
J. Aust. Math. Soc.76 (2004), 141–150

A NOTE ON NORMALITY AND SHARED VALUES
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Abstract

Let k be a positive integer andb a nonzero constant. Suppose thatF is a family of meromorphic functions
in a domainD. If each functionf ∈ F has only zeros of multiplicity at leastk + 2 and for any two
functions f;g ∈ F , f andg share 0 inD and f .k/ andg.k/ shareb in D, thenF is normal inD. The
casef 6= 0, f .k/ 6= b is a celebrated result of Gu.
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1. Introduction

Let D be a domain inC andF a family of meromorphic functions defined inD.
F is said to be normal inD, in the sense of Montel, if each sequence{ fn} ⊂ F
has a subsequence{ fn j

} which converges spherically locally uniformly inD, to a
meromorphic function or∞ (see Hayman [4], Schiff [7], Yang [12]).

Suppose thatf , g are meromorphic functions onD anda ∈ C∪ {∞}. If f .z/ = a
if and only if g.z/ = a, we say thatf andg sharea in D.

In 1912, Montel [6] proved the following well-known normality criterion.

THEOREM A. LetF be a family of meromorphic functions defined inD, and leta,
b andc be three distinct values in the extended complex plane. If for each function
f ∈F , f 6= a;b; c, thenF is normal inD.

In 1994, Sun [8] extended TheoremA as follows (see for example [1]).
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THEOREM B. LetF be a family of meromorphic functions defined inD, and let
a, b and c be three distinct values in the extended complex plane. If each pair of
functions f andg in F sharea, b andc in D, thenF is normal inD.

In 1979, Gu [2] proved the following result.

THEOREM C. LetF be a family of meromorphic functions defined inD, and letk
be a positive integer andb a nonzero constant. If for each functionf ∈ F , f 6= 0
and f .k/ 6= b in D, thenF is normal inD.

It is natural to ask whether TheoremC can be extended in the same way that
TheoremB extends TheoremA. In this note, we offer such an extension. In each of
the results below,k is a positive integer andb is a nonzero complex constant.

THEOREM 1. Let F be a family of meromorphic functions defined inD, all of
whose zeros have multiplicity at leastk + 2. If each pair of functionsf andg in F
share0 in D and f .k/ andg.k/ shareb in D, thenF is normal inD.

EXAMPLE 1. Let n; k be positive integers. LetD = {z : |z| < 1} andF = { fn},
where

fn.z/ = nzk+1

k!.nz− 1/
; n = 1;2;3; : : : :

Each function inF has a single zero of multiplicityk + 1: Clearly, for each pairm, n
of positive integers,fm, fn share 0 inD. Moreover, since

fn.z/ = 1

k!
(

zk + 1

n
zk−1 + · · · + 1

nk−1
z + 1

nk
+ 1

nk

1

nz− 1

)
;

f .k/n .z/ = 1 + .−1/k

.nz− 1/k+1
6= 1:

Thus f .k/m and f .k/n also share the value 1 inD. ButF clearly fails to be normal on
any neighbourhood of 0: This shows that the condition in Theorem1 that the zeros of
functions inF have multiplicity at leastk + 2 cannot be weakened.

THEOREM 2. Let F be a family of meromorphic functions defined inD, all of
whose zeros have multiplicity at leastk + 1 and whose poles have multiplicity at least
2. If each pair of functionsf andg inF share0 in D and f .k/ andg.k/ shareb in D,
thenF is normal inD.

COROLLARY 3. LetF be a family of holomorphic functions defined inD, all of
whose zeros have multiplicity at leastk + 1. If each pair of functionsf andg in F
share0 in D and f .k/ andg.k/ shareb in D, thenF is normal inD.
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COROLLARY 4. LetF be a family of meromorphic functions defined inD. If each
pair of functionsf andg in F share0 in D and f m f ′ and gmg′ shareb in D, then
F is normal inD.

To prove Corollary4, setF̃ = { f m+1=.m + 1/ : f ∈ F } and apply Theorem2 to
this family with k = 1:

EXAMPLE 2. Let D = {z : |z| < 1} andF = { fn}, where fn.z/ = nzk, n =
1;2;3; : : : . Then the zeros of functions inF all have multiplicityk. Moreover, any
pair of functionsf andg in F clearly share 0 inD and f .k/ andg.k/ share 1=2 in D;
butF is not normal inD. This shows that the condition that the zeros of functions in
F have multiplicity at leastk + 1 in Theorem2 and Corollary3 is best possible.

