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Abstract

We investigate the asymptotical behaviour of the transition probabilities of the simple random walk on
the 2-comb. In particular, we obtain space-time uniform asymptotical estimates which show the lack of
symmetry of this walk better than local limit estimates. Our results also point out the impossibility of
getting sub-Gaussian estimates involving the spectral and walk dimensions of the graph.
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1. Introduction

Given arandomwalkZ ,),-0 On a graplX, there are many related questions regarding
its behaviour when the discrete time paramatgoes to infinity. Classical questions
of this kind are, for instance: will the random walk visit a given vertex of the graph
only a finite number of times (with probability one)? Will it leave any bounded set
after a finite time (with probability one)? Moreover, if we denotedy (x, y) the
n-step probabilities of the random walk from the verkxew the vertex of X, we can
study some features of the seque(e® (x, y)) », forinstance, answer to the question:
is it asymptotic to some ‘nice’ numerical sequence?

Answers to the first two questions are theorems and criteria for recurrence and
transience; answers to the latter question are provideldday limit theorems, that
is, theorems which give a numerical estimatepd? (x, y) for fixed x, y asn tends
to infinity. Local limit theorems are widely studied (in many papers in literature) in
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FIGURE 1. The 2-comb.

various settings: for instance, the case of random walks on free products of discrete
groups was studied by Woess [17] and Cartwright and Soardi [5] (see also [4] or [6]
in the case of Cartesian product of discrete groups).

The present work studies the asymptotic behaviour of the transition probabilities
of the simple random walk on the 2-comb, which isagraph obtained attaching at each
point of Z another copy of Z by itsorigin (see Figure 1).

A local limit theorem for the 2-comb (and in general for d-dimensional combs) and
x =y iswell known: here we observe how to extend it to the asymptotic estimate
of (p™(x,y)), for any x and y (equation (3.3)). The simple random walk on the
2-comb lacks symmetry (more precisely it is not isotropic—see [ 3]) and this feature
is not shown by local limit estimates. To stress the different behaviour the random
walk hasin the two principal directions (vertical and horizontal) one needs space-time
estimates.

A space-time asymptotic estimateisaresult which providesan estimate of p ™ (x, y)
asntendsto infinity, uniform with respect to the quotient d(x, y) /nlying in asuitable
range. Of courselocal limit theorems can be derived from space-time estimates. We
provide space-time asymptotic estimates for the p ™ (x, y) wheny = o := (0, 0) and
x = (k, 0) or x = (0, k), that is, results of the form

p™(x,0) ~ Cf (d(xn, © , n) n—¢,

where C, d are constants and f is a real vaued function which all depend on the
range of d(x, 0)/n. From these results all known limit theorems for the 2-comb can
be derived as a particular case.

The technique we exploit is essentially a Laplace-type estimate of integrals, since
the transition probabilities can be written as integrals thanks to the Cauchy formula
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for the coefficients of the power series of an holomorphic function:

(1.1) p™(x,0) = i/ G(X’—Olz)dz,
2ri J,

Zn+l

where G(x, 0|z) isthe Green function (see ( 3.1)) associated with the walk and has an
explicit expression, and y isapositively oriented, simple closed curvein € surround-
ing 0. The basicideais that the main part of the integral is given by integration on the
part of the curvewhich is closer to the singularity z = 1 of G(x, 0|z). To develop this
ideainto mathematical terms we first separatein the integrand the part with algebraic
behaviour and the part with exponential behaviour, then we choose a suitable curve
of integration and its parametrization. Afterwards, we write the Taylor expansion of
the argument of the exponential part of the integrand as a function of the parameter
of the curve and we finally show that it is possible to choose a piece of the curve on
which integration gives the asymptotic behaviour of the transition probabilities. It is
remarkabl e that the above mentioned Taylor expansions are very different in the two
casesx = (k, 0) and x = (0, k). Thisresultsin two different asymptotic behaviours
of the transition probabilities when d(x, 0)/n tends to O: in thefirst case

p™ (x, 0) ~ c; exp(c, n(d(x, 0)/n) ¥3) n~¥4,

while in the second case

P (X, 0) ~ Csexp(Csn(d(x, 0)/m) %) n~%,
In particular, this shows that for the 2-comb it is impossible to give sub-Gaussian
estimates of the transition probabilities (see Section 10); the 2-comb seems to be the
simplest graph for which this happens.

We give a brief outline of the paper. In Section 2 we list the definition of uniform
estimate with respect to a parameter and two Lebesgue-type theorems which are
needed to obtain such estimates. Section 3 recallslocal limit theorems and generating
functions for combs. Then in Section 4 and Section 5 uniform estimates are proved
for the vertical direction, while in Section 6, Section 7, Section 8 and Section 9 we
prove uniform estimates for the horizontal direction. Inthelast section we discussthe
obtained results and possible extensions.

2. Asymptotic estimates: definitions and technical results

Inthis paper we are concerned with asymptotic estimates of transition probabilities.
We then give some useful definitions and theorems. The first definition extends the
usual definition of asymptotic sequences (let X be aone point spaceand A , = X for
alneN).
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DEFINITION 2.1. Given two sequences (a,(x)), and (b, (X)), of complex functions
defined onaspace X and asequence (A ), of subsetsof X, wesay that a,, isasymptotic
to b, (and we write a, 2 b,) as n tends to infinity, uniformly with respectto x € A,
if and only if there exists a sequence of complex functions (0,(X)), and ng € N such
that:

() a(X) = b(X)(1 + 0,(x)) foreveryn > ng, X € Ay;
(i) for every ¢ > 0 there exists n, € N, n, > ny, such that for every n > n,,
x € A, wehave|o,(X)| < &.

The following definition extends the definition of uniform convergence (take A, =
XforalneN).

DEFINITION 2.2. Let us consider a sequence (a, (X)), of functions defined on a
space X with values on a metric space (Y, d) and let (A ), be a sequence of subsets
of X. Letb: X — Y, we say that (a ), converges to b when n tends to infinity,
uniformly with respectto x € A, if and only if for every ¢ > 0O there existsn, € N
such that for every n > n,, x € A,, we haved(a,(x), b(x)) < &.

Thefollowing two technical results arethetoolswhich weuseto ded with integrals
of sequences and their uniform convergence. The first theorem provides an extension
of Lebesgue' shounded convergencetheoremto the case of uniform convergence (with
respect to Definition 2.2).

THEOREM 2.3. Let (X, 2, 1) be a complete measure space, f ,: X x Y — C, for
alne N,andf : X xY — C. Let (A ), be asequence of subsets of Y. Suppose
that

(@ f,ismeasurablewith respectto x € X for everyfixedy € Y;

(b) for everyy € Y, f o(X,y) —> f(X,Y), p-ae;

(© fax,y) =3 f(x,Yy), uniformly with respecttoy € A ,, u-a.e;

(d) thereexistsg e L*(u) such that [f(x,y)] < g(X), If (X,y)| < g(X), n-a.e,

for everyy € A, n e N.

