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Abstract

Itis shown that ifR is a right Noetherian ring whose right socle is essential as a rightideal and is contained
in the left socle, therR is right Artinian. This result may be viewed as a one-sided version of a result

of Ginn and Moss on two-sided Noetherian rings with essential socle. This also extends the work of
Nicholson and Yousif where the same result is obtained under a stronger hypothesis. We use our work tc
obtain partial positive answers to some open questions onCightight F G F and right Johns rings.

2000Mathematics subject classificatioprimary 16A33; secondary 16A35.
Keywords and phrasedNoetherian rings, Artinian rings, quasi-Frobenius rings.

1. Introduction

All rings are associative with identity and all modules are unitaryRIis a ring,
we denote by Sdd&g) = S, SodgrR) = S, Z(Rg) = Z, andJ(R) = J for the
right socle, the left socle, the right singular ideal and the Jacobson radidal of
respectively. The left and right annihilators of a subXetf R are denoted by X)
andr (X), respectively. We us& <, N to indicate thaK is an essential submodule
of N. General background material can be foundlij [

It is well known that over a commutative ring, every Noetherian module with
essential socle is Artinian. This is not true for arbitrary right Noetherian rirg8]j[
However a result of Ginn and Mos8,[Theorem] asserts that a two-sided Noetherian
ring with essential right socle is right and left Artinian. Recently, Nicholson and
Yousif [15] obtained a one-sided version of this theorem, by showing that a right
Noetherian, right minsymmetric ring (wheneweR is a minimal right ideal oR, then
Rxis a minimal leftideal, for every € R) with essential right socle is right Artinian.
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We extend this result by replacing the right minsymmetric condition by the weaker
conditionS C S.

Recall that a ringR is calledright Johnsif R is right Noetherian and every right
ideal of R is a right annihilator, and thaR is strongly right Johnsf M,(R) is right
Johns for everyn > 1. In [7] an example of a right Johns ring which is not right
Artinian is given. However it is not known whether a strongly right Johns ring is right
Artinian. Here we prove that a right Johns ring wBh C § is right Artinian. It is
also shown that a right Johns left coherent ring is right Artinian. Hence a strongly
right Johns and left coherent ring @F.

A ring R is calledright FGF (CF) if every finitely generated (cyclic) righR-
module embeds in a free right-module. It is still open whether a rigftGF (CF)
ring is QF (right Artinian ). We show that ifR is a semilocal, righC F ring with
S C S, thenRis right Artinian. In particular, a semilocal rigft G F ring with
S € SisQF.

Finally, it is shown that ifR satisfies the conditiohr(a) N T) = Ra+ I(T) for
everya € Rand any right ideal’ of R, thenR is a right weakly continuous ring. As
a corollary, some conditions are given to force a righk ring to beQF.

2. The results

Aring Ris calledleft Kaschif every simple leftR-module can be embeddeddiR.

LEMMA 2.1. Let R be aring such thaR/J is left Kasch and) = I(a;, a,, ..., &),
whereg; € R,i =1,2,...,n. ThenRis a left Kasch ring.

PrROOF. Let K be a simple leftR-module. TherK is a simple leftR/J-module.
SinceR/J is left Kasch, there is aR/J-monomorphisng : K — R/J. Clearly,¢
is a monicR-homomorphism. By hypothesis,= I(a;, a,, ..., a,), and so there is a
monomorphismy : R/J — R". Hencef = ¢ is monic. Letr, : R — R be the
ith projectionj = 1,2,...,n. Thenitis easy to seg, f is monic for somé. SoK
embeds irkR. O

A ring Ris said to be aight C2-ring if every right ideal that is isomorphic to a
direct summand oRy is itself a direct summand is calledright finitely cogenerated
if § is afinitely generated right ideal aig&l <. Rg. The following lemma is a key to
our results.

LEMMA 2.2. Let R be a right finitely cogenerated ring with € S. Then the
following are equivalent

(1) Ris left Kasch.
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(2) RisarightC2-ring.
) z cJ.
In this caseR is semilocal andZ, = J =1(§) = I(S).

PrOOF. (1) = (2) = (3) holds in every ringR without any additional hypotheses
by [16, Proposition 4.1].

Now we assume that (3) holds.

(i) We claim thatR is semilocal. First we hakS) C J. In fact, leta € I(S),
thenS C r(a). SinceR is right finitely cogeneratedy <. Rg. Thusr(a) <. Rg,
andsoa e Z, C J.

