ON \(\psi\)-DIRECT SUMS OF BANACH SPACES AND CONVEXITY

MIKIO KATO, KICHI-SUKE SAITO and TAKAYUKI TAMURA

Dedicated to Maestro Ivry Gitlis on his 80th birthday with deep respect and affection

(Received 18 April 2002; revised 31 January 2003)

Communicated by A. Pryde

Abstract

Let X_1, X_2, \ldots, X_N be Banach spaces and ψ a continuous convex function with some appropriate conditions on a certain convex set in \mathbb{R}^{N-1} . Let $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{\psi}$ be the direct sum of X_1, X_2, \ldots, X_N equipped with the norm associated with ψ . We characterize the strict, uniform, and locally uniform convexity of $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{\psi}$ by means of the convex function ψ . As an application these convexities are characterized for the $\ell_{p,q}$ -sum $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{p,q}$ $(1 < q \le p \le \infty, q < \infty)$, which includes the well-known facts for the ℓ_p -sum $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_p$ in the case p = q.

2000 Mathematics subject classification: primary 46B20, 46B99, 26A51, 52A21, 90C25.

Keywords and phrases: absolute norm, convex function, direct sum of Banach spaces, strictly convex space, uniformly convex space, locally uniformly convex space.

1. Introduction and preliminaries

A norm $\|\cdot\|$ on \mathbb{C}^N is called *absolute* if $\|(z_1,\ldots,z_N)\| = \|(|z_1|,\ldots,|z_N|)\|$ for all $(z_1,\ldots,z_N) \in \mathbb{C}^N$, and *normalized* if $\|(1,0,\ldots,0)\| = \cdots = \|(0,\ldots,0,1)\| = 1$ (see for example [3, 2]). In case of N=2, according to Bonsall and Duncan [3] (see also [12]), for every absolute normalized norm $\|\cdot\|$ on \mathbb{C}^2 there corresponds a unique continuous convex function ψ on the unit interval [0, 1] satisfying

$$\max\{1-t,t\} \le \psi(t) \le 1$$

The authors are supported in part by Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science.

^{© 2003} Australian Mathematical Society 1446-8107/03 A2.00 + 0.00

under the equation $\psi(t) = \|(1-t,t)\|$. Recently in [11] Saito, Kato and Takahashi presented the *N*-dimensional version of this fact, which states that for every absolute normalized norm $\|\cdot\|$ on \mathbb{C}^N there corresponds a unique continuous convex function ψ satisfying some appropriate conditions on the convex set

$$\Delta_N = \left\{ t = (t_1, \dots, t_{N-1}) \in \mathbb{R}^{N-1} : \sum_{j=1}^{N-1} t_j \le 1, t_j \ge 0 \right\}$$

under the equation $\psi(t) = \| (1 - \sum_{j=1}^{N-1} t_j, t_1, \dots, t_{N-1}) \|$.

For an arbitrary finite number of Banach spaces X_1, X_2, \dots, X_N , we define the ψ -direct sum $(X_1 \oplus X_2 \oplus \dots \oplus X_N)_{\psi}$ to be their direct sum equipped with the norm

$$\|(x_1, x_2, \dots, x_N)\|_{\psi} = \|(\|x_1\|, \|x_2\|, \dots, \|x_N\|)\|_{\psi}$$
 for $x_i \in X_i$,

where $\|\cdot\|_{\psi}$ term in the right-hand side is the absolute normalized norm on \mathbb{C}^N with the corresponding convex function ψ . This extends the notion of ℓ_p -sum of Banach spaces. The aim of this paper is to characterize the strict, and uniform convexity of $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{\psi}$. The locally uniform convexity is also included. For the case N=2, the first two have been recently proved in Takahashi-Kato-Saito [13] and Saito-Kato [10], respectively. However the proof of the uniform convexity for the 2-dimensional case given in [10] seems difficult to be extended to the N-dimensional case, though it is of independent interest as it is of real analytic nature and maybe useful for estimating the modulus of convexity. Our proof for the N-dimensional case is essentially different from that in [10]. As an application we shall consider the $\ell_{p,q}$ -sum $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{p,q}$ and show that $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{p,q}$ is uniformly convex if and only if all X_j are uniformly convex, where $1 < q \le p \le \infty$, $q < \infty$. The same is true for the strict and locally uniform convexity. These results include the well-known facts for the ℓ_p -sum $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_p$ as the case p=q.