2. Some lemmas

For the proofs of Theorem1 and Theorem2, we require the following results.

LEMMA 1 ([9, Theorem 7]).LetF be a family of meromorphic functions defined
in D, all of whose zeros have multiplicity at leastk + 2. If f .k/ 6= b for each f ∈ F ,
thenF is normal inD.

LEMMA 2 ([9, Theorem 5]).LetF be a family of meromorphic functions defined in
D, all of whose zeros have multiplicity at leastk+1 and whose poles have multiplicity
at least2. If f .k/ 6= b for each f ∈ F , thenF is normal inD.

Below, we assume the basic results and notation of Nevanlinna Theory [4, 12].
In particular,S.r; f / denotes any function satisfyingS.r; f / = O.log r T .r; f // as
r → ∞, possibly outside a set of finite measure, whereT.r; f / is Nevanlinna’s
characteristic function. In fact, the functions for which we use this notation are all
of finite order, so the exceptional set does not occur. For such functions, we have
S.r; f / = o.T.r; f // [4, page 41].

LEMMA 3 ([4, Theorem 3.2]).Let f be a nonconstant meromorphic function in the
complex plane. Then

T.r; f / ≤ SN.r; f /+ N .r;1= f /+ SN (
r;1=. f .k/ − b/

) + S.r; f /:(2.1)

By [4, page 61], we also have

LEMMA 4. Let f be a nonconstant meromorphic function in the complex plane.
Then

SN.r; f / ≤
(

1 + 1

k

)
N

(
r;

1

f

)
+

(
1 + 2

k

)
SN

(
r;

1

f .k/ − b

)
+ S.r; f /:(2.2)
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LEMMA 5. Let f be a meromorphic function in the complex plane andl a positive
integer satisfyingl > k+4+2=k. If f 6= 0 and the zeros off .k/−b have multiplicity
at leastl , then f is a constant.

PROOF. Since f 6= 0 and the zeros off .k/ − b have multiplicity at leastl , we have
by (2.2)

SN.r; f / ≤
(

1 + 2

k

)
SN

(
r;

1

f .k/ − b

)
+ S.r; f /(2.3)

≤ 1+ 2=k

l
N

(
r;

1

f .k/ − b

)
+ S.r; f /

≤ 1+ 2=k

l
T

(
r; f .k/

) + S.r; f /

≤ 1+ 2=k

l
[T.r; f /+ kSN.r; f /] + S.r; f /:

Thus by (2.3) we get

SN.r; f / ≤ k + 2

k.l − k − 2/
T.r; f /+ S.r; f /:(2.4)

By (2.1) and the facts thatf 6= 0 and the zeros off .k/ − b have multiplicity at leastl ,
we have

T.r; f / ≤ SN.r; f / + SN
(

r;
1

f .k/ − b

)
+ S.r; f /(2.5)

≤ SN.r; f / + 1

l
N

(
r;

1

f .k/ − b

)
+ S.r; f /

≤ SN.r; f / + 1

l
T.r; f .k//+ S.r; f /

≤ SN.r; f / + 1

l
[T.r; f /+ kSN.r; f /] + S.r; f /

≤
(

1+ k

l

)
SN.r; f /+ 1

l
T.r; f /+ S.r; f /:

Thus

T.r; f / ≤ l + k

l − 1
SN.r; f /+ S.r; f /:(2.6)

By (2.4) and (2.6), we have

T.r; f / ≤ .k + 2/.l + k/

k.l − 1/.l − k − 2/
T.r; f /+ S.r; f /;
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that is,[k.l −1/.l −k−2/−.k+2/.l +k/]T.r; f / ≤ S.r; f /. Sincel > k+4+2=k,
we havek.l − 1/.l − k − 2/ − .k + 2/.l + k/ > 0. ThusT.r; f / = S.r; f /, so f is
constant.