Next, we prove that, for any simple right iddeR of R, I(k) = (", I(k) for some
positive integes, where eacl; € Randl(k;) is a maximal leftideal, = 1,2, ...,s.
As a matter of fact, sinck € kRC § € S, Rk € §. So Rkis semisimple.
Now, without loss of generality, we may assume thad the smallest integer such
thatRk = Rl ® R, & --- & Rls, where eachR|; is simple,i = 1,2,...,s. Let
K=rydy+rd,+--- +rs, thenril; £ 0,i = 1,2,...,s, by the choice o&. Let
k =r;l;, thenk = k; + ky + --- + kg, and sd (k) = ﬂlel(lq). SinceRl; is simple
andRk = Rrl;, Rk is simple. Hencé(k;) is maximal foreach = 1,2, ...,s.

Finally, sinceR is right finitely cogenerateds is finitely generated. Le§ =
R+ aR+ -+ a,R, where eaclay Ris a simple rightideal, = 1,2, ..., n. By
the preceding proof, we have ) = ﬂtjizl [(&), wherel(a;;) is a maximal left ideal
fori=2,2,...,nandj =1,2,...,t. Thus

n ti

J QI(S)=I<Xn:a R) =ifjl(a-> =Ni@p.

=1 i=1 j=1

Clearly,d € N, N|_;1(a;). ThusJ = N, N, (&), and soR is semilocal.

(i) Z, =J =1(S) =1(S). SinceR is semilocal by (i),S = r(J). Hence
JS = 0. By hypothesisg C S, andsoJ§ = 0. ButS <. Rg by hypothesis, and
henced C Z,. ThereforeJ = Z,.

On the other hand, for any ring, we haveZ,§ = 0, and soZ, C I(S). Hence
J =27 CI(S). However(S) C J by the proof of (i). SAd(S) = J.

Note thatd C I(r(J)) =1(S) (forS =r(J)),andl(S) CI(S)=J (for§ C 9),
thend = 1(9).

(i) Ris leftKasch.J = () by (ii). But § is finitely generated, and $R s left
Kasch by Lemma&.1 O

COROLLARY 2.3. Let R be aright finitely cogenerated ring wigh € S and ACC
on right annihilators. TherR is a semiprimary ring with) = Z,.



42 Jianlong Chen, Nanging Ding and Mohamed F. Yousif [4]

PrOOF. SinceR hasAC C on right annihilatorsZ, is nilpotent by b, Lemma 18.3]
or [10, Proposition 3.31]. S&, € J. By Lemma2.2, R is semilocal and = Z,.
ThusR is semiprimary. O

Recall that arindRr is semiregulaiif R/J is von Neumann regular and idempotents
can be lifted moduladl. R is right weakly continuoug§[17]) if R is semiregular and
J = Z,. Ris semiperfecin caseR/J is semisimple Artinian and idempotents lift
moduloJ. Ris calledleft P-injectiveif every left R-homomorphism from a principal
left ideal into R extends to an endomorphism Bf

LEMMA 2.4. Let R be a semiperfect ring such tiat<, Rg. Then
1) J=2z.
(2) Risright weakly continuous.

PROOF. (1). Suppos& € J € I(S), thenx§ = 0. Since§ <. Rg, X € Z;. So
J C Z,. On the other handR is left Kasch by L6, Lemma 3.11], and henc& C J
by [16, Proposition 4.1]. Thus (1) follows.

(2). This follows from (1) and the hypothesis. O

In general, a right Noetherian ring with essential right socle need not be right
Artinian as shown by Faith-Menal’s exampl&}). The following theorem shows that
the condition§ C § is strong enough to force a right Noetherian ring with essential
right socle to be right Artinian.

THEOREM 2.5. The following are equivalent for a ring:

(1) Risaright Noetherianring suchth& € S andS <. Rg.
(2) Risright Artinian withJ = Z,.
(3) Risright Artinian and right weakly continuous.

PrOOF. (1) = (2). SinceR is right NoetherianS is finitely generated. Thus
R is right finitely cogenerated by hypothesis and Rds a semiprimary ring by
Corollary2.3. SoR is a right Artinian ring by Hopkin’s theorem. Sin& C S and
S <e¢ Rr, S <¢ Rg. ThusJ = Z, by Lemma2.4.