Thenf(-,y) ismeasurablefor ally € Y andf ,(-,y) — f(-,y)inL (u) uniformly
with respecttoy € A,.

PrROOF. Measurability of f(-,y) is a standard fact. Let usfix ¢ > 0. Since
g € L*(w), there exists X(¢) € ¥ such that u(X(e)) < oo and [y, .gdu < &, and
thereis s, > Osuchthat fL gdu < ¢if E€ T and u(E) <6 ..

Forne N, let

Xn(e) ={xeX(@) : |[f m(X,y) —f(X,¥)| <&/uX(e)) foral ye A ,,m>n}.
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Clearly, X, (¢) C Xnia(e), and p (X(e) \ U, Xn(e)) = 0. Thus we can find n, such
that u(X(e) \ X,(e)) < 8, foradln>n,. Thenfory e A,andn > n,,

/|fn<x,y>—f<x,y>|du
X

=/ |fn<x,y>—f<x,y>|du+/ %, y) — F O, y)| di
X(g)¢

X(e)

52/ gdu+/ Fax,y) — F(%,Y) di < 5e. 0
X\Xn(e) Xn(e)

Sometimes it will be impossible to exhibit a limit function for our estimates, but
wewill be ableto find a sequence of functions asymptotic to the given one and much
simpler. Inthat direction, the following theoremis useful.

THEOREM 2.4. Let (X, X, u) be a measure space and let (f ), (hy)n, (0)n be
three sequences of complex-valued functions defined on X x Y which are measurable
with respect to x € X for everyfixedy € Y. Let (A ), be a sequence of subsetsof Y.
Suppose that

@ hy(x,y) =f.,X,y)(1+0,(X,y)), u-ae,foralye A,,neN;

(b) 0n(X,y) =3 0 p-a.e, uniformly with respecttoy € Ap;

(c) thereexistg e L () suchthat |h,(x,y)| < gX), |f »(X,y)| < g(X), u-a.e., for
alyeA,,neN;

(d) thereexistsc > Osuchthat |/, fn(x,y)du| >c, forally e A, ne N.
Then

/fn(x,y)du L/hn(x,y)du
X X
uniformly with respect toy € A,..

PROOF. Letusfix e > 0anddefine X,(e) = {x € X : |on(X,y)| < ¢, foradl m>
n,y € A,}. By the hypotheses, we have

L Ly d ‘ 3 Sy Fa% ) |
ey die | = ] Fat6 y) die]
S TG ) A = [y ha(x,y) |
| [ fax,y)

501(2/ gdu+e/gdu),
Xn(e)® X

foraly e A,,ne N. Since u(X,(¢)°) - 0asn — oo, thetheoremisproved. [
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Thelast (non-standard) lemmadeal swith the triangular inequality for power series:
we areinterested in the cases where a strict inequality holds.

LEMMA 2.5. Let f(z2) = Y -, a.z" be a power series with positive radius of
convergence R, andwith a,, > Ofor all n. Then |f(2)| < f(|z|) whenever |z| < R. If
thereexistsn € N suchthata, > Oanda,.; > 0, then |[f (2)| < f(|z]) unlessz = |z|.

ProoF. The inequality |f(z)| < f(]z|]) is obvious. If equality holds for some z,
thenthereisad e R suchthat a,z" = |a,z"|€" fordl n. If a, > Oand a,,; > O, then
2" = |Z"|€? and 2! = |z""|€"’. Dividing the second equation by the first, we get
z=1z. O

3. Local limit theoremsand generating functions

The 2-comb lattice C, is a spanning tree of 72, that is, a subgraph of Z? which is
atree and contains all vertices. Thus there is a natural choice of coordinates on the
comb (that is, (x,y) € C, indicates the same point of Z2, now thought as belonging
to Cy).

More generally, d-dimensional comb lattices C4 are the spanning trees of Z¢ ob-
tained inductively by attaching at each point of C4_, acopy of Z.

The estimate of the asymptotic behaviour of the transition probabilities of the
simple random walk on comb | atti ces passes through the knowl edge of the generating
functions, which we now recall.

Recall that p™ (x, y) is defined as the probability that the random walk starting at
x isiny at timen. The Green function is then the power series
(3.1) Gx.yl2 =Y p”x.yz", zeC,

n=0
while

F(x,y|2) = Zf Wx,yz", zeC,
n=0

wheref ™ (x, y) isthe probability that the random walk starting at x reachesy for the
first time at time n. Then it is well known (see for instance, [ 18, Lemma 1.13])
that in the common domain of convergence of these power series G(X,y|z) =
G(y, yI2F (X, yl2).

At least when x = y = 0, the Green function G 4 of the d-dimensional comb can
be obtained recursively by the following formula (see[8, 7])

d

3.2 Gq(0,02) = ’
(32 (0 = a6
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recalling that G,(0,0|z) = 1/4/1— Z2 (note that we will use no subscripts when
d=2).

From (3.2), using techniques which can befound in [ 2], one can obtain local limit
estimates for the transition probabilities

2—d+1

2-d_1

n
p® (0, 0) ~ n? 1

N

(p®*V(0,0) = 0 for all n). This was done by Weiss and Havlin [ 10] in the case
d = 2, 3, and in the general case by Gerl [ 8] and Cassi and Regina[7].

From this particular estimate one can easily derive an estimate of the genera
transition probabilities (apply the results of [ 3, Section 6])

227d71 deg()’) nz—d,l

(n n
(33 P (X, y) T2 :

wheren + d(x,y) iseven (p ™ (x,y) = 0if n+ d(x, y) isodd).

In (3.3) x andy arefixed: our goal is to obtain asymptotic estimates of p ™ (x,, 0)
and of p™ (y, 0), wherex, = (k, 0), y, = (0, k), k > 0, uniform with respect to the
parameter & = k/n (in order to avoid discussions about the parity of n and k we will
only deal with the casewhere they both are even, but thisis no severerestriction—see
Section 4 and Section 10).

Since we are going to use formula (1.1), we need the explicit expressions of
G(Xx, 0]2) and G(y«, 0|2)

G = V2 1+V1-Z2-V2/1-22+J1-2 Ikl
(XK’O|Z)_\/1—ZZ+«/1—22 z

G _ V2 1-J/I-2 Ik
(yk’0|2)_\/1—22+«/m . .

The computation uses well-known techniques for the generating functions on graphs
involving explicit expressions of G(0, 0|2), F (X, 0|z) and F (yy, 0|2) (an example of
these techniques in the case of the homogeneoustreeis[ 18, Lemma 1.24]).