LEMMA 6 ([3, Theorem 3], [4, Corollary to Theorem 3.5]).Let f be a nonconstant
meromorphic function onC, and letb be a nonzero value. Then for each positive
integerk, either f or f .k/ − b vanishes. Iff is transcendental, then for each positive
integerk, either f or f .k/ − b has infinitely many zeros.

LEMMA 7 ([10, 13]). LetF be a family of functions meromorphic on the unit disc.
Suppose that eachf ∈ F , f 6= 0. Then ifF is not normal, there exist, for each
Þ ≥ 0,

(a) a number0< r < 1;
(b) pointszn; |zn| < r ;
(c) functions fn ∈ F ; and
(d) positive numbers²n → 0

such that²−Þ
n fn.zn + ²n� / = gn.� / → g.� / locally uniformly with respect to the

spherical metric, whereg is a nonconstant meromorphic function onC.

3. Proof of Theorem1

PROOF OFTHEOREM 1. Let z0 ∈ D. We show thatF is normal atz0. Let f ∈ F .
We consider two cases.

Case 1: f (k)(z0) 6= b. Then there exists a diskDŽ = {z : |z − z0| < Ž} such that
f .k/ 6= b in DŽ. Thus, for everyg ∈ F , the zeros ofg have multiplicity at leastk + 2
andg.k/ 6= b in DŽ. By Lemma1,F is normal inDŽ . HenceF is normal atz0:

Case 2: f (k)(z0) = b. Then, by the condition of the theorem,f .z0/ 6= 0. Hence
there exists a diskDŽ = {z : |z − z0| < Ž} such that f 6= 0 in DŽ and f .k/ 6= b in
Do
Ž = {z : 0 < |z − z0| < Ž}. Hence, by Lemma1,F is normal inDo

Ž : We complete
the proof of the theorem by using the method of Yang [11].

Let{ fn} be a sequence inF ; then there exists a subsequence of{ fn} (which, without
loss of generality, we may again denote by{ fn}) which converges locally spherically
uniformly on Do

Ž to a functionh. We consider two subcases.
Case 2.1:h 6≡ 0. Then, by Hurwitz’s Theorem,h 6= 0 in Do

Ž . Therefore,

min
0≤�≤2³

∣∣h (
z0 + Žei �=2

)∣∣ > A > 0

for some constantA.
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Hence for sufficiently largen,

min
0≤�≤2³

∣∣∣∣ fn

(
z0 + Ž

2
ei �

)∣∣∣∣ > A

2
> 0:

Since fn is meromorphic andfn 6= 0 in DŽ, 1= fn is holomorphic inDŽ. Thus 1= fn is
holomorphic inSDŽ=2 = {z : |z− z0| ≤ Ž=2}, and

max
0≤�≤2³

1

| fn.z0 + Žei �=2/| <
2

A
:

By the maximum principle, we conclude that

max
|z−z0|≤Ž=2

1

| fn.z/| <
2

A
; so min

|z−z0|≤Ž=2
| fn.z/| > A

2
> 0:

Hence there exists a subsequence of{ fn} which converges locally spherically uni-
formly in DŽ=2.

Case 2.2:h ≡ 0. Then{ fn} converges locally uniformly to 0 inDo
Ž . Thus{ f .k/n }

and{ f .k+1/
n } also converge locally uniformly to 0. Hence, for sufficiently largen, we

have by the argument principle∣∣∣∣N
(
Ž

2
; z0; f .k/n − b

)
− N

(
Ž

2
; z0;

1

f .k/n − b

)∣∣∣∣(3.1)

=
∣∣∣∣ 1

2³ i

∫
|z−z0|=Ž=2

f .k+1/
n .z/

f .k/n .z/ − b
dz

∣∣∣∣ < 1:

Thus we have

N

(
Ž

2
; z0; f .k/n − b

)
= N

(
Ž

2
; z0;

1

f .k/n − b

)
:

Since any pole off .k/n −b must have multiplicity at leastk+1; it follows that the zero
of f .k/n − b atz0 has multiplicity at leastk + 1.

