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Abstract

In this paper we study the existence and uniqueness of positive solutions of boundary value problems
for continuous semilinear perturbations, shy: [0, 1) x (0, c0) — (0, 00), of a class of quasilinear
operators which represent, for instance, the radial form of the Dirichlet problem on the unit BAll of

for the operators:p-Laplacian (1< p < oo) andk-Hessian (1< k < N). As a key featuref (r, u)

is possibly singular at = 1 oru = 0. Our approach exploits fixed point arguments and the Shooting
Method.

2000Mathematics subject classificatioprimary 35J25, 35J65.
Keywords and phrasegyuasilinear singular equations, radial positive solutions, fixed points, shooting
method.

1. Introduction

We study the existence and uniqueness of solutions for the class of quasilinear problem

{—(r“|u/|f’u/)/=ryf(r,u) in (0, 1),

(1.2) .
u>0 in @01, u@d=u =0,

whereq, 8, y are given real numberd, : [0, 1) x (0, 00) — (0, o0) is continuous
andu’ = du/dr. The main feature here is thdtis possibly singular at = 1 or

u = 0. The study of {.1) is motivated by the search of radial solutions for several
classes of quasilinear problems. In fact, denotingBbthe unit ball of RV, if f is
x-radially symmetric, {.1) is the radial form of

—Apu= f(x,u) in B, u>0in B, u=0 onaB,
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whereA, (1 < p < oo) stands for thep-Laplace operator, provided=y = N — 1
andg = p — 2, and is further the radial form of

(—D*S(V2u) = f(x,u) in B, u>0in B, u=0 ondB,
whereS(V2u) (1 < k < N) is the k-Hessian operator,

S(VU = Y i Ay
1<ii<---<ik<N
%, denoting the eigenvalues of the HessiamafiamelyV?u = (d?u/dx dx;) where,
in the present case, = N — k, y = N — 1 andg = k — 1. We also remark that
Si(V?u) = A, (the Laplacian), an&,(V2u) is the Monge-Ampfe operator. We
refer the reader to Ts@0, 19] and its references for properties of the k-Hessian. Itis
worth recalling that singular problems are also motivated by questions in the physical
sciences. The reader is referred to Nachman and Calléjdoir[the problem
N

k
—(rN Ty = # in (0,1, u(0=u) =0,

with k € (0, 1), which appears in the theory of pseudoplastic fluids and Fulks and
Maybee [L1] for singular equations driven by questions in the theory of heat conduction
in electrically conducting materials.

In the present article we shall exploit the following conditions:

(1.2) B>-1y>max{—1 o —1},
(1.3) f(r,-) is locally Lipschitz continuous in0, co),
uniformly with respect to < [0, 1),
f(r,s) . o
(1.4) e is decreasing i, for eactr,
. f(r,9) . :
(1.5) S'E'!o pvr =0, uniformlyinr.

Our main result is

THEOREM 1.1. Assumél.2—(1.5 hold. Thenthereia € C?((0, 1))NC*([0, 1))N
C([0, 1]) solution of (1.1) provided either

. f(r,s) _ .
(1.6a) <0 and lerQ g =% uniformly inr
or
(1.6b) a>0 and f(r,s)>ns(r), O<r <1/2, s<3,

for somes > 0 andn; € C((0,1/2)) with n; > 0. Moreoveru € C?([0, 1)) if and
only if 8 < y — « and furtheru is uniquely determined if (r, -) is nonincreasing for
eachr.
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ReEMARK. Condition (L.68 holds if f(r,s) 20 % uniformly with respect to
r €[0,1/2).

A few examples of terms (r, s) to which Theoreni.1applies are,

(r+13%r — 1%,
sin(r)s P+cogqr)st, 0<qg<pB+1,

[2+sin<1ir>](s”+sq), 0<qg<pB+1,

provided eitherp > 0 anda > O orp > —1 — 8 anda < 0. Moreover, by our
theorem, {.1) is uniquely solvable in the case of the first example, providesd O.

Theoreml.1limproves the main result of Hai and Oppenheindgd] pn equations
like

(1.7) —(pM)eW)) = pr) fr,u in (0,1),

whereg : R — R is an increasing homeomorphism with concave inverse for
instanceg(r) = |r |fr with 8 > 0 and the main result in WongZ)].

Concerning singular problems, we would like to refer to Crandall, Rabinowitz and
Tartar B], Taliaferro [L8], Kuzano and Swansori}], Chabrowski B], Choi, Lazer
and McKenna], Lair and Shaker5], Choi and Kim {], Zhang R3], Wong [21]
and their references.