(2) = (1). Letx € §,thenZ,x = 0. Thusx € r(Z,) =r(J) = § (for Ris
semilocal). S&§ C S.

(2) & (3). Every right Artinian ring is semiperfect, and hence semiregular. So (2)
& (3) follows. O

Aring Ris calledright minsymmetridf, whenevek Ris a simple right ideal oR,
then Rk is also simple, for everit € R. If Ris right minsymmetric, theig C S.
The condition thals < § simply means that, whenevkR is a simple right ideal,
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then Rk is a semisimple left ideal. The next example shows that a ring satisfying
S C S need not be right minsymmetric.

ExamPLE 1. Let F = Z, = {0, 1} be the field of two elements and

a 0 o0
= b a 0)]:ab,cdeF;.
c 0 d

ThenRis a ring under usual addition and multiplication of matrices. It can be easily
checked that
0 00O
F 0 0},
0 00O
0
0
0

0
R10
1

are all simple left ideals oR, and

0 0O 0 0O 0 0O 0 0O
F 0 0}, 0 0 0], 1 0 OJ]R= a 0 OJ:aekF
0 0O F 0O 1 00 a 0 o0

are all simple right ideals oR. Hence

0 0 0O
S = 0 and S=|F 0 0}.
F F 0O O

Clearly,S C S.
0
0

):ae F]

Letx = (% §) € R. Then
§) is a semisimple leftideal which is not simple.

T T O
o O o

o O o
O O o

[

is a simple rightideal, buRx = (
So Ris not right minsymmetric.

mTo
ooo

ReEMARK 1. Examplel above shows that Lemma?2, Corollary 2.3 and Theo-
rem2.5are non-trivial extensions of the work i, Lemma 1], [L5, Theorem 1] and
[15, Theorem 2], respectively.
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COROLLARY 2.6. The following are equivalent for a ring:
(1) Risaright Johnsring withs C S.
(2) Ris aright Artinian ring and every right ideal is a right annihilator .

PrROOF. (1) = (2). SinceRis aright Johns ringy <. Rg by [16, Lemma 5.7 (4)].
ThusR s a right Artinian ring by Theorerf.5.
(2) = (1). This follows from [L4, Theorem 3.7]. O

Recall that a ringR is right finite dimensionaprovided thatR contains no infinite
independent families of nonzero right ideaR is said to be aight Goldie ring[10]
if it is a right finite dimensional ring withACC on right annihilators. We need the
following lemma proved in, Lemma 6].

LEMMA 2.7. Let R be a semiprimary ring withC C on left annihilators, in which
S = S isfinite dimensional as a righR-module. TherR is right Artinian.

The following theorem extends the results @ Theorem], L2, Corollary 9] and
[15, Theorem 3].

THEOREM2.8. Let R be aring such the&g = S. Then

(1) If Ris aright finitely cogenerated ring witAC C on right and left annihilators
thenR is right Artinian.

(2) If Ris right and left Goldie with essential right socle th&nis left and right
Artinian.

PrOOF. (1) R is semiprimary by Corollar2.3. SinceR is a right finitely cogen-
erated,S = S is a finitely generated righR-module. Note thaR hasACC on left
annihilators. SR is right Artinian by Lemma2.7.

(2) SinceRis right and left Goldie R has AC C on right and left annihilators and
R is right finite dimensional by definition. Bu& <. Rg, and soR is right finitely
cogenerated. Hende is right Artinian by (1). In particularR is right perfect, and
s0§ <. rR. Note thatR is left finite dimensional by hypothesis. HenBeis left
finitely cogenerated. ThuR is left Artinian by (1). O

A ring Ris calledleft mininjectiveif every R-homomorphism from a simple left
ideal toR is given by right multiplication by an element & Left mininjective rings
are always left minsymmetric.

THEOREM 2.9. The following are equivalent for a ring:

(1) Ris left Noetherian and left mininjective such tf#&tC S and S <. rR.
(2) Ris aleftfinitely cogenerated and left mininjective ring wBhC § and ACC
on left annihilators.
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(3) Risaleft Artinian and left mininjective ring witg = S.

PROOF. (1) = (2) is clear.

