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Abstract

In this paper, we present the computation of exact value of nonsquare constants for some types of Orlicz
sequence and function spaces. Main results: Let8.u/ be anN-function,�.t/ be the right derivative
of 8.u/, then we have

.i/ if �.t/ is concave, then 1=Þ′
8 ≤ J.l .8// ≤ 1=Þ̃8 , J.L .8/[0;∞// = 1=Þ̄8 ;

.ii / if �.t/ is convex, then 2þ′
8 ≤ J.l .8// ≤ 2þ̃8, J.L .8/[0;∞// = 2þ̄8.

2000Mathematics subject classification: primary 46B45, 46E30.

1. Introduction

The concept of nonsquareness is an important geometric property of Banach spaces
which expose the intrinsic construction of a space according to the ‘shape’ of the
unit ball of the spaces. The computation of nonsquare constants in Orlicz spaces has
attracted the interest of many researchers and a considerable number of papers on this
topic have appeared. However there has been little achievement of it since Gao and
Lau [3] studied the value for Banach spaces. This paper is devoted to deriving exact
estimates of nonsquare constants of Orlicz spaces which are easy to use in concrete
applications.

Let X be a Banach space;S.X/ = {x : ‖x‖ = 1; x ∈ X} denotes the unit sphere
of X. The nonsquare constants in the sense of JamesJ.X/ and in the sense of Schaffer
g.X/ are defined as:

J.X/ = sup{min.‖x + y‖; ‖x − y‖/ : x; y ∈ S.X/};(1)

g.X/ = inf{max.‖x + y‖; ‖x − y‖/ : x; y ∈ S.X/}:(2)
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Clearly, if dimX ≥ 2, then 1≤ g.X/ ≤ √
2 ≤ J.X/ ≤ 2. Ji and Wang [5] asserted

that

g.X/J.X/ = 2(3)

for dim X ≥ 2. It was proved (Chen [1]) that J.X/ = 2 if X fails to be reflexive.
However, practical calculation forJ.X/ whenX is reflexive exceptL p andl p remains
unsolved. In this paper, we extend the results of several authors (for instance, Ren
[9], Ji and Wang [5], Ji and Zhan [6]) and deal with the computation ofJ.X/ when
X is Orlicz function spaceL.8/[0;∞/ and a sequence spacel .8/ equipped with the
Luxemburg norm.

Let8.u/ = ∫ |u|
0 �.t/dt be anN-function, that is,�.t/ is right continuous,�.0/ =

0, and�.t/ ↗ ∞ ast ↗ ∞. The above two spaces are defined as follows:

L.8/[0;∞/ =
{

x : ²8.½x/ =
∫

[0;∞/

8.½|x.t/|/dt < ∞ for some½ > 0

}
;

l .8/ =
{

x = {x.i /} : ²8.½x/ =
∞∑

n=1

8.½|x.i /|/ < ∞ for some½ > 0

}
:

The Luxemburg norm is expressed as

‖x‖.8/ = inf {c > 0 : ²8 .x=c/ ≤ 1} :
We say that8 ∈ 12.0/ (or12), if there existu0 > 0 andk > 2 such that8.2u/ ≤
k8.u/ for 0 ≤ u ≤ u0 (or for u ≥ 0). Later, we will frequently use Semenove indices
of 8.u/:

Þ8 = lim inf
u→∞

8−1.u/

8−1.2u/
; þ8 = lim sup

u→∞

8−1.u/

8−1.2u/
;(4)

Þ0
8 = lim inf

u→0

8−1.u/

8−1.2u/
; þ0

8 = lim sup
u→0

8−1.u/

8−1.2u/
;(5)

Þ̄8 = inf
u>0

8−1.u/

8−1.2u/
; þ̄8 = sup

u>0

8−1.u/

8−1.2u/
:(6)

We extend the definition of the indices for the sequential usage:

Þ̃8 = inf
{
8−1.u/

8−1.2u/
: 0 ≤ u ≤ 1

2

}
; þ̃8 = sup

{
8−1.u/

8−1.2u/
: 0 ≤ u ≤ 1

2

}
;(7)

