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Abstract

Given twom-tuples of commuting spectral operators on a Hilbert space,T = .T1; : : : ; Tm/ and S =
.S1; : : : ; Sm/, an extended version of Henrici perturbation theorem is obtained for the joint approximate
spectrum ofS under perturbation byT . We also derive an extended version of Bauer-Fike theorem for
such tuples of operators. The method used involves Clifford algebra techniques introduced by McIntosh
and Pryde.
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1. Introduction

The study of tuples of commuting operators was the subject of a wide literature
carrying out many resemblances with the single case. Various kinds of spectra were
introduced, namely by Harte [10, 11], Taylor [21] and Coburin and Schechter [6].
Even more, Taylor [20] has introduced a functional calculus for tuples of operators,
while Harte [11] established ‘Spectral mappings theorems’ for them. For more about
joint spectral theory, the reader is referred to the survey paper of Curto [7].

Later on many authors focused on perturbations of tuples of operators. The use
of analytic ‘multi-functions’ enabled Klimek [13] to prove the results known for
single analytic perturbations. The turning point in this theory was the formulation by
McIntosh and Pryde [14] of a functional calculus using tools from Clifford Analysis.
Using these tools, Pryde [18] generalized the theorem of Bauer-Fike for commuting

c© 2003 Australian Mathematical Society 1446-8107/03$A2:00+ 0:00

233

http://www.austms.org.au/Publ/JAustMS/V75P2/n24.html


234 Ali Ben Amor [2]

tuples of matrices, while those of Henrici and Hoffman-Wielandt were extended by
Bhatia and Bhattacharyya [3, 2]. We also note that other properties were proved by
Ming [16] and Müller [17].

Our aim in this paper is to extend Henrici [19, Theorem 1.9, page 172] and Bauer-
Fike [19, Theorem 1.6, page 171] theorems for tuples of commuting spectral operators
defined on a complex Hilbert space. In fact, we establish bounds similar to the matrix
case given by Pryde [18] and by Bhatia-Bhattacharyya [3] which are inspired by the
Bauer-Fike and Henrici bounds for single matrices. This will be done using Clifford
analysis.

The paper is organized as follows: Following [18], we first give some necessary
tools and definitions, then we establish the Henrici theorem for tuples of operators
having real spectra. At the end we consider operators with complex spectra.

2. Preliminaries

We denote byH a nontrivial complex Hilbert space and byB.H / the algebra of
bounded linear operators onH with respect to the uniform norm. All the operators
considered in this paper are inB.H /. We will denote byR, (respectivelyC) the scalar
field of real, (respectively of complex) numbers.

Let us consider anm-tuple of commuting operators:T = .T1; : : : ;Tm/, where
Tj ∈ B.H /;Tj Tk = TkTj for j; k = 1;2; : : : ;m. The joint approximate spectrumof
T is defined by:

Spap.T/ =
{
½ = .½1; : : : ; ½m/ ∈ Cm; inf

‖x‖=1

{ ∑
1≤ j ≤m

‖Tj x − ½ j x‖
}

= 0

}
:

For a single operatorT , the approximate spectrum will be denoted by¦ap.T/. The
joint compression spectrum(or right spectrum) of T is defined by

Spcom.T/ =
{
½ = .½1; : : : ; ½m/ ∈ Cm;

∑
1≤ j ≤m

.Tj − ½ j I /B.H / 6= B.H /

}
:

The set ofjoint eigenvaluesof T which we denote by Spp.T/ is defined as follows:
½ = .½1; : : : ; ½m/ ∈ Spp.T/ if there is x ∈ H; x 6= 0 such thatTj x = ½ j x for
j = 1;2; : : : ;m. One then has Spp.T/ ⊂ Spap.T/. For a single operatorT , Spp.T/
will be denoted by¦p.T/.

Naturally thejoint spectrumof T is Sp.T/ = Spap.T/ ∪ Spcom.T/. We mention
that the definitions of spectra are those of Harte [10], so the joint spectra considered in
this paper are the Harte spectra. Let us emphasize that it is known [4, 7] that Spap.T/
is a compact nonempty subset ofCm.
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We are always interested to know whether or not an operator has eigenvalues. In
case of general commuting tuples of operators we do not know so far of any answer.
However, if the operators are algebraic or compact having certain property, then the
answer is affirmative. We recall that an operatorT ∈ B.H / is algebraicif there is a
nontrivial polynomialP such thatP.T/ = 0.

