
J. Aust. Math. Soc.75 (2003), 409–411

SMALE’S MEAN VALUE CONJECTURE FOR ODD
POLYNOMIALS

T. W. NG

(Received 3 July 2002; revised 15 January 2003)

Communicated by P. C. Fenton

Abstract

In this paper, we shall show that the constant in Smale’s mean value theorem can be reduced to two for a
large class of polynomials which includes the odd polynomials with nonzero linear term.
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1. Introduction and main result

Let P be any polynomial; thenb is a critical point ofP if and only if P ′.b/ = 0, and
v is a critical value ofP if and only if v = P.b/ for some critical pointb of P.

In 1981 Steve Smale proved the following interesting result about critical points
and critical values of polynomials.

THEOREM A ([3]). Let P be a non-linear polynomial anda be any given complex
number. Then there exists a critical pointb of P such that
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or equivalently, we have
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Smale then askedwhether one can replace the factor4 in the upper bound in (1) by 1,
or even possibly by.d − 1/=d. He also pointed out that the number.d − 1/=d would,
if true, be the best possible bound here as it is attained (for any nonzeroA; B) when
P.z/ = Azd − Bzanda = 0 in (1). The conjecture has been verified ford = 2;3;4,
and also in some other special circumstances (see [1, 4] and the references therein).

It is easy (see [1]) to show that Smale’s conjecture is equivalent to the following:

NORMALISED CONJECTURE. Let P be a monic polynomial of degreed ≥ 2 such
that P.0/ = 0 and P′.0/ 6= 0. Letb1; : : : ;bd−1 be its critical points. Then
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≤ N|P′.0/|(3)

holds forN = 1 (or even.d − 1/=d).

Let Md be the least possible value ofN such that (3) holds for all degreed
polynomials. Recently, in [1], it was shown thatMd ≤ 4.d−2/=.d−1/. In this paper we
shall prove that for a very large class of polynomials (which includes the non-linear
odd polynomials), one can takeN = 2 in (3).

THEOREM 1. Let P be a polynomial of degreed ≥ 2 such thatP.0/ = 0 and
P′.0/ 6= 0. Letb1; : : : ;bd−1 be its critical points such that|b1| ≤ |b2| ≤ · · · ≤ |bd−1|.
Suppose thatb2 = −b1, then
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COROLLARY 1. If P is a nonlinear odd polynomial with nonzero linear term, then
(4) holds forP.

PROOF. If P is a non-linear odd polynomial (that is,P.−z/ = −P.z/), then
P.0/ = 0. Hence,P.z/ = zk Q.z2/ for some odd numberk ≥ 1 and non-constant
polynomial Q with Q.0/ 6= 0. Since the linear term ofP is nonzero,P′.0/ 6= 0.
Clearly, P′.z/ = R.z2/ for some suitable polynomialR. Therefore, we can take
b2 = −b1 and apply Theorem1 to complete the proof.

PROOF OFTHEOREM 1. We may assume thatP.bi / 6= 0, for all i , for otherwise, we
are done. Therefore,r = mini {|P.bi /|} > 0 as there are only finitely many critical
values. LetD.0; r / be the open disk with centerw = 0 and radiusr . ThenD.0; r /
contains no critical values ofP. Since P.0/ = 0 and P′.0/ 6= 0, by the inverse
function theorem,P−1.z/ exists in a neighbourhood of 0 withP−1.0/ = 0. By the
Monodromy Theorem,P−1.z/ can be extended to a single valued function on the
wholeD.0; r /.
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Let f : D.0;1/ → C be defined byf .z/ = P−1.r z/. Then f is an univalent
function and omits all thebi ’s. This will give some restrictions on the size of| f ′.0/|
which is equal tor=|.P′.0/|. In fact, we have the following result of Lavrent’ev.

THEOREM B ([2]). Let 0 ≤ � ≤ 2³ . Supposef : D.0;1/ → C is an univalent
function which omits the setA = {Re{�+.2³ j /=n}i | 1 ≤ j ≤ n}, then| f ′.0/| ≤ 41=n R.

Recall that|b1| ≤ |b2| ≤ · · · ≤ |bd−1|, so mini {|bi |} = |b1|. Sinceb2 = −b1, we
can taken = 2 in TheoremB. Now
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|P′.0/| ≤ mini {|P.bi /|}
mini {|bi |}|P′.0/| = r

mini {|bi |}|P′.0/|
= | f ′.0/|

mini {|bi |} = | f ′.0/|
|b1| ≤ 41=2|b1|

|b1| ≤ 2

and we are done.

Note added in proof. From the proof of Theorem1 and Corollary1, it is easy
to see that if for somekth root of unity½ we havep.½z/ = ½p.z/ identically and
p′.0/ 6= 0 (for example, polynomials of the formzQ.zk/, Q.0/ 6= 0), then (3) holds
with N = 41=k. Of course fork at least 3 there are not so many of these polynomials,
but interestingly for the conjectured extremal example ofp.z/ = Azn − Bz, this holds
with k = n − 1.
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