For simplicity we dencte by

G(2) :=G(0,0/v/2) = V2 ;
Vi-—-z4+41-2
1-JV1-

Fi(2):=F (YL 0|«/E) = TZ;

VI—z-V2J/1-z+J/1-z
I:2(2):=|:(X1,0|\/'):1+ 1-2 «/Ezl Z+«/ﬁ'

NG
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Thefirst steps in the direction of obtaining estimates for p ?” (x, 0) are the same for
X = X and X = yy, so we describe them here. Wetake y’ having o initsinterior and
1in its exterior and we apply the substitution u = z? in (1.1). Wheny’ : z = z(t)
describes onecircuit about o then y : u = u(t) describestwo times the corresponding
circuit, hence

1 [ G@F.@*

(2n) _
(3 4) p (y2k7 O) — 27'[| ) Z”+l dzv
. 0@ (. 0) — 1 / G(2)F,(2)% i@
20T o y zn+l '

In order to stress the exponential part of the integrand, we write

Fi (2>

Zn

=exp{n¥.(2}, i=12
where & := k/nand

Wi(2) = 2tlog(l—V/1—2) — (¢ + 1) log(2) i =1
ST T  2glogl +VI—z—V2Y1—z4+V1—2) — (¢ + Dlog(2) i=2.

Moreover, we will choose different curves of integration y with parametrization
z = z(&,t) and use thislast substitution in (3.4). For simplicity we write

Wit = Wz, 1), i=12

We note that the generating functions G, F, and F, all contain radicals, hence we
must pay attention to their polidromy.

REMARK 3.1. The functions G(z), F 2(z) and FZ(z) are holomorphic in the open
ball with radius 1 centeredin o, that is, o isnot asingularity for any of these functions.
Moreover, z = 1 is a branch point for al of them and their only singularity in the
complex plane.

Choice of the determination of the square root. We choose the determination of
the square root with argument between —x /2 and /2, that is, the function h(w) :=
Jw] exp(i arg(w)/2), where arg(w) is chosen in the interval [—, ). That means
that +/1 — zisanholomorphic functiondefinedintheopenset A := C\{z € R : z>1},
and weextend it to {z € R : z > 1} by continuity from the upper half plane (then we
will not have continuity from the lower half plane). Note that this choice allows usto

define /1 — z+ /1 — zasaholomorphic functionin A as well.
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4. Estimatesalongthe y-axis. thecaseé € [a, 1 — C]

We first deal with the case of the asymptotic estimate for thetransition probabilities
p™ (yk, 0), which we will rename for the sake of simplicity p ™ (k, 0). We first note
that if n and k do not have the same parity, then p ™ (k, 0) = O, while

1
(4.1) p@(2k +1,0) = E{p@“) (2k 4+ 2,0) + p@ (2k, 0)}.

Henceit will be enough to estimate p ®” (2k, 0), which is given by the first equation
of (3.4) (inthisand in thefollowing section we drop theindex 1 from F;, W} and W}).

LEMMA 4.1. The function W, () has a unique minimumin (O, 1], namely z,(§) =
1— €2 Let ¢(£) bethisminimum, then ¢ (§) = log ((1 — £)51(1 + &) ¢ 7Y).

Hereisthefirst estimate of our transition probabilities.

THEOREM 4.2. Let a, ¢ be positive numbers such that a < 1 — ¢. Then uniformly
with respectto & € [a, 1 — c],

V2% e En-1/2
Vrl+6A-8?)

ProoF. Wefirst choosethe curve of integration and split theintegral into two parts
(Part | of the proof); then we eva uate the part which will prove to be asymptotically
negligible as compared to the other (Part |1 of the proof) and finally we estimate the
main part (Part 111 of the proof).

p@ 2k, 0) ~

Partl. Thecurveof integrationisthecirclewithradiusz,(&), centeredintheorigin
y 1 2E, D) =2,8)€", tel-mxl.

We notethat sinceé € [a, 1 —c], z,(§) € [4,1 — C] forsomea, C > 0. Thus
(4.2) p@(2k,0) = zi / G(z(&,1)) exp{n W, (1)} dt.
7T -7

Now we want to write the Taylor expansion of W, (t) with Lagrange remainder,
centeredint = 0. Thisis possible since the third order derivative of W, (t) existsand
iscontinuousint, for all £ € [a, 1 — c]. Hencewe can write

U (1) = ¢(§) — (1 — EO%/46° + R(E, 1),

where —(1 — £2)/2£2 = W/(0), the remainder is R(§,t) = W/'(D)t3/3|, and fis a
point lying in the segment between 0 and t.
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Wenotethat | W/'(0)| > ¢ forall ¢ € [a, 1—c]andforsomee > 0. Since ¥/ (0)<0,
we can choosea > O suchthat [R(§, t)| < — W/ (0)t?/4foralt € [—a, a].
Now we split theintegral (4.2) into two parts

1 /¢ —

A= 2—/ G(z(§, 1)) exp{nWe ()} dt,
T J—a
1

27T a<|t|<m

B: G(z(&,1)) exp{n W, (1)} dt.

Part [I. By the definitions of W,, ¢, and z,(&), we can write

e - F(zo@)eft))z”s g
B: G . it int dt
o /t (ZE)e) ( Fz®) ) ©

The function |F (2)|/F (]z]) is continuous in the compact set K := {z € C : |z] €
[, 1—-C], ¢ < ag(z) < w}. By Lemma 2.5 max,.x |[F(@I|/F(z]) = » < 1.
Moreover, again by Lemma 2.5, |G(z,(£)€")| < G(1 — €), whence

(4.3) IB] < €¥® G —¢)a®",

and this estimate is uniform with respectto & € [a, 1 — c].

Part I1l.  Expand W, (t) in the expression of A and perform the change of variable

0 = /nb(¢é)t, whereb(¢) = /(1 — £2)/2&2 (this change stresses the main term of
the exponential)

en‘ﬁ(é)
A=
2rb(§)

o/l G(z,(§)e™)
Gz, 1/2/ —62/2+TR(E ) (0—) do.
@EE ] L E G(z.(6)

wheret, := 6/(/nb(&)). Wewant to give auniform upper bound for the modulus of
the integrand in order to apply Theorem 2.3 . Since by our choice of «, [NR(&,t,)| <
62 /4, the modulus of the integrand is bounded by exp{—6?/4} for al n and £ <
[a,1 — c]. The integrand converges pointwise to exp{—#?2/2}, and the interval of
integration convergesto R. Applying Theorem 2.3

n en‘ﬁ(é) 25
A ~ -1/2 ———
J7 |V a-e:ate

uniformly with respect to & € [a, 1 — c]. Finaly, using (4.3) it is clear that |B/A|
tends to 0 when n tends to infinity, uniformly with respectto ¢ € [a, 1 — c]. O
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FIGURE 2. The segment in the u-plane. FIGURE 3. The curve in the z-plane.

5. Estimatesalong the y-axis. thecaseé € [0, a]

If £ is allowed to tend to zero, the preceding estimate is no longer true. Then we
have to choose a different curve of integration. We perform the change of variable
z=1-u2

We note that, by our choice of the determination of the square root, if arg(u) €
[—7/2,7/2) then u = /1 — z (the expression of u in the other half plane will not
be needed). The desired curve in the u-plane is simply a vertical segment whose
parametrizationis u(¢,t) = u(€) — it whereu(¢) := /1 —7z,(§) = £ and t ranges
from —a to a (a will be chosen in the sequel). The segment is oriented downwards
in order to produce a correctly oriented curve in the z-plane (see Figures 2-3).

