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Abstract

In this paper, we present the computation of exact value of nonsquare constants for some types of Orlicz
sequence and function spaces. Main results: ®@t) be anN-function, ¢ (t) be the right derivative
of ®(u), then we have

(i) if ¢(t)is concave, then/b, < J(1®) < 1/ag, I(LP[0, 00)) = 1/ag;
(i) if ¢(t) is convex, then B, < J(®) < 284, I(LP[0, 00)) = 2B0.

2000Mathematics subject classificatioprimary 46B45, 46E30.

1. Introduction

The concept of nonsquareness is an important geometric property of Banach space
which expose the intrinsic construction of a space according to the ‘shape’ of the
unit ball of the spaces. The computation of nonsquare constants in Orlicz spaces ha
attracted the interest of many researchers and a considerable number of papers on th
topic have appeared. However there has been little achievement of it since Gao anc
Lau [3] studied the value for Banach spaces. This paper is devoted to deriving exact
estimates of nonsquare constants of Orlicacgs which are easy to use in concrete
applications.

Let X be a Banach spac&(X) = {x : ||X]| = 1, x € X} denotes the unit sphere
of X. The nonsquare constants in the sense of Jarf¢sand in the sense of Schaffer
g(X) are defined as:

) J(X) = supmin(|Ix + ylI, Ix = yID) : X, y € S(X)},
) g(X) = inf{max([x + yII, Ix = yI) : X, y € S(X)}.
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Clearly, if dimX > 2, then 1< g(X) < +/2 < J(X) < 2. Ji and Wang9] asserted
that

3 g(X)J(X) =2

for dim X > 2. It was proved (Chenl]) that J(X) = 2 if X fails to be reflexive.
However, practical calculation far(X) whenX is reflexive excepk? andl P remains
unsolved. In this paper, we extend the results of several authors (for instance, Rer
[9], Ji and Wang }], Ji and Zhan §]) and deal with the computation af(X) when
X is Orlicz function space.®’[0, co) and a sequence spak® equipped with the
Luxemburg norm.

Let®(u) = /" ¢(t) dt be anN-function, that is¢ (t) is right continuousg (0) =
0, andg(t) / oo ast 7 co. The above two spaces are defined as follows:

L[0, co) = {x 2 po(AX) =/
[

d(A|x(1)]) dt < oo for somer > 0},
0,00)

[P = {x = {X()} : pp(AX) = Zd)(k|x(i)|) < oo for somexr > 0} .

n=1
The Luxemburg norm is expressed as
[X|l@) = inf{c > 0: pg (X/C) < 1}.

We say thatd € A,(0) (or A,), if there existu, > 0 andk > 2 such thatb(2u) <
k®(u) for0 < u < uyg (or foru > 0). Later, we will frequently use Semenove indices
of ®(u):

e TN L d(u)
(4) ag = liminf > i2u) Bo = I'Tf;fpdrl(zu)’
. d(u) . d(u)
0 __ 0 _
(5) op = liminf —— ow Bo = "”J 'SUP o
W) A e ()
© “oheay T e

We extend the definition of the indices for the sequential usage:

- o Hu) 1 5 O Hu) 1].
(7) @g =inf {ch(Zu) :0<uc< 5}, Bo _SUD{cbl(Zu) :0<u< 2},

;[ eTNA/2k)

© oy =in {—cbl(l/k) .k_1,2,...},
;o O HL/(2K)

B, = su {—cbl(l/k) .k_1,2,...}.
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2. Lower bounds of J(I1®) and J(L®[0, 00))

We first estimate the lower bounds 6P andL(® [0, oo). The idea is refined from
Ren [9]. We improve it so that the lower bounds may meet the upper ones and we
obtain the exact values.

THEOREM2.1. Let ®(u) be anN-function. Then the nonsquare constant$'®f
andL®[0, o0), in the sense of James, satisfy

9) max(1/ay, 28;,) < J1®)  and
(10) max(1/&e, 2Bs) < J(L[0, 00)).