For problems involving the operator id.() or (r¢|u’|’u’)’, but with nonsingu-
lar term f (r, u), see Hai, Schmitt and ShivajiL{, 13], Clement, Figueiredo and
Mitidieri [ 6], Clement, Manasevich and Mitidieri’], Figueiredo, Goncalves and
Miyagaki [10].

2. Auxiliary results

One basic tool in the proof of Theoreil is the shooting method. Consider the
following family of initial value problems,

—(rehir1Biry — . .
(2.1) { (rejuffuy =rrf@r,u) in (0, 1)

u) =a, reunFt =20,

wherea > 0 is the shooting parameter. We point out that solviag)(is equivalent
to solve the integral equation,

r s 1/(p+1)
(2.2) u(r) =a—/ [s“/ tVf(t,u(t))dt] ds
0 0
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and that a solution of (2.1) has zero derivative at= 0. Letting

r s 1/(B+1)
(2.3) Zu(r) =a—/ [s“/ tVf(t,u(t))dt] ds
0 0

it follows that the eventual solutions o2.Q) are the fixed points of# in a suitable
function space. We state next a crucial resultA)(

THEOREM 2.1. Assumg1.2) — (1.4) hold. Then for eacta > O there is some
T(a) € (0, 1] and a unique solution(-, a) € C?((0, T (a))) N C([0, T(a))) of (2.1)
satisfying

(2.4) u(r,a) -> 0 asr — T(a) providedT (a) < 1;
(2.5) u(-,a) € C3([0, T(a))) ifandonlyif 8 <y —a.

The proof of Theoren2.1 uses Banach’s Fixed Point Theorem. The technical
lemmas below will be used in the proof of Theordmi. In order to state the first
lemma we establish some notations. Giier (0, 1) andh > 0 set

r—0

X = {w e CH[0, T]) | w = h, réfw/@)F+ =2 o}

If wy, w, € XletH : [0, T] — R be a continuous function defined by
s ’
H(r) =r® U(w;uﬁm) } (w;/wz)) wy BHV/E+D
s ’
_ ‘(wi/wm) ‘ (wi/wﬂ)) wl(ﬁ+l)/(ﬁ+2)] (wy — wy)(F),

forr € (0, T]andH (0) = 0. The first lemma is

LEMMA 2.2. If wy, w, € X, then

T A
H(T) S/ |:< ( 1/(ﬁ+2))} ( ;/(ﬁ+2))> w2—<5+1>/<ﬁ+2>
0
"B
. (ra ( 1/(ﬁ+2)) ‘ ( 1/(ﬁ+2))> wl(ﬁ+l)/(ﬁ+2)] (wy — wy) dr.

Now, the second lemma

LEMMA 2.3. Assume < b and letu(-, @), u(-, b) be the corresponding solutions
givenby Theorer®.1. Thenu(-,a) < u(-, b)in [0, T(a)) and moreovel (a) < T(b).

The third one is
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LEMMA 2.4. Assumél1.2—(1.4) hold. Let{a,} be a sequence i, co) such that
a, /aora, \ aforsomea > 0and letu(., a,), u(-, a) be the solutions given by
Theoren2.1 If K € (0, min{T (a), sup, T (a,)}) then

”u(v an) - u(7 a')”C([O‘K]) rﬁf 0 and u/(r9 an) rH_o)O u/(r9 a)? re [07 K]

3. Proof of Theorem2.1

Leta > 0. By (1.3 there is somd, > 1 such thatf (r, -) is Lipschitz continuous
on[a/l,, @] uniformly forr € [0, 1). Lete € (0, 1) small, set

Xae ={u e C(0,€]) [u =a, a/la <u(r) <a, r €[0,¢]}
and notice thatX,., | - |l.) is @ complete metric space. We claim that
B1) () F(Xae) C Xae, (i) 17U — F U)o < KlUp — Uzl

for somee > 0 small enough, for alli;, u, € X, . and for some € (0, 1).
We present the proof of3(1) in Appendix. Assuming it has been don#, has an
only fixed pointu € X, . and so .1) has a unigue local solution. Setting

T(a) =sufr € (0,1) | (2.1) has an only solution if0, r ]}
and lettingu(-,a) : [0, T(a)) — R be the solution of .1), notice that by 2.2),
u(-,a) € C([0, T(a))) and, in fact,

r 1/(B+1)
(3.2) u(r,a) = — [r “/ t” f(t, u(t, a))dt] , O0<r <T(a).
0

Consider the functions

W @ Moo= mel

(3.3) @i m(s,x) = m|

<t<s Xﬂ+1 ’

where 0< s < 1and O< x < oo. TakingT < T(a), estimating in 8.2) with the use
of (3.3 (ii) and (1.4) we have,

f(t,u(T, a)

