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Abstract

We study the harmonicity of maps to or from cosymplectic manifolds by relating them to maps to or from
Kahler spaces.
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1. Introduction

The theory of harmonic maps between Riemannian manifolds has taken an enormou
flight since its conceptiong] 3, 4, 5]. Combining both global and local aspects
and borrowing both from Riemannian geometry and from analysis, the theory has
developed in many diverse branches. In particular, there is now a whole battery
of deep and interesting results about harmonic maps to or from complex manifolds
and Kahler spaces. These even-dimensional spaces can be described using comple
coordinates, and hence one can use the methods and results from complex functio
theory.

Within contact geometry, there are several classes of manifolds that can be con-
sidered as odd-dimensional analogs @fi#€r spaces, the most important ones being
Sasakian and cosymplectic spaces. Even though many of the concep#hlefr K*
geometry have counterparts in contact geometry, the theory of harmonic maps to or
from contact manifolds is only in its initial stages [L0]. One reason seems to be the
absence of something like complex coordinates for these manifolds.

In this paper, we develop a theory of harmonic maps and cosymplectic manifolds
analogous to the one in theakler context. The idea is not to mimic the proofs
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for Kahler manifolds (which may be nearly impossible when these use complex
coordinates) but instead tose the results for Khler manifolds to prove similar
results for cosymplectic manifolds. In order for this scheme to work, we must be
able to go back and forth between cosymplectic aathl&i manifolds and between
corresponding mappings. This turns out to be surprisingly easy, but at the same time
constitutes a very powerful tool.

The paper is organized as follows. After recalling tleeessary facts about har-
monic maps between general Riemannian manifolds, we motivate why we consider
cosymplectic manifolds (rather than, say, Sasakian manifolds). Then we describe
how to construct a Ehler space from a cosymplectic manifold and how to ‘lift' map-
pings accordingly. These lifts behave very well both with respect to harmonicity and
with respect to the cosymplectic anaéHlér structures. In Sectidhand Sectiorb,
we put our construction to work to prove various results about harmonic maps and
cosymplectic manifolds, analogs of known results fahi€r spaces.

During the preparation of this manuscript, the authors visited each other’s uni-
versities in the context of an agreement between the Royal Flemish Academy of
Belgium for Sciences and Arts and the Romanian Academy. They want to express
their gratitude to both Academies for their financial support.

2. Harmonic maps on Riemannian manifolds

In this section we recall some well-known general facts concerning harmonic maps.
Let(M™, g) and(N", h) be two Riemannian manifolds arke: (M, g) — (N, h)

a smooth map. Thenergy densitpf F is the smooth functioe(F): M — [0, co)

given by

1 1 1w
e(F)p = SIdFpll* = 5 Tr(F*h)(p) = 5 ) h(dF(e). dF(e))
i=1

for p € M and any orthonormal basi®,, ..., e,} of T,M. If M is a compact
Riemannian manifold, then trenergyE (F) of F is the integral of its energy density

am=/amw,
M

where uy is the volume measure associated with the meagrion M. A map
F: (M,g) — (N,h) is said to beharmonicif it is a cricital point of the energy
functional E on the set of all maps betweéhl, g) and(N, h).

In order to describe the critical point condition for the functioBalve look at the
differentiald F. Itis a section of the bundi&*M ® F~'T N — M. This bundle has a
connectiorv’ induced from the Levi Civita connection™ on T M and the pull-back
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connectionvF on F~T N. Applying this connection ta F, one obtains theecond
fundamental forna: € T'(O*T*M ® F~1T N). Explicitly,

ap(X,Y) = (VAF)(X,Y) = VL AF(Y)) —dF(VYY),

for vector fieldsX, Y € I'(T M). AmapF for whichag vanishes identically is called
totally geodesicWe will also need the second fundamental form of the composition
of two smooth map§& andG. This is given by the formula (see, for examplé])[

(1) AGoF =dGOOt|:+(XG(dF,dF).

The sectiort (F) € T'(F~*T N), defined byr (F) = Try ¢ is called thetension field
of F. A smooth mag~ on a compact Riemannian manifdid is harmonic precisely
whent(F) = 0onM [3]. More generally, we say that a m&pon M is harmonic if
it satisfies the critical condition(F) = 0, regardless of the compactnesswf

Now, let (M, g) be a compact Riemannian manifold aRd (M, g) — (N, h) a
harmonic map. We take a smooth variatigy with parameters, t € (—¢, +¢) and
with Fopo = F. The corresponding variation fields are denotedvbgndW. The
HessianH of a harmonic map- is defined by

I’E(Fsp)

He(V, W) = P

(s,)=(0,0)

The second variation formula & is [13, 18]
HE (VW) = [ hGI(V), W) .
M

whereJg is a second-order selfadjoint elliptic differential operator acting on the space
of variation vector fields alon§ (which can be identified with' (F (T N))), and is
defined by

m

(V) ==Y (VEVE = VE, )V = Y RY(V,dF(e) dF(e)

i=1 i=1

foranyV e I'(F~1(T N)) and any local orthonormal frame,, . .. , &,} on M. Here,
RN is the curvature tensor @N, h).