PROPOSITION2.1. Let T = .T1; : : : ;Tm/ be a commuting tuple of compact op-
erators. Suppose that eachTk has at least one nonzero point in its spectrum, then
Spp.T/ 6= ∅.

PROOF. Pick 0 6= ½1;1 ∈ ¦p.T1/, then there isx ∈ H; x 6= 0 with T1x − ½1;1x = 0.
Now, by assumption and by the properties of compact operators, there is¹2 ∈ N∗; j2 ∈
N

∗ such that.T2 − ½ j2;2I /¹2−1x 6= 0 and.T2 − ½ j2;2/
¹2 x = 0.

Putu1 = x;u2 = .T2 −½ j2;2 I /¹2−1u1, thenT2u2 −½ j2;2u2 = 0 andT1u2 −½1;1u2=0.
By induction we construct a joint eigenvector: suppose we haveum−1, thenTkum−1 −
½ jk;kum−1 = 0 for k = 1; : : : ;m − 1 with j1 = 1. Then there is¹m, jm such that
.Tm − ½ jm;mI /¹m−1um−1 6= 0 and.Tm − ½ jm;mI /¹m um−1 = 0. Set

um = .Tm − ½ jm;mI /¹m−1um−1;

then

Tmum − ½ jm;mum = 0 = Tm−1um − ½ jm−1;m−1um = · · · = T1um − ½1;1um:

Thereby.½1;1; : : : ; ½ jm;m/ ∈ Spp.T/.

For algebraic operators the proof is essentially the same.
Since the tool we use is Clifford analysis we now make a brief incursion into it.

Let .e1; : : : ;em/ be the canonical basis ofRm. TheClifford algebraRm overRm is
the real algebra of maximal dimension with identity 1 containingR andRm as sub-
algebras and such thatx2 = −‖x‖2 for everyx ∈ Rm. It follows thate2

k = −1 and
ekej = −ej ek for k 6= j . Now we sete∅ = 1 and if E = {s1; : : : ; sk} ⊂ {1; : : : ;m},
defineeE = .−1/¦et1 · · · etk

= .−1/¦et1···tk
, where 1≤ t1 < · · · < tk and¦ is the

number of inversions in the permutation

³ =
(

t1 · · · tk

s1 · · · sk

)
:

Clearly Rm has dimension 2m and has a basis consisting ofeE; E = ∅ or E =
{s1; : : : ; sk} with thesj ’s ordered in a natural way.

A full description of the real Clifford algebrasRm for m ≤ 4 is given in [8]. There
Rm is seen under many aspects, involution and conjugation are constructed over it. We
recall thatR1 is isomorphic to bothC, the matrix algebraSO.2/ and to Spin.2/, the
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spinor real algebra;R2 is isomorphic toSH the quaternions algebra and to the matrix
algebraSU.2/. Form = 3,R3 is isomorphic toSH ⊕ SH andR4 is isomorphic toSH .2/,
the algebra of 2× 2 matrices overSH . For more details the reader is referred to [8].

We define a new Hilbert space denoted byH ⊗Rm whose elements are of the form∑
S xS ⊗ eS, xS ∈ H , S ⊂ {1; : : : ;m} endowed with the inner product:.x; y/ =∑
S;S′.xS; yS′/ for x; y ∈ H ⊗ Rm and the norm‖x‖2 = ∑

S ‖xS‖2. Let B.H ⊗ Rm/

denote the algebra of bounded linear operators onH ⊗Rm together with the operator
norm‖ · ‖. ThenB.H / ⊗ Rm may be identified with a sub-algebra ofB.H ⊗ Rm/ as
follows: (∑

S

TS ⊗ eS

)(∑
S′

xS′ ⊗ eS′

)
=
∑
S;S′

TS.xS′/;

so thatB.H / ⊂ B.H / ⊗ Rm ⊂ B.H ⊗ Rm/. For a commutingm-tuple ofB.H /,
T = .T1; : : : ;Tm/ we define theClifford operatorof T by

