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Abstract

The main aim of this paper is to obtain optimality conditions for a constrained set-valued optimization
problem. The concept of Clarke epiderivative is introduced and is used to derive necessary optimality
conditions. In order to establish sufficient optimality criteria we introduce a new class of set-valued maps
which extends the class of meex set-valued maps and isfeifent from the class ohivex set-valued
maps.
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1. Introduction

The significance of the study of set-valued maps is due to its applications in various
fields such as economics, game theory and differential inclusions (see Aubin and
Ekeland B]). These maps are also involved at various instances in nonsmooth analysis.
For example, tangent cones, subgradients and inverse of functions are all set-value
maps.

In the literature various approaches have been followed in defining the concept of
derivative for set-valued maps. Aubit,[2] introduced the concept of derivatives
in terms of the contingent cones and the Clarketadngent cones, to the graph of
set-valued maps. Lud] and Corley [] established optimality criteria in terms of
these derivatives for set-valued optimization problems. However, while characterizing
optimality conditions, it is useful to consider derivatives involving epigraph of set-
valued maps rather than their graphs (s@elfl]). Jahn and Rauh9] introduced
the notion of epiderivative via contingent cones to the epigraph of set-valued maps.
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It is important to note that Jahn and Rau} ntroduced a single-valued map as
the derivative of a set-valued map. Since the contingent cones are not necessaril
convex, Gotz and Jahi@] required the convexity of the set-valued maps in order
to derive the necessary optimality conditions for a set-valued optimization problem.
Sach and Craveri[] introduced a derivative, in the sense of Aubin and Ekel&d [
by considering Clarke tangent cone to the epigraph where the derivative introduced
is a set-valued map. The notion of invexity for set-valued maps was also introduced
by Sach and Craverl]] and optimality conditions were obtained for a constrained
set-valued optimization problem. Motivated by the works of Gotz and Jéjhen(d
Sach and Cravenl[] we introduce here the notion of a Clarke epiderivative of a
set-valued map. We would also like to mention that this Clarke epiderivative is a
single-valued map, unlike the derivative considered by Sach and Craden [

In Section2 some basic definitions and results are given. In Se&ioa introduce
the notion of Clarke epiderivative for set-valued maps in terms of Clarke tangent cone.
Fritz John type necessary optimality conditions are obtained in this section, for a
constrained set-valued optimization problem in terms of the Clarke epiderivative. In
Sectio4 of the paper the notion of arcwise connectedness is introduced for set-valued
maps as an extension of the notion of convexity. We demonstrate the effectivenes:
of this new class of maps in proving sufficient optimality criteria for the optimization
problem considered in Sectidh With the help of an example it has been shown
that this class of set-valued maps is different from the class of invex set-valued maps
considered by Sach and Craver]

2. Preliminaries

For any real normed linear spa¥elet O, denote the origin of and letY* denote
the dual space of. LetC be a pointed closed convex coneYirand let

C'={peY :p(y)>0VyeC}
be thedual conefor C. For A C Y, define thecontingent cond (A, y*) to Aaty* as
TA y)=theY:3t, | 0,3h, — h with y*+t,h, € A Vvn}
and thenormal coneN (A, y*) to Aaty* as
N(A,Y) ={p e Y :p(y) =0 VyeT(A y)}.
The Clarke tangentoneT.(A, y*) to A aty* is given as

T(A,y)=theY:Vy,— y* and Vt, | 0,3h, — hwith y, +t,h, € A Vn}.
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The Clarke tangent corg(A, y*) is a closed convex cone afid A, y*) C T (A, y*).
If Alis aconvex setthem.(A, y*) = T(A, y*).

We now present the concept of contingent epiderivative introduced by Jahn and
Rauh P] for set-valued maps. LeK be a real normed linear space aSde a
nonempty subset oK. LetF : S — 2" be a set-valued map. The epigraphFaf
denoted by efF), is defined as

epi(F) ={(x,y) e XxY:xeSyeF(X) +C}

Let x* € S with y* € F(x*). A single valued mapDF(x*,y*) : X — Y
whose epigraph equals the contingent cone to the epigraph aif (x*, y*), that
is, ep(DF(x*, y*) = T(epi(F), (x*, y*)) is called thecontingent epiderivativef
F at (x*, y*). The mapDF(x*, y*) is not necessarily convex dgepi(F), (x*, y*))
may not be convex.