Theindexof a harmonic ma- is defined as the dimension of the largest subspace
of I'(F~X(T N)) on which the Hessiahlr is negative definite. A harmonic map F is
said to bestableif its index is zero and otherwise is said tolnestable.
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3. Cosymplectic manifolds

Let M be a smooth manifold of dimensiom2- 1. We recall that aalmost contact
structureon M is a triple (&, n, ¢), where£ is a vector fieldy is a one-form ang is
a tensor field of typ€l, 1) which satisfy [L]

p’=—-ld+n®& and n) =1,

where Id is the identity endomorphism ®rM. Then we have § = 0 andpo ¢ = 0.
Furthermore, ifg is an associated Riemannian metric n that is, a metric which
satisfies

9(@X, 9Y) = g(X,Y) — n(X)n(Y),

thenwe say thak, n, ¢, g) is analmost contact metric structurd manifold equipped
with such a structure is amost contact metric manifold’he existence of an almost
contact structure oM is equivalent to the existence of a reduction of the structural
group toU (n) x 1. Thefundamenta®-form ® of an almost contact metric manifold
is defined by® (X, Y) = g(X, ¢Y) for X, Y € I'(T M).

An almost contact manifol@M, &, n, ¢) is said to banormalif the almost complex
structureJ on M x R given by

d d
J (X, aa> = ((px - aé, n(X) a) y

wherea is aC> function onM x R, is integrable, which is equivalent to the condition
N, + 2dn ® & = 0, whereN, denotes the Nijenhuis tensor @f

Now, let (¢, n, ¢, g) be an almost contact metric structure h We define an
almost Hermitian structurel, h) on M x R, whereJ is the above almost complex
structure andh is the Hermitian metric defined by

d d
o((x08)- (¥52)) =ax v a0

An almost contact metric structuk€, n, ¢, g) is said to berans-Sasakiarnf M x

R endowed with the almost Hermitian structur& h) belongs to the class, in
the classification of Gray and Hervellg][ Equivalently, an almost contact metric
manifold (M, &, n, ¢, g) of dimension 2 + 1 is trans-Sasakian if and only if ]

2 (V¥e) (Y) = a{g(X, Y)E — n(Y)X} + B{g(pX, )& — n(Y)pX},

wherea = §®(£)/2n andg = —é&n/2n.
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An almost contact metric structu(g, n, ¢, g) is said to b&g’s if it is trans-Sasakian
with @ = 0; Kenmotsuf it is %5 with 8 = 1; %5 if it is trans-Sasakian witl$ = 0;
Sasakian if it is6s with « = 1; cosymplectidf it is trans-Sasakian wite = 8 =0 .

In this article, we are interested in a theory of harmonic maps on almost contact
metric spaces. As these are the odd-dimensional analogues of almasiti&fer
manifolds, it is instructive to look at harmonic maps on such spacéb IfJ, h) is a
Kahler manifold andN is a Riemannian manifold, then a smooth nkapM — N is
calledpluriharmonicif its second fundamental form: satisfies the condition

ap(X,Y) +ar(JX, JY) =0

forany X, Y e I'(T M). Clearly, any pluriharmonic map is a harmonic map|[

In [10], an analogous concept is considered for the class of almost contact met-
ric manifolds. If (M, &, n, ¢, ) is an almost contact metric manifold amd is a
Riemannian manifold, then a smooth nfap M — N is calledg-pluriharmonicif

c(F()<’ Y) + (615 (goxv @Y) =0

forany X, Y € I'(T M). In particularae (X, £) = 0 for any tangent vectoX. Itis
not difficult to show thatp-pluriharmonicity implies harmonicity.

Secondly, one canlook at structure-preserving mappings between almost Hermitian
and almost contact metric manifolds, as analogues of the well-known holomorphic
mappings in complex geometry. There are three different situations:

1. Asmooth mag=: M — N from an almost contact metric manifold, &, »,
¢, g) to an almost Hermitian manifol@N, J, h) is (¢, J)-holomorphicif dF o ¢ =
J o dF. Note thatd F(&) = 0 for such a map.

2. A smooth mapg-: N — M from an almost Hermitian manifoldN, J, h) to
an almost contact metric manifold/, &, n, ¢, 9) is (J, ¢)-holomorphicif dF o J =
@ odF. Now, ImdF L &.