We consider two subcases.
Case 2.2.1.The setS of positive integersn such that the zeros off .k/n − b at z0

have multiplicity greater thank +4+ 2=k is infinite. We claim thatG = { fn : n ∈ S}
is normal inDŽ=2:

Indeed, suppose thatG is not normal in DŽ=2. Then by Lemma7, we have
(renumbering, as we may)fn ∈ G, zn ∈ DŽ=2, and²n → 0+ such that

gn.¾/ = fn.zn + ²n¾/

²k
n

→ g.¾/
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locally uniformly with respect to the spherical metric, whereg is a nonconstant
meromorphic function onC.

By Hurwitz’s Theorem,g 6= 0 and any zeros ofg.k/ − b have multiplicity greater
thank + 4 + 2=k. Thus, by Lemma5, g is constant, a contradiction. Hence there
exists a subsequence of{ fn} which converges locally spherically uniformly inDŽ=2:

Case 2.2.2.The setSl of positive integersn such that the zeros off .k/n − b at z0

have multiplicity l for some positive integerl such thatk + 1 ≤ l ≤ k + 4 + 2=k is
infinite. We claim thatG = { fn : n ∈ Sl } is normal inDŽ=2.

In fact, suppose thatG is not normal inDŽ=2. Then by Lemma7, we have (again
renumbering)fn ∈ G, zn ∈ DŽ=2, and²n → 0+ such that

gn.¾/ = fn.zn + ²n¾/

²k
n

→ g.¾/

locally uniformly with respect to the spherical metric, whereg is a nonconstant
meromorphic function onC.

By Hurwitz’s Theorem,g 6= 0 and each zero ofg.k/ − b has multiplicity at leastl .
We claim, in addition, thatg.k/ − b has only a single zero. Thatg.k/ − b must vanish
somewhere follows from Lemma6. Suppose that¾1 and¾2 are distinct zeros ofg.k/−b;
then the zeros ofg.k/ − b at ¾1 and¾2 have multiplicity at leastl . Let 
 be a simple
closed curve containing¾1 and¾2 in its interior and such thatg has no zeros on
 and
no poles on or inside
 . Thengn.¾/ converges tog.¾/ uniformly on and inside
 ,
and sog.k/n − b converges tog.k/ − b uniformly on and inside
 . By the argument
principle,g.k/n − b andg.k/ − b have the same number of zeros (counting multiplicity)
inside
 for sufficiently largen. But g.k/n − b has onlyl zeros (counting multiplicity)
while g.k/ has at least 2l zeros (counting multiplicity) for sufficiently largen, which
is a contradiction.

From the above discussion,g.k/ − b has only a single zero, whose multiplicity isl .
Since f .k/n .zn + ²n¾/ = g.k/n .¾/, which converges tog.k/.¾ / uniformly on compact
subsets ofC disjoint from the poles ofg; it follows from the formula after (3.1) that
f .k/n hasl poles (counting multiplicity) inDŽ=2 and henceg.k/n hasl poles (counting
multiplicity) on the disc{¾ : zn +²n¾ ∈ DŽ=2}. We conclude easily from the argument
principle thatg.k/ has at mostl poles (counting multiplicity) inC.

Thus

.i/ g 6= 0;
.ii/ g.k/ − b has a single zero, whose multiplicity isl ;
.iii / g.k/ has at mostl poles, counting multiplicities.

We claim that no such function exists. By Lemma6, there is no transcendental
function, satisfying (i) and (ii). Clearly,g cannot be a polynomial. We now turn to
the somewhat tedious verification that no rational function satisfies conditions (i), (ii),
and (iii). We consider three subcases.
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Case 2.2.2.1:k ≥ 3. Sincek + 1 ≤ l ≤ k + 4 + 2=k, g has only a single pole.
Thusg.¾/ = A=.¾ − a1/

m, whereA is a nonzero constant,a1 is a constant, andm is
a positive integer.

Obviously,g.k/− b hasm+ k distinct zeros, which contradicts the fact thatg.k/ − b
has a single zero.

Case 2.2.2.2:k = 2. Since 3≤ l ≤ 7, g has one of the following forms:

(1) g.¾/ = A=.¾ − a1/.¾ − a2/
2, l = 7;

(2) g.¾/ = A=.¾ − a1/.¾ − a2/, l = 6;
(3) g.¾/ = A=.¾ − a1/

m, l = m + 2, 1≤ m ≤ 5;

whereA is a nonzero constant,a1 anda2 are distinct constants, andm is a positive
integer.