(2) = (3). SinceRis left mininjective,§ € S§. SoS§ = S. By Corollary?2.3,
R is semiprimary. In particulaiRR is semiperfect, and hen&is a finitely generated
right ideal of R by [14, Proposition 3.3]. S& is right Artinian by Lemm&2.7. Thus
R is right Noetherian, and hend@ has ACC on right annihilators. Thereford is
left Artinian by the left version of Theoret8(1).

(3)= (1) is obvious. O

ReEMARK 2. We note that a ring satisfying the equivalent conditions in Thed@&m
need not beQF. For example, leK be a field,p an isomorphism oK onto a
subfieldL andR = K[X; p]/(X?) the ring in [L9, Example 1, pages 208-209]. Let
n = [K : L] be the vector space dimensionkfover L such that 1< n < co. Then
Ris a left Artinian and leftP-injective ring withS = S, butRis notQF.

The next theorem extends the results 1%,[ Theorem 5.9 (6)] and1js, Theo-
rem 5.8 (1) (6) (7)].

THEOREM 2.10. The following are equivalent for a ring:

(1) Ris semilocal and righC F with § < §S.
(2) Ris aright Artinian ring and every right ideal is a right annihilator .

PrROOF. (1) = (2). SinceRisrightCF, Ris left P-injective. ThusS < S, and
s0§ = §. SinceRis right Kasch (forR is rightC F) and semilocal, we may assume
thata; R, a;R, ..., a, R are the representatives for the isomorphism classes of simple
right R-modules, where, € R.i =1,2,...,n. Notethatg; e a RC § = §, and
S0 Ra € § = SodgR). Thus there exists a simple leR-module Rm such that
Rm C Ra,i =1,2,...,n. SinceRis left P-injective, there exists an epimorphism
¢ : 3R — m;Rby[13 Theorem 1.1 (1)]. Note that; Ris simple (forRm is simple).

It follows that¢; is an isomorphismj = 1,2,...,n. ThusmR, m;R, ..., mR

are the representatives for the isomorphism classes of simple Righodules. If

Rm = Rmj, thenm R = m; R by [13, Theorem 1.1 (3)], and so= j. Therefore,
Rm;, Rmp, ..., Rm, are representatives for the isomorphism classes of simple left
R-modules. Henc® is left Kasch. SaRis right Artinian by B, Corollary 2.6].

(2) = (1). LetR/A be a cyclic rightR-module, whereA is a right ideal ofR.
ThenR/Ais torsionless (foA = r (I(A))) and finitely cogenerated becauRés right
Artinian. HenceR/A embeds in a free righR-module. SoRis right CF. S € §
follows from Corollary2.6. O

Aring Ris calledleft 2-injective([4, 13]) if R-maps from 2-generated left ideals
to R are all given by right multiplication. We need the following result of Rutter.
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LEMMA 2.11 ([19, Corollary 3]). Ifaring Ris left2-injective and hasAC C on left
annihilators, thenR is QF.

Aring Ris calledright 2-GF if every 2-generated rigiR-module embeds in a free
right R-module. R is calledright 2-Johnsif M,(R) is right Johns.

THEOREM 2.12. The following are equivalent for a ring:
(1) RisQF.
(2) Risright2-GF, semilocal ands C S.
(3) Risright2-Johnsands C S.
In particular, every semilocal right FGF ring wittf§ < S is QF, and every
strongly right Johns ring witt§ € S is QF.

PrROOF. (1) = (2) and (1)= (3) are clear.

(2)= (1). SinceRisright2-GF, itisrightC F. ThenRis right Artinian by (2) and
Theoren?.10 HenceR satisfiesAC C on left annihilators. IfRz — R%Z — Ng — 0
is an exact sequence of rigRtmodules, theiNg is 2-generated, and so itis torsionless
(for Ris right 2.GF). ThusRis left 2-injective by §, Theorem 2.17], and hende
is QF by Lemma2.11

(3) = (1). SinceR is a right 2-Johns ring, it is not difficult to see thRatis also
right Johns. ThuR is right Artinian by (3) and Corollar2.6, and soR hasACC on
left annihilators. By hypothesid$/,(R) is left P-injective, and s is left 2-injective
by [13, Theorem 4.2]. ThuR is QF by Lemma2.11 O

We end this paper with the following results which are of independent interest.
Recall that a ringR is calledleft coherenif any direct product of copies dR is flat
as a rightR-module.

THEOREM2.13. Let R be a right Johns and left coherent ring. Thé&nis right
Artinian.

