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Abstract

It is shown that ifR is a right Noetherian ring whose right socle is essential as a right ideal and is contained
in the left socle, thenR is right Artinian. This result may be viewed as a one-sided version of a result
of Ginn and Moss on two-sided Noetherian rings with essential socle. This also extends the work of
Nicholson and Yousif where the same result is obtained under a stronger hypothesis. We use our work to
obtain partial positive answers to some open questions on rightC F, right FG F and right Johns rings.

2000Mathematics subject classification: primary 16A33; secondary 16A35.
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1. Introduction

All rings are associative with identity and all modules are unitary. IfR is a ring,
we denote by Soc.RR/ = Sr , Soc.RR/ = Sl , Z.RR/ = Zr and J.R/ = J for the
right socle, the left socle, the right singular ideal and the Jacobson radical ofR,
respectively. The left and right annihilators of a subsetX of R are denoted byl.X/
andr .X/, respectively. We useK ≤e N to indicate thatK is an essential submodule
of N. General background material can be found in [1].

It is well known that over a commutative ring, every Noetherian module with
essential socle is Artinian. This is not true for arbitrary right Noetherian rings ([7, 8]).
However a result of Ginn and Moss [8, Theorem] asserts that a two-sided Noetherian
ring with essential right socle is right and left Artinian. Recently, Nicholson and
Yousif [15] obtained a one-sided version of this theorem, by showing that a right
Noetherian, right minsymmetric ring (wheneverx R is a minimal right ideal ofR, then
Rx is a minimal left ideal, for everyx ∈ R) with essential right socle is right Artinian.
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We extend this result by replacing the right minsymmetric condition by the weaker
conditionSr ⊆ Sl .

Recall that a ringR is calledright Johnsif R is right Noetherian and every right
ideal of R is a right annihilator, and thatR is strongly right Johnsif Mn.R/ is right
Johns for everyn ≥ 1. In [7] an example of a right Johns ring which is not right
Artinian is given. However it is not known whether a strongly right Johns ring is right
Artinian. Here we prove that a right Johns ring withSr ⊆ Sl is right Artinian. It is
also shown that a right Johns left coherent ring is right Artinian. Hence a strongly
right Johns and left coherent ring isQF.

A ring R is calledright FGF (C F) if every finitely generated (cyclic) rightR-
module embeds in a free rightR-module. It is still open whether a rightFG F (C F)
ring is QF (right Artinian ). We show that ifR is a semilocal, rightC F ring with
Sr ⊆ Sl , then R is right Artinian. In particular, a semilocal rightFG F ring with
Sr ⊆ Sl is QF.

Finally, it is shown that ifR satisfies the conditionl.r .a/ ∩ T/ = Ra+ l.T/ for
everya ∈ R and any right idealT of R, thenR is a right weakly continuous ring. As
a corollary, some conditions are given to force a rightC F ring to beQF.

2. The results

A ring R is calledleft Kaschif every simple leftR-module can be embedded inRR.

LEMMA 2.1. Let R be a ring such thatR=J is left Kasch andJ = l.a1;a2; : : : ;an/,
whereai ∈ R, i = 1;2; : : : ;n. ThenR is a left Kasch ring.

PROOF. Let K be a simple leftR-module. ThenK is a simple leftR=J-module.
SinceR=J is left Kasch, there is anR=J-monomorphism� : K → R=J. Clearly,�
is a monicR-homomorphism. By hypothesis,J = l.a1;a2; : : : ;an/, and so there is a
monomorphism : R=J → Rn. Hence f =  � is monic. Let³i : Rn → R be the
i th projection,i = 1;2; : : : ;n. Then it is easy to see³i f is monic for somei . So K
embeds inRR.

A ring R is said to be aright C2-ring if every right ideal that is isomorphic to a
direct summand ofRR is itself a direct summand,R is calledright finitely cogenerated
if Sr is a finitely generated right ideal andSr ≤e RR. The following lemma is a key to
our results.

