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Abstract

Letk be a positive integer arita nonzero constant. Suppose t#is a family of meromorphic functions
in a domainD. If each functionf € Z has only zeros of multiplicity at lea&t+ 2 and for any two
functionsf, g € Z, f andg share 0 inD and f ©® andg® sharebin D, thenZ is normal inD. The
casef # 0, f® £ bis a celebrated result of Gu.
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1. Introduction

Let D be a domain inC and.Z a family of meromorphic functions defined .
Z is said to be normal irD, in the sense of Montel, if each sequendg} c #
has a subsequendé, } which converges spherically locally uniformly D, to a
meromorphic function oso (see Hayman4], Schiff [7], Yang [12]).

Suppose thaf, g are meromorphic functions dd anda € CU {o0}. If f(2) = a
if and only if g(z) = a, we say thatf andg sharea in D.

In 1912, Montel ] proved the following well-known normality criterion.

THEOREMA. Let.Z be a family of meromorphic functions defineddnand leta,
b andc be three distinct values in the extended complex plane. If for each function
feZ, f+#a,b,c thenZ is normalinD.

In 1994, Sun §] extended TheorerA as follows (see for examplé]).
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THEOREMB. Let .# be a family of meromorphic functions definedDn and let
a, b and c be three distinct values in the extended complex plane. If each pair of
functionsf andgin .# sharea, b andcin D, then.Z is normal inD.

In 1979, Gu P] proved the following result.

THEOREMC. Let.Z be a family of meromorphic functions defineddnand letk
be a positive integer anld a nonzero constant. If for each functidne .Z, f # 0
and f® =£ bin D, then.Z is normal inD.

It is natural to ask whether Theore@ can be extended in the same way that
TheoremB extends Theorer. In this note, we offer such an extension. In each of
the results belovk is a positive integer anidis a nonzero complex constant.

THEOREM 1. Let .Z be a family of meromorphic functions definedDn all of
whose zeros have multiplicity at ledst- 2. If each pair of functiond andg in .Z
share0in D and f® andg® shareb in D, then.Z is normal inD.

ExampLE 1. Letn, k be positive integers. LD = {z: |z| < 1} and.Z = {f,},
where

nz<tt

fi(2) = ———, n=123,....

n(2) kl(nz— 1)
Each function inZ has a single zero of multiplicitlg + 1. Clearly, for each paim, n
of positive integersf,, f,share 0inD. Moreover, since

fooL(polpr, 1, 1 11
T K n nk-1 Nk nknz—1)°

(=D

f2 =14+ ——"—
n (@ + (nz— 1)k+1

£1

Thus f® and f* also share the value 1 iD. But .Z clearly fails to be normal on
any neighbourhood of.0'his shows that the condition in Theordrthat the zeros of
functions in.Z have multiplicity at leask + 2 cannot be weakened.

THEOREM 2. Let .Z be a family of meromorphic functions definedDn all of
whose zeros have multiplicity at ledst 1 and whose poles have multiplicity at least
2. If each pair of functions andgin .Z share0in D and f ® andg® sharebin D,
then.Z is normal inD.

COROLLARY 3. Let .Z be a family of holomorphic functions definedlin all of
whose zeros have multiplicity at ledst- 1. If each pair of functions andg in .Z
share0in D and f® andg® shareb in D, then.Z is normal inD.
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COROLLARY 4. Let.Z be a family of meromorphic functions definedin If each
pair of functionsf andg in .Z shareOin D and f™f’ andg™g’ shareb in D, then
Z isnormal inD.

To prove Corollarys, setZ = {f™1/(m+1) : f € £} and apply Theorerd to
this family withk = 1.

EXAMPLE 2. Let D = {z : |z| < 1} and.Z = {f,}, wheref,(2) = nZ, n =
1,2,3,.... Then the zeros of functions i# all have multiplicityk. Moreover, any
pair of functionsf andgin . clearly share 0irD and f ® andg® share ¥2 in D;
but.Z is not normal inD. This shows that the condition that the zeros of functions in
Z have multiplicity at leask + 1 in Theoren? and Corollary3 is best possible.

2. Some lemmas

For the proofs of Theorerhand Theoren2, we require the following results.

LEMMA 1 ([9, Theorem 7]).Let .# be a family of meromorphic functions defined
in D, all of whose zeros have multiplicity at ledst- 2. If f® £ bfor eachf € .Z,
then.Z is normal inD.