Þ′
8 = inf

{
8−1.1=.2k//

8−1.1=k/
: k = 1;2; : : :

}
;

þ ′
8 = sup

{
8−1.1=.2k//

8−1.1=k/
: k = 1;2; : : :

}
:

(8)
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2. Lower bounds of J(l (8)) and J(L (8)[0,∞))

We first estimate the lower bounds forl .8/ andL.8/[0;∞/. The idea is refined from
Ren [9]. We improve it so that the lower bounds may meet the upper ones and we
obtain the exact values.

THEOREM 2.1. Let8.u/ be anN-function. Then the nonsquare constants ofl .8/

and L.8/[0;∞/, in the sense of James, satisfy

max
(
1=Þ′

8;2þ
′
8

) ≤ J.l .8// and(9)

max
(
1=Þ̄8;2þ̄8

) ≤ J.L.8/[0;∞//:(10)

PROOF. To prove (9), we first show that

1=Þ′
8 ≤ J.l .8//:(11)

For any natural numberk, put

x = .

k︷ ︸︸ ︷
8−1.1=k/; : : : ;8−1.1=k/;0;0; : : : /;

y = .

k︷ ︸︸ ︷
0; : : : ;0;

k︷ ︸︸ ︷
8−1.1=k/; : : : ;8−1.1=k/;0;0; : : : /:

Then we have²8.x/ = ²8.y/ = 1, ‖x‖.8/ = ‖y‖.8/ = 1 and

‖x − y‖.8/ = ‖x + y‖.8/ = 8−1.1=k/

8−1.1=.2k//
:

Therefore,

min.‖x − y‖.8/; ‖x + y‖.8// ≥ 8−1.1=k/

8−1.1=.2k//
.k = 1;2; : : : /:

Inequality (11) is proved.
Secondly, we prove that

2þ ′
8 ≤ J.l .8//:(12)

Given a natural numberk, put

x = .

k︷ ︸︸ ︷
8−1.1=.2k//; : : : ;8−1.1=.2k//;

k︷ ︸︸ ︷
8−1.1=.2k//; : : : ;8−1.1=.2k//;0; : : : /;

y = .

k︷ ︸︸ ︷
8−1.1=.2k//; : : : ;8−1.1=.2k//;

k︷ ︸︸ ︷
−8−1.1=.2k//; : : : ;−8−1.1=.2k//;0; : : : /:
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Then‖x‖.8/ = ‖y‖.8/ = 1 since²8.x/ = ²8.y/ = 1, and

‖x − y‖.8/ = ‖x + y‖.8/ = 28−1.1=.2k//

8−1.1=k/
:

Therefore,

min.‖x − y‖.8/; ‖x + y‖.8// ≥ 28−1.1=.2k//

8−1.1=k/
.k = 1;2; : : : /

and we obtain (12). Finally (9) follows from (11) and (12).
To prove (10), we first show

1=Þ̄8 ≤ J.L.8/[0;∞//:(13)

Take a real numberu ∈ .0;∞/, chooseG1 andG2 in [0;∞/ such thatG1∩G2 = ∅
and¼.G1/ = ¼.G2/ = 1=2u. Putx.t/ = 8−1.2u/�G1.t/ andy.t/ = 8−1.2u/�G2.t/,
where�G1 is the characteristic function ofG1. Note that

‖�G1‖.8/ = ‖�G2‖.8/ = 1

8−1.1=.¼.G1///
= 1

8−1.2u/
:

We have‖x‖.8/ = ‖y‖.8/ = 1 and

‖x − y‖.8/ = ‖x + y‖.8/ = 8−1.2u/

8−1.u/
:

Take the supremum overu ∈ .0;∞/. Since the functionG8.u/ = 8−1.u/=8−1.2u/
is right continuous at 0 and takes value on[1=2;1], we deduce that