LEMMA 2.2. Let R be a right finitely cogenerated ring withSr ⊆ Sl. Then the
following are equivalent:

(1) R is left Kasch.
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(2) R is a right C2-ring.
(3) Zr ⊆ J.

In this case,R is semilocal andZr = J = l.Sr / = l.Sl /.

PROOF. (1) ⇒ (2) ⇒ (3) holds in every ringR without any additional hypotheses
by [16, Proposition 4.1].

Now we assume that (3) holds.
(i) We claim thatR is semilocal. First we havel.Sr / ⊆ J. In fact, leta ∈ l.Sr /,

thenSr ⊆ r .a/. SinceR is right finitely cogenerated,Sr ≤e RR. Thusr .a/ ≤e RR,
and soa ∈ Zr ⊆ J.

Next, we prove that, for any simple right idealk Rof R, l.k/ = ⋂s
i =1 l.ki / for some

positive integers, where eachki ∈ R andl.ki / is a maximal left ideal,i = 1;2; : : : ; s.
As a matter of fact, sincek ∈ k R ⊆ Sr ⊆ Sl , Rk ⊆ Sl . So Rk is semisimple.
Now, without loss of generality, we may assume thats is the smallest integer such
that Rk = Rl1 ⊕ Rl2 ⊕ · · · ⊕ Rls, where eachRli is simple, i = 1;2; : : : ; s. Let
k = r1l1 + r2l2 + · · · + rsls, thenri l i 6= 0, i = 1;2; : : : ; s, by the choice ofs. Let
ki = ri l i , thenk = k1 + k2 + · · · + ks, and sol.k/ = ⋂s

i =1 l.ki /. SinceRli is simple
andRki = Rri l i , Rki is simple. Hencel.ki / is maximal for eachi = 1;2; : : : ; s.

Finally, sinceR is right finitely cogenerated,Sr is finitely generated. LetSr =
a1R + a2 R + · · · + an R, where eachai R is a simple right ideal,i = 1;2; : : : ;n. By
the preceding proof, we havel.ai / = ⋂ti

j =1 l.ai j /, wherel.ai j / is a maximal left ideal
for i = 1;2; : : : ;n and j = 1;2; : : : ; ti . Thus

J ⊇ l.Sr / = l

(
n∑

i =1

ai R

)
=

n⋂
i =1

l.ai / =
n⋂

i =1

ti⋂
j =1

l.ai j /:

Clearly, J ⊆ ⋂n
i =1

⋂ti
j =1 l.ai j /. ThusJ = ⋂n

i =1

⋂ti
j =1 l.ai j /, and soR is semilocal.

(ii) Zr = J = l.Sr / = l.Sl /. Since R is semilocal by (i),Sl = r .J/. Hence
J Sl = 0. By hypothesis,Sr ⊆ Sl , and soJ Sr = 0. But Sr ≤e RR by hypothesis, and
henceJ ⊆ Zr . Therefore,J = Zr .

On the other hand, for any ringR, we haveZr Sr = 0, and soZr ⊆ l.Sr /. Hence
J = Zr ⊆ l.Sr /. Howeverl.Sr / ⊆ J by the proof of (i). Sol.Sr / = J.

Note thatJ ⊆ l.r .J// = l.Sl / (for Sl = r .J/), andl.Sl / ⊆ l.Sr / = J (for Sr ⊆ Sl ),
thenJ = l.Sl /.

(iii) R is left Kasch.J = l.Sr / by (ii). But Sr is finitely generated, and soR is left
Kasch by Lemma2.1.

COROLLARY 2.3. Let R be a right finitely cogenerated ring withSr ⊆ Sl and ACC
on right annihilators. ThenR is a semiprimary ring withJ = Zr .
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PROOF. SinceRhasACC on right annihilators,Zr is nilpotent by [5, Lemma 18.3]
or [10, Proposition 3.31]. SoZr ⊆ J. By Lemma2.2, R is semilocal andJ = Zr .
ThusR is semiprimary.