Cliff .T/ = i
∑

1≤ j ≤m

Tj ⊗ ej ∈ B.H /⊗ Rm ⊂ B.H ⊗ Rm/:

If x ∈ H , then

Cliff .T/ x = i
∑

1≤ j ≤m

Tj x ⊗ ej :

We also define theadjoint of Cliff .T/ by

Cliff .T/∗ = i
∑

1≤ j ≤m

T ∗
j ⊗ ej :

Later on we denote by‖ Cliff .T/‖ the operator norm of Cliff.T/ and by .T/ the
spectral set

 .T/ =
{
½ = .½1; : : : ; ½m/ ∈ Rm;

∑
1≤ j ≤m

.Tj − ½ j I /2 is singular

}
:

McIntosh and Pryde proved in [14] that .T/ = Sp.T/∩Rm, and if theTj ’s have real
spectra, then .T/ = Sp.T/. In this situation 0=∈ Sp.T/ if and only if Cliff .T/ is
regular and

.Cliff .T//−1 =
( ∑

1≤ j ≤m

T2
j

)−1

Cliff .T/:

We also define thejoint spectral radiusof T :

r .T/ = max{|½|; ½ ∈ Sp.T/}:
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PROPOSITION2.2. Let T = .T1; : : : ;Tm/ be anm-tuple of commuting bounded
operators, where everyTj is normal, then

(a) Cliff.T/ is normal.
(b) r .Cliff .T// = r .T/.
(c) ‖ Cliff .T/‖ = r .T/.

The proof is the same as the one of [18, Proposition 3.2], so we omit it.
We are now in a position to give the desired generalization of the results given

by Pryde [18] and Bhatia and Bhattacharyya [3]. Following them we first consider
perturbations of real spectra then of complex spectra.

3. Perturbations of real spectra

The class of operators in which we are interested are spectral operators:

DEFINITION 3.1 ([9, page 1939]).We say that a bounded operatorT is a spectral
operator if it is the sumT = S + N of a scalar operatorS and a quasi-nilpotent
operatorN commuting withS.

For the definition of a scalar and quasi-nilpotent operator the reader is referred to
[9]. It is known that such decomposition of a spectral operator is unique and is called
the canonical decomposition ofT . For a single spectral operatorT = S+ N, it is
known that¦.T/ = ¦.S/. We will first extend this property for tuples of spectral
operators having real spectra.

PROPOSITION3.2. Let T = .T1; : : : ;Tm/ be a commuting tuple of spectral opera-
tors having real spectra. For1 ≤ j ≤ m, let3 j be the scalar part of the canonical
decomposition ofTj and Nj its quasi-nilpotent part. Set3 = .31; : : : ;3m/, then
Sp.T/ = Sp.3/.

PROOF. It is known [14, Proposition 10.1] that Sp.T/ =  .T/, so½ = .½1; : : : ;

½m/ ∈ Sp.T/ if and only if 0 ∈ ¦(∑1≤ j ≤m.Tj − ½ j I /2
)
. The latter operator is equal

to ∑
1≤ j ≤m

.3 j − ½ j I /2 − 2
∑

1≤ j ≤m

.3 j − ½ j I /Nj +
∑

1≤ j ≤m

N2
j :

Since the operator 2
∑

1≤ j ≤m.3 j −½ j I /Nj +∑1≤ j ≤m N2
j , is quasi-nilpotent and com-

mutes with the operator
∑m

j =1.3 j − ½ j I /2, then 0∈ ¦
(∑

1≤ j ≤m.Tj − ½ j I /2
)

if and
only if 0 ∈ ¦

(∑
1≤ j ≤m.3 j − ½ j I /2

)
which means that½ ∈  .S/ = Sp.S/ and this

completes the proof.
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From now on, the symbols3 andShave the meaning specified in Proposition3.2.
The first relevant result we are going to establish is an extension of Bauer-Fike

theorem [19, page 171].