LEMMA 2 ([9, Theorem 5]).Let.Z be afamily of meromorphic functions definedin
D, all of whose zeros have multiplicity at le&st 1 and whose poles have multiplicity
at least2. If f® £ bfor eachf € .Z, thenZ is normal inD.

Below, we assume the basic results and notation of Nevanlinna Théoty][
In particular,S(r, f) denotes any function satisfyirg(r, f) = O(logrT (r, f)) as
r — oo, possibly outside a set of finite measure, whe&ie, f) is Nevanlinna’s
characteristic function. In fact, the functions for which we use this notation are all
of finite order, so the exceptional set does not occur. For such functions, we have
S, f) =o(T(r, f)) [4, page 41].

LEmMMA 3 ([4, Theorem 3.2]) Let f be a nonconstant meromorphic function in the
complex plane. Then

(1)  T@a, ) <N@, H)+ N, 1/f) + N(r,1/(f% — b)) + S, f).
By [4, page 61], we also have

LEMMA 4. Let f be a nonconstant meromorphic function in the complex plane.
Then

_ 1 1 2\ — 1
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LEmMMA 5. Let f be a meromorphic function in the complex plane aadositive
integer satisfying > k+4+2/k. If f # 0and the zeros of ® — b have multiplicity
at leastl, then f is a constant.

PrOOF. Since f # 0 and the zeros of ©® — b have multiplicity at least, we have
by (2.2

Nor. § 2\ — 1 ¢

1+2/k 1
< | N (I’, m) + S(r, f)

1+ 2/K
|
1+2/k
|

=

T(r, f%)+ s, f)

[T, f)+kN(, )]+ S(r, f).

=

Thus by @.3) we get

_ k+2
: —T, f f).
(2.4) N(r’f)fk(l—k—Z) (r, )+ 3(r, 1)
By (2.1) and the facts that # 0 and the zeros of ® — b have multiplicity at least,
we have

(2.5) T, ) < N@, f) + N(r, f(Tl_b> + S(r, )
_ 1 1
< N(r, f) + I—N (I’, m) + S(I’, f)
<N, f)+ %T(r, fO) 4 5(r, 1)
<N )+ %[T(r, £) + kNG, £)] + S(r. )
< <1+ F) N, )+ %T(r, f) + S, f).
Thus
(2.6) T, f) < %N(r, f)+ S, ).

By (2.4) and @.6), we have

k+2)( +k)

T(r, f) < k0 — D —k—2)T(r’ f)+ S, 1),
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thatis,[k(I —1)(I —k—2) — (k+2)( +K)]T(r, f) < S(r, f). Sincel > k+4+2/Kk,
we havek(l — (I —k—-2) — (k+2)( +k) > 0. ThusT(r, f) = S(r, f),sof is
constant. O

LEMMA 6 ([3, Theorem 3], 4, Corollary to Theorem 3.5])Let f be a nonconstant
meromorphic function oi€, and letb be a nonzero value. Then for each positive
integerk, either f or f® — b vanishes. Iff is transcendental, then for each positive
integerk, either f or f® — b has infinitely many zeros.

LEMMA 7 ([10, 13]). Let.Z be a family of functions meromorphic on the unit disc.
Suppose that each € .Z, f # 0. Then if.Z is not normal, there exist, for each
a >0,

(@ anumbel0O <r < 1;

(b) pointsz,, |z| <T;

(c) functionsf, € .Z; and
(d) positive numberg, — 0

such thatp, fo(z, + png) = On(¢) — g(&) locally uniformly with respect to the
spherical metric, wherg is a nonconstant meromorphic function @n

3. Proof of Theorem1

PrROOF OFTHEOREM 1. Letz, € D. We show thatZ is normal atz,. Let f ¢ .Z.
We consider two cases.

Case 1: f®(z) # b. Then there exists a disR; = {z: |z — Z| < 8} such that
f® £ bin Ds. Thus, for eveng e .Z, the zeros ofy have multiplicity at leask + 2
andg® # bin D;. By Lemmal, .Z is normal inD;. HenceZ is normal atz,.

Case 2: f W(z) = b. Then, by the condition of the theorerfi(z,) # 0. Hence
there exists a dislO; = {z : |z — 2| < 8} such thatf # 0in Dy and f® £ bin
Dy ={z:0 < |z— 2| < é}. Hence, by Lemma4, .Z is normal inD}. We complete
the proof of the theorem by using the method of Yahg.[

Let{f,} be a sequenceiff ; then there exists a subsequencgfaf (which, without
loss of generality, we may again denote{ldy}) which converges locally spherically
uniformly on D} to a functionh. We consider two subcases.