.
3.4 u@r,a)lftt < af’“r“/ t”
(3.4) [u'(r, )" < ; UT. 2

p+1

< 1M(T, u(T,a)r’ <, 0<r<T

y +
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so that by 8.4), u(-,a) € C*([0, T]) and as a consequenae= lim,_; U'(r, a) is
defined and € (—o0, 0). Now, consider the initial value problem

(3.5)

—re By =rvf(@r,v) in (T,1),
v(T) =u(T,a), V(T)=mv,

whose solutions are the fixed points of

. s 1/(B+1)
{s“ [T“Ivlﬂ“+/ v, v(t))dt}} ds.
T

By the standard fixed point argument again, one infers the existence of a unique
solution of 3.5 on some intervalT, T + ¢) showing thau(-, a) is uniquely deter-
mined. We also have from the arguments aboveuli@ia), a) = lim, .t u(r, a),
u(-,a) € C([0, T(a)]) and furtheu(T (a), a) = 0 whenT (a) < 1. This showsZ.4).

Next we shall proved.5). From 3.2,

Zo(r) = u(T,a) —/

T

_rV*“h(r, a)

(3.6) u’(r,a) = 1

’

] —B/(B+1)

[r“/ t” f(t, u(t, a)) dt
0
where

h(r,a) = f(r,u(r, a)) —ar<y+1>/ t” f(t, u(t, a)) dt
0

and from 8.2) and @.6), u = u(-, a) € C?((0, T(a))) N C([0, T (a))). Moreover,

r-o0 ¥y —a+1
and using 8.3) (i)—(ii) and (1.4),
(3.8) u(r, & m(r,a) < f(r,u(r,a) < a*M, u, a))

forr > 0. Consider the two cases below:
Case 1:—1 < g < 0. Integrating from O t@ in (3.8) we have,

st /() ' HIEED
[& m(r,a)rV“] < (/ trf(t, u(t,a))dt)
0

y+1
ab+1 —B/(B+D)
< [ M (r, u(r,a))ry“] )
y+1
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Hence,

r =B/ (B+D)

m(r, a) p1
(3.9 [ 1 u(r, a)

r —B/(B+D)
<rre (r“/ t7 f(t, u(t,a))dt)
0

aftt —B/(B+1)
= M(r, u(r, a)) pr—a—B)/(B+D)
y+1

]ﬂ/(ﬁ+l)

From 3.6), (3.7)and 3.9 it follows thatlim,_.o u”(r, @) existsifand only if8 < y —«.
Case 2:8 > 0. Again, from @.8), we obtain

aﬂ+1 —B/(B+D) r -B/(B+1)
[ M (r, u(r, a))rV“] < (/ tv f(t, u(t))dt)
y+1 0

u(r, a)f+t —B/(B+1)
< [L m(r, a)ry“] :
y+1
and thus,
af+l —B/(B+D)
(3.10) M (r, u(r, a) [ v—a=p)/(B+1)
y+1

r —B/(B+D)
<rv¢ (r“/ t”(t,u(t,a))dt)
0

B+1 —B/(B+1)
< & m(r’ a) r()’*a*ﬂ)/(fﬂ‘l)'
+1

Therefore, it follows from 8.6), (3.7) and @.10 that lim,_.ou”(r, @) exists if and
onlyif B <y —a.

4. Proofs of the lemmas

PrOOF OFLEMMA 2.2 We will adapt arguments by iBz and Saad] related to
Brézis and Oswald1]. Consider the functional : L([0, T]) — R U {oo} defined

by

(w1/<ﬁ+2>)/r+2dr, w e X;

1 T
Iw) = ﬂ+2/o '
00, w ¢ X.

Itis straightforward to check that andJ are both convex. Now, lettingy, w, € X,
n=w;— wy P= B+ 2, remarking thatv, +tn, w; —tn € X, (0 <t < 1), and
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denoting by(J'(w;), n) the directional derivative ofl at w; in the directionn, we
claim that

(4.1) (I (wy), —n) = —%T“l(wi”’m)/r’Z(wi“’m)/wil‘””’(TM(T)

1 T re (wl/P)/ pfz(wl/P)/ 4
+5/0 ] 1w§p|1)/p )y dr
and
(4.2) (J'(wy), n) = %T“l(wé”’m)/r’Z(wéf"(T))/w;l‘””’(TM(T)

T a 1/py/|P=2,  1/pys\/
_l/ (refawa™y ™ " awy®y) () dr.
0

p WP/
We will show @.1) next. Notice that,

T PP [0, 1Py |P
(I (wy), —n) = L Iim/ re |:|((w1 tm)¥P)' " — [(wyPY| } dr
p t—0 0 t

