J. Aust. Math. Soc75(2003), 413422

ON ¢-DIRECT SUMS OF BANACH SPACES AND CONVEXITY

MIKIO KATO, KICHI-SUKE SAITO and TAKAYUKI TAMURA

Dedicated to Maestro Ivry Gitlis on his 80th birthday with deep respect and affection

(Received 18 April 2002; revised 31 January 2003)

Communicated by A. Pryde

Abstract
Let X3, Xz, ..., Xy be Banach spaces and a continuous cavex function with some appropriate
conditions on a certain cwex setirRN-1. Let(X1@® Xo®- - -@® Xn)y be the direct sum oky, Xs, ..., Xy

equipped with the norm associated with We characterize the strict, uniform, and locally uniform
convexity of (X; @ X2 @ --- @ Xn)y by means of the awvex function . As an application these
conveities are characterized for thg g-sum(X; @ Xo @ -+ @ Xn)pq (L < q < p < 00,0 < 00),
which includes the well-known facts for tlig-sum(X, & X, @ - - - @ Xn)p in the casep = q.

2000Mathematics subject classificatioprimary 46B20, 46B99, 26A51, 52A21, 90C25.
Keywords and phrasesabsolute norm, aovexfunction, direct sum of Banach spaces, strictlynoex
space, uniformly covex pace, locally uniformly covex pace.

1. Introduction and preliminaries

Anorm | - | onCN is calledabsoluteif ||(z, ...,z = (zl, ..., |zx))| for all
(21, ...,2y) € €V, andnormalizedif ||(1,0,...,0)| = --- = ||(0,...,0, )| =1
(see for exampled, 2]). In case ofN = 2, according to Bonsall and Duncas] [see
also [L2), for every absolute normalized norjn || on C? there corresponds a unique
continuous convex functiott on the unit interval0, 1] satisfying

maxl—t t}<y() <1

The authors are supported in part by Grants-in-Aid for Scientific Research, Japan Society for the
Promotion of Science.
(© 2003 Australian Mathematical Society 1446-8107%2.00+ 0.00

413


http://www.austms.org.au/Publ/JAustMS/V75P3/n57.html

414 Mikio Kato, Kichi-Suke Saito and Takayuki Tamura [2]

under the equatioty (t) = ||(1 —t,t)||. Recently in 1] Saito, Kato and Takahashi
presented th&l-dimensional version of this fact, which states that for every absolute
normalized nornj - || on CN there corresponds a unique continuous convex function
¥ satisfying some appropriate conditions on the convex set

N—-1
AN = {t =, ...,y € [RNilIth < 1,tj ZO}

=1

under the equatiogr (t) = || (1— Y1t b, .. o) |
For an arbitrary finite number of Banach spaceés X, ..., Xy, we define the
Y-direct sum(X; @ X, @ - - - @ Xy),, to be their direct sum equipped with the norm

10 Xau o X0y = Al %l XD for x5 € X,

where|| - ||, term in the right-hand side is the absolute normalized norrt®mvith
the corresponding convex functign This extends the notion @f,-sum of Banach
spaces. The aim of this paper is to characterize the strict, and uniform convexity of
(X1 ® X @ -+ & Xn)y. The locally uniform convexity is also included. For the
caseN = 2, the first two have been recently proved in Takahashi-Kato-Ski@hd
Saito-Kato [L0], respectively. However the proof of the uniform convexity for the
2-dimensional case given in()] seems difficult to be extended to thedimensional
case, though it is of independent interest as it is of real analytic nature and maybe
useful for estimating the modulus of convexity. Our proof for tRedimensional
case is essentially different from that ih(]. As an application we shall consider the
Log-SUM(X @ X B - - - @ Xn)p g and show thatX; & X, @ - - - @ Xy )p q IS uniformly
convex if and only if allX; are uniformly convex, where £ g < p < oo, q < oo.
The same is true for the strict and locally uniform convexity. These results include
the well-known facts for thé ,-sum(X; @ X, @ - -- @ Xy),p as the case = q.

Let us recall some defitions. A Banach spack or its norm|| - || is calledstrictly
convexif ||IX|| = |lyll =1 (x # y) implies ||(X + y)/2|| < 1. This is equivalent to
the following statement: ifix + y|| = [IX|]| + Y], X # 0, y # 0, thenx = Ay
with somex > 0 (see for exampled] page 432],1]). X is calleduniformly convex
provided for any (0 < € < 2) there exist$ > 0 such that whenevejix — y|| > e.
IIX]l = lyll = 1, one hag|(x + y)/2|| < 1— 4§, or equivalently, provided for any
(0 < € < 2) one hasy(¢) > 0, wheresy is themodulus of convexity of, that is,

Sx(e) ==inf{l— X+ y)/2I;IIx =Yyl =€ IxI=1lyl=1 (0=<e=<2.