Let us recall some definitions. A Banach space X or its norm $\|\cdot\|$ is called *strictly convex* if $\|x\| = \|y\| = 1$ ($x \neq y$) implies $\|(x+y)/2\| < 1$. This is equivalent to the following statement: if $\|x+y\| = \|x\| + \|y\|$, $x \neq 0$, $y \neq 0$, then $x = \lambda y$ with some $\lambda > 0$ (see for example [9, page 432], [1]). X is called *uniformly convex* provided for any ϵ ($0 < \epsilon < 2$) there exists $\delta > 0$ such that whenever $\|x-y\| \geq \epsilon$. $\|x\| = \|y\| = 1$, one has $\|(x+y)/2\| \leq 1 - \delta$, or equivalently, provided for any ϵ ($0 < \epsilon < 2$) one has $\delta_X(\epsilon) > 0$, where δ_X is the *modulus of convexity of X*, that is,

$$\delta_X(\epsilon) := \inf\{1 - \|(x+y)/2\|; \|x-y\| \ge \epsilon, \quad \|x\| = \|y\| = 1\} \quad (0 \le \epsilon \le 2).$$

We also have the following restatement: X is uniformly convex if and only if, whenever $||x_n|| = ||y_n|| = 1$ and $||(x_n + y_n)/2|| \to 1$, it follows that $||x_n - y_n|| \to 0$. X is called *locally uniformly convex* (see for example [9, 4]) if for any $x \in X$ with ||x|| = 1 and

for any ϵ (0 < ϵ < 2) there exists δ > 0 such that if $||x - y|| \ge \epsilon$, ||y|| = 1, then $||(x + y)/2|| \le 1 - \delta$. Clearly the notion of locally uniform convexity is between those of uniform and strict convexities.

2. Absolute norms on \mathbb{C}^N and ψ -direct sums $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{\psi}$

Let AN_N denote the family of all absolute normalized norms on \mathbb{C}^N . Let

$$\Delta_N = \{(s_1, s_2, \dots, s_{N-1}) \in \mathbb{R}^{N-1} : s_1 + s_2 + \dots + s_{N-1} \le 1, s_j \ge 0 (\forall j)\}.$$

For any $\|\cdot\| \in AN_N$ define the function ψ on Δ_N by

(1)
$$\psi(s) = \|(1 - s_1 - \dots - s_{N-1}, s_1, \dots, s_{N-1})\|$$
 for $s = (s_1, \dots, s_{N-1}) \in \Delta_N$.

Then ψ is continuous and convex on Δ_N , and satisfies the following conditions:

$$(A_0) \qquad \qquad \psi(0,\ldots,0) = \psi(1,0,\ldots,0) = \cdots = \psi(0,\ldots,0,1) = 1,$$

$$(A_1) \qquad \psi(s_1,\ldots,s_{N-1}) \geq (s_1+\cdots+s_{N-1})\psi\left(\frac{s_1}{\sum_{i=1}^{N-1}s_i},\ldots,\frac{s_{N-1}}{\sum_{i=1}^{N-1}s_i}\right),$$

$$(A_2) \qquad \psi(s_1,\ldots,s_{N-1}) \geq (1-s_1)\psi\left(0,\frac{s_2}{1-s_1},\ldots,\frac{s_{N-1}}{1-s_1}\right),$$

.....

$$(A_N) \qquad \psi(s_1,\ldots,s_{N-1}) \geq (1-s_{N-1})\psi\left(\frac{s_1}{1-s_{N-1}},\ldots,\frac{s_{N-2}}{1-s_{N-1}},0\right).$$

Note that from (A_0) it follows that $\psi(s_1, \ldots, s_{N-1}) \leq 1$ on Δ_N as ψ is convex. Denote Ψ_N be the family of all continuous convex functions ψ on Δ_N satisfying (A_0) , $(A_1), \ldots, (A_N)$. Then the converse holds true: For any $\psi \in \Psi_N$ define