Sach and Craverl[] introduced the concept of derivative, in the sense of Aubin
and Ekeland3], for F(x) = F(x) + C. Let gr(F) denote thegraph of a set-valued
mapF : X — 2Y, given by

gr(F) ={(x,y) e XxY:xe X, ye FX)}.

The derivative ofF at (x*, y*) € gr(F) is the set-valued male(x*, y*) whose
graph isTc(epi(F), (x*, y*)), thatis gtDF (x*, y*)) = Tc(epi(F), (x*, y")).

A set-valued mag- : X — 2" is said to beC-convexon S, whereSis a convex
subset ofX, if forall x;, X, € S, € [0, 1]

I—-a)F(X) +aF(X) € F((1— o)X + ax) + C.
The following alternative theorem is by Craven Theorem 3.4.2].

LEmmA 2.1. Let X andY be real normed linear spaces albe a closed convex
cone inY with nonempty interior. Let the single valued map S— Y be C-convex
where S is a convex subset of. Then exactly one of the following systems has a
solution

(i) There existx € Ssuch that- f (x) € intC.
(i) There existy € C*, ¢ # Oy., such thaip(f(x)) > Oforall x € S.

3. Necessary optimality criteria

Inthis section we first introduce the concept of Clarke epiderivative for a set-valued
mapF : X — 2V,
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DEFINITION 3.1. Let x* € X with y* € F(x*). A single valued ma.F (x*, y*) :
X — Y whose epigraph equals the Clarke tangent cone to the epigré&jat of*, y*),
thatis, epiD.F (x*, y*)) = T.(epi(F), (x*, y*)) is called theClarke epiderivativef F
at (x*, y*).

As T.(epi(F), (x*, y*)) is a convex set it follows thaD.F (x*, y*) : X — Yisa
C-convex map, that is, for alt;, X, € X, a € [0, 1]
(L—a)DcF (X", y*) (%) +aDcF (X", y*) (X2) € D F (X*, y) (1 — o)X +aX,) +C.

On the lines of Theorem 4 of Jahn and Raghye can establish the following result.

LEMMA 3.1. LetF : X — 2" be a set-valued map ar@@ibe a pointed convex cone
in Y. If the Clarke epiderivativéd.F (x*, y*) exists, then it is sublinear.

ReEmMARK 3.1. It can be seen that if both the contingent epiderivaie(x*, y*)
and the Clarke epiderivatiie. F (x*, y*) exist, then for alk € X

DcF (X", y)(x) € DRE(X", y)(x) +C
asTe(epi(F), (x*, y*)) € T(epi(F), (X", y)).

REMARK 3.2. On comparing the definitions of the Clarke epiderivative and the
derivative introduced by Sach and Cravéd]it follows that

gr(DF (x*, y*) = epi(D.F (X", y*)),

thatis, DF (x*, y*) = D.F(x*, y*) + C.

The Clarke epiderivative is a single valued map whereas the deri@2f@*, y*)
is a set-valued map. Therefore, it is meaningful to introduce the Clarke epiderivative
D.F(x*, y*) as it is easier to deal with a single valued map rather than a set-valued
map.

We now derive the necessary optimality criteria for a constrained set-valued opti-
mization problem. LeX, Y, Z be real normed linear spaces andletndD be pointed
convex cones irY and Z respectively, with nonempty interiors. L&t : X — 2
andG : X — 27 be set-valued maps. Consider the following set-valued optimization
problem

(P) W Min F(x) subjecttoG(x) N (—D) # ¢.

Let A= {x e X:GX)N(—D) # ¢}. We assume throughout th&t(x) # ¢,
G(X) # ¢, for everyx € X. A point (x*, y*, z*) is said to be a weak minimizer
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of (P)if x* € A, y* € F(x*), z* € G(x*) N (—D) and(y* — F(A)) NintC = ¢,
whereF (A) = [J,., F(X). The set-valued magF, G) : X — 2*“ is defined as
(F,G)(x) = F(x) x G(x) forall x € X. We now establish the following necessary
optimality theorem for ProblemR).