We also have the following restatemeitis uniformly convex if and only if, whenever
IXall = IYnll = L and|| (X, + Vn) /2|l — 1, it follows that||x, — y,|| — 0. X is called
locally uniformly convexsee for exampled, 4]) if for any x € X with ||x|| = 1 and
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for anye (0 < € < 2) there existss > 0 such that if|x — y|| > ¢, |yl = 1, then
I(X +y)/2|] < 1— 4. Clearly the notion of locally uniform convexity is between
those of uniform and strict convexities.

2. Absolute norms onCN and y-direct sums(X; & X, @ -+ - & Xy)y

Let ANy denote the family of all absolute normalized norms@h Let
An={(s,5 ....5n-1) € RV i 454+ 45y < L sp > 0(Y))).
For any| - || € ANy define the functiony on Ay by
1) v =I1-s——sn1,8,....Svl for s=(s,...,sy 1) € Ay.

Thenyr is continuous and convex aly, and satisfies the following conditions:

(Ao) v(@0,...,00 =¢%(1,0,...,00=---=v(0,...,0,1) =1,
S Sn—
(Al) 1/’(31,---,SN,1) > (S_I.++SN,1)¢‘ (ZiN—ll o ZIN—:L::_S) ’
S Sn-1
(A) K/f(sl,n-,SN1)2(1—31)1/f<0,1_81,...,1_Sl>,

(A (.S = LSy (1_5;1,..., 1131,0).

Note that from @) it follows that ¥ (s;,...,Sy-1) < 1 on Ay asy is convex.
DenoteWwy be the family of all continuous convex functiotison Ay satisfying (),
(A1), ..., (Ay). Then the converse holds true: For ahy Wy define

(Zi1z) v (1z1/ (S, 1zl /(S 121))
2 Wz ...zl = if (z1,...,2y) # (0,...,0),
0 |f (Zl,...,ZN):(O,...,O).

Then| - ]I, € ANy and|| - ||, satisfies {). Thusthe familiesANy and W are in one-
to-one correspondence under equat{@p(Saito-Kato-Takahashif,, Theorem 4.2]).
Thef,-norms

{|z2P + - + |zy|P}YP if 1 < p < o0,

”(Zl’---’ZN)”p:{
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are typical examples of absolute normalized norms, and fofiafiye ANy we have

3 oo < - =1l

([11, Lemma 3.1], see als@]). The functions corresponding tg-norms onC" are

{(1—2;\:1151-)’)—#5{)—#...+s,ﬂ,1}l/p if 1<p<oo,

Yp(S, ..., Sn1) = N )
max{l—Zj:l sj,sl,...,sN,l} if p=oo

for (s;,...,Sy_1) € An.

Let Xy, X,, ..., Xy be Banach spaces. Lg¢te Wy andlet|-||, be the correspond-
ing norm inANy. Let (X; @ X; @ --- @ Xy), be the direct sum 0Ky, X, ..., Xy
equipped with the norm

4 (X2, X2, s Xn) My = Tl Il - XD for X; € X

As is itimmediately seer(X; @ X, @ --- & Xy), is a Banach space.

EXAMPLE. Let1 < q < p < o0, 4 < oo. We consider the Lorentg, ,-norm
12l pg = {Z;\':lj@/p)*lzj‘q}l/q for z = (z,....zy) € C", where{z} is the non-
increasing rearrangementfi; |}, thatis,z; > z; > --- > z. (Note that in case of
1<p<qg=oo,l|-lpgisnotanorm buta quasi-norm (se& Proposition 1], {4,
page 126])). Evidently - ||, 4 € ANy and the corresponding convex functigp , is
obtained by

(5) Vpa(®) =1(1—s — -+ —Sy_1,S1, ..., Sl pg

(fors=(si,...,Sn-1) € Ay), thatis,|| - lpqg = I - Iy, LELX1 D X2 D - -- D X\)pq
be the direct sum of Banach spacés X,, ..., Xy equipped with the norm

Xas - XD g s= Xl - XN D T

we call it thef, o-sumof Xy, X, ..., Xy. If p=qthef, ,-sumis the usual,-sum
(X1 @ Xo@ - @ Xn)p.

For some other examples of absolute norm&8rwe refer the reader td [l] (see
also [12]).

3. Strict convexity of (X;® X, @« -+ @ Xyn)y

A function ¢y on Ay is calledstrictly convexf for any s,t € Ay (s # t) one has
Y((s+1)/2) < (¥(s) + ¥(t))/2. For absolute norms of", we have
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LEMMA 3.1 (Saito-Kato-Takahashl], Theorem 4.2])Let ¥ € W¥y. Then(CN,
I - 1I,) is strictly convex if and only i is strictly convex.