Recall that a ringR is semiregularif R=J is von Neumann regular and idempotents
can be lifted moduloJ. R is right weakly continuous([17]) if R is semiregular and
J = Zr . R is semiperfectin caseR=J is semisimple Artinian and idempotents lift
moduloJ. R is calledleft P-injectiveif every left R-homomorphism from a principal
left ideal intoR extends to an endomorphism ofR.

LEMMA 2.4. Let R be a semiperfect ring such thatSl ≤e RR. Then:

(1) J = Zr .
(2) R is right weakly continuous.

PROOF. (1). Supposex ∈ J ⊆ l.Sl /, thenx Sl = 0. SinceSl ≤e RR, x ∈ Zr . So
J ⊆ Zr . On the other hand,R is left Kasch by [16, Lemma 3.11], and henceZr ⊆ J
by [16, Proposition 4.1]. Thus (1) follows.

(2). This follows from (1) and the hypothesis.

In general, a right Noetherian ring with essential right socle need not be right
Artinian as shown by Faith-Menal’s example ([7]). The following theorem shows that
the conditionSr ⊆ Sl is strong enough to force a right Noetherian ring with essential
right socle to be right Artinian.

THEOREM 2.5. The following are equivalent for a ringR:

(1) R is a right Noetherian ring such thatSr ⊆ Sl and Sr ≤e RR.
(2) R is right Artinian with J = Zr .
(3) R is right Artinian and right weakly continuous.

PROOF. (1) ⇒ (2). SinceR is right Noetherian,Sr is finitely generated. Thus
R is right finitely cogenerated by hypothesis and soR is a semiprimary ring by
Corollary2.3. So R is a right Artinian ring by Hopkin’s theorem. SinceSr ⊆ Sl and
Sr ≤e RR, Sl ≤e RR. ThusJ = Zr by Lemma2.4.

(2) ⇒ (1). Let x ∈ Sr , then Zr x = 0. Thusx ∈ r .Zr / = r .J/ = Sl (for R is
semilocal). SoSr ⊆ Sl .

(2) ⇔ (3). Every right Artinian ring is semiperfect, and hence semiregular. So (2)
⇔ (3) follows.

A ring R is calledright minsymmetricif, wheneverk R is a simple right ideal ofR,
then Rk is also simple, for everyk ∈ R. If R is right minsymmetric, thenSr ⊆ Sl .
The condition thatSr ⊆ Sl simply means that, wheneverk R is a simple right ideal,
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then Rk is a semisimple left ideal. The next example shows that a ring satisfying
Sr ⊆ Sl need not be right minsymmetric.

EXAMPLE 1. Let F = Z2 = {0;1} be the field of two elements and

R =



a 0 0

b a 0
c 0 d


 : a;b; c;d ∈ F


 :

ThenR is a ring under usual addition and multiplication of matrices. It can be easily
checked that 

0 0 0
F 0 0
0 0 0


 ;


0 0 0

0 0 0
F 0 0


 ;


0 0 0

0 0 0
0 0 F


 ;

R


0 0 0

0 0 0
1 0 1


 =




0 0 0

0 0 0
d 0 d


 : d ∈ F




are all simple left ideals ofR, and
0 0 0

F 0 0
0 0 0


 ;


0 0 0

0 0 0
F 0 0


 ;


0 0 0

1 0 0
1 0 0


 R =




0 0 0

a 0 0
a 0 0


 : a ∈ F




are all simple right ideals ofR. Hence

Sl =

0 0 0

F 0 0
F 0 F


 and Sr =


0 0 0

F 0 0
F 0 0


 :

Clearly,Sr ⊆ Sl .

Let x =
(

0 0 0
1 0 0
1 0 0

)
∈ R. Then

x R=



0 0 0

a 0 0
a 0 0


 : a ∈ F




is a simple right ideal, butRx =
(

0 0 0
F 0 0
F 0 0

)
is a semisimple left ideal which is not simple.

So R is not right minsymmetric.

REMARK 1. Example1 above shows that Lemma2.2, Corollary 2.3 and Theo-
rem2.5are non-trivial extensions of the work in [15, Lemma 1], [15, Theorem 1] and
[15, Theorem 2], respectively.
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COROLLARY 2.6. The following are equivalent for a ringR:

(1) R is a right Johns ring withSr ⊆ Sl .
(2) R is a right Artinian ring and every right ideal is a right annihilator ofR.