J.L.8/[0;∞// ≥ sup
u∈.0;∞/

8−1.2u/

8−1.u/
= sup

u∈[0;∞/

8−1.2u/

8−1.u/
= 1

Þ̄8
:

Finally, we show

2þ̄8 ≤ J.L.8/[0;∞//:(14)

For every real numberv > 0, chooseE1; E2 in [0;∞/ such thatE1 ∩ E2 = ∅ and
¼.E1/ = ¼.E2/ = 1=2v. Put

x.t/ = 8−1.v/[�E1.t/ + �E2.t/] and y.t/ = 8−1.v/[�E1.t/ − �E2.t/]:
Then‖x‖.8/ = ‖y‖.8/ = 1 and

‖x − y‖.8/ = ‖x + y‖.8/ = 28−1.v/

8−1.2v/
:

Take the supremum overv ∈ .0;∞/ (the function 28−1.v/=8−1.2v/ is right contin-
uous at 0 and takes value on[1;2]) we also haveJ.L .8/[0;∞// ≥ 2þ̄8. Hence (10)
follows from (13) and (14).
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3. Upper bounds of J(l (8)) and J(L (8)[0,∞))

Upper bounds for Orlicz spaces remained unsolved (see [1, 9]) until Ji and Wang
([5, Theorem 3]) and Ji and Zhan ([6, Theorem 2]) offered the following equivalent
presentation ofJ.l .8// andJ.L.8/[0;∞//:

Assume8 ∈ 12.0/, then ([6])

.i/ if �.t/ is a concave function, then

J.l .8// = sup{kx > 0 : ²8.x=kx/ = 1=2; ²8.x/ = 1} ;(15)

.ii/ if �.t/ is convex, then

g.l .8// = inf {kx > 0 : ²8.x=kx/ = 1=2; ²8.x/ = 1} :(16)

Suppose8 satisfies the12-conditions for allu, we have [5]

.i/ if �.t/ is a concave function, then

g.L.8/[0;∞// = inf {kx > 0 : ²8.2x=kx/ = 2; ²8.x/ = 1} ;(17)

.ii/ if �.t/ is convex, then

J.L.8/[0;∞// = sup{kx > 0 : ²8.2x=kx/ = 2; ²8.x/ = 1} :(18)

Now we extend these results and get the upper bounds.

THEOREM 3.1. Suppose�.t/ is the right derivative of8.u/, we have

.i/ if �.u/ is concave, then

J.l .8// ≤ 1=Þ̃8;(19)

J.L.8/[0;∞// ≤ 1=Þ̄8;(20)

.ii/ if �.u/ is convex, then

J.l .8// ≤ 2þ̃8;(21)

J.L.8/[0;∞// ≤ 2þ̄8:(22)

PROOF. For the sequence spaces, if8 6∈ 12.0/, which is equivalent toþ0
8 = 1,

thenl .8/ is nonreflexive and henceJ.l .8// = 2 according to the results in Chen [1] or
Hudzik [4]. Since�.t/ is concave implies8 ∈ 12.0/ (see Krasnoselski˘ı and Ruticki˘ı
[7, page 26]), we only need to check (21) when�.t/ is convex, but this is trivial since
J.l .8// = 2 = 2þ0

8 = 2þ̃8. Similarly we check that (20) and (22) hold when8 6∈ 12.
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Therefore it suffices for us to prove (19) and (21) for8 ∈ 12.0/ and (20) and (22) for
8 ∈ 12.

To show (19) when8 6∈ 12.0/, note that forx = {x.i /} ∈ l .8/, ²8.x.i // =∑∞
n=18.|x.i /|/ = 1 we haveui = 8.|x.i /|/ ≤ 1 for i ≥ 1. DefineG8.u/ =

8−1.u/=8−1.2u/, thenu = 8[G8.u/8−1.2u/]. Putui = 8.|x.i /|/=2, then|x.i /| =
8−1.2ui / and

1

2
8.|x.i /|/ = 8

[
G8

(
1

2
8.|x.i /|/

)
|x.i /|

]
:(23)