Case 2.1:h # 0. Then, by Hurwitz’s Theorenh) # 0 in D). Therefore,

H i0
oQ)QT'h(ZO—Hse /2)| > A>0

for some constand.
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S
fn —Alb
<20+2e>

Since f, is meromorphic and, # 0 in Ds, 1/f, is holomorphic inDs. Thus ¥ f, is
holomorphic inD;, = {z: |z — 2| < §/2}, and

Hence for sufficiently large,

> —=>0.

2

min
0<6<2rn

1 2
maxX ——————— —.
o0z | To(zo +86°/2)] A

By the maximum principle, we conclude that

2 . A
max —— < —, SO min | f,(2)] > = > 0.
z=ni<s/2 | f(2)] A 1z-2|<8/2 2

Hence there exists a subsequencd @ which converges locally spherically uni-
formly in D;s.

Case 2.2:h = 0. Then{f,} converges locally uniformly to 0 iD?. Thus{f®}
and{ f &Y} also converge locally uniformly to 0. Hence, for sufficiently largave
have by the argument principle

b ) 1
2 © _ph)_ 2 _ -
(3.2) IN (2, 2, f, b) N (2, Zy, 0 b)l

1 f k+D)
A e,
2711 Jizgi=s2 fa9(2) — b

1) 1) 1
N (=, ,f(k)—b =N|(=,2,——— | .
(220 " ) (22" fé“—b)

Since any pole of ¥ — b must have multiplicity at least+ 1, it follows that the zero
of f® — b atz, has multiplicity at leask + 1.

We consider two subcases.

Case 2.2.1.The setS of positive integers such that the zeros of ¥ — b at z,
have multiplicity greater thak+ 4 4 2/k is infinite. We claimthaG = {f, :ne S}
is normal inD; 5.

Indeed, suppose th& is not normal inD;,,. Then by Lemma7, we have
(renumbering, as we may), € G, z, € D;/», andp, — 0" such that

< 1.

Thus we have

fo(Zy + &)
k

n

O(é) = — g(é)
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locally uniformly with respect to the spherical metric, wheyd@s a nonconstant
meromorphic function off.

By Hurwitz’'s Theoremg # 0 and any zeros af® — b have multiplicity greater
thank + 4 4+ 2/k. Thus, by Lemméb, g is constant, a contradiction. Hence there
exists a subsequence{dt,} which converges locally spherically uniformly D;,.

Case 2.2.2.The setS of positive integers such that the zeros df® — b at z,
have multiplicityl for some positive integdrsuch thak + 1 < | < k+4+ 2/kis
infinite. We claim thatG = { f, : n € §} is normal inDj,.

In fact, suppose thds is not normal inD;,,. Then by Lemm&, we have (again
renumbering)f, € G, z, € D;,, andp, — 0" such that

fo(Zy + &)
k

n

(é) = — g(é)

locally uniformly with respect to the spherical metric, wheyds a nonconstant
meromorphic function oft.

By Hurwitz’s Theoremg # 0 and each zero af® — b has multiplicity at least.
We claim, in addition, thag® — b has only a single zero. Thgt® — b must vanish
somewhere follows from Lemnta Suppose thdt andz, are distinct zeros af® —b;
then the zeros of® — b at&, and&, have multiplicity at least. Let y be a simple
closed curve containing andé, in its interior and such thag has no zeros op and
no poles on or inside.. Theng,(¢) converges tg(¢) uniformly on and insidey,
and sog® — b converges t@" — b uniformly on and insides. By the argument
principle,g® — b andg® — b have the same number of zeros (counting multiplicity)
insidey for sufficiently largen. Butg® — b has onlyl zeros (counting multiplicity)
while g® has at leastl2zeros (counting multiplicity) for sufficiently large, which
is a contradiction.

From the above discussiog® — b has only a single zero, whose multiplicitylis
Since f®(z, + p&) = g¥ (&), which converges tg® (&) uniformly on compact
subsets ofC disjoint from the poles 0§, it follows from the formula after.1) that
f® hasl poles (counting multiplicity) inDs;,, and hencey® hasl poles (counting
multiplicity) on the disd¢ : z, 4+ pné € D;2}. We conclude easily from the argument
principle thatg® has at most poles (counting multiplicity) inC.