PROOF. (1) ⇒ (2). SinceR is a right Johns ring,Sr ≤e RR by [16, Lemma 5.7 (4)].
ThusR is a right Artinian ring by Theorem2.5.

(2) ⇒ (1). This follows from [14, Theorem 3.7].

Recall that a ringR is right finite dimensionalprovided thatR contains no infinite
independent families of nonzero right ideals.R is said to be aright Goldie ring [10]
if it is a right finite dimensional ring withACC on right annihilators. We need the
following lemma proved in [2, Lemma 6].

LEMMA 2.7. Let R be a semiprimary ring withACC on left annihilators, in which
Sr = Sl is finite dimensional as a rightR-module. ThenR is right Artinian.

The following theorem extends the results in [6, Theorem], [12, Corollary 9] and
[15, Theorem 3].

THEOREM 2.8. Let R be a ring such thatSr = Sl . Then:

(1) If R is a right finitely cogenerated ring withACC on right and left annihilators
thenR is right Artinian.
(2) If R is right and left Goldie with essential right socle thenR is left and right

Artinian.

PROOF. (1) R is semiprimary by Corollary2.3. SinceR is a right finitely cogen-
erated,Sl = Sr is a finitely generated rightR-module. Note thatR hasACC on left
annihilators. SoR is right Artinian by Lemma2.7.

(2) SinceR is right and left Goldie,R hasACC on right and left annihilators and
R is right finite dimensional by definition. ButSr ≤e RR, and soR is right finitely
cogenerated. HenceR is right Artinian by (1). In particular,R is right perfect, and
so Sl ≤e RR. Note thatR is left finite dimensional by hypothesis. HenceR is left
finitely cogenerated. ThusR is left Artinian by (1).

A ring R is calledleft mininjectiveif every R-homomorphism from a simple left
ideal toR is given by right multiplication by an element ofR. Left mininjective rings
are always left minsymmetric.

THEOREM 2.9. The following are equivalent for a ringR:

(1) R is left Noetherian and left mininjective such thatSr ⊆ Sl and Sl ≤e RR.
(2) R is a left finitely cogenerated and left mininjective ring withSr ⊆ Sl and ACC

on left annihilators.
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(3) R is a left Artinian and left mininjective ring withSr = Sl .

PROOF. (1) ⇒ (2) is clear.
(2) ⇒ (3). SinceR is left mininjective,Sl ⊆ Sr . So Sr = Sl . By Corollary2.3,

R is semiprimary. In particular,R is semiperfect, and henceSl is a finitely generated
right ideal ofR by [14, Proposition 3.3]. SoR is right Artinian by Lemma2.7. Thus
R is right Noetherian, and henceR hasACC on right annihilators. Therefore,R is
left Artinian by the left version of Theorem2.8(1).

(3) ⇒ (1) is obvious.

REMARK 2. We note that a ring satisfying the equivalent conditions in Theorem2.9
need not beQF. For example, letK be a field,² an isomorphism ofK onto a
subfieldL andR = K [X;²]=.X2/ the ring in [19, Example 1, pages 208–209]. Let
n = [K : L] be the vector space dimension ofK over L such that 1< n < ∞. Then
R is a left Artinian and leftP-injective ring withSr = Sl , but R is not QF.

The next theorem extends the results in [16, Theorem 5.9 (6)] and [16, Theo-
rem 5.8 (1) (6) (7)].

THEOREM 2.10. The following are equivalent for a ringR:

(1) R is semilocal and rightC F with Sr ⊆ Sl .
(2) R is a right Artinian ring and every right ideal is a right annihilator ofR.