PrOOF. By [11, Theorem 6.1.2]R is right Artinian if and only if every cyclic right
R-module is finitely cogenerated. Since every right ideal is a right annihil&ar,
is torsionless for every right idedlof R. Let f : R/l — J| R be a monomorphism
from R/I to a product of copies oR. Note thatR is a right Noetherian ring, and
so R/1 is finitely presented. SincR is left coherent] | Ris a flat rightR-module.
Hence f factors through a finitely generated free modii®g, that is, there exist
g: R/l - R"andh : R" — [] R such thatf = hg. Sincef is monomorphic, so
is g. This shows that every cyclic rigliR-moduleR/I embeds in a free module"
for some positive integenr (that is, R is right CF). SinceRis right JohnsRis right
finitely cogenerated. ThuR" is finitely cogenerated, and soR/1. This completes
the proof. O
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ReEMARK 3. A right Johns and left coherent ring need not@& because there
is a two-sided Artinian right Johns ring which is n@tF as shown by Rutterlp,
Example 1].

THEOREM 2.14. If R satisfies one of the following two conditions, thHeis a right
weakly continuous ring.

(1) Ir@NT)=Ra+I(T) for everya € R and any right ideall of R.
(2) Risright P-injective and every complement right idealR®fs principal.

PrROOF. In either caseR is right P-injective, and s&, = J by [13, Theorem 2.1].
It suffices to show that, for argy € R, aR has an additive complementi LetT be
an (intersection) complement ofa), that is, T is a right ideal maximal with respect
tor@NT =0.

If condition (1) holds,R = I(r(a) N T) = Ra+ I(T). LetK C I(T) such that
R = Ra+ K. Then 1=ra + k for somer € Randk € K, and soR = Ra+ Rk
Thus 0= r(Ra+ RK) = r(a) Nnr(k). Note thatr(k) 2 r(K) 2 r(I(T)) 2 T.
The choice ofT givesT = r(k). Therefore|(T) = I(r(k)) = Rk K C I(T),
and soK = I(T). This shows thak(T) is the additive complement dka. SoR is
semiregular.

If condition (2) holds, the = bR for someb € R. Thusr(a) "bR = 0, and
sOR = I(r(@d NbR) = Ra+ I(b) by [13, Lemma 1.1]. Thus(b) is the additive
complement oRaby the foregoing proof, and SR is semiregular. O

In general, a righ€ F ring need not b& F even if it is left (and right) Artinian (see
[19, 18]). Next we give some conditions which guarantee that a @Rtring is Q F.
Recall that a ringR is calledright CS([5]) if every nonzero right ideal is essential in
a direct summand oR.

CoROLLARY 2.15. The following are equivalent for a rigi@ F ring R:

(1) Ir@ NT)=Ra+I(T) for everya € R and any right ideall of R.

(2) I =1(r(l)) for every finitely generated left idedlof R.

(3) Risright P-injective and every complement right ideal®fs principal.
(4) Risright C Sand left2-injective.

(5) Risleft Kasch and lefg-injective.

(6) Ris left Kasch and right mininjective.

(7) RisQF.

PROOF. ltis clear that (7) implies (1) through (6).
(2) = (1). LetT be arightideal oR. ThenT = r(K) for afinitely generated left
ideal K of R sinceRis right CF, and sol(T) = I(r(K)) = K by (2). Leta € R.
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Thenl(r(@ NT) =I(r(@ Nr(K)) =I(r(Ra+ K)) = Ra+ K = Ra+I(T) by (2),
as required.

(1) or (3)= (7). By Theoren®.14, Ris right weakly continuous. Hendris right
Artinian by [21, Proposition 1.22]. Note tha is right P-injective, and so it is right
mininjective. ThusR is QF by [3, Theorem 3.1].

(4) = (7). Ris right Artinian by P, Corollary 3.10]. ThusR hasACC on left
annihilators, and s is QF by Lemma2.11

(5) = (6) follows since a left Kasch and left 2-injective ring is rigPdinjective by
[13, Lemma 2.2] or 4, Corollary 2.8 (2)].

(6) = (7). R is right Artinian by P, Corollary 2.6]. SoR is QF by [14,
Corollary 4.8]. O

REMARK 4. (i) Corollary2.15(2) was obtained in40, Corollary 15].
(i) In[19] there is an example of a rigitF, right C Sand left Kasch ring which
isnotQF.
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