PROPOSITION3.3. LetT = .T1; : : : ;Tm/ andS= .S1; : : : ; Sm/ be twom-tuples of
commuting operators. If½ ∈ Spap.S/ \ Sp.T/ and A ∈ B.H / is regular then∥∥A−1 [Cliff .T − ½I /]−1 A

∥∥−1 ≤ ∥∥A−1 Cliff .T − S/A
∥∥ :

PROOF. By the hypothesis, there is a sequence.xn/ ⊂ H , ‖xn‖ = 1 such that

m∑
j =1

‖.Sj − ½ j I /xn‖ → 0

and Cliff.T − ½I / is regular. Now

Cliff .T − ½I /xn = i
m∑

j =1

.Tj − ½ j I /xn ⊗ ej

= Cliff .T − S/xn + Cliff .S− ½I /xn;

which leads to

xn = [Cliff .T − ½I /]−1 Cliff .T − S/xn + [Cliff .T − ½I /]−1 Cliff .S− ½I /xn:

InsertingAA−1 = I , we get

xn = AA−1 [Cliff .T − ½I /]−1 AA−1 Cliff .T − S/AA−1xn

+ AA−1 [Cliff .T − ½I /]−1 Cliff .S− ½I /xn

and then

‖A−1xn‖ ≤ ‖A−1 [Cliff .T − ½I /]−1 A‖‖A−1 Cliff .T − S/A‖‖A−1xn‖(3.1)

+ ‖A−1 [Cliff .T − ½I /]−1 Cliff .S− ½I /xn‖:
From (3.1) follows that

lim sup
n→∞

∥∥A−1xn

∥∥ ≤ ∥∥A−1 [Cliff .T − ½I /]−1 A
∥∥

× ∥∥A−1 Cliff .T − S/A
∥∥ lim sup

n→∞

∥∥A−1xn

∥∥ :
Since‖A−1xn‖ ≤ ‖A−1‖ and lim supn→∞ ‖A−1xn‖ > 0 we get

1 ≤ ∥∥A−1 [Cliff .T − ½I /]−1 A
∥∥ ∥∥A−1 Cliff .T − S/A

∥∥ ;
which completes the proof.
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In the remaining part of this section we suppose that all the operators under con-
sideration have real spectra.

Now we are going to give the version of Henrici’s bound extended to our situation,
generalizing thereby the result stated by Bhatia and Bhattacharyya [3, Theorem 3.2]
to the case of tuples of spectral operators. This will be done without defining the
measure of nonnormality as it was the case in [3].

THEOREM 3.4. Let T = .T1; : : : ;Tm/ and S = .S1; : : : ; Sm/ be twom-tuples of
commuting spectral operators. LetTj = 3 j + Nj be the canonical decomposition of
theTj ’s, where3 j is scalar andNj is quasi-nilpotent. Then givenþ ∈ Spap.S/\Sp.T/,
there is a self-adjoint bounded invertible operatorB such that for

K = [B Cliff .3− þ I /B−1]−1B Cliff .N/B−1;

we have
Ž

‖.I + K /−1‖ ≤ ‖B Cliff .T − S/B−1‖;

whereŽ = min{|Þ − þ|; Þ ∈ Sp.T/}.

PROOF. Let þ ∈ Spap.S/ \ Sp.T/, then by Proposition3.2, þ ∈ Spap.S/ \ Sp.3/.
Now the3 j ’s is a family of commuting scalar operators, hence by [9, Theorem 4,
page 1947], there is a bounded invertible self-adjoint operatorB such hatB3 j B−1

are normal, henceB.3 j − þ j I /B−1 are also normal. A direct computation gives:

B Cliff .T − þ I /B−1

= B Cliff .3− þ I /B−1[I + [B Cliff .3 − þ I /B−1]−1B Cliff .N/B−1]:

Put K = [B Cliff .3 − þ I /B−1]−1B Cliff .N/B−1, then K is quasi-nilpotent. Thus
I + K is invertible and we have

B[Cliff .T − þ I /]−1 B−1 = .I + K /−1B[Cliff .3− þ I /]−1B−1:

Now put¼ = ‖B[Cliff .3− þ I /]−1B−1‖−1, then we get

¼

‖.I + K /−1‖ ≤ ∥∥B[Cliff .T − þ I /]−1B−1
∥∥−1

:

Hence using Proposition3.3, we get

¼

‖.I + K /−1‖ ≤ ‖B Cliff .T − S/B−1‖:

It remains to prove that¼ = Ž = min{|Þ − þ|; Þ ∈ Sp.T/}.
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SinceB.3 j −þ j I /B−1 = 3̃ j are normal forj = 1; : : : ;m then by Proposition2.2,
B Cliff .3 − þ I /B−1 is normal, and therebyB[Cliff .3 − þ I /]−1B−1 is also normal.
It follows that∥∥B[Cliff .3− þ I /]−1B−1

∥∥ = r
(
B[Cliff .3 − þ I /]−1B−1

)
:

SinceB[Cliff .3− þ I /]−1B−1 and[Cliff .3− þ I /]−1 have the same joint spectra, we
get¼ = max{|¾ |−1; ¾ ∈ ¦.Cliff .3 − þ I //}. Observing that¦.Cliff .3 − þ I // =
 .3 − þ I /, we get

¼ = max{|¾ |−1; ¾ ∈  .3− þ I /} = max{|½− þ|−1; ¾ ∈  .3/ = Sp.3/}:
Recall that by Proposition 3.2, we have Sp.3/ = Sp.T/, which implies that
¼ = max{|½− þ|−1; ½ ∈  .3/ = Sp.T/} = Ž, which completes the proof.

In case where the operators are self-adjoint we have Spap.T/ = Sp.T/. Indeed,
if ½ = .½1; : : : ; ½m/ =∈ Spap.T/ then there isS1; : : : ; Sm in B.H / such that.T1 −
½1I /S1 + · · · + .Tm − ½mI /Sm = I , henceS∗

1.T1 − ½1I / + · · · + S∗
m.Tm − ½mI / = I ,

thus½ =∈ Sp.T/. On the other hand, every self-adjoint operator is a spectral operator
whose quasi-nilpotent part is zero. Thus, in Theorem3.4we haveK = 0 and we can
choseB = I . Applying Theorem3.4to bothT andS (by symmetry) whereT andS
are tuples of commuting self-adjoint operators, we get

min{|Þ − þ|; Þ ∈ Sp.T/} ≤ ‖ Cliff .T − S/‖
for everyþ ∈ Sp.S/ and

min{|Þ − þ|; Þ ∈ Sp.S/} ≤ ‖ Cliff .T − S/‖
for everyþ ∈ Sp.T/. We have thus proved the following:

PROPOSITION3.5. LetT andSbe twom-tuples of commuting self-adjoint operators
and let1.Sp.T/;Sp.S// be the Hausdorff distance betweenSp.T/ andSp.S/. Then:

1.Sp.T/;Sp.S// ≤ ‖Cliff .T − S/‖ :(3.2)

EXAMPLE 1. Let us give an example were the bound (3.2) is attained. LetP
be a nontrivial self-adjoint projection. TakeT1 = P, T2 = I − P, T = .T1;T2/

and S = .0;0/. Then Sp.T/ ⊂ {.0;0/; .0;1/; .1;0/; .1;1/}. Since T2
1 + T2

2 =
.T1 − I /2 + .T2 − I /2 = I , we conclude that the points.0;0/ and.1;1/ do not belong
to Sp.T/. On the other hand, we have

T2
1 + .T2 − I /2 = 2P; and .T1 − I /2 + T2

2 = 2.I − P/;

which yields Sp.T/ = {.0;1/; .1;0/}. Whence,1.Sp.T/;Sp.S// = 1 = ‖ Cliff .T/‖.
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To visualize how Theorem3.4 extends Henrici’s theorem, known for tuples of
matrices [3], we will consider a special case of operators. From the point of view of
spectral properties the algebraic operators may be the ‘nearest’ operators to matrices.

PROPOSITION3.6. Let T = .T1; : : : ;Tm/ and S = .S1; : : : ; Sm/ be twom-tuples
of commuting(respectively) algebraic and spectral operators. LetTj = 3 j + Nj be
the canonical decomposition of theTj ’s where3 j is scalar andNj is nilpotent. Then
givenþ ∈ Spap.S/ \ Sp.T/, there is a self-adjoint bounded invertible operatorB and
an integer¹ ∈ N such that

Ž∑
0≤k≤¹−1 .‖B Cliff .N/B−1‖k=Žk/

≤ ‖B Cliff .T − S/B−1‖;

whereŽ = min{|Þ − þ|; Þ ∈ Sp.T/}.
REMARK. According to the proof of Theorem3.4, if T andS are tuples of com-

muting matrices thenB can be chosen unitary and we thus get Henrici theorem for
tuples of matrices [3, Theorem 3.2], with respect to the operator norm. If moreoverT
is a single normal matrix then we get the Bauer-Fike theorem [1].