The following lemma concerning the monotonicity property of the absolute norms
onCN is useful in the sequel.

LEMMA 3.2 (Saito-Kato-Takahashl], Lemma 4.1]).Lety € Wy. Letz = (z,
...,ZN),'LU= (wl,...,wN) (S (CN.

(i) If|z| < |w;|forall j,then]z|, < [lwl.

(i) Lety be strictly convex. Ifz;| < |w;| for all j and|zj| < |w;| for somej,
then||z||,,, < [lwlly.

THEOREM 3.3. Let Xy, X5, ..., Xy be Banach spaces and lg¢t € Wy. Then
(X1 @ Xz @ --- ® Xy)y is strictly convex if and only iXy, X, ..., Xy are strictly
convex andy is strictly convex.

PROOF. Let(X;®X,®---®Xy), be strictly convex. Then, eacty and(CV, ||-[|,)
are strictly convex since they are isometrically imbedded iXo® X, @ - - - @ Xy)y .
According to LemmaB.1, v is strictly convex.

Conversely, let eaclX; and ¢ be strictly convex. Take arbitrary = (x;),
y= (), X#Y,In(Xg® X, ®---® Xn)y with [[x]l, = [lyll, = 1. Let first

UXalls - XN 0D = AYalls - - lynID- Then, iffx + yll, = 2,
2=X+Yly =X+ yall, ..., IXn + Yn DIy
< A+ Tyl - X+ Tyn DI < IX1y + 1yl = 2,
from which it follows that||x; + y; | = IIx; [l + Ily; || for all j by Lemma3.2. As each
X; is strictly convex,x; = k;y; with k; > 0. Since|x;|| = [ly;ll, we havek; = 1
and hence; = y; for all j, or x =y, which is a contradiction. Therefore we have
X +ylly < 2. Letnext([X.l, ..., IXnlD) # (IYll, ..., [lyn D). Sincey is strictly
convex,(CN, || - ||,,) is strictly convex by Lemma&.1 Consequently we have
X+ Ylly = 10X+ Yalls oo X8+ YN DI
< Xl 4 Mryalls <o X+ TYn DTy
= Xl o XD+ CAyalls - TynID Iy < 2,
as is desired. O

Now we see that the functiowt,, in the above example is strictly convex if
1<qg=<p=<oo < oo Weneedthe nextlemma.



418 Mikio Kato, Kichi-Suke Saito and Takayuki Tamura [6]

LEMMA 3.4 ([5]). Let{e;}, {8;} € RN anda; > 0, B; > 0. Let{o7}, {8} be their
non- increasing rearrangements thatéq, >a) > >ayandp; > B> -0 >

ﬂN ThenZJ 1“ IBJ <ZJ =1 J

PROPOSITION3.5. Letl < q < p < 00, g < co. Then the function, 4 given by
(5) is strictly convex om\y.

PROOF. Lets = (sj),t = (tj) € Ay, s # t. Without loss of generality we may
assume that

-G+t - (vt =St > > S+t = 0.
Put
o=0—s— =Sy, 2P s, .. NYP Ay,
T = (1 — tl — s — thl, 21/p—1/qtl’ ey Nl/pil/qthl).

Then by Lemma.4we have

lollg={(L—s =+ = sy + 2P ] ... 4 NVPIs) )0
<lIl=s— - —=Sv-1.S -, Sn-Dllpg = ¥pq(S)

and|zllq < ¥pq(t). On the other hand,

S—I—'[ lS+ 9 N-1 s 1t 1/q
K/qu {(1 5 )—I—Z(I—I—l)q/pl( > )}

i= i=1

1 N—-1 N—1 q
(61 E) - 59)
i=1 i=1
N-1 q 1/q "
+Z< (i +DYP Y5 + (i + TPy, }) } =2 > i
i= q

Sincelq-norm|| - [lq (1 < q < oo) is strictly convex and # t, we haveljo + 7|l <
lollq + lItllg. Indeed, iflo + tllq = llollq + lITllq, theno = kz with somek > 0
(note thar # 0,7 # 0). Hences; = kt; forall j, and -3\t s = k(1—- 310 ).
Thereforek = 1 and we have = t, which is a contradiction. Consequently,

+t + + ¥pal
Voo (SZ ): _ lollg + lITllg - Vpa(S) + ¥pql )’

2 - 2
or ¥, 4 is strictly convex. O

o+
2

q

By TheorenB.3and Propositior8.5we have the following result for thé, ,-sum
of Banach spaces.
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COROLLARY 3.6. Letl < q < p <00, g <oo. Thenty,-sum(X; ® X, ®--- D
XN)p.q IS strictly convex if and only Ky, Xs, ..., Xy are strictly convex.