(2)
$$\|(z_1,\ldots,z_N)\|_{\psi} = \begin{cases} \left(\sum_{i=1}^N |z_i|\right) \psi\left(|z_2|/\left(\sum_{i=1}^N |z_i|\right),\ldots,|z_N|/\left(\sum_{i=1}^N |z_i|\right)\right) \\ \text{if } (z_1,\ldots,z_N) \neq (0,\ldots,0), \\ 0 & \text{if } (z_1,\ldots,z_N) = (0,\ldots,0). \end{cases}$$

Then $\|\cdot\|_{\psi} \in AN_N$ and $\|\cdot\|_{\psi}$ satisfies (1). Thus the families AN_N and Ψ_N are in one-to-one correspondence under equation (1) (Saito-Kato-Takahashi [11, Theorem 4.2]). The ℓ_p -norms

$$\|(z_1,\ldots,z_N)\|_p = \begin{cases} \{|z_1|^p + \cdots + |z_N|^p\}^{1/p} & \text{if } 1 \le p < \infty, \\ \max\{|z_1|,\ldots,|z_N|\} & \text{if } p = \infty \end{cases}$$

are typical examples of absolute normalized norms, and for any $\|\cdot\| \in AN_N$ we have

$$\|\cdot\|_{\infty} \leq \|\cdot\| \leq \|\cdot\|_1$$

([11, Lemma 3.1], see also [3]). The functions corresponding to ℓ_p -norms on \mathbb{C}^N are

$$\psi_p(s_1,\ldots,s_{N-1}) = \begin{cases} \left\{ \left(1 - \sum_{j=1}^{N-1} s_j\right)^p + s_1^p + \cdots + s_{N-1}^p \right\}^{1/p} & \text{if } 1 \le p < \infty, \\ \max\left\{1 - \sum_{j=1}^{N-1} s_j, s_1, \ldots, s_{N-1} \right\} & \text{if } p = \infty \end{cases}$$

for $(s_1, \ldots, s_{N-1}) \in \Delta_N$.

Let X_1, X_2, \ldots, X_N be Banach spaces. Let $\psi \in \Psi_N$ and let $\|\cdot\|_{\psi}$ be the corresponding norm in AN_N . Let $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{\psi}$ be the direct sum of X_1, X_2, \ldots, X_N equipped with the norm

(4)
$$\|(x_1, x_2, \dots, x_N)\|_{\psi} := \|(\|x_1\|, \|x_2\|, \dots, \|x_N\|)\|_{\psi} \text{ for } x_j \in X_j.$$

As is it immediately seen, $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{\psi}$ is a Banach space.

EXAMPLE. Let $1 \leq q \leq p \leq \infty$, $q < \infty$. We consider the Lorentz $\ell_{p,q}$ -norm $\|z\|_{p,q} = \left\{\sum_{j=1}^N j^{(q/p)-1} z_j^{*q}\right\}^{1/q}$ for $z = (z_1, \dots, z_N) \in \mathbb{C}^N$, where $\{z_j^*\}$ is the non-increasing rearrangement of $\{|z_j|\}$, that is, $z_1^* \geq z_2^* \geq \dots \geq z_N^*$. (Note that in case of $1 \leq p < q \leq \infty$, $\|\cdot\|_{p,q}$ is not a norm but a quasi-norm (see [6, Proposition 1], [14, page 126])). Evidently $\|\cdot\|_{p,q} \in AN_N$ and the corresponding convex function $\psi_{p,q}$ is obtained by

(5)
$$\psi_{p,q}(s) = \|(1 - s_1 - \dots - s_{N-1}, s_1, \dots, s_{N-1})\|_{p,q}$$

(for $s = (s_1, \ldots, s_{N-1}) \in \Delta_N$), that is, $\|\cdot\|_{p,q} = \|\cdot\|_{\psi_{p,q}}$. Let $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{p,q}$ be the direct sum of Banach spaces X_1, X_2, \ldots, X_N equipped with the norm

$$\|(x_1,\ldots,x_N)\|_{p,q} := \|(\|x_1\|,\ldots,\|x_N\|)\|_{p,q},$$

we call it the $\ell_{p,q}$ -sum of X_1, X_2, \dots, X_N . If p = q the $\ell_{p,p}$ -sum is the usual ℓ_p -sum $(X_1 \oplus X_2 \oplus \dots \oplus X_N)_p$.