If g.¾/ = A=[.¾ − a1/.¾ − a2/
2], then

g′′.¾/− b = − A[3.¾ − a1/.¾ − a2/− .3¾ − 2a1 − a2/.5¾ − 3a1 − 2a2/]
.¾ − a1/

3.¾ − a2/
4

− b.¾ − a1/
3.¾ − a2/

4

.¾ − a1/3.¾ − a2/4
:

Sinceg′′ − b has only a single zero, we have

A[3.¾ − a1/.¾ − a2/− .3¾ − 2a1 − a2/.5¾ − 3a1 − 2a2/](3.2)

+ b.¾ − a1/
3.¾ − a2/

4 = b.¾ − c/7:

Differentiating the two sides of (3.2) three times, we have

.¾ − a2/p.¾/ = 210b.¾ − c/4;(3.3)

wherep is a polynomial andc is a constant.
Thusa2 = c. It then follows from (3.2) thata1 = a2, a contradiction.
If g is of the form (2) or (3), we can similarly get a contradiction.
Case 2.2.2.3:k = 1. Since 2≤ l ≤ 7, g has one of the following forms:

(1) g.¾/ = A=.¾ − a1/.¾ − a2/.¾ − a3/
2, l = 7;

(2) g.¾/ = A=.¾ − a1/.¾ − a2/.¾ − a3/, l = 6;
(3) g.¾/ = A=.¾ − a1/

2.¾ − a2/
m, l = m + 4, 2 ≤ m ≤ 3;

(4) g.¾/ = A=.¾ − a1/.¾ − a2/
m, l = m + 3, 1 ≤ m ≤ 4;

(5) g.¾/ = A=.¾ − a1/
m, l = m + 1, 1≤ m ≤ 6;

whereA is a nonzero constant,a1, a2 anda3 are distinct constants, andm is a positive
integer.
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We deal with case (1). Ifg.¾/ = A=[.¾ − a1/.¾ − a2/.¾ − a3/
2], then

g′.¾/− b = − A[.2¾ − a1 − a2/.¾ − a3/ + 2.¾ − a1/.¾ − a2/]
.¾ − a1/

2.¾ − a2/
2.¾ − a3/

3

− b.¾ − a1/
2.¾ − a2/

2.¾ − a3/
3

.¾ − a1/
2.¾ − a2/

2.¾ − a3/
3
:

Sinceg′ − b has only a single zero, we have

A[.2¾ − a1 − a2/.¾ − a3/+ 2.¾ − a1/.¾ − a2/](3.4)

+ b.¾ − a1/
2.¾ − a2/

2.¾ − a3/
3 = b.¾ − c/7:

Differentiating the two sides of (3.4), we have

b.¾ − a1/.¾ − a2/.¾ − a3/
2[2.2¾ − a1 − a2/.¾ − a3/+ 3.¾ − a1/.¾ − a2/](3.5)

+ A.8¾ − 3a1 − 3a2 − 2a3/ = 7b.¾ − c/6:

Setting¾ = a3 in (3.5) gives

3A.2a3 − a1 − a2/ = 7b.a3 − c/6:(3.6)

Differentiating the two sides of (3.5), we obtain

8A + .¾ − a3/p.¾/ = 42b.¾ − c/5;(3.7)

wherep is a polynomial.
Setting¾ = a3 in (3.7), we get

8A = 42b.a3 − c/5:(3.8)

Thus by (3.6) and (3.8) we have

c = −7

2
a3 + 9

4
a1 + 9

4
a2:(3.9)

On the other hand, differentiating both sides of (3.4) six times and putting¾ = c, we
obtain

c = .2a1 + 2a2 + 3a3/=7:(3.10)

Comparing (3.9) and (3.10) givesa3 = c, which contradicts (3.8) sinceA 6= 0.
If g has one of the other forms, we obtain a contradiction in a similar fashion.
Thus we have proved that{ fn} is normal inDŽ=2. Hence, there exists a subsequence

of { fn} which converges locally spherically uniformly inDŽ=2. It follows thatF is
normal atz0, and soF is normal inD. The proof of the theorem is complete.
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The proof of Theorem2, which uses Lemma2, is similar. We omit the details.
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