Therefore, when 0≤ ui = 8.|x.i /|/=2 ≤ 1=2, we have

Þ̃8 ≤ 8−1.ui /

8−1.2ui /
= G8.ui / = G8[8.|x.i /|/=2];

and hence, according to (23),

²8 .Þ̃8 · x/ ≤
∞∑

n=1

8 {[G8.ui /] · |x.i /|} = 1

2

∞∑
n=1

8.|x.i /|/ = 1

2
:

Thus we haveJ.l .8// ≤ 1=Þ̃8 when�.u/ is concave by (15).
Analogously we proveg.l .8// ≥ 1=þ̃8 by (16) when�.u/ is convex. From (3) we

haveJ.l .8// ≤ 2þ̃8.
Finally, we prove (20) for 8.u/ ∈ 12, which is equal to

g.L.8/[0;∞// ≥ 2Þ̄8(24)

when�.t/ is concave in view of (3) and (17).
Let H8.u/ = 8−1.2u/=8−1.u/, then8−1.2u/ = H8.u/8−1.u/. Putx = 8−1.u/,

thenu = 8.x/ and 28.x/ = 8[H8.8.x//x]. Therefore, whenu = 8.x.t// ≥ 0 we
have

²8

(
2x.t/

2Þ̄8

)
= ²8

(
x.t/

Þ̄8

)
≥ ²8

(
8−1.2u/

8−1.u/
x.t/

)
= ²8[H8.u/x.t/] = 2²8.x.t// = 2

for ²8.x.t// = 1. It follows that (24) holds and hence (20) holds.
One can prove (22) similarly by (18). The proof is finished.

4. Examples for computation

With the above bounds forJ.l .8// and J.L.8/[0;∞//, we immediately obtain
satisfactory estimates which are easy to compute.
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THEOREM 4.1. Let8.u/ be anN-function,�.t/ be the right derivative of8.u/.
We have

.i/ if �.t/ is concave, then1=Þ′
8 ≤ J.l .8// ≤ 1=Þ̃8 and J.L.8/[0;∞// = 1=Þ̄8;

.ii/ if �.t/ is convex, then2þ′
8 ≤ J.l .8// ≤ 2þ̃8 and J.L.8/[0;∞// = 2þ̄8.

EXAMPLE 1. For p > 1, we haveJ.L p/ = J.l p/ = max.21=p;21−1=p/, .1<p<∞/.
In fact, let8 = |u|p, thenÞ′

8 = þ ′
8 = Þ̃8 = Þ̄8 = þ̄8 = þ̃8 = 2−1=p. Obviously, if

1 < p ≤ 2 then�.t/ = ptp−1 is concave, and if 2≤ p < ∞ then�.t/ is convex. By
Theorem4.1we get:

• if 1 < p ≤ 2, thenJ.L p/ = J.l p/ = 21=p;
• if 2 ≤ p < ∞, thenJ.L p/ = J.l p/ = 21−1=p.

REMARK 1. If the index functionG8.u/ = 8−1.u/=8−1.2u/ is decreasing or in-
creasing on an interval, then the indicesÞ8 andþ8 take the values at either end of
it. The author [12] found that if F8.t/ = t�.t/=8.t/ is increasing (decreasing) on
.0;8−1.u0/] then G8.u/ is also increasing (decreasing) on.0;u0=2], respectively.
Rao and Ren [8] found the interrelation between Semenove and Simonenko indices:

2−1=A8 ≤ Þ8 ≤ þ8 ≤ 2−1=B8; 2−1=A0
8 ≤ Þ0

8 ≤ þ0
8 ≤ 2−1=B0

8;

where

A8 = lim inf
t→∞

t�.t/

8.t/
; B8 = lim sup

t→∞

t�.t/

8.t/
;

A0
8 = lim inf

t→0

t�.t/

8.t/
; B0

8 = lim sup
t→0

t�.t/

8.t/
:

Therefore,when the index functionF8.t/ is monotonic, the limitsC8 = lim t→∞ F8.t/
andC0

8 = lim t→0 F8.t/ must exist and we have

Þ8 = þ8 = lim
u→∞

G8.u/ = 2−1=C8; Þ0
8 = þ0

8 = lim
u→0

G8.u/ = 2−1=C0
8:(25)

This makes it easier to calculate the indices in Theorem4.1.