THEOREM 3.1. If (X*, y*, Z*) is a weak minimizer ofP), then there exists
(@, ¥) € C* x D*\{(Oy-, 0z)}
such that for all(y, z) € D.(F, G)(x*, y*, Z*)(X), ¢(y) +v¥(2) > 0andy (') = 0.
ProOOF. We will first prove that
[D(F, G)(X*, y*, Z)(X) + (Oy, Z)] &€ (—intC) x (—int D)

for anyx € X, where intC denotes the interior d€. Suppose on the contrary there
existsu € X such that

(v,w) + (Oy, ") € (—intC) x (—int D),
where(v, w) = D.(F, G)(x*, y*, z)(u). By the definition, we get
(uv v, w) € epI(DC(Fs G)v (X*7 y*7 Z*)) = TC(epl(Fv G)7 (X*7 y*7 Z*))

As T.(epi(F, G), (x*, y*, Z*)) C T(epi(F, G), (x*, y*, z*)) there exists a sequence
(Xn» Yn» Z0) With X, € X, ¥, € F(xy) + C, z, € G(x,) + D and a sequencg.,) of
positive real numbers such that im,, (X,, Y, Z,) = (X*, y*, Z*) and

lim A%y — X", Yo — ¥, 2y — Z°) = (U, v, w).
n—oo

Sincev € —intC andw + z* € —int D, there exist natural numbekl§, N, such that
An(Yn — Y5 € —intC Vn > Ny andin(z, — Z°) + z* € —intD Vn > N,. Choose
N > max(N;, N,). Then

(1) yn— Y e—intC, zy—(1-1/Ay)Z € —intD.

Thus, we have thay* € yy +intC. Asyy € F(xy) + C, it follows from (1) that
y* € F(Xy) + C +intC, that is,

) (y' = F(xn) NintC # ¢.

We can suitably choodd such thaky > 1. Sincez* € —D we haval—(1/in))Z" €
—D. As D is a convex cone, on using)(it follows thatzy € —intD. Also since
Zy € G(Xy) + D we havezy = a + B wherea € G(xy), 8 € D. Aszy € —intD,
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we havew € —8 —intD € —D —intD € —D and hencer € G(xy) N (—D) that
is, Xy is a feasible solution ofF). Thus @) contradicts the fact thai*, y*, z*) is a
weak minimizer of P).

SinceD.(F, G)(x*, y*, z*) is sublinear (see Lemn®al) itis aC x D-convex map
and hence by Lemma1there existgp, ¥) € C* x D*\{(Oy., 0z.)} such that

(3 e(Y)+v(@z+7Z)=0

forall (y,2) € D.(F, G)(x*, y*, z)(X). As D.(F, G)(x*, y*, z*) is positively homo-
geneous, we havB.(F, G)(x*, y*, z*)(0) = (0Oy, 0z). Thus from @) it follows that
¥(z) > 0. Also asz* € —D, we havey (z*) < 0 and hence)(z*) = 0. Sincey is
a continuous linear function antl(z*) = 0 it follows from (3) thatp(y) + ¥ (2) > 0
forall (y, 2) € D.(F, G)(x*, y*, z*)(X). O

REMARK 3.3. In a recent paper by Gotz and Jaldh fiecessary optimality condi-
tions were obtained for Probler®} in terms of the contingent epiderivative assuming
the cone-convexity of the set-valued mapsand G. However when the necessary
optimality conditions are derived in terms of the Clarke epiderivative no convexity
assumption is required on the set-valued maEndG.

REMARK 3.4. Sach and Craveri[l, Theorem 1] obtained the Fritz-John necessary
optimality conditions in terms of the derivative of the set-valued rifagx) — y*) x
G(X)+(C x D). However it may be noted that in Theor&mwe obtain an additional
complementarity conditiom (z*) = 0 unlike the Fritz-John optimality conditions of
Sach and Craveri[].

4. Sufficient optimality criteria

In this section we first introduce a new class of set-valued maps which extends the
class of convex set-valued maps and use it to derive sufficient optimality conditions
for the optimization problemF).

Avriel [4] introduced the concept of arcwise connectedness as a generalization of
convexity by replacing the line segment joining two points by a continuous arc. A
subsetS of X is said to be an arcwise connected set if forxallx, € Sthere exists a
continuous ard,, ,,(«) defined o0, 1] with a value inS such thatH,, ,,(0) = x;
andH,, ,, (1) = X,.