PROOF. (1) ⇒ (2). SinceR is right C F, R is left P-injective. ThusSl ⊆ Sr , and
soSl = Sr . SinceR is right Kasch (forR is rightC F) and semilocal, we may assume
thata1R;a2R; : : : ;an R are the representatives for the isomorphism classes of simple
right R-modules, whereai ∈ R. i = 1;2; : : : ;n. Note thatai ∈ ai R ⊆ Sr = Sl , and
so Rai ⊆ Sl = Soc.RR/. Thus there exists a simple leftR-moduleRmi such that
Rmi ⊆ Rai , i = 1;2; : : : ;n. SinceR is left P-injective, there exists an epimorphism
�i : ai R → mi Rby [13, Theorem 1.1 (1)]. Note thatmi R is simple (forRmi is simple).
It follows that �i is an isomorphism,i = 1;2; : : : ;n. Thus m1R;m2R; : : : ;mn R
are the representatives for the isomorphism classes of simple rightR-modules. If
Rmi

∼= Rmj , thenmi R ∼= mj R by [13, Theorem 1.1 (3)], and soi = j . Therefore,
Rm1; Rm2; : : : ; Rmn are representatives for the isomorphism classes of simple left
R-modules. HenceR is left Kasch. SoR is right Artinian by [9, Corollary 2.6].

(2) ⇒ (1). Let R=A be a cyclic rightR-module, whereA is a right ideal ofR.
ThenR=A is torsionless (forA = r .l.A//) and finitely cogenerated becauseR is right
Artinian. HenceR=A embeds in a free rightR-module. SoR is right C F. Sr ⊆ Sl

follows from Corollary2.6.

A ring R is calledleft 2-injective([4, 13]) if R-maps from 2-generated left ideals
to R are all given by right multiplication. We need the following result of Rutter.
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LEMMA 2.11 ([19, Corollary 3]). If a ring R is left2-injective and hasACC on left
annihilators, thenR is QF.

A ring R is calledright 2-GF if every 2-generated rightR-module embeds in a free
right R-module. R is calledright 2-Johnsif M2.R/ is right Johns.

THEOREM 2.12. The following are equivalent for a ringR:

(1) R is QF.
(2) R is right 2-G F, semilocal andSr ⊆ Sl .
(3) R is right 2-Johns andSr ⊆ Sl.

In particular, every semilocal right FGF ring withSr ⊆ Sl is QF, and every
strongly right Johns ring withSr ⊆ Sl is QF.

PROOF. (1) ⇒ (2) and (1)⇒ (3) are clear.
(2)⇒ (1). SinceR is right 2-G F, it is rightC F. ThenR is right Artinian by (2) and

Theorem2.10. HenceR satisfiesACC on left annihilators. IfRR → R2
R → NR → 0

is an exact sequence of rightR-modules, thenNR is 2-generated,and so it is torsionless
(for R is right 2-G F). ThusR is left 2-injective by [4, Theorem 2.17], and henceR
is Q F by Lemma2.11.

(3) ⇒ (1). SinceR is a right 2-Johns ring, it is not difficult to see thatR is also
right Johns. ThusR is right Artinian by (3) and Corollary2.6, and soR hasACC on
left annihilators. By hypothesis,M2.R/ is left P-injective, and soR is left 2-injective
by [13, Theorem 4.2]. ThusR is QF by Lemma2.11.

We end this paper with the following results which are of independent interest.
Recall that a ringR is calledleft coherentif any direct product of copies ofR is flat
as a rightR-module.

THEOREM 2.13. Let R be a right Johns and left coherent ring. ThenR is right
Artinian.

PROOF. By [11, Theorem 6.1.2],R is right Artinian if and only if every cyclic right
R-module is finitely cogenerated. Since every right ideal is a right annihilator,R=I
is torsionless for every right idealI of R. Let f : R=I → ∏

R be a monomorphism
from R=I to a product of copies ofR. Note thatR is a right Noetherian ring, and
so R=I is finitely presented. SinceR is left coherent,

∏
R is a flat rightR-module.

Hence f factors through a finitely generated free moduleRn, that is, there exist
g : R=I → Rn andh : Rn → ∏

R such thatf = hg. Since f is monomorphic, so
is g. This shows that every cyclic rightR-moduleR=I embeds in a free moduleRn

for some positive integern (that is,R is right C F). SinceR is right Johns,R is right
finitely cogenerated. ThusRn is finitely cogenerated, and so isR=I . This completes
the proof.
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REMARK 3. A right Johns and left coherent ring need not beQF because there
is a two-sided Artinian right Johns ring which is notQF as shown by Rutter [19,
Example 1].