Thecurveof integrationinthez-planewill betheunionof y; : z(&,t) = 1—u(é, t)?
for |t| <wa andy,: Z(§,s) := |z(§, a)|€° for arg(z(§, o)) <'s < 21 — ag(z(£, @)).
Hence

(2n) — B= — [
G pTEk O =A+ 27i zn+t 27i zn+t

2k 2k
1 / G(2)F (2 dz+ 1 / G(2)F (2 4z
Y- Y

Figure 4 shows how the contour of integration appears in the z-plane (the circle is
elliptic dueto adifferent choice of measure units on the horizontal and vertical axes—
indeed the integral on y, is equal to that on any convex curve surrounding o with the
same endpoints).

The integral till makes sense, since, as we observed in Section 3, our Green
functions can be extended to holomorphic functions definedin C\ {ze R : z > 1}.

First we choose a depending on « such that for all £ € [0, a] we have |z(¢, @)| >
1+ ¢, for somefixed ¢, > 0. This choiceis possible since the mapping & — z(§, @)

is continuous and z(¢, o) 291402
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BN

FIGURE 4. The curve of integration in the z-plane.

We observe that in this section we will make further choices of a, namely a will
be chosen sufficiently small in order to satisfy all the conditions we will find to be
necessary. In the sequel we will not stress that when anew condition isintroduced, if
necessary a is chosen smaller than before.

Now we estimate B.

LEMMA 5.1. Thereexistsa > 0 such that

2k
1 /G(Z)F(Z) q
Y2

zl < C en¢($) )\'n

27i AR

for someC > 0,1 < landfor all £ € [0, a].

PrOOF. Notethat B can be written as

en¢(é)/ (F(z(€, )€™ zo(6)" G(1z(€, o) |€™) gt
27 Jyzagee.w) F(2,(8))* |z(&, )|" gitn '

We want to give an upper bound for |G| and |F ?|, for all £ € [0,a] and |t| >
arg(z(¢, a)) (this upper bound will depend on a). This is possible since K :=
(z = |z, a)|€" : £ € [0,a], |t] > arg(z(£, «))} is a compact subset of C. Since
d(K, 1) > g, thereexists C > 1 (depending on a) such that

(5.2)

(5.3) rzr;ix(le(Z)l, |G(2)]) < C.

Hence the modulus of theintegrand in (5.2) is bounded by

(Faar) (&) e
F(z,(a))? 1+ &
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FIGURE 5. The compact set K.

We observe that if we take C = C(a) to be the smallest possible C > 1 sat-
isfying (5.3), then C(a) turns out to be a continuous increasing function. Since
(C@)/F (zo(a))?)" — 1lasa — 0, then

( e )a( : )
= <1,
F(z(a))? 1+e

which leads to the conclusion. O

Recalling that z(¢,t) = 1 — (£ — it)2, we haveto estimate

G@zEé. 1)

—it)dt.
26D (=1t

/ exp{nW; ()} ———=

LEMMA 5.2. The function W, (t) has a Taylor expansion centeredin 0

‘I’s(t)—fb(S)——( )t2+R(€,t),

1-¢2

where |R(¢,t)] < CJt|3for all £ € [0, a], |t| < «, and for some C > 0 (C depends
on a and «).

PrOOF. We calculate the first derivative of W,. Its Taylor serieswill lead usto the
Taylor expansion of the primitive function:

R S S T W e e I
0= rasy - Tware) - Sl tare)

n>1
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where the series converges to the function itself, provided that |t/(1+ £)| < 1 (but
thisistrue for a and « sufficiently small). Then, since ¢ (&) = W, (0),

1 4i
225

3 4
i O

() = (&) —

whereSE, t) = >, n7 (=)A= " +i"/(1 4 &) ] t"*. Wewant to show
that |S(§,1)] < C whereC > 0 does not dependon & € [0,a]noront € [—a, ].
But

o 1 1 00 2_a n+3 al
|s<5,t)|szﬁ[—(l_a)nl+l} ltl”“SZ(l_a) ntd
n=0

n=4
It is easy to seethat this power series convergesifa < 1/2and o < 1/4. O

The asymptotic estimate turns out to bedifferent depending on whether & isallowed
to tend very fast to O or not, that is, we have to distinguish two subcases.

THEOREM 5.3. For a > Osufficiently small, uniformlywithrespectto& € [n=Y/4, a],

V& eWw@n-1/2
VL + 61— 82

p<2n) (2k, 0) iy

PrROOF. We rewrite A using the Taylor expansion of W, (t):

g (§) a
(5.4)A=en /G(Z(s’t)) exp{n[ 1( 2 )t2+R(§,t)“(§—it)dt.

. 2E b 2\1-¢2

Letb(¢) = /2/(1 — £2), and notethat b(&) > +/2. Asinthecase¢ > a, itispossible
to choose « such that

(55) R, 1) < %b(&)ztz, Vit] < «, V€ € [0, al.

Perform a change of variable in order to stress the main term of the exponential
6 := /nb(&)t. If weputt, = 0/(/Nb(§)), o, = ay/nb(§) and z, = z(£, 1),

A eve  G(zo(8) [ G(zn) Z(§) o0/ 2HIRE A
n/bE) 28 J_o, GZ(§) zZ

(5.6) V(€ — ity) do.

We want to give an upper bound (valid for all £ € [n~¥/4, a]) for the modulus of the
integrand in order to apply Theorem 2.3. The exponential part is bounded by e~*/4
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and £ — it, ~ & uniformly with respect to £ € [n~Y4, a], for every fixed 8, asn tends
to infinity. For all |t| <o and & € [n~Y4 a],

‘ G(zn) Hzo(é)

G(z,(8))

Then if in (5.6) we extract the factor & from the integral, the modulus of the new
integrand is bounded (for all &€ € [n~Y4 a]) by e?/4(1 + c|6|) and the integrand
converges pointwise to /2. Apply Theorem 2.3 to obtain

A~ V2 et p-1/2
VL +6 (AL -8?

uniformly with respect to £ € [n~Y4, a]. The theorem follows since, by Lemma 5.1,
|B/A| tendsto zero asntendsto infinity, uniformly with respectto £ € [n=4,a]. O

When £ € [0, n"Y4] it isno longer true that £ — it, ~ & and the technique will
be dightly different. A useful tool will appear to be the computation of the real and
imaginary partsof /& — it,.

LEMMA 5.4. Let /€ — it = a(&,t) +ib(&,1). Then

a0 = (VEZ++£)/2, bt =—sgnt)y (Ve T+ —g)2

and both theseterms are O(/€) + O(/[t]).