EXAMPLE 2. Let a pair of complementaryN-functions be

M.u/ = e|u| − |u| − 1 and N.v/ = .1 + |v|/ ln.1 + |v|/− |v|:

Then p.t/ = M ′.t/ = et − 1 is convex andq.s/ = N′.s/ = ln.1 + s/ is concave on
[0;+∞/. It is easy to check that the index functionFM.t/ = t .et − 1/=.et − t − 1/ is
increasing andFN.t/ = t ln.1+ t/=[.1+ t/ ln.1+ t/− t] is decreasing on[0;∞/. In
view of Remark1, the index functionGM is accordingly increasing on[0;∞/, with
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GN decreasing on[0;∞/. Thereforeþ̃M andÞ̃N both take their value at the right end
of [0;1], that is,

þ̃M = M−1.1=2/

M−1.1/
≈ 0:74828; Þ̃N = N−1.1=2/

N−1.1/
≈ 0:67250:

From Theorem4.1we have

J.l .M// = 2þ̃M = 2þ ′
M = 2M−1.1=2/

M−1.1/
≈ 1:49656;

J.l .N// = 1

Þ̃N
= 1

Þ′
N

= N−1.1/

N−1.1=2/
≈ 1:48699:

SinceCM = limt→∞ FM.t/ = ∞;CN = lim t→∞ FN.t/ = 1, we have

ÞM = þM = 2−1=CM = 1; ÞN = þN = 2−1=CN = 1=2

by (25). Then from Theorem4.1we have

J.L.M/[0;∞// = 2þ̄M = 2þM = 2; J.L.N/[0;∞// = 1

Þ̄N
= 1

ÞN
= 2:

This result coincides with the fact that both the spacesL.M/[0;∞/ andL.N/[0;∞/ are
nonreflexive.

EXAMPLE 3. Consider theN-function (see Gallardo [2])

8p;r .u/ = |u|p lnr .1 + |u|/; 1 ≤ p < ∞; 0< r < ∞:

It is easy to check that�p;r .t/, the right derivative of8p;r .u/, is convex when 1≤
p < ∞, 2 ≤ r < ∞. The index function

F8p;r
.t/ = t8′

p;r .t/

8p;r .t/
= p + r t

.1 + t/ ln.1 + t/

is decreasing fromp + r to p on [0;∞/ since

d

dt
8p;r .t/ = r [ln.1 + t/− t]

.1 + t/2 ln2.1 + t/
< 0:

SoC0
8p;r
.t/ = limt→0 F8p;r

.t/ = p + r . According to (25) and Theorem4.1we have

J.l .8p;r // = J.L.8p;r /[0;∞// = 2þ0
8p;r

= 2 · 2−1=.p+r / = 21−1=.p+r /:

REMARK 2. The author studied the estimation ofJ.L.8/[0;1]/ in [11] and showed
that:
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• if �.t/ is concave then 1=Þ8[1;∞/ ≤ J.L.8/[0;1]/ ≤ 1=Þ̄8;
• and if�.t/ is convex then 2þ8[1;∞/ ≤ J.L.8/[0;1]/ ≤ 2þ̄8, where

Þ8[1;∞/ = inf
u∈[1;∞/

8−1.u/

8−1.2u/
; þ8[1;∞/ = sup

u∈[1;∞/

8−1.u/

8−1.2u/
:

Consequently we have the nonsquare constants for theN-functions given in Example2
and Example3:

J.L.M/[0;1]/ = J.L.N/[0;1]/ = 2;

21−1=p ≤ 28−1
p;r .1/

8−1
p;r .2/

≤ J.L.8p;r /[0;1]/ ≤ 21−1=.p+r /:
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