DEFINITION 4.1. A set-valued mag- : X — 2" is said to beC-arcwise connected
atx* € S, whereSis an arcwise connected subsetXfandC is a pointed convex
coneinY,ifforall x € S,a €0, 1],

(1—-a)F(X") +aF () € F(He x(2)) 4+ C.
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A set-valued mafp is said to be&C-arcwise connected dj if itis C-arcwise connected
ateachx* € S.

Clearly everyC-convex set-valued map G-arcwise connected whetd, ,,(«) =
(1—a)x; +aXx,. The following examples illustrate that the converse is ragssarily
true.

EXAMPLE 4.1. Let X = R, Y = R,C = R, and
S={(x, %) : XX +%;>1 x>0, x, > 0}.

Define H, y(o) = (1 — o)X + aud)¥2, (1 — a)xZ + au)*?), wherex = (X1, X2)
andu = (uy, U,). ClearlySis an arcwise connected set. DefiRe X — 2" as

[0,2] if x2+x3>1;

F(x) =
0 {[3,5[ if X2+x2 < 1.

The set-valued map is C-arcwise connected 08, but it is notC-convex because
forx = (1,0),u = (0, 1), « = 1/2 the following does not hold

l-a)FX)+aFU) € F(1—-a)x+au) +C.

ExamvMPLE 4.2. Let X = R, Y be the set of real sequences converging to z€ro,
be the set of nonnegative real sequences converging to zer§ andk,. Y is a
normed linear space withy|| = sup, .| for y = (y,) € Y. Define Hy () =
(1 — a)¥?x + «¥?u, forx, u € S. DefineF : R — 2" as

F(x) = {{x*/n}, {(=x?/n}}.

From the definition ofF we can see thaf is set-valued map since at eacke R,

F (x) is the set consisting of two sequences frémdefined in that particular fashion.
It can be seen thaf is a C-arcwise connected set-valued map Snbut it is not
C-convex, because for= 1, u = 3, « = 1/2 the following does not hold

l-a)FX)+aFU) € F(1—-a)x+au) +C.

Sach and Cravenl[l] generalized the concept of invexity for set-valued maps.
One of the generalizations, namely invex 2 is given in terms of the the derivative
DF(x*, y*) of F at(x*, y*) whereF (x) = F(x) +C. A set-valued mafF : X — 2"
is said to be invex 2 atx*, y*) € gr(F), if for everyx € X there exists) € X such
that

F(x) +C —y* € DF (X", y) ().

We now give an example of @-arcwise connected set-valued valued map which
is not invex 2 for any; € X.
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EXAMPLE 4.3. Let X =Y = R, S=C = R,. DefineH,. x(a) = ((1 —a)x* +
ozxz)l/2 for x*, x € S. DefineF : X — 2¥ asF(x) = [—x2, 0]. It can be seen that
F is C-arcwise connected o8 but is not invex 2 atx*, y*) = (0, 0), because for
(X, y) = (1, —1) the following does not hold

F(x) — y* 4+ C C DF(X*, y*)(1)
for anyn € X.

We now characterize@-arcwise connected set-valued map in terms of its epigraph.

DEFINITION 4.2. A subsetA x B of X x Y is said to be arcwise-convexis an
arcwise connected subsetX¥fandB is a convex subset of.

THEOREM4.1.Let F : S — 2Y be a set-valued map, whe®@ is an arcwise
connected set. The set-valued nkajs C-arcwise connected, if and only &pi(F) is
an arcwise-convex subsetXfx Y.

PrOOF. Let F be aC-arcwise connected set-valued map. Lety;) € epi(F),
i = 1, 2. By definition fora € [0, 1], we have
1-a)F(X) +aF(X) € F(Hy, x (@) +C.
Since(1 —a)y1 +ay, € (1 — a)F(X) + aF (X)) + C, we have
(I —a)y1 +ay, € F(Hy x (@) +C.

Thus fora € [0, 1], (Hy, x, (@), (1 — &)Y + ay,) € epi(F).
Conversely, letk; € S,y € F(X),i = 1,2. Clearly(x, y;) € epi(F), i =1, 2.
As epi(F) is an arcwise-convex set, fare [0, 1] we have
(Hi (@), (1 — a)y1 + ays) € epi(F),
thatis, fore € [0, 1], (1 — a)y1 + a¥, € F(Hy, x () + C. HenceF is aC-arcwise
connected set-valued map 8n O

The following theorems give necessary conditionsGearcwise connectedness of
a set-valued map.