THEOREM 5.5. Uniformly with respect to £ € [0, n=Y4],

o 2k, 0 2 V) oo
NG

wherel (t) := [,e7%72,/ /12 +62/2+t db. Moreover for all & > 0, uniformly with

respect to £ e [0, n~¥2-¢],

n «/_e n73/4

PO g

PrOOF. The integral we have to estimate is still A of (5.4). Choose « as in
Theorem 5.3 and let 9, b(¢), t., o, and z, be as defined there. Then we proceed
differently: in Part | we show a decomposition of G(z) into its singular and regular
parts; Part |1 is devoted to the estimate of the real part of theintegrand in A: we stress
only the terms which are not o(£) or o(t?) (uniformly with respect to & € [0, n~%4]).
InPart Il wewrite A = A; + A, + As. InPart IV weestimate A; and describe some
propertiesof | (t). Part VV shows negligibility of B, A, and As.
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Part|. Wewrite adecomposition for G(2):
(5.7) G2 =01-2"YH@ +1A-2"K (@),

whereH (@) == v2Y 2 (32) 1—-2" and K@) = v23 02 (52) (1 — 2" are
two holomorphic functions defined in a disc centered in z = 1 and with radius r
greater or equal to 2/3. Note that we need |1 — z| < r, but this surely holds in the
integration domain if « is sufficiently small. Moreover, we decomposeH and K into
their real and imaginary partss H = Hg+iH; andK = Ko+ iK .

Part Il. In A we decompose G(z) asin (5.7), the remainder term R in its real and
imaginary parts Ry and R; respectively:

e ® " i a, +ib _
A= — e*g /2+nRo(&,th)+iNR1(,th) n H(z + + |b ZK z d@,
e ). T (H @) + @+ by 2)

where a, = a(é,t,) and b = b(&,t,). Since the transition probabilities are non
negative quantities, we are interested only in the real part of the last integral (in fact
the imaginary part is O, but taking into account only the real part of the integrand
avoids useless computation).

In order to apply Theorem 2.4, we estimate the function (depending on &, nand 9)
to which thereal part of our integrand is asymptotic. Inthefollowing estimates every
o0 and O is understood to be uniform with respectto £ e [0, n~4].

First we estimate the main term of

(5.8) Re {0 (@, +iby) (H (z0) + (@ + ibn)*K (z0)) } -
Using the expression of R; which can be deduced from the proof of Lemma 5.2, one
provesthat Ry (£,1) = t3(0(&) + O(t)), whence for every fixed 4
NR1(§, th) = t,(O(§) + O(tn)).
Then (5.8) can be written as

cos(NRy (&, th))@Ho(Zn) + CoS(NR1(€, )bt K o(Z0) + 0(§) 4 0(t7),

(theproof istediousbut straightforward). Theonly termswhich cannot beimmediately
seen as either o(¢) or o(t?) are

(59 0/t =0@E), O®F)O(t,[¥?) =0(5), O/§)O(t2) = o(t?),

and these estimates are uniform with respect to £ < [0, n—¥/4], since we consider n
tending to infinity, which implies that both & and t,, tend to O (for every fixed 6).
Finally, noting that z* = 1 + O(£2) + O(t?) for every fixed 6,
en‘ﬁ(é)

A= " 2RI (1 1 O(E2) + O(tD))

x {cos(NRy(§, th))aHo(Z,) + cos(NR1 (£, 1)) bntaKo(Z0) + 0(€) + o(t)) } do.
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Part I11.  If in the preceding integral we write a,, and b, asfunctionsof 9, £ and n
and we extract from the integral the terms which do not depend on 6, we can split A
in three parts

enqb(é)(]_ — 52)3/4

Al = —ﬁn e / e*92/2+nRo(é,tn)(1 + O(SZ) + O(tf))

92 ng? VN Ho(z)
e e vz

/an e792/2+nR0(E’tn>(l+O(§2)+O(t§))

—an 92

x cos(NR1(§, tn)) (—Ko(z0)) d,

ng2 /g

\/ Ttaet s
/ eI (L O(E%) + O(2)(0(€) + 0(E) .

x c0s(NRy (£, tn))J do,

eve (1 — £2)54

2T T A oA

eMe (1 —g2)L/2
Ag=——— "
V27 ni/2

Part IV. We show that theintegral in A, isasymptotic to

(Vi) = [ e VT o2+ VR co.
R

Wewant to apply Theorem 2.4 to theintegrand of A, but anew problem raises. the
quantity ./né may tend to 0 or to +oo as well. Hence we introduce a new function,
namely Q(n, §) := max {1, /n&}. Werewrite A,

e (1 — 52)3/4W/ 0/ 2 R o) Ho(Z,)
0(&,1n 1 O O
N (1+ O(E?) + O(t)) NG
62 né 2 Vg
X COS(an(é,tn))J \/2Q2(n, 3) (1 £2)Q2(n, E) /1~ £2Q(n, 5)

We evaluate the (uniform) asymptotic value of the integrand (whichwecall f (9, &),
defined for al 6 € R). Recaling that |nRq(&, t,)| — O for every fixed 6, uniformly
with respect to £ € [0, n~Y/4], one showsthat f ,(8, ) is asymptotic to

h0.6) = 02 \/ 02 ng 2 VA3
s 2Q2(n, &) (1 £2)Q2(n, 5) J1I-82Q(n &)

Thusf ,, and h, are both bounded, for every £ e [0, n=Y4], by

ce®*%//1+62/2+1.
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Finaly, | [z hn(6,£)d0| > c for somec > O, foral nand & € [0,n"Y4]. By
Theorem 2.4,

v &)

ﬁnn3/4l (

Part V. ByLemmab.1, |B/A,| tendsto O uniformly with respectto & e [0, n=Y/4].
Observing that / /X2 4+ 6%/2 + x > 2=Y4|9|¥2 for all x > 0, one obtains that

n

Ay~ «/ﬁg)

Azl < Ce™En 5 / e "6 do,
R
whence the negligibility of A, with respectto A;.
Asfor A, one can prove that |As| < Ce™®n=3/4(gY/8 + n=%/4), once he observes
that every o(¢) besides those in (5.9) is also equal to £Y/20(¢), that |o(t?)| < C6/n,
and that for the o(¢) in (5.9)

gO(Vg |tn|) < Cmf C01/2n71/4’

O©)O(Ita¥®)
3

The proof of the first estimate is now complete, the statement for £ € [0, n~¥2*] is
proved in the sameway, oncewenotethat | (t) iscontinuousin 0, | (0) = +/2I'(3/4),
andT"'(3/4) = (v/27)/ I'(1/4). Notethat the sameholdsunder theweaker assumption
that ./né — O uniformly in & and that the estimate agrees with Theorem 5.3 for
£ =nY4dncel (t) ~ 24/t7 ast — oo. O

< Cltn|3/2 < C03/2n73/4'

6. Estimatesalong the x-axis. thecaseé € [a, 1 — c]

In this section we give an asymptotic estimate for the transition probabilities
p™ (xy, 0), which we will rename p ™ (k, 0). We first note that if n and k do not
have the same parity, then p™ (k, 0) = 0, but we cannot repeat the trick we used on
the y-axisto derive p @9 (2k + 1, 0) from p @V (2k, 0). We estimate only the second
type of transition probabilities (the first ones can be derived in a similar way—see
Section 10).