Thus

i g#0;

(i) g® — bhas a single zero, whose multiplicitylis

(i) g™ has at most poles, counting multiplicities.

We claim that no such function exists. By Lemrathere is no transcendental
function, satisfying (i) and (ii). Clearlyg cannot be a polynomial. We now turn to
the somewhat tedious verification that no rational function satisfies conditions (i), (i),
and (iii). We consider three subcases.
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Case 2.2.2.1k > 3. Sincek +1 < | < k+ 4+ 2/k, g has only a single pole.
Thusg(¢) = A/(§ —a)™, whereA is a nonzero constard; is a constant, anch is
a positive integer.

Obviously,g® — b hasm + k distinct zeros, which contradicts the fact tigét — b
has a single zero.

Case 2.2.2.2k = 2. Since 3< | < 7, g has one of the following forms:

(1) 9@ =A/E—a)E —a)?l =7,
(2) 9¢¢) = A/ —a)(E —a),| =6;
) 9@ =A/E—-a)",l=m+2,1<m<5
where A is a nonzero constang; anda, are distinct constants, amd is a positive
integer.
If g¢) = A/[(¢ —a)(§ — a)?], then

g6 b _AISE —a)E —a) — (3 —2a — a)(5¢ —3a -~ 2ay))
& — )’ —a)’
b —a)’¢ —a)*
& —a)’E — )t

Sinceg” — b has only a single zero, we have

3.2) A[3(5 —ay)(§ —a) — (35 — 2a — &) (5 — 3ay — 2a,)]
+b(E —a)’E —a)* =bE o).

Differentiating the two sides of3(2) three times, we have

(3:3) (€ —a)p(§) = 21 - o),

wherep is a polynomial and is a constant.
Thusa, = c. It then follows from @.2) thata; = a,, a contradiction.
If g is of the form (2) or (3), we can similarly get a contradiction.
Case 2.2.2.3k = 1. Since 2< | < 7, g has one of the following forms:

(1) 9@ =A/E—a)E —a)E —a)? | =7,

(2) 9¢¢) =A/E —a)(E —a)( —a), | =6

(3) 9@ =A/¢E —a)*E —a)™ | =m+4, 2<m<3;

4) 9¢)=A/G-a)E —a)" | =m+3, 1<m<4

(5B) 9@ =A/E-a)"l=m+1, 1<m<86,

whereA is a nonzero constard;, a, andas are distinct constants, amdlis a positive
integer.
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We deal with case (1). (&) = A/[(§ — a))(§ — &) (§ — ag)?], then

Al —a - &) —a) +2(6 —a)(E — &)
(¢ —a)?(§ — @)’ —ay)°
b —a)?E — )€ —ay)®
(6 —a)(E — @)% —a)®

Sinceg’ — b has only a single zero, we have

gé) —b=

(3.4) Al(2 —ay — &) —ag) +2(6 —a)(§ — &)]
+b(E —a)*(E — )¢ —a)’ =b(E — 0.

Differentiating the two sides of3(4), we have

(3.5) b(§ —a)(§ —a)(§ —a)’[2(25 — & — &) — &) + 3¢ —a)(§ — &)
+ A8t — 33, — 3a, — 2a3) = 7h(£ — ©)°.

Settingé = az in (3.5 gives

(3.6) 3A(2a; — a; — ay) = 7b(as — ¢)°.

Differentiating the two sides of3(5), we obtain

(3.7) 8A+ (6 —ag)p(§) = 42§ — 0,

wherep is a polynomial.
Settingé = a3 in (3.7), we get

(3.8) 8A = 42b(a3 — ©)°.

Thus by 8.6) and 3.8) we have

(3.9 c= 7a +9a +9a
. - 2 3 4 1 4 2
On the other hand, differentiating both sides ®#j six times and putting = c, we

obtain
(3.10) Cc = (28 + 2a, + 3a3)/7.

Comparing 8.9) and @.10 givesaz = ¢, which contradicts.8) sinceA # 0.
If g has one of the other forms, we obtain a contradiction in a similar fashion.
Thus we have proved thaf,} is normal inD;,,. Hence, there exists a subsequence
of {f,} which converges locally spherically uniformly ;. It follows that.Z is
normal atz,, and soZ is normal inD. The proof of the theorem is complete. O
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The proof of Theoren2, which uses Lemma, is similar. We omit the details.
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