PrOOF. To prove Q), we first show that
(11) /el < (@),

For any natural numbd, put

X = (& H1/k),..., ®*(1/k),0,0,...),
K k

y=(,...,0,®1/k),...,®%1/k),0,0,...).

Then we havep, (X) = po(Y) =1, [Xll@) = Iyl =1 and

d-1(1/k)

IX=Yl@ = lIX+Yle = ®-1(1/(2K))’

Therefore,
min(||x X > w k=1,2 )
X = Yl IX + Yll@) = B1(1/(2K)) =12...).
Inequality (L1) is proved.
Secondly, we prove that
(12) 28, < ().
Given a natural numbdy;, put
k k
X = (& 11/(2k)), ..., D1/ (2Kk), P 1(2/(2k)), ..., D H(1/(2k)),0,...),
k k

y = (& H1/(2k)), ..., D 1(2/(2k)), =1/ (2k)), ..., —D1(1/(2k)),0,...).
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Then|X|l@) = Yl = 1 sinceps(X) = po(y) =1, and

“1(1/(2k
1= Yoy = X+ Yl = gt 0
Therefore,
204(1/(2K))

d-1(1/k)
and we obtain12). Finally (9) follows from (11) and (L2).

To prove (L0), we first show

mMinCIX = Yl X+ Yl@) = k=12...)

(13) 1ao < I(L@[O, 00)).

Take areal numbar € (0, 00), choosé&5; andG, in [0, oo) suchthatG; NG, = @
andu(Gy) = u(Gz) = 1/2u. Putx(t) = & 1(2u) xg, (1) andy(t) = & 1(2u) xg, (1),
whereyg, is the characteristic function @&;. Note that

1 1

> 1(1/(u(Gy)))  dL2u)’

I xe.ll @ = lxe,ll@) =

d~1(2u)
IX = Yl = IX+ Y@ = CIDT(U)

Take the supremum overe (0, co). Since the functiorG, (u) = ®1(u)/P~1(2u)
is right continuous at 0 and takes value[dyi2, 1], we deduce that

> t(2u) ot2u) 1

J(L®[0,00)) > su = = —.
( ST S R ST SN

Finally, we show
(14) 2Bs < J(L[0, 00)).

For every real number > 0, chooseE, E, in [0, co) such thatE, N E, = ¢ and
w(Ey) = u(Ez) = 1/2v. Put

X(t) = o W) [xe, () + xe, (O] and yt) = (W) [xe, 1) — xe, ()]
Then||X[l@) = Yl =1and

20 1(v)

X =Yl =X+ Yl = O-1(2v)

Take the supremum overc (0, oo) (the function 2-1(v)/®~1(2v) is right contin-
uous at 0 and takes value ¢h 2]) we also havel (L‘®[0, c0)) > 2B,. Hence (0)
follows from (13) and (L4). O
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3. Upper bounds of J(1®) and J (L ®[0, 00))

Upper bounds for Orlicz spaces remained unsolved (5e#) until Ji and Wang
([5, Theorem 3]) and Ji and Zharng([Theorem 2]) offered the following equivalent
presentation ofl (1®) and J (L [0, c0)):

Assumed € A,(0), then (f])

(i) if ¢(t) is a concave function, then

(15) J(1P) = supfk, > 0: po(x/k) = 1/2, po(x) = 1};
(i) if ¢(t) is convex, then

(16) g(‘®) =inf {k¢ > 0: po(X/Ke) = 1/2, po(x) = 1} .

Supposeb satisfies theA,-conditions for allu, we have §]
(i) if ¢(t) is a concave function, then

17) g(L[0, 00)) =inf ke > 0: po(2X/ky) = 2, po(X) = 1};
(i) if ¢(t) is convex, then

(18) J(L[0, 00)) = suptk > 0: po(2x/ke) = 2, po(x) = 1} .
Now we extend these results and get the upper bounds.