PROOF. Let þ ∈ Spap.S/ \ Sp.T/, denote byK the operator

K = [
B Cliff .3− þ I /B−1

]−1
B Cliff .N/B−1:

ThenK = ∑m
k;p=1 T̃k Ñp ⊗ ekep, where

T̃k =
(

m∑
j =1

.B3 j B−1 − þ j I /2
)−1

.B3k B−1 − þk I /

and Ñp = B Np B−1. HenceÑp is nilpotent andT̃k Ñp = T̃k Ñp for k; p = 1; : : : ;m
(this is because3k Ñp = Ñp3k). It follows that T̃k Ñp ⊗ ekep is nilpotent for
k = 1;2; : : : ;m and thereforeK is nilpotent: there is¹ ∈ N such thatK ¹ = 0.
Thus.I + K /−1 = ∑¹−1

k=0.−1/k K k, which gives as in the last proof

B [Cliff .T − þ I /]−1 B−1 = .I + K /−1B [Cliff .3− þ I /]−1 B−1;

this leads to the following inequality

∥∥B[Cliff .T − þ I /]−1B−1
∥∥ ≤

¹−1∑
k=0

∥∥B[Cliff .3− þ I /]−1B−1
∥∥k

× ∥∥B Cliff .N/B−1
∥∥k ∥∥B[Cliff .3− þ I /]−1B−1

∥∥
= Ž−1

¹−1∑
k=0

‖B Cliff .N/B−1‖k

Žk
:
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Then using Proposition3.3we get

Ž

(
¹−1∑
k=0

‖B Cliff .N/B−1‖k

Žk

)−1

≤ ‖B Cliff .T − S/B−1‖.

4. Perturbations of tuples with complex spectra

Following Pryde [18], to remove the assumption of real spectra, we shall use
partitions of tuples of operators. We shall also need the ‘spectral mapping theorem’
for both the joint spectrum and the joint approximate spectrum. We first recall the
definition of a partition [18].

DEFINITION 4.1. We say that anm-tuple T = .T1; : : : ;Tm/ has an admissible
partition if eachTj can be writtenTj = T1 j + i T2 j whereT1 j ;T2 j have real spectra and
³.T/ = .T11; : : : ;T1m;T21; : : : ;T2m/ is a 2m-tuple of commuting operators;³.T / is
called anadmissible partitionof T .

It was proved by Pryde and McIntosh [14, Theorem 10.8], that ifT = .T1; : : : ;Tm/

is anm-tuple of commuting operators having an admissible partition and if

P : C2m → C
m; P.½1; : : : ; ½2m/ = .½1 + i½m+1; : : : ; ½m + i½2m/;(4.1)

then

Sp.T/ = Sp.P.³.T /// = P.Sp.³.T/// = P. .³.T ///:(4.2)

This means that if½ ∈ Sp.T/, then.Re.½/; Im.½// ∈ Sp.³.T/, where Re.þ/; Im.þ/
are respectively the real and the imaginary parts ofþ.

It is also known [15] that every tuple of commuting spectral operators has an
admissible partition. Thus using this results one can carry over Proposition3.2 to
arbitrary tuples consisting of commuting spectral operators.

Taking this into account, in order to pass from the ‘real case’ to the ‘complex
case’, we just need a ‘spectral mapping theorem’ for the joint approximate spectrum.
Namely (see [5, Theorem 1, page 319] or [7, Corollary 3.7, page 43]):

Let P : Cm → C
n be a polynomial andT anm-tuple of commuting operators, then

P.Spap.T// = Spap.P.T//:(4.3)

It follows in particular, that ifP is the polynomial defined by (4.1) and if½ ∈ Spap.T/,
then.Re.½/; Im.½// ∈ Spap.³.T //.