3. Asmooth mag-: M; — M, between almost contact metric manifoldd,;, &;,
ni, ¢i, G),1 =1, 2,isp-holomorphidf d Fog; = ¢,0dF. Inparticulard F(¢;4) C &5
anddF (&) ~ &.

WhendF intertwines the structurag to a minus signwe speak abouty, J)-anti-
holomorphic,(J, ¢)-anti-holomorphicandg-anti-holomorphicnappings.

PrROPOSITION3.1. Any (¢, J)-holomorphic mappind- from a cosymplectic mani-
fold M to a Kahler manifoldN is ¢-pluriharmonic and thus a harmonic map.

PrOOF. Using the formulaF o ¢ = J o dF we easily find

(3 J@eX, ) + (Viexd) @F(Y) =dF ((V¥¢)Y) +ar (X, ¢Y)
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for any (¢, J)-holomorphic map from an almost contact metric manifold to an almost
Hermitian manifold. (A similar formula holds for holomorphi], ¢)-holomorphic
andg-holomorphic maps, seé].)

Now, if M is a cosymplectic manifold and is a Kahler manifold, theiv™g = 0
andVNJ = 0, and we havel (ag(X,Y)) = ar(X, ¢Y) for any X, Y € T'(TM).
ReplacingY by ¢Y, we obtainJ(ar (X, ¢Y)) = —ap(X,Y). Using the symme-
try of ag, we haved(ar (X, 9Y)) = —ar(pX,Y) = —J(ar(X,Y)) and hence
ar (X, Y) +ar(pX,9Y) =0foranyX,Y € I'(T M). SoF is ¢-pluriharmonic and
thus harmonic. O

Itis known that the Hopf fibratio8*™* — CP™is a harmonic map from a Sasakian
manifold onto a Kahler manifold. On the other hand, it easy to show that the Hopf
fibration isnot a g-pluriharmonic map. So it is natural to ask under which conditions
a (¢, J)-holomorphic map isp-pluriharmonic. Within the class of trans-Sasakian
manifolds, we have a full answer.

THEOREM 3.2. Let(M, ¢, &, , g) be atrans-Sasakian manifoldy, J, h) a Kahler
manifold andF: M — N a (¢, J)-holomorphic submersion. F is ¢-pluriharm-
onic, thenM is a cosymplectic manifold.

ProOF. We recall thad F(¢) = O for a (¢, J)-holomorphic map. AsM is trans-
Sasakian andll is Kahler, we have from2)
dF((VX9)Y) = —n(V){a dF(X) + BdF(¢X)}.
Using (3) we obtain
J(er (X, Y)) = —n(V){a dF(X) + BdF(pX)} + ar (X, ¢Y)

forany X, Y e I'(T M). On the other hand, &5 is ag-pluriharmonic map, we have
ap (X, &) =0foranyX € I'(T M). So, takingY = & in the above relation, we obtain

adF(X) + BdF(pX) =0

forany X e I'(T M).

Now, if we replaceX by ¢ X, we obtaina dF(pX) — BdF(X) = 0 for any
X e T'(T M). From the last two relations it follows th&t? + 82) dF(X) = 0 for
any X € I'(T M). As F is a submersion, this implies that= g = 0, thatis,M is a
cosymplectic manifold. O

CoROLLARY 3.3. There are ndg, J)-holomorphice-pluriharmonic maps from a
Sasakiar{or Kenmotsyimanifold into a Kahler manifold.

The above results indicate that cosymplectic manifolds are the first candidates for
a nice theory of harmonic maps in the context of contact geometry.
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4. Products of cosymplectic manifolds

We have already mentioned in the introduction that we want to use the results
about harmonic maps onaifer manifolds to deduce similar ones for harmonic maps
on cosymplectic manifolds. To do this, we build atdér manifold starting from a
cosymplectic manifold.

Let (M, &1, n1, @1, 01) and(M,, &, n,, @2, 92) be two almost contact metric struc-
tures. OnM; x M, we define thg1, 1)-tensor fieldJ* by

(4) I (X1, X2) = (92 X1 — n2(X2)é1, 92 X2 4+ n1(X1)&2)

for X = (Xy, X5) € T(M; x M,). One easily checks that* o J* = —Id, hence
J* is an almost complex structure. Moreover, for the product metfie= g; + 0,
onM; x My, itholdsg*(J* X, J*Y) = g*(X, Y) forall X, Y € T(M; x M,). Hence,
(M;x M5, J*, g*) is an almost Hermitian manifold. The almost complex strucfure
was first defined in14]; the almost Hermitian structurgl*, g*) on M; x M, was
studied in P]. In particular, it was proved there

ProPOSITION4.1. The almost Hermitian structuréJ*, g*) on M; x M, is al-
most Kahler if and only if the almost contact metric structurés, 1, ¢1, 9;) and
(&2, 02, @2, O2) are both almost cosymplecfithat is,dn; = dn, = d®; = dd, = 0).
Moreover, it is a Khler structure if and only if both almost contact metric structures
are cosymplectic.