The basic idea underlying our proofs hereis essentially the same as for the case of
the y-axis, nevertheless much more technical difficulties arise and the techniques we
employ appear more involved. We drop theindex 2 from F,, W7 and @5, so herewe
use the same symbols (among which aso ¢) for functions and values which are not
the same but play the same role as the analogues for the y-axis.
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LEMMA 6.1. The function W, (z) has a unique minimum (which we call ¢(&)) in
(0, 1], namely z,(£§) = 1 — Uo(§)?, where uy(§) = £%/°[54 + 6,/81 — 652]"°/6 +

£43[54 + 6,/81 — 6£2] 113,

Thefollowing theorem isthe analogue of Theorem 4.2 for the x-axis (and the proof
isjust the same).

THEOREM 6.2. Let a, ¢ be positive numbers such that a < 1 — ¢. Then uniformly
with respectto & e [a, 1 — c],

2(1 — z,(8)) G(z,(8)) e ©)-1/2

p@ (2k, 0) ~
V(L4 22,(8) — VI — 2(%))

7. Estimatesalong the x-axis. thecase & € [0, a]

We proceed as in Section 5, with the change of variable z = 1 — v* instead of
z = 1- u? Theintegra we are going to estimate has the same expression of (5.1)
(F of course here is F,) where y;, : z(6,t) = 1 — v(&,1)* for |t|] < « (for any
fixed £, v(£,t) is asuitable curve in the v-plane) and y, : Z(£,s) = |z(£, a)|€'s for
arg(z(§, @) <s < 2 —ag(zé, a)).

The desired curve in the v-planeis aline whose parametrizationis

{v(s) +eft  if tel0,al;

v, ) = . .

v(E)—e 't if t e[—a,0),

where v(£) := /Uo(€) (Uy(&) isdefined in Lemma6.1), and o and B will be chosen
in the sequel.

If we look at the proofs of Theorem 5.3 and Theorem 5.5 we see that, once the
integration contour isfixed to bey, Uy, andintegration on y, isproved to benegligible,
the first steps of the procedure are (roughly speaking):

(1) towriteaTaylor expansion of W, (t) := W, (z(, t)) for |t| < «;

(2) to find a change of variable & = f(n, &, 1) such that n ‘disappears’ from one
term of the exponential in the integral and the remaining terms of the expansion are
negligible.

Our first task is to prove that W, (t) has a Taylor series expansion and to estimate its
first terms. Thisis amatter of quite long computations that we omit here, we simply
exhibit the results.

In case that the reader wantsto perform these computations, we point out that one
canwritefirst theseriesin v of W, (1—v*) and then substitute v = v (&, t) to obtain the
seriesint. Indoing so, particular attention must be paid in computing the roots (for
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instance v/v* is not necessarily equal to v2) whose explicit expressions depend on the
position of v in the complex plane, with respect to the two bisectors of the quadrants.

LEMMA 7.1. The function W, (t) has a Taylor series expansion centered in 0, with
positive radius of convergence not depending on &, and the following equality holds:

Ve (t) = () + P a,(E)t° + eag ()t + e a @)t + RE, t)

where the remainder termis R(&,t) = O(t ®), uniformly with respect to £ € [0, a].
Moreover, if &€ — 0,

() ~ 3 2675, ag(§) ~ 29670 au®) ~ L

Now wehaveto choosethe curveof integration (that is, 8) in order to obtain that

(@) thecurvez(t,t) =1 — v(&,1)* has some ‘good properties’ (for instance there
exists @ > 0 such that |z(¢, «)| > 1+ &, for some g > 0 and for every & in the
considered range);

(b) we can dominate exp{n W, (t)} with an integrable function.

We observe that, as for the integral on y;, we can consider only the piece of y; lying
in the first quadrant (that is the one corresponding tot > 0). Indeed, since y, is
symmetric with respect to the horizontal axis, it is easy to see that

1 / G(z(. 1)
T

Requirement (b) restricts the range of 8. In fact we require that the real parts of the
expansion in Lemma 7.1 have non positive coefficients, that is, that cos(28), cos(38)
and cos(48) are all non positive. This correspondsto 8 € A = [7x/4,37/8] U
[—37/8, —7/4].

A= e O[—4e” (u(&) + €Pt)?] dt.

REMARK 7.2. Among the curves of the family % := {z(¢§,t) : t > 0, B € A},
the ones with 8 = 47 /4 have exactly one intersection with the real axis: z(¢,0) =
1 — v(&)*; while the others have exactly two intersections with the same axis: one
fort = 0 and the other for t = v(&)/(sinB —cosp) if B € (/4,37 /8] or for
t = —v()/(SnB + cosp) if B € [—3rn/8, —7 /4.

We present the plot of some of the curveswewill use. Sincethe curvefor 8 = /4
turns clockwise (with respect to the origin), we will prefer its conjugate, that is, the
curvefor B = —m/4 (see Figure 6).

Figure 7 shows the curve for 8 = 7/3, where we used a logarithmic scale on
the horizontal axis in order to show the ‘ pathological’ behaviour of the curves of the
family with g8 # +r /4.



[21] Uniform asymptotic estimates of transition probabilities on combs 345

FIGURE 6. Thecurve yi ., for g = —m/4.

0 1

1— () 1+ 40(6)*/9(V3 — 1)*

FIGURE 7. Thecurve yi . for g = /3.

The choice of a proper change of variable is between three substitutions, each
stressing a different piece of the exponential part of the integrand:

(@ nay(&)t?=6% or(b) nag&t*=06° or(c) na,é)t* ="

LEMMA 7.3. Inorder to have an upper bound for n@ (t(9)), we must use substitu-
tion (a) for & > n=¥/4, substitution (c) for & < n=¥/4.

PrOOF. With substitution (a), €"%® can be written as

ng (§) iB N2 3ip a3(€) 3 4B 8.4(%') 4 }
e [ S O e R IRE |



346 DanielaBertacchi and Fabio Zucca [22]

Then for a sufficiently small and for every £ € [0, a],

a3(§)/v/N(@2(6))%? < C/n'2%°, a,(§)/n(82(8))* < C/ng*>,

which areal surely bounded if £ > n=/4,

Similarly, with substitution (c), the coefficients of 2 and 6 are bounded for
£ < n~%4 while the coefficient of 9% ise*?.

Finally, with substitution (b) the coefficient of 2 isbounded if £ < n=¥4, whilethe
coefficient of 64 is bounded if £ > n=%4. This makes substitution (b) a not suitable
one. O

8. Estimatesalong the x-axis: thecaseé e [0, n=%4]

Inthis section we fix B = —m/4 and z(£,t) = 1 — (v(£§) + e "™/*t)*. The curve
of integration is similar to that in Figure 4, even if y; is here the arc of the curvein
Figure 6 correspondingtot € [0, «], plus the arc obtained by symmetry with respect
to the horizontal axis.