THEOREM 2.14. If R satisfies one of the following two conditions, thenR is a right
weakly continuous ring.

(1) l.r .a/ ∩ T/ = Ra+ l.T/ for everya ∈ R and any right idealT of R.
(2) R is right P-injective and every complement right ideal ofR is principal.

PROOF. In either case,R is right P-injective, and soZr = J by [13, Theorem 2.1].
It suffices to show that, for anya ∈ R, a Rhas an additive complement inR. Let T be
an (intersection) complement ofr .a/, that is,T is a right ideal maximal with respect
to r .a/ ∩ T = 0.

If condition (1) holds,R = l.r .a/ ∩ T/ = Ra+ l.T/. Let K ⊆ l.T/ such that
R = Ra+ K . Then 1= ra + k for somer ∈ R andk ∈ K , and soR = Ra+ Rk.
Thus 0 = r .Ra + Rk/ = r .a/ ∩ r .k/. Note thatr .k/ ⊇ r .K / ⊇ r .l.T// ⊇ T .
The choice ofT gives T = r .k/. Therefore,l.T/ = l.r .k// = Rk ⊆ K ⊆ l.T/,
and soK = l.T/. This shows thatl(T) is the additive complement ofRa. So R is
semiregular.

If condition (2) holds, thenT = bR for someb ∈ R. Thusr .a/ ∩ bR = 0, and
so R = l.r .a/ ∩ bR/ = Ra + l.b/ by [13, Lemma 1.1]. Thusl.b/ is the additive
complement ofRaby the foregoing proof, and soR is semiregular.

In general, a rightC F ring need not beQF even if it is left (and right) Artinian (see
[19, 18]). Next we give some conditions which guarantee that a rightC F ring is QF.
Recall that a ringR is calledright CS([5]) if every nonzero right ideal is essential in
a direct summand ofR.

COROLLARY 2.15. The following are equivalent for a rightC F ring R:

(1) l.r .a/ ∩ T/ = Ra+ l.T/ for everya ∈ R and any right idealT of R.
(2) I = l.r .I // for every finitely generated left idealI of R.
(3) R is right P-injective and every complement right ideal ofR is principal.
(4) R is right C Sand left2-injective.
(5) R is left Kasch and left2-injective.
(6) R is left Kasch and right mininjective.
(7) R is QF.

PROOF. It is clear that (7) implies (1) through (6).
(2) ⇒ (1). LetT be a right ideal ofR. ThenT = r .K / for a finitely generated left

ideal K of R sinceR is right C F, and sol.T/ = l.r .K // = K by (2). Leta ∈ R.



48 Jianlong Chen, Nanqing Ding and Mohamed F. Yousif [10]

Thenl.r .a/ ∩ T/ = l.r .a/ ∩ r .K // = l.r .Ra+ K // = Ra+ K = Ra+ l.T/ by (2),
as required.

(1) or (3)⇒ (7). By Theorem2.14, R is right weakly continuous. HenceR is right
Artinian by [21, Proposition 1.22]. Note thatR is right P-injective, and so it is right
mininjective. ThusR is QF by [3, Theorem 3.1].

(4) ⇒ (7). R is right Artinian by [9, Corollary 3.10]. ThusR has ACC on left
annihilators, and soR is QF by Lemma2.11.

(5) ⇒ (6) follows since a left Kasch and left 2-injective ring is rightP-injective by
[13, Lemma 2.2] or [4, Corollary 2.8 (2)].

(6) ⇒ (7). R is right Artinian by [9, Corollary 2.6]. SoR is QF by [14,
Corollary 4.8].

REMARK 4. .i/ Corollary2.15(2) was obtained in [20, Corollary 15].
.ii/ In [19] there is an example of a rightC F, right C Sand left Kasch ring which

is not QF.
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