For some other examples of absolute norms on \mathbb{C}^N we refer the reader to [11] (see also [12]).

3. Strict convexity of $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{\psi}$

A function ψ on Δ_N is called *strictly convex* if for any $s, t \in \Delta_N$ ($s \neq t$) one has $\psi((s+t)/2) < (\psi(s) + \psi(t))/2$. For absolute norms on \mathbb{C}^N , we have

LEMMA 3.1 (Saito-Kato-Takahashi [11, Theorem 4.2]). Let $\psi \in \Psi_N$. Then $(\mathbb{C}^N, \|\cdot\|_{\psi})$ is strictly convex if and only if ψ is strictly convex.

The following lemma concerning the monotonicity property of the absolute norms on \mathbb{C}^N is useful in the sequel.

LEMMA 3.2 (Saito-Kato-Takahashi [11, Lemma 4.1]). Let $\psi \in \Psi_N$. Let $z = (z_1, \ldots, z_N)$, $w = (w_1, \ldots, w_N) \in \mathbb{C}^N$.

- (i) If $|z_i| \le |w_i|$ for all j, then $||z||_{\psi} \le ||w||_{\psi}$.
- (ii) Let ψ be strictly convex. If $|z_j| \le |w_j|$ for all j and $|z_j| < |w_j|$ for some j, then $||z||_{\psi} < ||w||_{\psi}$.

THEOREM 3.3. Let $X_1, X_2, ..., X_N$ be Banach spaces and let $\psi \in \Psi_N$. Then $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{\psi}$ is strictly convex if and only if $X_1, X_2, ..., X_N$ are strictly convex and ψ is strictly convex.

PROOF. Let $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{\psi}$ be strictly convex. Then, each X_j and $(\mathbb{C}^N, \|\cdot\|_{\psi})$ are strictly convex since they are isometrically imbedded into $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{\psi}$. According to Lemma 3.1, ψ is strictly convex.

Conversely, let each X_j and ψ be strictly convex. Take arbitrary $x=(x_j)$, $y=(y_j), x\neq y$, in $(X_1\oplus X_2\oplus\cdots\oplus X_N)_{\psi}$ with $\|x\|_{\psi}=\|y\|_{\psi}=1$. Let first $(\|x_1\|,\ldots,\|x_N\|)=(\|y_1\|,\ldots,\|y_N\|)$. Then, if $\|x+y\|_{\psi}=2$,

$$2 = \|x + y\|_{\psi} = \|(\|x_1 + y_1\|, \dots, \|x_N + y_N\|)\|_{\psi}$$

$$\leq \|(\|x_1\| + \|y_1\|, \dots, \|x_N\| + \|y_N\|)\|_{\psi} \leq \|x\|_{\psi} + \|y\|_{\psi} = 2,$$

from which it follows that $\|x_j + y_j\| = \|x_j\| + \|y_j\|$ for all j by Lemma 3.2. As each X_j is strictly convex, $x_j = k_j y_j$ with $k_j > 0$. Since $\|x_j\| = \|y_j\|$, we have $k_j = 1$ and hence $x_j = y_j$ for all j, or x = y, which is a contradiction. Therefore we have $\|x + y\|_{\psi} < 2$. Let next $(\|x_1\|, \dots, \|x_N\|) \neq (\|y_1\|, \dots, \|y_N\|)$. Since ψ is strictly convex, $(\mathbb{C}^N, \|\cdot\|_{\psi})$ is strictly convex by Lemma 3.1. Consequently we have

$$||x + y||_{\psi} = ||(||x_1 + y_1||, \dots, ||x_N + y_N||)||_{\psi}$$

$$\leq ||(||x_1|| + ||y_1||, \dots, ||x_N|| + ||y_N||)||_{\psi}$$

$$= ||(||x_1||, \dots, ||x_N||) + (||y_1||, \dots, ||y_N||)||_{\psi} < 2,$$

as is desired.