It is worth noting that the Calabi-Eckmann and the Hopf manifolds are special
cases of the above constructidr®[22].

In the sequel, when starting from an (almost) cosymplectic manifdldé, »,
¢, 9), we will associate to it the (almost)afiler manifold obtained from the above
product structure where we také, = M, = M. We denote this manifold and its
structure by M, J*, g*).

The next step is to ‘lift' maps from or intdd to maps from or into the product
manifold M *. For now, let us forget about the cosymplectic structuré/band only
concentrate on metrical aspects. Since, as a Riemannian gpbceay*) is simply a
Riemannian product, the following is valid for arbitrary Riemannian manifolds, and
even for more general products. We need three types of lifts in the sequel, depending
whether we switch to the product manifold on both the source and the target manifold,
or only on one of the two.

1. Consider a map;: (M, g1) — (M,, g»). We define an associated mapby

I:l: (MX’ gf) - (MX’ g;) (Xv y) = (fl(X)v fl(y))
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2. Foramapf,: (M, g) — (N, h), define the lift
Fo: (M7, g%) = (N, h): (X, y) = fo(%).

Note thatF, = f, o, Wherer, is the natural projection d¥l x M on the first factor.
3. Finally, we lift a mapf;: (N, h) — (M, g) to

Fs: (N,h) = (M*,g): x> (f3(x), @)

for an arbitrary fixeda € M. Note thatF; = i; o f3, wherei;: M — M x M:
X +— (X, a) is the natural embedding & into M x M as first factor.

ProPOsITION4.2. With the mapsf;, f,, 3 and their lifts Fy, F,, F; as above, it
holds thatf; is a harmonic map if and only if; is a harmonic map. Further, if the
source manifold is compact, we have

E(F) = 2vol(M,) E(fy), E(F) =vol(M) E(f,), E(Fs) = E(f3).

PrOOF. The proof goes by simple computation. Consider first the second funda-
mental form off;. Itis given in terms off; by

af, = (o, (dmy, dmry), o, (dmry, dip)).

As the projectionsry, ,: M; x My — M; are Riemannian submersions, we can
take traces on both sides to obtaifF,)(x, y) = (z(f)(X), t(f1)(y)). HenceF, is
harmonic if and only iff; is.

For F, = f, o 1, we use formulaX) to get

O, = dfz O Uy, + O(fz(dﬂl, d]Tl) = Olfz(dﬂl, d?Tl)

asm is totally geodesic. Taking traces, we havé,) = t(f,) andF, is harmonic if
and only if f; is.
For the lift F3 = i; o f3, we getin a similar way

o, = dijoag, + o, (df3, df3) = dij oy,

asi, is totally geodesic. Taking traces, we obtai(f;) = dii(z(f3)). Sincedi; is
one-to-onez(F;) = 0if and only if t(f3) = O.

The assertions about the energy can be checked easily. As an example, we hav
for F;

E(F) = / |d Fl?(x, V) tm, (X) A um, (Y)
My x My

= / (|df1|2(X) + |df1|2(Y)) pow, (X) A, (Y) = 2vol(My) E(fy).
My x My

The other equalities are proved similarly. O
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Moreover, the three lifts preserve stability of harmonic mappings.

ProPOSITION4.3. Take harmonic map§,, f,, f on compact source manifolds and
let F;, F», F; be the corresponding lifted mappings. Thits a stable harmonic map
if and only if F is.

PrOOF. We only give the detailed calculations for the IF. The other cases are
similar.

Suppose thaf,: (M, g) — (N, h) is harmonic andM is compact. Then, as we
have just seen, alde,: (M*, g*) — (N, h): (X, y) — f2(x) is harmonic. Consider

a vector fieldvV alongF,. In a local orthonormal framgHy, ..., H,} on N, we can
decompos®/ asV = > | v(X, y)Hy.

Further, let{E,, ..., E,} and{E/, ..., E/} be local orthonormal frames ol
around the pointa € M andb € M, respectively. Then, with slight abuse of notation,
{Ei, ..., Em, EL,..., E.}is alocal orthonormal frame okl * around(a, b). Then
we have

VE,ZV = ZEi(Uk) Hk+ZUkVEiZHk: ZEi(Uk) Hk+ZUkV£Hk

or, more precisely,

(VEV) @, b) =Y Eiwx,b)|,_ Hl o + D v@b)(VEH)|, o
= (VEV(-, b)@).