THEOREM 3.1. Suppos@ (1) is the right derivative ofb(u), we have
(i) if ¢(u)is concave, then

(19) I < 1ao;
(20) J(LV[0, 00)) < 1/do;

(i) if ¢(u) is convex, then

(21) J(1®) < 28,
(22) J(L[0, 00)) < 2Bs.

PrROOF. For the sequence spacesdif¢ A,(0), which is equivalent tg82 = 1,
thenl® is nonreflexive and henc(1®) = 2 according to the results in Chetj pr
Hudzik [4]. Sinceg (t) is concave implie® € A,(0) (see Krasnoselskind Ruticki”
[7, page 26]), we only need to checklj wheng (t) is convex, but this is trivial since
J(®) =2 =289 = 2B,. Similarly we check that{0) and @2) hold when® ¢ A.,.
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Therefore it suffices for us to prové9) and Q1) for ® € A,(0) and @0) and @2) for
b e As.

To show (9 when® ¢ A,(0), note that forx = {x(i)} € I'®, pp(x(i)) =
Yoo o(x@)]) = 1 we haveu, = d(|x(i)]) < 1 fori > 1. DefineGq(u) =
& 1(u)/d1(2u), thenu = ®[G4,(U)P~1(2u)]. Putu; = O (|x(i)])/2, then|x(i)| =
®~*(2u;) and

1 . 1 . .
(23) S @XM = @ [G¢ (ECD(IX(I)I)) IX(I)I} :

Therefore, when G u; = ®(|x(1)])/2 < 1/2, we have
- D (u)
% =300,
and hence, according t83),

= Go(U) = Go[P(Ix(1))/2],

- N : 1o : 1
Po (&g - X) < ; Q{[Go(u)] - XD} = > ; (X)) = >
Thus we havel (1'®) < 1/a, wheng (u) is concave by15).
Analogously we proveg(l®) > 1/8, by (16) wheng (u) is convex. From3) we
haveJ(1®) < 28,.
Finally, we prove 20) for ®(u) € A,, which is equal to

(24) g(L[0, 00)) > 2a4
wheng (t) is concave in view of3) and (L7).

Let Hy(u) = ®1(2u)/d1(u), then®1(2u) = Hy(u)®~1(u). Putx = ®1(u),
thenu = ®(x) and 2b(X) = ®[Hqe (P (X))X]. Therefore, whem = & (x(t)) > 0 we

have
2x(1)\ X(t) d1(2u)
Pa ( 2, ) = Po (E) > Pcb( (0 X(U)

= po[He (W)X(D)] = 205 (X(1)) =2

for ps (X (1)) = 1. It follows that 4) holds and hence() holds.
One can proveZ?) similarly by (18). The proof is finished. O

4. Examples for computation

With the above bounds fod (1®) and J(L®[0, o0)), we immediately obtain
satisfactory estimates which are easy to compute.
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THEOREM4.1. Let ®(u) be anN-function,¢(t) be the right derivative o (u).
We have

(i) if ¢(t) is concave, thett/o, < J(®) < 1/ae and J(L?[0, 00)) = 1/&q;

(i) if ¢(t) is convex, the@g, < J(1®) < 2B, and J(L®[0, 00)) = 2B,

ExAMPLE 1. For p > 1, we havel(LP) = J(IP) = max 2P, 21-V/P), (1< p<o0).
In fact, let® = |u|P, thena), = B, = Go = @o = Po = Po = 2-¥P. Obviously, if
1 < p < 2theng(t) = ptP~tis concave, and if X p < oo theng(t) is convex. By
Theoremd.1we get:
o ifl < p<2 thend(L?) = J(IP) = 2VP;
o if2 <p<oo,thend(LP) = J(IP) = 2+-Vp,

