption of real spectra, we shall use
partitions of tuples of operators. We shall also need the ‘spectral mapping theorem
for both the joint spectrum and the joint approximate spectrum. We first recall the
definition of a partition 18].

DEFINITION 4.1. We say that arm-tuple T = (Ty, ..., T,,) has an admissible
partition if eachT; can be writterT; = Ty; +iT,; whereT;;, T,; have real spectra and
a(T) = (Tigy ooy Timy o1y« .., Tom) IS @ 2m-tuple of commuting operators;(T) is
called aradmissible partitiorof T.

It was proved by Pryde and Mcintost4, Theorem 10.8], that it = (Ty, ..., Ty)
is anm-tuple of commuting operators having an admissible partition and if

(4.1) P:C™ =5 C™ P, ..., hom) = (M Fidmets - ov s Am 41 A2m),
then
(4.2) Sp(T) = Sp(P (7 (T))) = P(Sp((T))) = P(y (@(T))).

This means that if € Sp(T), then(Re()), Im(1)) € Sp((T), where RéB), Im(B)
are respectively the real and the imaginary partg.of

It is also known [L5] that every tuple of commuting spectral operators has an
admissible partition. Thus using this results one can carry over Propo8ittao
arbitrary tuples consisting of commuting spectral operators.

Taking this into account, in order to pass from the ‘real case’ to the ‘complex
case’, we just need a ‘spectral mapping theorem’ for the joint approximate spectrum.
Namely (see$, Theorem 1, page 319] or[Corollary 3.7, page 43]):

Let P : €™ — C" be a polynomial and anm-tuple of commuting operators, then

(4.3) P(Sp,p(T)) = Sp,(P(T)).

It follows in particular, that ifP is the polynomial defined by}(1) and if A € Sp,,(T),
then(Re(L), Im(})) € Sp((T)).

We are now able to establish some perturbation theorems for tuples having complex
spectra. We adopt the following notation: Af= (B4, ... , Bm) € €™ we put

B = (Re(B),Im(B)) = (Re&(By), ... , Re(Br), IM(By), ..., IM(By)) € C.
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THEOREM4.2. LetT = (Ty,..., Ty and S = (S, ..., S, be twom-tuples of
commuting spectral operators. LetT) be an admissible partition af, sayz(T) =
(Tags ooy Tamy Ton, ..., Tom) @nd let Ty = Ay + Ny, K, j = 1,2,..., m, be the
canonical decomposition of thk;. Setr(S) an admissible partition 08, 7(A) =
(A1, -+ Aam, Aoty o ooy Aoy) @and w(N) = (Niq, ..., Nym, Nog, ..., Nop). Given
B € Sp,(S) \ SP(T), there is a self-adjoint bounded invertible opera®isuch that
for K = [BCliff (= (A) — 81)B~1]71B Cliff (x(N))B1, we have

- ° : B .
10+ K < ||BCliff (x(T) — z(S))B™|,
where§ = min{|a _ ﬂl, a e Sp(T)}_

PrOOF. By (4.2 and @.3), one getthatif e Spap(S)\Sp(T)thenE € Sp((9)\
Sp(r(T)). Now applying Theorer.4, we get the result. O

Using Theoremt.2, we are going to carry ovelB, Corollary 6.4] for tuples of
commuting normal operators.

PrOPOSITION4.3. LetT = (Ty, ..., Ty andS= (S, ..., S, be twom-tuples of
commuting normal operators whose compression spectra are invariant under the map
z+— Z. Letn(T), respectivelyr(S), be an admissible partition oF, respectively
of S, andx (S*) the2m-tuple of operators composed by the adjoints of the operators
corresponding tor (S). Denote byA (Sp(T), Sp(S)) the Hausdorff distance between
Sp(T) andSp(S). Then

A(Sp(T), Sp(S)) < max(|| Cliff (2 (S) — (T, || Cliff ((S") — #(THI)).

PrROOF. Applying Theoremt.2to S = (S, ... , §) with the partitionr (S), we
get

max min |a — B| < || Cliff (x(S") — =z (T))|.
BESP(SY) aeSHT)

Now the approximate spectrum 8f is nothing else but the complex conjugate of the
compression spectrum & this leads to

max min |a — g < max(|| Cliff ((S) — x(T)H . || Cliff (x(S) — 7 (T)HI).

BeSPS) aeSAT)

InterchangingSandT, we get

(4.4) ASPT), SE(S) < max(| Cliff (w(S) — & (T, || Cliff (2(S) — 7w (T))ll,
Il Cliff (2 (T*) — 7 (SH).
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Now by the definition of the adjoint of the Clifford operator we have
Cliff (7(S") — 7(T)) = (CIiff (77(S) — 7(T*)))*.
Thereby the right-hand term id (@) is equal to
max(|| Cliff (z(S) — x(T)II, I Cliff (x(S) — 7 (THID,
which finishes the proof. O

By similar arguments to those used in the proof of Theofenone can prove the
following result which is an extension of§, Theorem 6].

PrOPOSITION4.4. Under the assumptions of Theordn, if
e = || Cliff (z(T) — z(S)IIIIBIIIBI,

thenSp,,(T) C UﬂeSqS) D.(B), whereD,(B) is the disc centered & with radiuse.
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