On the other hand, ad8F,(E) = 0, (vg%v)(a, b) = 3 E (v@, ¥))ly—bHil tya-
Hence, we obtain for the Hessian of the energy functional

He,(V, V)

=/ (IVFZVIZ(X, Y)
MxM

> ey (RMV (X, y), dFR(ED)A R(E), V (X, Y))
~ 3 hewy RNV (X, ). dR(EDAR(E), V(X y))) P () A i ()

= / (szvc PO+ D IVEVEX, Y)
MxM i

- Z hi0 (RYV (-, y), dfo(EN)A (B, V(- Y))(X)> p (X) A i (Y)
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—~ / Ho (VL) VYD um(Y) +/ D IVEV M) A i (Y).
M MxM

Since the second term is always non-negative, it follows that stabilitfy ohplies
stability of F,.

Conversely, consider a variation vector field along f,. For the vector field
V(x,y) = V(x) alongF, it hoIdsVEfV = 0, and the formula for the Hessian above
reduces toHg, (V, V) = vol(M) Hy,(V, V). Hence, stability ofF, implies stability
of f, too. N

We now specialize the three types of lifts above, taking also the cosymplectic
structure orM into account. Consider amdp: M; — M, between two cosymplectic
manifolds and its liftF;: M — M) : (X, y) — (fi(X), fi(y)) between Khler
manifolds.

PrOPOSITION4.4. F, is a holomorphic map betweeréKler manifolds if and only
if f;is agp-holomorphic map between cosymplectic manifolds.

PrROOF. Suppose first that; is ¢-holomorphic, thatisgd fyop; = ¢,0d f;. Asnoted
before, this implies f; (") C & anddf;(&) = a&, for some functiora on M;. In
particularn,(df (X)) = an.(X). Then, forX,Y € T M, we have

(dF 0 3)(X,Y) = dFi(e1 X = n1(Y)E1, 1Y + n1(X)é1)
= (dfy (@1 X) — ani(Y)&, dfi(e1Y) + ani(X)é2)
= (2d f1(X) — n2(d F1(Y))&2, 02d f1(Y) + n2(d f1(X))E2)
= J(dfi(X), dfi(Y)) = (J o dF)(X,Y).

Hence,F; is holomorphic.
Conversely, suppose thgt is holomorphic. Then, foX € T M;, we have

(dFy 0 J)(X,0) = dFi(p:1 X, n1(X)&1) = (dfi(@1X), n1(X) dfy(£1)),
and
(Jy o dF)(X,0) = J(dfi(X), 0) = (g0 f1(X), n2(d f1(X))E).
We deduce thad f; o ¢; = ¢, o df; and f; is p-holomorphic. O

Next, we take a map,: M — N from a cosymplectic manifold to aagiler man-
ifold. The lift F,: M* — N: (X,y) — fx(X) is a map between &tiler manifolds.
We prove in a similar way as fd#;:

PrOPOSITION4.5. F, is a holomorphic, respectively anti-holomorphic, map if and
only if f, is (¢, J)-holomorphic, respectivelfy, J)-anti-holomorphic, that isd f, o
¢ = Jodfy, respectiveldf, o ¢ = —J o df, (such that, in particulard f,(¢) = 0).
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Finally, starting fromamags: N — M from a Kahler manifold to a cosymplectic
manifold, the liftF;: N — M*: x — (f3(x), @) between Kihler manifolds satisfies

PrROPOSITION4.6. F; is a holomorphic, respectively anti-holomorphic, map if and
only if f3is (J, ¢)-holomorphic, respectivel§d, ¢)-anti-holomorphic, that isgdf; o
J = ¢ odf;, respectivelydf; o J = —¢ o d f5 (such that, in particularim df; L &).

Note that we did not mention anti-holomorphic maps in Proposiidias we did in
Propositiom.5and Propositiod.6, because the lifie; of ag-anti-holomorphic mag,
is anti-holomorphic only whed f,(&;) = 0. This condition is not fulfilled for every
p-anti-holomorphic map. To see this, take an anti-holomorphic knal; — N,
between Khler manifolds and consider the mé&p N; x R — N, x R: (X, 1) —
(k(x),t). It is ¢-anti-holomorphic for the standard cosymplectic structure on the
product manifolds\N; x R andN, x R, anddf(&) = df(d/dt) =d/dt = &.

Using these three types of lifts, we will be able to go from the level of cosymplectic
manifolds to that of lhler spaces and back again.

5. Harmonic maps on cosymplectic manifolds

In the theory of harmonic maps oreldler manifolds, the following theorem is well
known (see, for example4]).