REMARK 1. If the index functionG, (u) = ®1(u)/®~1(2u) is decreasing or in-
creasing on an interval, then the indiees and 8, take the values at either end of
it. The author 2] found that if F(t) = t¢(t)/®(t) is increasing (decreasing) on
(0, ®~%(up)] then G4 (u) is also increasing (decreasing) o uy/2], respectively.
Rao and Rend] found the interrelation between Semenove and Simonenko indices:

_ _ _ 0 _ 0
2R <y < Bp < 27VBe 27V <) < BY < 2718

where
T to(t) o to(t) .
Ao =l G Be=lmsiPoy
o i o) o ¢ to (1)
Ay = IlrthQf ) By = Ilr?;soup—q)(t) .

Therefore, when the index functidf, (t) is monotonic, the lImit€, = lim,_ o, Fo (1)
andC?2 = lim_, o Fo(t) must exist and we have

(25) o =fBo = lim Gy(u) =277, o =80 = Iimo Go(U) = 277,
U—o00 u—

This makes it easier to calculate the indices in Theofeln

ExAMPLE 2. Let a pair of complementar-functions be
Mu) =€e""—|u -1 and N@) =@+ [v)In@L+ |v]) — |v].

Thenp(t) = M'(t) = € — 1 is convex and)(s) = N'(s) = In(1 + s) is concave on
[0, +00). Itis easy to check that the index functig (t) =t(e —1)/(e' —t — 1) is
increasing andry (t) = tIn(1+1)/[(1+1)In(1+41t) —t]is decreasing ofD, co). In
view of Remarkl, the index functiorsy, is accordingly increasing oft, co), with
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Gy decreasing o0, co). Therefore3y anday both take their value at the right end
of [0, 1], that is,

- MY1/2) N~(1/2)
= —— ~0.74828;, ay = —— ~ 0.67250
A VT TN
From Theorend.1we have
- 2M1(1/2)
|y =28, =28, = ———" ~1.49656;
‘J( ) ﬂM ﬂM M ,1(1)

1 1 N-1(1

an  afy  N-1(1/2)
SinceCy = lim_, o, Fu(t) = 00, Cy = lim_, o, Fn(t) = 1, we have
oy = ﬂM = 271/CM = 1, oN = /3N = 271/CN = 1/2

by (25). Then from Theorem.1we have

(M) 2 . (N) 1 1
J(L™[0,00)) =28 =2Bu=2; J(L"[0,00) = —=—=2.
oN N
This result coincides with the fact that both the spdcéd[0, oo) andL ™[0, co) are
nonreflexive.
ExamvPLE 3. Consider theN-function (see Gallardd?])

@ () =[ulPIn"(1+Ju)), 1<p<oo, O<r < o0.

It is easy to check thap,, (), the right derivative ofb,(u), is convex when 1<
p < 00,2 <r < oo. The index function
to) (D) rt
, —pp—
D, (1) A+t In@d+1t)

Fo, (1) =

is decreasing fronp + r to p on [0, oo) since

d _ riin(1+t) —t]
q)p,r(t) - (1+t)2 |n2(1+t)

dt
SonI’,pAr (t) =lim_oFoy,, (t) = p+r. According to £5) and Theorerd.1we have

J(1@e0) = J(L@[0, 00)) = Z'Bgm — 2.2 Uptn) _ ol-1/(p+n).

REMARK 2. The author studied the estimation dfL® [0, 1]) in [11] and showed
that:
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o if ¢(t) is concave then /gy o) < J(L®[0, 1]) < 1/aq;
e and ifp(t) is convex then By oy < J(L@I0, 1]) < 2B,, Where
. d(u) d(u)
f—_ - —
o oy P = S G

Consequently we have the nonsquare constants fdt thanctions given in Exampl2
and Examples:

Ap[1,00) =

J(L™10, 1)) = I(L™M[0, 1) = 2;

St/ < 20:1(D)

0@
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< J(L(%Ar)[o’ 1]) < 2171/(P+r)'
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