Now we see that the function $\psi_{p,q}$ in the above example is strictly convex if $1 < q \le p \le \infty, q < \infty$. We need the next lemma.

LEMMA 3.4 ([5]). Let $\{\alpha_j\}$, $\{\beta_j\} \in \mathbb{R}^N$ and $\alpha_j \geq 0$, $\beta_j \geq 0$. Let $\{\alpha_j^*\}$, $\{\beta_j^*\}$ be their non-increasing rearrangements, that is, $\alpha_1^* \geq \alpha_2^* \geq \cdots \geq \alpha_N^*$ and $\beta_1^* \geq \beta_2^* \geq \cdots \geq \beta_N^*$. Then $\sum_{i=1}^N \alpha_i \beta_i \leq \sum_{i=1}^N \alpha_i^* \beta_j^*$.

PROPOSITION 3.5. Let $1 < q \le p \le \infty$, $q < \infty$. Then the function $\psi_{p,q}$ given by (5) is strictly convex on Δ_N .

PROOF. Let $s = (s_j), t = (t_j) \in \Delta_N, s \neq t$. Without loss of generality we may assume that

$$2 - (s_1 + t_1) - \dots - (s_{N-1} + t_{N-1}) \ge s_1 + t_1 \ge \dots \ge s_{N-1} + t_{N-1} \ge 0.$$

Put

$$\sigma = (1 - s_1 - \dots - s_{N-1}, \ 2^{1/p - 1/q} s_1, \dots, N^{1/p - 1/q} s_{N-1}),$$

$$\tau = (1 - t_1 - \dots - t_{N-1}, \ 2^{1/p - 1/q} t_1, \dots, N^{1/p - 1/q} t_{N-1}).$$

Then by Lemma 3.4 we have

$$\|\sigma\|_{q} = \left\{ (1 - s_{1} - \dots - s_{N-1})^{q} + 2^{q/p-1} s_{1}^{q} + \dots + N^{q/p-1} s_{N-1}^{q} \right\}^{1/q}$$

$$\leq \|(1 - s_{1} - \dots - s_{N-1}, s_{1}, \dots, s_{N-1})\|_{p,q} = \psi_{p,q}(s)$$

and $\|\tau\|_q \leq \psi_{p,q}(t)$. On the other hand,

$$\psi_{p,q}\left(\frac{s+t}{2}\right) = \left\{ \left(1 - \sum_{i=1}^{N-1} \frac{s_i + t_i}{2}\right)^q + \sum_{i=1}^{N-1} (i+1)^{q/p-1} \left(\frac{s_i + t_i}{2}\right)^q \right\}^{1/q}$$

$$= \left[\left(\frac{1}{2} \left\{ \left(1 - \sum_{i=1}^{N-1} s_i\right) + \left(1 - \sum_{i=1}^{N-1} t_i\right) \right\} \right)^q$$

$$+ \sum_{i=1}^{N-1} \left(\frac{1}{2} \left\{ (i+1)^{1/p-1/q} s_i + (i+1)^{1/p-1/q} t_i \right\} \right)^q \right]^{1/q} = \left\| \frac{\sigma + \tau}{2} \right\|_q.$$

Since ℓ_q -norm $\|\cdot\|_q$ (1 < q < ∞) is strictly convex and $s \neq t$, we have $\|\sigma + \tau\|_q < \|\sigma\|_q + \|\tau\|_q$. Indeed, if $\|\sigma + \tau\|_q = \|\sigma\|_q + \|\tau\|_q$, then $\sigma = k\tau$ with some k > 0 (note that $\sigma \neq 0$, $\tau \neq 0$). Hence $s_j = kt_j$ for all j, and $1 - \sum_{i=1}^{N-1} s_i = k \left(1 - \sum_{i=1}^{N-1} t_i\right)$. Therefore, k = 1 and we have s = t, which is a contradiction. Consequently,

$$\psi_{p,q}\left(\frac{s+t}{2}\right) = \left\|\frac{\sigma+\tau}{2}\right\|_{q} < \frac{\|\sigma\|_{q} + \|\tau\|_{q}}{2} \le \frac{\psi_{p,q}(s) + \psi_{p,q}(t)}{2},$$

or $\psi_{p,q}$ is strictly convex.