THEOREMS5.1. If F: N; — N, is a holomorphic or an anti-holomorphic map
between Khler manifolds, then it is a harmonic map. If in additidh is compact,
thenF is an absolute minimum in its homotopy class for the energy functional.

We are now in a position to prove analogous results when cosymplectic manifolds
are involved.

THEOREMS5.2. If f: M — N is amap satisfying one of the following conditions

(a) itisa (e, J)-holomorphic or &g, J)-anti-holomorphic map between a cosym-
plectic manifoldM and a Kahler manifoldN,

(b) itis a(J, ¢)-holomorphic or a(J, g)-anti-holomorphic map between akKler
manifoldM and a cosymplectic manifol,

(c) itis ag-holomorphic map between two cosymplectic manifolds,

thenf is aharmonic map. Ifin additioM is compact, theri is an absolute minimum
in its homotopy class for the energy functional.

PrOOF. The proofs for the three cases are similar and follow from the results in the
previous section. As an example, let us prove case (c).
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Supposef: M; — M, is a ¢-holomorphic map between cosymplectic mani-
folds. The lifted mapF: M — M): (X,y) — (f(x), f(y)) is a holomorphic
map between Khler manifolds by PropositioA.4, hence a harmonic map. From
Propositiord.2it follows that alsof is harmonic.

Suppose now tha¥l, is in addition compact. Then the same holdsNgr and from
Theorenb.1we know thatF has minimal energy within its homotopy class. Suppose
that f;: M; — M, is homotopic tof via the homotopyf;. Then the corresponding
lifted mappingF;: M — M) is homotopic toF via the lifted homotopyF,. So,
from Propositiond.2, E(f;) = E(Fy)/2vol(M,) > E(F)/2vol(M;) = E(f), and
f is a minimum for the energy functional within its homotopy class. 0

REMARK. Theorem5.1is also valid under the weaker conditions tiNtand N,
are almost Khler. The theorem above can be strengthened accordingly tottimg se
whereM andN are almost cosymplectic or almosakKleér.

For an easier formulation in the sequel, we denote from now on by & daiP)
either a Kahler manifold,P = J, or a cosymplectic manifold? = ¢. A mapping
f: (M, P) — (N, P")is(P, P")-holomorphic, respectivelgP, P’)-anti-holomorph-
ic, if it satisfiesdf o P = P’ o df, respectivelydf o P = —P’ o df.

As afirst corollary of Theorer.2, we have the following generalization of (9.21)
in[3]

COROLLARY 5.3. Let (M, P) and (N, P’) be Kahler or cosymplectic manifolds
with M compact. Iff,;: M — N is a smooth deformation of @, P")-holomorphic
map through harmonic maps, then evdyys (P, P")-holomorphic.

As a second consequence, we have

COROLLARY 5.4. The identity mapd: M — M of a compact cosymplectic mani-
fold is a stable harmonic map.

REMARK. This corollary can also be proved by a straightforward calculation as the
one in R1] for a compact Khler manifold.

CoroLLARY 5.5. Every conformal vector field on a compact cosymplectic manifold
is a Killing vector field.

PrOOF. Thisisanimmediate consequence of the previous corollary and the estimate
(see, for example,4]) index(Id) > dim{c/i}, wherec denotes the Lie algebra of
conformal vector fields anicthe Lie algebra of Killing vector fields. O

A third application of Theorens.2 allows to describe &-holomorphic mapping
between cosymplectic manifolds a little better.
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COROLLARY 5.6. Let f : M; — M, be ap-holomorphic map between cosymplectic
manifolds. Theml f (¢;) = a&,, wherea is aconstant.

ProOOF. We have noted before thdf (¢,) = a&, for some functiora on M;. Then
f*n, = an, and applying the differential we find€ daAn;. HenceXa = da(X) =
0for X L &;.

Next we use Theore.2which says thaf is harmonic, thatis;(f) = 0. Let us
computer (f) explicitly:

n
T(H) =i &)+ Y (xi(e,8) + (8, 918))
i=1
where{ey, ..., e, g€, ..., p1€,, &} is a local orthonormal frame oM;. Using
VMg, = VM2<p2 0 and thep-holomorphicity of f, we calculate

(g€, 916) = (pla df(p€)) — df(ng 18)
=V, (p2df(e)) —df(p V)i e)
= ¢2(V,), (df(e)) —df(V)i&)) = poa(&. p&)
=<p2af(e,a):—af(e,a)+nz(af(e,a))$z,

where we have used the symmetryogf in the one but last equality. The formula
for 7 (f) simplifies to