We choose a depending on o« such that for al &€ € [0, a] wehave |z(§, @)| > 1+ ¢,
for some fixed ¢, > 0. Thanks to this choice, the circular part of the curve of
integration will be far from the singularity z = 1. This choice is possible since the
mapping £ — z(&, ) iscontinuous and z(£, «) 29140

The proof of the following lemmais analogous to that of Lemma 5.1.

LEMMA 8.1. Thereexistsa > 0 such that

2k
i. / SAF@D" 4| < cewe s
2ri J, AR -

for someC > 0,1 < landfor all £ € [0, a].

THEOREM 8.2. Uniformly with respect to £ € [0, n=¥/4],

p(zn) (2k, 0) 2 i | (nl/4§1/3) en¢(g)n,3/4’
T

where
L) = / T 00 cos(3 - 223207 — 23t6%) (2712 + 67 + 23t6)
+Osin(3- 2213292 — 2Y°t6°) (67 — 273t%) ] do.
Moreover for all ¢ > 0, uniformly with respect to & € [0, n=¥/4~¢],

V2 ey

(2n) n
PO~ T
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ProOF. Perform the change of variable (c), put t, = 0 A/nas(¢), z, = z(€, t,) and
an, = +/Nay(€) a. Then

B —2J/2e%® B  G(z,) st
(8.1) A= Xl (Im Re)/o = (v(E&) + e
n**ag(£)

n2a,(&) ,
()2 V2a,(5)%4

0% — (1+41)
Now we choose a such that |R(§,t)| < as(&)t*/2foradl & € [0,a] and t € [0, o].
This choice is possible since |R(§,t)| < CJt|® and a,(¢§) > cfor al & < a. Then
INR(£,1,)| < 6*/2 and the modulus of the integrand in (8.1) is bounded by

nl/4a3(€) 3 94 . 94

if £ € [0, n=%4] (weused |v(¢) + e ""/4,| < C84).
We proceed as in Theorem 5.5, we rewrite the decomposition of G(z(¢, t))

xexp{—i 93—94+nR(§,tn)} do.

Gz, 1) = () +e ) H(Z(E, D) + (&) + & DK EE, D).

Using this decomposition and the one of theremainder term R initsreal andimaginary
parts, theintegral in (8.1) can be written as

on nl/4a3(€) 3 4 } .
8.2 ——0° -0 Ro(&, t,
(8.2) /O @(p{ NN +NRo(E, ) [ 7,

n'2a,(&) 2 n'4ag(§)
au(§)1? V2a,(8)¥4
x {(w(&) + e )?H (z0) + (v(€) + & 1)K (zn) } do.

xexp{—i 93+inR1(€,tn)}

Let M = exp { — n¥*ag(§) 0%/ (v2au(€)¥%) — 6* + NRo(, t)}, Fo(0, %) be the
integrand, and iA,, = iA(n,g,@)Nbethe function in the exponentia in (0, &)/M.
Explicit computation showsthat f ,(6, £)/M can be written as

{ cOs(AD) (v(E)? + V20(E)t)Ho(zn)
+ SIN(AD (V20 (E)ty + 12)Ho(Z,) + 0(v(€)?) + ot }
+i{ = cos(An) (V20(E)ty + tDHo(Zy)
+SN(AY) (WE)PV2 + v(E)t)Ho(z) + 0(w(E)?) + 0t}

where, asin the rest of the section, o(v(£)?) and o(t?) are uniform with respect to
£ € [0,n~%4].
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We extract the factor n=%2 from the integrand: thus the exponent of the n outside
of theintegral is —3/4 as predicted by local estimates. Moreover, /nv(£)?, o/nv(é)t,
and ,/nt? are bounded since v(§) ~ £¥3and & € [0, n=3/4]. We can write A as

3 22 / { n"4as(§)
0

@ Jy | V2au)
x (1+0(v(§)*) +o(ty))
x { cOS(AN (VN(§)® + 2v/2n0(E)ty + VNt Ho(Z)
+SiN(AL) (VNEZ = Vv(E)*)Ho(Z) + VN0 (§)?) + v/No(t?) } do.

0% — 6% + NRy(&, tn)}

In order to apply Theorem 2.4, if f (0, &) istheintegrand in (8.3), we haveto evaluate
its uniform asymptotic h,(9, &). Using the asymptotic values of a(£) and v(€), and
observing that H (z,) tends to /2 as n tends to infinity,

hn(Q, é?) — «/56724/3n1/4€1/393,94{ coS (3_ 22/3n1/2§2/392 . 24/3n1/4§1/3 93)
% (271/3n1/252/3 + 24/3n1/4§1/39 + 92)
+sn (3_ 22/3n1/2§2/392 . 24/3n1/4§1/3 93) (92 . 271/3n1/2§2/3)}'

The hypotheses of Theorem 2.4 are satisfied choosing
g(0) = Ce 21+ 0 + 6?).

Now we put § := n¥4£Y/3; clearly § € [0, 1] and the requirement that

/ h,(8, &) do
R+

>c>0

for some ¢ and for every £ e [0, n=¥4], isequivalentto | (§) > c for every § € [0, 1].
By numerical computation performed with Derive this appears obvious.
Henceby Theorem 2.4

A~ 4 | (nY/A4gY3) gw©n-3/4
T

and this is the uniform asymptotic estimate for the p 2" (2k, 0) since by Lemma 8.1
|B/A| tends to zero uniformly with respect to £ e [0, n=%/4].

As in Theorem 5.5 one proves the statement for & € [0, n~¥4~¢], noting that
1(0) = [, 6% do = 7/2/4T'(1/4). Observethat this|ast result can be obtained
under the weaker assumption that n*/4£%/® — 0 uniformly with respect to &. O
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z(§, )

0 1 2(€. to)

FIGURE 8. The curve y1c(0.q)-

]
]~

FIGURE 9. The curve of integration in the case & > n=%/4,

9. Estimatesalong the x-axis: thecaseé € [n~%4, a]

We observe that since in this case we have to use substitution (@), the curve of
integration we used so far does not fit. Infactin the exponential, 62 would have apure
imaginary coefficient. Hence we are forced to seek another solution, that is, a curve
of integration made of more pieces: thecurve y, isz(&,t) = 1 — (v(€) + e 73t)* if
0<t <tz t)=1—(vE)+€73)*ift, <t < a, plusthe conjugate of thesetwo
curves; while y, isacircular arc which makes the whole connected. Figure 8 shows
how these curves appear. A sketch for the curve of integration is shown in Figure 9.

Aswe aready remarked, by symmetry A, the integral over v, isequal to

1 “G(zE, 1))

where 8(t) = —/3if t € [0, to], B(t) = 7/3if t € (to, a] and ty = 2/(v/3 — v ().
Thus we have to estimate

o
_ i Im/ G(zE. 1) en¢(é)+ne*2’i/3az<é)t27nas(é)t3+ne*4”i/3a4<é)t4+nR<é,t)
0

T Z(S’ t)
x &R (0(E) + €)M, (1) + €73 (&) + €)%y, o (D) dt.