By Theorem 3.3 and Proposition 3.5 we have the following result for the $\ell_{p,q}$ -sum of Banach spaces.

COROLLARY 3.6. Let $1 < q \le p \le \infty$, $q < \infty$. Then, $\ell_{p,q}$ -sum $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{p,q}$ is strictly convex if and only if X_1, X_2, \ldots, X_N are strictly convex.

In particular, the ℓ_p -sum $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_p$, $1 , is strictly convex if and only if <math>X_1, X_2, \ldots, X_N$ are strictly convex.

4. Uniform convexity of $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{\psi}$

Let us characterize the uniform convexity of $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{\psi}$.

THEOREM 4.1. Let $X_1, X_2, ..., X_N$ be Banach spaces and let $\psi \in \Psi_N$. Then $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{\psi}$ is uniformly convex if and only if $X_1, X_2, ..., X_N$ are uniformly convex and ψ is strictly convex.

PROOF. The necessity assertion is proved in the same way as the proof of Theorem 3.3. Assume that X_1, X_2, \ldots, X_N are uniformly convex and ψ is strictly convex. Take an arbitrary $\epsilon > 0$ and put

$$\delta := 2\delta_X(\epsilon) = \inf\{2 - \|x + y\|_{\psi} : \|x - y\|_{\psi} \ge \epsilon, \ \|x\|_{\psi} = \|y\|_{\psi} = 1\}.$$

We show that $\delta > 0$. There exist sequences $\{x_n\}$ and $\{y_n\}$ in $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{\psi}$ so that

(6)
$$||x_n - y_n||_{\psi} \ge \epsilon,$$

$$||x_n||_{\psi} = ||y_n||_{\psi} = 1$$

and

(7)
$$\lim_{n\to\infty} \|x_n + y_n\|_{\psi} = 2 - \delta.$$

Let $x_n=(x_1^{(n)},\ldots,x_N^{(n)})$ and $y_n=(y_1^{(n)},\ldots,y_N^{(n)})$. Since for each $1\leq j\leq N$, $\|x_j^{(n)}\|=\|(0,\ldots,0,x_j^{(n)},0,\ldots,0)\|_\psi\leq \|x_n\|_\psi=1$ and $\|y_j^{(n)}\|\leq \|y_n\|_\psi=1$ for all n, the sequences $\{\|x_j^{(n)}\|\}_n$ and $\{\|y_j^{(n)}\|\}_n$ have a convergent subsequence respectively. So we may assume that $\|x_j^{(n)}\|\to a_j$, $\|y_j^{(n)}\|\to b_j$ as $n\to\infty$. Further, in the same way, we may assume that

(8)
$$\|x_j^{(n)} - y_j^{(n)}\| \to c_j \text{ as } n \to \infty$$

and

(9)
$$||x_i^{(n)} + y_i^{(n)}|| \to d_j \text{ as } n \to \infty.$$

Put $K_n = \sum_{j=1}^N \|x_j^{(n)}\|$. Then $\|x_n\|_{\psi} = K_n \psi(\|x_2^{(n)}\|/K_n, \dots, \|x_N^{(n)}\|/K_n) = 1$. Letting $n \to \infty$, as ψ is continuous, we have

(10)
$$||(a_1, \dots, a_N)||_{\psi} = \left(\sum_{j=1}^N a_j\right) \psi\left(\frac{a_2}{\sum_{j=1}^N a_j}, \dots, \frac{a_N}{\sum_{j=1}^N a_j}\right) = 1.$$

Also we have

(11)
$$\|(b_1, \dots, b_N)\|_{\psi} = \left(\sum_{j=1}^N b_j\right) \psi\left(\frac{b_2}{\sum_{j=1}^N b_j}, \dots, \frac{b_N}{\sum_{j=1}^N b_j}\right) = 1.$$