THEOREM4.2. If F : X — 2¥ is a C-arcwise connected set-valued map 8n
whereSis an arcwise connected subsettfthen for allx*, x € S, y* € F(x*)

F(x) —y" € DF(X", y")(Hy. ,(0+)) + C

where
Hx*,x(a) - Hx*,x(o)

o

H.. (0 = lim
’ al0
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We assume thatl;, , (0+) exists for allx*, x € S.
PrOOF. Letx € Sandy € F(x). Define a sequenag,, Y,) as

Xo = Hex (I/N), Yo=Y +(y—y9)/n

As Sis an arcwise connected set, it follows thgte S. Also lim,_. ., ¥, = y* and
lima_ X, = X*. As F is aC-arcwise connected set-valued map, we have

-3 ey + 2r00 c F (e, (2 C
yn€<_ﬁ> (X)"‘H (X)_ (x*x(ﬁ))‘f’ 5

thatis,y, € F(X,) +C. Hence the elements of the sequef¢ey,) belong to epiF)
with limp_ o (Xa, Yn) = (X*, y*). Moreover,

n'ﬂL N(X, — X*) = r]IerCLn (Hy x(1/N) = Hy 4 (0)) = Hy. (0+).
Hence lim_ . N(X, — X*, Yo — ¥*) = (H,. ,(0+), y — y*) and consequently

(Hy. ,(04),y — y") € T(epi(F), (x*, y*)) = epi(DF (X", y)).
Thereforey — y* € DF(x*, y*)(H,. ,(0+)) + C and hence the result. O

THEOREM4.3. Let F : X — 2Y be aC-arcwise connected set-valued map8n
where S is an arcwise connected subsetXf Assume that;, ,(0+) (as defined
in Theorem¥.2) exists for allx*, x € Sthen for all (¢, —y) € N(epi(F), (x*, y*)),
x*e Sy e F(x*),y e C*|¢¥||=21landallx € S

or () — ¥ (YY) = ¢(H,. (0+))
whereor i, (¥) = infyce ) ¥ (Y).
PrOOF. By the previous theorem for anye F(x), we have

y—Yy" e DF(X*, y")(H,. ,(0+)) + C,
that is,
(Hy. ,(0+), y — ¥*) € epi(DF (x*, y)) = T (epi(F), (X", y)).

As (¢, =) € N(epi(F), (x*, y*)) we havep(H;. ,(0+)) — ¥ (y — y*) < 0 which
implies the result. U

We now turn to the main result of this section. Sufficient optimality conditions are
obtained in terms of contingent epiderivative and not in terms of Clarke epiderivative,
as necessary condition f@-arcwise connectedness set-valued map is known in terms
of contingent epiderivative (see Theordi.).
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THEOREM4.4. Let (F, G) : X — 2 x 2% be a(C x D)-arcwise connected set-
valued map onS, whereA = {x € X : G(X) N (—D) # ¢} € Sand Sis an
arcwise connected subsetXf If x* € A, y* € F(x*), " € G(X*) N (—D), (¢, ¥) €
(C*, D*) \ {(G%, 0%)} are such that

4) e(Y)+v¥(2 =0
and
5) v (Z') = 0.

forall (y, z) € D(F, G)(x*, y*, Z*)(X), then(x*, y*, z*) is a weak minimizer ofP).

PrROOF. On the contrary letx*, y*, z*) be not a weak minimizer of). Then there
existx € A,y € F(X), ze G(x) N (—D) such thaty* — y € intC. This implies that

(6) e(y—y) <0, (2 <0

As (F,G) is a (C x D)-arcwise connected set-valued map $nit follows from
Theorem4.2 that (y, 2) — (y*, z°) € D(F, G)(x*, y*, z)(H. ,(0+)) + (C x D).
Hence for somgy®, z°) € D(F, G)(x*, y*, Z")(H}. ,(04)), (c°,d°) € C x D we
have

) ¥, 2 = (v, 2) = (y*. ) + (¢, d°).
As (c%,d% e C x D we get

(8) p(c) =0, y(d) =0
Using (), (6), and @) in (7) we get

€ e(Y) + v () <0
which contradicts4) and hence we arrive at the result. O
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