We are now able to establish some perturbation theorems for tuples having complex
spectra. We adopt the following notation: Ifþ = .þ1; : : : ; þm/ ∈ Cm we put

þ̃ = .Re.þ/; Im.þ// = .Re.þ1/; : : : ;Re.þm/; Im.þ1/; : : : ; Im.þm// ∈ C2m:
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THEOREM 4.2. Let T = .T1; : : : ;Tm/ and S = .S1; : : : ; Sm/ be twom-tuples of
commuting spectral operators. Let³.T/ be an admissible partition ofT , say³.T/ =
.T11; : : : ;T1m;T21; : : : ;T2m/ and let Tkj = 3k j + Nkj , k; j = 1;2; : : : ;m, be the
canonical decomposition of theTkj . Set³.S/ an admissible partition ofS, ³.3/ =
.311; : : : ;31m;321; : : : ;32m/ and ³.N/ = .N11; : : : ; N1m; N21; : : : ; N2m/. Given
þ ∈ Spap.S/ \ Sp.T/, there is a self-adjoint bounded invertible operatorB such that

for K = [B Cliff .³.3/ − þ̃ I /B−1]−1B Cliff .³.N//B−1, we have

Ž

‖.I + K /−1‖ ≤ ‖B Cliff .³.T/ − ³.S//B−1‖;

whereŽ = min{|Þ − þ|; Þ ∈ Sp.T/}.

PROOF. By (4.2) and (4.3), one get that ifþ ∈ Spap.S/\Sp.T/ thenþ̃ ∈ Spap.³.S//\
Sp.³.T//. Now applying Theorem3.4, we get the result.

Using Theorem4.2, we are going to carry over [18, Corollary 6.4] for tuples of
commuting normal operators.

PROPOSITION4.3. LetT = .T1; : : : ;Tm/ andS= .S1; : : : ; Sm/ be twom-tuples of
commuting normal operators whose compression spectra are invariant under the map
z 7→ z̄. Let ³.T/, respectively³.S/, be an admissible partition ofT , respectively
of S, and³.S∗/ the2m-tuple of operators composed by the adjoints of the operators
corresponding to³.S/. Denote by1.Sp.T/;Sp.S// the Hausdorff distance between
Sp.T/ andSp.S/. Then

1.Sp.T/;Sp.S// ≤ max
(‖ Cliff .³.S/ − ³.T//‖; ‖ Cliff .³.S∗/− ³.T//‖):

PROOF. Applying Theorem4.2to S∗ = .S∗
1 ; : : : ; S∗

m/ with the partition³.S∗/, we
get

max
þ∈Spap.S∗/

min
Þ∈Sp.T /

|Þ − þ| ≤ ‖ Cliff .³.S∗/− ³.T//‖:

Now the approximate spectrum ofS∗ is nothing else but the complex conjugate of the
compression spectrum ofS; this leads to

max
þ∈Sp.S/

min
Þ∈Sp.T /

|Þ − þ| ≤ max.‖ Cliff .³.S/− ³.T //‖; ‖ Cliff .³.S∗/− ³.T//‖/:

InterchangingSandT , we get

1.Sp.T/;Sp.S// ≤ max
(‖ Cliff .³.S/ − ³.T//‖; ‖ Cliff .³.S∗/− ³.T//‖;(4.4)

‖ Cliff .³.T∗/− ³.S//‖):
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Now by the definition of the adjoint of the Clifford operator we have

Cliff .³.S∗/− ³.T// = .Cliff .³.S/ − ³.T∗///∗:

Thereby the right-hand term in (4.4) is equal to

max.‖ Cliff .³.S/ − ³.T//‖; ‖ Cliff .³.S∗/ − ³.T//‖/;
which finishes the proof.

By similar arguments to those used in the proof of Theorem4.2, one can prove the
following result which is an extension of [18, Theorem 6].

PROPOSITION4.4. Under the assumptions of Theorem4.2, if

ž = ‖ Cliff .³.T/− ³.S//‖‖B‖‖B−1‖;
thenSpap.T/ ⊂ ⋃

þ∈Sp.S/ Dž.þ/, whereDž.þ/ is the disc centered atþ with radiusž.
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