Perform the change of variable & = /na, (&)t and write t, for 6 //na,(¢). Choose
a such that [R(&,1)| < as(&)t*/4foral € < aand |t| < . Moreover in order to

exp{n, (t)}[—-4€’V (v(&) 4+ 7Vt)?] dt,
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obtain |z(§, a)| > 1+ ¢, for some g,, welet o > max; t, = 2/(~/3 = 1)v(a), which
issurely trueif a is sufficiently small.
We distinguish two subcases: £ € [n=¥4, n~¥**] and £ € [n~¥**, a].

THEOREM 9.1. For all ¢ > 0 and for sufficiently small a, uniformly with respect to
g c [n73/4+8’ a],

n 4v(E)G(z0(8)) _ /*” g2 T /3
@m X N (§) n—1/2 6%/2 2
p‘“"(2k, 0) BNAG) e¥n ; e cos(6 > 0° ) do.

ProOOF. We apply Theorem 2.3, observing that the modulus of the integrand is
dominated by C(1 + 0)3e?*/2-%°~C* for every 6 > 0, & € [n~¥*", a] and n. More-
over, the integrand converges pointwise, uniformly with respect to £ e [n=¥/4+¢ a],
to e'™/3es % Negligibility of the integral on y, is shown as in the preceding
cases. O

THEOREM 9.2. For all & > 0, uniformly with respect to & € [n=%4, n=3/4+¢],

n 2Y8G(z,(£))
@ 2k, 0 N2 RS (0T YRE 23y @ ®) 2312,
P ) /3 ( £ §

where| (t) isan integral function, defined as follows:
02 211/6¢ . t2

+o00
. 7 _ 4
I(t)._/O exp{ > 6«/§9 9_27/39}

2 2
{«/5 cos (— «/529 + E;/_ézi/s 94) (1+ /32780 — (3V6)1t%6%)

2 2
—sin (—“/529 + ﬁ: 3 94) (1—+/327Y%t0 — 22°292 — (3«/6)%393)}

{1[O,ﬂ£](9) — 1[%@,“@)(9)} dé.

V31t

ProOOF. The substantial difference with the previous caseis that we cannot find a
pointwise limit for the integrand, but only a pointwise asymptotic estimate. Hencewe
apply Theorem 2.4, exactly asin the proof of Theorem 8.2. O

10. Final remarks

First, let us observe how one can obtain an estimate for the transition probabilities
with odd time and space parameters.
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From the results on the y-axis we obtain also p @Y (yy, 1, 0), thanksto (4.1), as
we noted in Section 4.

The estimate of p@™? (x4, 0) requires further calculation, but it is not much
different from what we did this far. We briefly point out what has to be done.

Let G(2), F (2) and W (z) be asin Section 6, then

1L fCOF@

(2n+1) - NV (2) dz
p (X2k+lv O) 27'[' z ﬁ
_ 1 @1+ VI-Z2- V124 V17
- 27i z z '

Thus, if & € [a,1 — c] the proof will differ from that of Theorem 6.2 because
one should multiply and divide the integrand by G(z,(¢£))F (z,(£))/z,(£)? instead of
G(z,(8))/2,(§). Therest of the proof is completely analogousto that of Theorem 6.2.
The same can be donein thecase & > n—¥/4,

Inthecase & e [0, n—¥4] one will need a decomposition (similar to the decompo-
sition (5.7) of G(2)) of F (2) \/Z

14+V1=Z2—V2\1-24+V1=2=1+/1-2—J1-2 (2) + V(1—2)3L(2),

where J(z) and L(z) aretwo holomorphic functions. Then

G2+ \/l—Z—«/E\/l—Z—}—«/l—Z)

=1-27""H@+1-2"H@ +K@)
+1-2"*0 (@K@ +H(@2 L2)
+ (1 - 2**K(2) + holomorphic functions,

and one can proceed asin Theorem 6.2.

Moreover, by symmetry, trandation invariance and reversihility from our estimates
of p™ (xx, 0) andp™ (yx, 0) (fork > 0) onederivesuniform estimatesfor p ™ (x, X,),
P ((Ky, K), Xi), P™ (X > (Kp, K)) fork, ky € Z.

Wenotethat it isnot possible to extend these estimates to uniform estimates for any
starting and ending point, as we did in (3.3) for local estimates since the asymptotic
we use (picked from [ 3, Section 6]) does not hold uniformly.

We now remark some particular features of thetransition probabilities of thesimple
random walk on C, that appear after our calculations. We recall our estimates for
& converging to zero with a‘controlled’ speed, and we stress the dependence on &.
Uniformly with respect to & € [n=¥/4+¢ n-Y/2-¢],

—ng2 h—3/4 ; _ .
(10.2) P (0 L 1S N X =Y
' ’ C e 1213 jf x = xy.
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It is worth noting that, these results show a different dependence on & along the
two axes. In particular this results in the impossibility of finding for the transition
probabilities on C, a sub-Gaussian estimate. Sub-Gaussian estimates of transition
probabilities have been studied on many graphs: by Jones[11] on the 2-dimensional
Sierpinski graph, by Barlow and Bass [ 1] on the graphical Sierpifiski carpet and more
recently on rather general graphs by Grigor’'yan and Telcs[ 9, 16]. If £ = d(X,y)/n,
sub-Gaussian estimates have this expression:

¢, ngdw/Gu=1)

e , VXY,

8s/2 q—Cp NESw/Guw=1

e 8s/2

cin” <p"(x,y) <csn”

for some positive constants c,, C,, Cs, C, and for sufficiently large n. By definition 8
is called the spectral dimension (which appearsalso in local estimates) and §,, is the
walk dimension. These two dimensions are in typical cases related by the so-called
‘Einsteinrelation’: 8s8,, = 26; , whered; isthefractal dimension (see[14, 15]). Since
for C,, 8s = 3/2and §; = 2, onewould expect §,, = 8/3. Nevertheless(10.1) shows
that if X =y, andy = o the estimate holds with §,, = 2, whileif X = x4 andy = o
the estimate holds with §,, = 4.

We finally observe that the method we used here to provide a uniform asymptotic
estimate of transition probabilities has already been employed for homogeneous trees
and freegroups (see[ 12, 13, 18]). Oneof theaims of this paper wasal so shedding new
light onto this method. It seemsthat one could use the described technique for more
general graphs and random walks (provided the knowledge of the Green function).
As we noted, the major difficulty appears to be the choice of a proper contour of
integration, for which no recipeis known (we investigated only arestricted family of
Curvesin our case).

A natural extension of our results could be the analogues for d-combs. However,
technical difficulties increase notably already for d = 3, since

3

Gg(Z)Z .
\/3(1—22)+2«/ﬁ+2«/§\/1—22+«/1—22
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