T(f) =1, E) + ) mlei(e, @)k

Now n,(a¢) (e, €)) = 0.(&, VJ (df(e)) —df(Vg"le)). On a cosymplectic manifold,
&+ is autoparallel and f (§{-) C &;-. It follows thatn,(«¢ (e, €)) = 0. We are left
with 7(f) = a¢ (5, 8) = Vgfl(df(&)) - df(Vg“flél) = ngl(aéz) =&(@)&,. Asfis
harmonic, (f) = 0 and we obtail§,(a) = 0. So,a is indeed constant. O

In the context of Khler geometry, holomorphic and anti-holomorphic mappings
have been studied extensively as a special class of harmonic maps. We can now exter
many of the results to situations where also cosymplectic manifolds are involved. For
instance, we have the following extension of the Siu’s Unique Continuation Theorem

[17].

THEOREMS.7. Let f: (M, P) — (N, P’) be a harmonic map between manifolds
(M, P), (N, P") which are Kahler or cosymplectic. Iff is (P, P’)-holomorphic on
some open subset bf, thenf is (P, P")-holomorphic on the whole dfl. Except for
the case wherf is a map between two cosymplectic spaces, this also holds true for
(P, P"-anti-holomorphic maps.
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PrOOF. The proof is an easy application of the results of the previous section.
First using the appropriate lift, we obtain a harmonic nfapetween Khler mani-
folds which is holomorphic (or anti-holomorphic) on an open subset. Applying Siu’s
original continuation theorent; is necessarily holomorphic (or anti-holomorphic)
everywhere, hence alsbis (P, P")-holomorphic (or(P, P’)-anti-holomorphic) ev-
erywhere orM. O

This proof and the one of Theorem2 should convince the reader that the method
of making a cosymplectic manifold into aakler manifold and lifting mappings
accordingly constutes a very powerful tool to derive results about harmonic maps
and cosymplectic spaces from analogous results in tiddd¢ context. We formulate
two more results in this spirit to illustrate that one should be careful nonetheless.

Using the standard procedure, we can prove the following analogues of (9.12)
and (9.13) from 3].

THEOREMb5.8. Let (M, P), (N, P’) be almost Khler or almost cosymplectic with
M compact and such that the sectional curvatir® of N is non-positive. Then two
(P, P))-holomorphic maps which agree at a point are identical.

THEOREM5.9. If M is a compact almost cosymplectic manifold awé compact
almost Kahler manifold and if the sectional curvatuke™ of N is strictly negative,
then there are only finitely many non-constgnt J)-holomorphic maps df1 into N.

The difference between these two generalizations is that the first one allows for
both M andN to be cosymplectic whereas the second keepafdd¢ manifold as the
target. The reason is that the necessary curvature conditior: 0 is not preserved
under the product construction, wheré@®¥ < O is.

We now simply list a few theorems on holomorphic maps ahléi manifolds
and harmonic maps involving curvature conditions, which can be easily generalized
(either strongly as in Theorem8or weakly as in Theorer.9) to a setting involving
cosymplectic manifolds. But there are probably many more.

e Theorem 3.2 in15], a theorem due to Siu.
e Results by YauinZ3).
e (9.26) in [3], due to Lichnerowicz.

6. @-pluriharmonic maps on cosymplectic manifolds

It is known that the composition of two harmonic maps is netessarily a har-
monic map.Harmonic morphismare by definition mappings which pull back (local)
harmonic functions to (local) harmonic functions. These maps are themselves har-
monic maps which are in addition horizontally weakly conforntall[l]. They also
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pull back (local) harmonic maps to (local) harmonic mapg [Proposition 1]. In
complex geometry, Loubeau has introduced the notionpgdfigharmonic morphism

as a map pulling back (local) pluriharmonic functions to (local) pluriharmonic func-
tions [L2]. The next proposition basically says tigholomorphic mappings between
cosymplectic manifolds qualify ag-pluriharmonic morphisms’.

PrROPOSITIONG.1. A smooth mafx: M; — N from a cosymplectic manifolgMy,
¢1, N1, €1, §1) to @ Riemannian manifoldN is ¢-pluriharmonic if and only if for any
@-holomorphic mapf : M, — M, from a cosymplectic manifolM,, ¢, 12, &, g»)
to My, ko f is alsog-pluriharmonic.

PrROOF. First we show that the-holomorphic mappingf: M, — M; between
cosymplectic manifolds is itseff-pluriharmonic (see, for example, Propositidn).
As in the proof of Corollanb.6, we easily calculate

@1 (@2 X, 92Y) = gaat (X, 92Y) = @Fas (X, Y) = —a (X, Y) + m(as (X, Y)) &.

Usingdf (&) = a&; with a constant, we derive as in that same proof that
n(a¢ (X, Y)) = 0. Hence,f is ¢-pluriharmonic.