In particular, thef,-sum(X; @ X, @ --- @ Xn)p, 1 < p < oo, is strictly convex
if and only if X;, X5, ..., Xy are strictly convex.

4. Uniform convexity of (X, @ X, @« - - @ Xn)y

Let us characterize the uniform convexity©@f; & X, @ --- @ Xy)y.

THEOREM4.1. Let X4, X5, ..., Xy be Banach spaces and lg¢t € Wy. Then
(X1@® X, ®- - - @ Xy)y is uniformly convex if and only X;, X,, ..., Xy are uniformly
convex andy is strictly convex.

PROOF. The necessity assertion is proved in the same way as the proof of Theo-
rem3.3. Assume thaX,, X,, ..., Xy are uniformly convex ang is strictly convex.
Take an arbitrary > 0 and put
§ 1= 28x(e) = Inf{2— [Ix +ylly : X = Ylly =€ IXlly, = lyll, =1}

We show thas > 0. There exist sequencs,} and{y,}in (X; & Xo® --- & Xn)y
so that

(6) ”Xn_yn”x/; > €,
IXally = lIYnlly =1
and
(7) Jml|xn+ynl|¢=2_8'
Let x, = (x",....x") andy, = (y\",...,y"). Since for each 1= j < N,
X1l = 110, . x<”> 0,....0l, < ||xn||w = Land|ly\”|| < Ilyall, = 1 for all

n, the sequence{sﬁx(”)n}n and{||y(”)||}n have a convergent subsequence respectively.
So we may assume thigx{” || — aj, [ly" | — b; asn — oo. Further, in the same
way, we may assume that

(8) Ix™ =yl > ¢; asn— oo

and

(9) X +y”| - d; asn— oo.

Putk, = 31, X[l Then|Xqlly, = Knr (1% 1/Kn, ..., X" [I/Kq) = 1. Letting

n — oo, asy is continuous, we have

ay _
(10 ... aN>||¢—<ZaJ) (zJ .8y ""Zj”-laj)_
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Also we have

N
b, by
' R 12—1: ! ZJ le Z;\Izlbj

Next leth — oo in (6), or in

N
=l = (S - H)
-1

" —ys'| 2y
v ’ > €.
( j:1 [x"™ =y j:l [x™ —y™ H)
Then we have

Cn
(12) ICi,....,C)lly = c > €
' Y (Z J) (ZJ 1 G Z;\I—lcj)

by (8). In the same way, according t@)@nd ©), we have

(13) Iy, ....dn)ly =2—36.

Now, assume thaty, ..., ay) # (b, ..., by). Then, according tol(), (11) and
the strict convexity ofy we obtain that

2—8=|[(dy,....dWIly <@ +Dby,....,an + bWy <2,

which impliess > 0. Next, let(a,...,ay) = (by,...,by). Since(cy,...,cN) #
O, ..., 0 from (12), we may assume that > 0 without loss of generality. Then as

C, = I|m X" — " < nIETCL (™1 + 1y |) = a4+ by = 2ay,

we havea; > 0 and

n) (n) (n)

(14) 0<Z = im ﬁ— Y1 ‘z L_L"
R I TR e N
Indeed, we have the latter identitedause
H X" vy X" vy ‘
Il Il ™I sl
< Iy R ) P S
Xy E)
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SinceX; is uniform convex, it follows from14) that
) ()

X1 Y1
(n) (n)
| DSl I b |

(n) (n)
X1 Y1 H 2

M M
(DSl (I 5 %

ai n—o0

whenced; < 2a;. Accordingly, by (L3) and Lemmé&B.2we obtain that

2—38=(dy, dy, ..., d) Iy
< [[(2aq, @, + by, ..., an + by)lly
= (& + by, a+by,....ay+by)lly
<@y, ..., anlly + (b, ....,b)Iy =2,

which impliess > 0. This completes the proof. O

The parallel argument works for the locally uniform convexity and we obtain the
next result.

THEOREM4.2. Lety € Wy. Then(X; @ X, & --- @ Xy)y is locally uniformly
convex if and only ifX;, X5, ..., Xy are locally uniformly convex ang is strictly
convex.

Indeed, for the sufficiency, take an arbitratye (X; @ X, @ --- @ Xy), with
Ixll, = 1and merelylex, = x in the above proof. By Theoremland Theorer.2
combined with Propositio.5we obtain the following corollary.

COROLLARY 4.3. Letl < g < p<o00,q < co. Thenl,,-sumX; & X; & --- D
XN)p.q is uniformly convexlocally uniformly convekif and only if X, Xo, ..., Xy
are uniformly convexlocally uniformly convex

In particular, thel ,-sum(X; @ Xo @ - -- @ Xn)p, 1 < p < 00, is uniformly convex
(locally uniformly conve}if and only if X, X,, ..., Xy are uniformly convefdocally
uniformly convex
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