Next let $n \to \infty$ in (6), or in

$$||x_{n} - y_{n}||_{\psi} = \left(\sum_{j=1}^{N} ||x_{j}^{(n)} - y_{j}^{(n)}||\right) \times \psi\left(\frac{||x_{2}^{(n)} - y_{2}^{(n)}||}{\sum_{j=1}^{N} ||x_{j}^{(n)} - y_{j}^{(n)}||}, \dots, \frac{||x_{N}^{(n)} - y_{N}^{(n)}||}{\sum_{j=1}^{N} ||x_{j}^{(n)} - y_{j}^{(n)}||}\right) \ge \epsilon.$$

Then we have

(12)
$$\|(c_1, \dots, c_N)\|_{\psi} = \left(\sum_{j=1}^N c_j\right) \psi\left(\frac{c_2}{\sum_{j=1}^N c_j}, \dots, \frac{c_N}{\sum_{j=1}^N c_j}\right) \ge \epsilon$$

by (8). In the same way, according to (7) and (9), we have

(13)
$$||(d_1, \ldots, d_N)||_{\psi} = 2 - \delta.$$

Now, assume that $(a_1, \ldots, a_N) \neq (b_1, \ldots, b_N)$. Then, according to (10), (11) and the strict convexity of ψ we obtain that

$$2 - \delta = \|(d_1, \dots, d_N)\|_{\psi} \le \|(a_1 + b_1, \dots, a_N + b_N)\|_{\psi} < 2,$$

which implies $\delta > 0$. Next, let $(a_1, \ldots, a_N) = (b_1, \ldots, b_N)$. Since $(c_1, \ldots, c_N) \neq (0, \ldots, 0)$ from (12), we may assume that $c_1 > 0$ without loss of generality. Then as

$$c_1 = \lim_{n \to \infty} \|x_1^{(n)} - y_1^{(n)}\| \le \lim_{n \to \infty} \left(\|x_1^{(n)}\| + \|y_1^{(n)}\| \right) = a_1 + b_1 = 2a_1,$$

we have $a_1 > 0$ and

$$(14) 0 < \frac{c_1}{a_1} = \lim_{n \to \infty} \left\| \frac{x_1^{(n)}}{\|x_1^{(n)}\|} - \frac{y_1^{(n)}}{\|x_1^{(n)}\|} \right\| = \lim_{n \to \infty} \left\| \frac{x_1^{(n)}}{\|x_1^{(n)}\|} - \frac{y_1^{(n)}}{\|y_1^{(n)}\|} \right\|.$$

Indeed, we have the latter identity because

$$\left\| \frac{x_1^{(n)}}{\|x_1^{(n)}\|} - \frac{y_1^{(n)}}{\|x_1^{(n)}\|} \right\| - \left\| \frac{x_1^{(n)}}{\|x_1^{(n)}\|} - \frac{y_1^{(n)}}{\|y_1^{(n)}\|} \right\|$$

$$\leq \|y_1^{(n)}\| \left| \frac{1}{\|x_1^{(n)}\|} - \frac{1}{\|y_1^{(n)}\|} \right| \to b_1 \left| \frac{1}{a_1} - \frac{1}{b_1} \right| = 0 \quad \text{as } n \to \infty.$$

Since X_1 is uniform convex, it follows from (14) that

$$\frac{d_1}{a_1} = \lim_{n \to \infty} \left\| \frac{x_1^{(n)}}{\|x_1^{(n)}\|} + \frac{y_1^{(n)}}{\|x_1^{(n)}\|} \right\| = \lim_{n \to \infty} \left\| \frac{x_1^{(n)}}{\|x_1^{(n)}\|} + \frac{y_1^{(n)}}{\|y_1^{(n)}\|} \right\| < 2,$$

whence $d_1 < 2a_1$. Accordingly, by (13) and Lemma 3.2 we obtain that

$$2 - \delta = \|(d_1, d_2, \dots, d_N)\|_{\psi}$$

$$< \|(2a_1, a_2 + b_2, \dots, a_N + b_N)\|_{\psi}$$

$$= \|(a_1 + b_1, a_2 + b_2, \dots, a_N + b_N)\|_{\psi}$$

$$< \|(a_1, \dots, a_N)\|_{\psi} + \|(b_1, \dots, b_N)\|_{\psi} = 2,$$

which implies $\delta > 0$. This completes the proof.