Next, we suppose th&tis p-pluriharmonic andf is ¢-holomorphic. Then, from
formula (1), we have

Aot (X, Y) 4 oo 1 (02 X, 92Y)
= dKk(a (X, Y) 4+ af (@2 X, ¢,Y))
+ o (d T (X), df(Y)) + a1 d T (X), 1 dT(Y)) = 0.

So,k o f is alsog-pluriharmonic.
For the converse, take fdr the identity mapping ldM — M. O

We have similar results fdrp, J)-holomorphic andJ, ¢)-holomorphic mappings,
with proofs along the same lines.

PrROPOSITIONG.2. Let f: M — N be a (g, J)-holomorphic map from a cosym-
plectic manifold M, ¢, n, &, g) to a K&hler manifoldN, J, h). Thenforany plurihar-
monic magk: N — P from N to a Riemannian manifol®, ko f is ¢-pluriharmonic.

PrOPOSITIONG.3. Let f: N — M be a(J, g)-holomorphic map from a &hler
manifold (N, J, h) to a cosymplectic manifoldM, &, n, ¢, g). Then for anyg-
pluriharmonic mapk: M — P from M to a Riemannian manifoldN, k o f is
pluriharmonic.
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Aswe have seen in the previous sections, the various forms of holomorphicity imply
harmonicity when working with Ehler and cosymplectic manifolds. It is natural to
ask the converse question: when does the differentialterenonicmap intertwine
the structures? The problem has some answers in didelKcase (sed b, 20]). We
can now formulate analogues when the source manifold is cosymplectic.

THEOREM6.4. Let f: M — N(€) be a smooth map from a cosymplectic manifold
(M, ¢, n, &, g) into a complex space form with constant holomorphic sectional cur-
vature€ # 0. Suppose thaankdf > 3at some point oM. If f is ¢-pluriharmonic,
then f is a (¢, J)-holomorphic or a(p, J)-anti-holomorphic map.

PrROOF. In order to prove this result, we first lift the mdpto the mapF: M* —
N(€) as in Propositiont.5. Now we show thaf is a pluriharmonic map between
Kahler manifolds. We recall thdt = f o 7, wherer;: M* — M is the projection
on the first factor. Asr; is totally geodesic, we have for ay = (Xy, X5),Y =
(Y1, Y2) € T(T(M x M)),

(XF(X, Y) = U5 (drrlX, d7T1Y).
On the other hand, it holds

ap(I*X, 3*Y) = a(dr I* X, I3*dmY)

= ai (X1 — n(X2)&, oY1 — n(Y2)§)
= ot (pXy, Y1) = at(pdm X, pdm,Y).

From the above two relations and the fact tfidas ¢-pluriharmonic, we obtain
O(F(X, Y) + (XF(\]XX, JXY) =05 (drrlX, d7T1Y) + o (godnlx, (ﬂd?[lY) =0

andF is a pluriharmonic map from aatiler manifold into a complex space form with
non-zero holomorphic sectional curvature.

We also note that rantF = rankdf. So, if rankdf > 3 at some point oM,
then by Theorem 1 inZ0], we obtain thatF is holomorphic or anti-holomorphic.
Finally, from Propositiord.5 we get thatf is (¢, J)-holomorphic or(g, J)-anti-
holomorphic. O

ReEMARK. Under the same assumptions as in TheoBeinif we suppose moreover
thatM is compact, therf is stable.

THEOREMG6.5. Let f: M — N be a stablep-pluriharmonic map of a compact
homogeneous cosymplectic manifold intoghker manifold with positive bisectional
curvature. Thenf is a (¢, J)-holomorphic or(p, J)-anti-holomorphic map.
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ProOOF. Again we lift f: M — N to the mapF: M* — N: (X,y) — f(X).
ThenF is pluriharmonic and stable (PropositidrB). Moreover,M * is still compact
and homogeneous. By, Proposition 5.10]F is holomorphic or anti-holomorphic.
Propositiord4.5finishes the proof. O

As we have seerg-pluriharmonicity implies harmonicity. In the following propo-
sition, we give a condition in the cosymplectic case such that harmonicity implies
@-pluriharmonicity.

PROPOSITIONG.6. Any harmonic mag from a compact cosymplectic manifold to
a Kahler manifold of strongly nonpositive curvature tensaopipluriharmonic.

PrOOF. The idea of the proof is the same as in the previous theorem. We use
the lift of the mapf: (M, ¢, n,&,9) — (N, J, h) to the mapF: M* — N. The
result follows from the corresponding result by Siu in thah#€r context (see the
Introduction in [L5]) and from Propositiong.2 and4.5. O
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