The parallel argument works for the locally uniform convexity and we obtain the next result.

THEOREM 4.2. Let $\psi \in \Psi_N$. Then $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{\psi}$ is locally uniformly convex if and only if X_1, X_2, \ldots, X_N are locally uniformly convex and ψ is strictly convex.

Indeed, for the sufficiency, take an arbitrary $x \in (X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{\psi}$ with $||x||_{\psi} = 1$ and merely let $x_n = x$ in the above proof. By Theorem 4.1 and Theorem 4.2 combined with Proposition 3.5 we obtain the following corollary.

COROLLARY 4.3. Let $1 < q \le p \le \infty$, $q < \infty$. Then, $\ell_{p,q}$ -sum $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_{p,q}$ is uniformly convex (locally uniformly convex) if and only if X_1, X_2, \ldots, X_N are uniformly convex (locally uniformly convex).

In particular, the ℓ_p -sum $(X_1 \oplus X_2 \oplus \cdots \oplus X_N)_p$, $1 , is uniformly convex (locally uniformly convex) if and only if <math>X_1, X_2, \ldots, X_N$ are uniformly convex (locally uniformly convex).

References

- B. Beauzamy, Introduction to Banach spaces and their geometry, 2nd edition (North-Holland, Amsterdam, 1985).
- [2] R. Bhatia, Matrix analysis (Springer, Berlin, 1997).
- [3] F. F. Bonsall and J. Duncan, *Numerical ranges II*, London Math. Soc. Lecture Note Ser. 10 (Cambridge University Press, Cambridge, 1973).
- [4] J. Diestel, Geometry of Banach spaces, Lecture Notes in Math. 485 (Springer, Berlin, 1975).

- [5] G. H. Hardy, J. E. Littlewood and G. Pólya, *Inequalities* (Cambridge University Press, Cambridge, 1967).
- [6] M. Kato, 'On Lorentz spaces $\ell_{p,q}\{E\}$ ', *Hiroshima Math. J.* **6** (1976), 73–93.
- [7] D. Kutzarova and T. Landes, 'Nearly uniform convexity of infinite direct sums', *Indiana Univ. Math. J.* 41 (1992), 915–926.
- [8] ——, 'NUC and related properties of finite direct sums', Boll. Un. Math. Ital. (7) 8A (1994), 45–54.
- [9] R. E. Megginson, An introduction to Banach space theory (Springer, New York, 1998).
- [10] K.-S. Saito and M. Kato, 'Uniform convexity of ψ -direct sums of Banach spaces', *J. Math. Anal. Appl.* 277 (2003), 1–11.
- [11] K.-S. Saito, M. Kato and Y. Takahashi, 'On absolute norms on \mathbb{C}^n ', J. Math. Anal. Appl. 252 (2000), 879–905.
- [12] ——, 'von Neumann-Jordan constant of absolute normalized norms on \mathbb{C}^2 ', *J. Math. Anal. Appl.* **244** (2000), 515–532.
- [13] Y. Takahashi, M. Kato and K.-S. Saito, 'Strict convexity of absolute norms on ℂ² and direct sums of Banach spaces', *J. Inequal. Appl.* **7** (2002), 179–186.
- [14] H. Triebel, Interpolation theory, function spaces, differential operators (North-Holland, Amsterdam, 1978).

Department of Mathematics Kyushu Institute of Technology Kitakyushu 804-8550 Japan

e-mail: katom@tobata.isc.kyutech.ac.jp

Department of Mathematics Faculty of Science Niigata University Niigata 950-2181

Japan

e-mail: saito@math.sc.niigata-u.ac.jp

Graduate School of Social Sciences and Humanities Chiba University Chiba 263-8522 Japan

e-mail: tamura@le.chiba-u.ac.jp