By computing we find

T —_t\/PY _ (1pY Py
(4.3) (J(wy), —n) = !m}/ r|6°~%6, |:((wl = t) - i| dr
—%Jo

where min{((wy — t)?), (wy’®)'} < 6 < max{((ws — ty)?Y, (wy’")'}. Now,
estimating and applying Lebesgue’s Theoremit@)(we infer that

1 (7 _ e
(' (wy), —n) = -5 / re|wy®y | "2 wy®y i P Py dr,
0

and computing the integral we get{). The verification of 4.2) follows by the same
arguments. From4(1) and @.2),

/ / 1 1 T (r o | (w;/(ﬁJrz))/ |ﬂ (w;/(ﬁJrZ))/)/
(J'(wp), ) — (I (wy), n) = BH(T) - E/o |: Wl D/ETD

Y+ /1B . 1B+
(re| w2y (w2 g
- B+D/(B12) (wy —wy)dr.
wq

SinceJ is convex,(J'(wq1) — J (wy), wi — w,) > 0 and Lemma.2 follows. O

PROOF OFLEMMA 2.3. Assume, by the contrary, there is sofe> 0 such that
bothu(r,a) < u(r,b) forr € [0, T) andu(T, a) = u(T, b). Settingw, = u(-, a)#*2
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andw, = u(-, b)#*2?, notice thatw,, w, € X, whereh in the definition ofX is given
here byh = u(T, a)#*2. Notice that

T oy, Brr(. ’ Ao, Bur(. !
/ |:(r e alfuca) e, b)Pu'c, b)) ](U(~,a)ﬂ+2—U(-,b)ﬂ+2)dl'
0

u(., a)f+t u(., byf+t
(T L[ fuC b)) f(ruc,a)
- /0 " [ uG, b)F L u(, a)ftt ] u(, @) —uc, bdr.

Now, sinceH(T) = 0, by Lemma2.2 the first integral just above is nonpositive,
while by (1.4), the second one is strictly positive, a contradiction. This proves
Lemma2.3. Il

PROOF OFLEMMA 2.4. Assumea, " a, takeK e (0, sup, T(a,)) and an integer
ng > 1 such thafl (a,, ) > K. By Lemma2.3and takingn > ny,

T(a,) <T(a) <T(a) and u(,a,) <u(,a) <u(,a <a.

We claim thatf{u(-, a,)}:° , is equibounded and equicontinuousdO, K1). Indeed,
estimating as in3.4) and using 8.3 (ii) we find

p+1

a .
u'(r, a,)|" ™ < — MK, u(K, a, )K" =K.

Hence there i8, € (0, K) such that
u(r, @) — u(t, a)| = [U'(Gn, a)lIr —t| < KYED)r — ).

It follows that{u(-, a,)}°2, is equibounded as well. So by the &ta-Ascoli Theorem
thereisv € C([0, K1) suchthati(-, a,) — v uniformlyin[0, K], upto a subsequence.
Next we remark, by letting), (t) = t” f (t, u(t, a,)), 0 < t < K, that both

B+1
lga ()| < [ﬁ] t” f(t,u(t, a,)) = h(t), wherehe L'[0, K]

andg,(t) — tf(t,v(t)) = gt),t € (0,K]. So by Lebesgue’s Theorem, for
r € [0, K],

/tyf(t,u(t,an))dt—>/ t” f(t, v(t)) dt.
0 0
Hence,

[u'(r, a)|Pu'(r, a,) — —r“/ t” f(t, v(t)) dt
0
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1/(B+1)

and sou'(r, a,) — w(r), wherew(r) = —(r = [; t” f(t, v(t)) dt) . By Lebes-

gue’s Theorem again

/u/(t,an)dt—>/ w(t) dt,
0 0

and as a matter of fact(r) —a = for w(t) dt. Sincev’ = w we get,

() PY(r) = —r“/ t7 f(t, v(t)) dt.
0

Hencev is a solution of 2.1) and by uniqueness provided by Theorerhit follows
thatv = u(-, a). We have shown that,

uG,a,) — uG,a in C([0, K],
u'(-,a,) - U(-,a) pointwisely in [0, K].

The case, “\ a follows by similar arguments. Lemnia4is proved. O

5. Proof of Theorem1.1

Settinge = {a > 0| T(a) = 1} we claim thate # ¢. Indeed, if«’ = ¢ then
—T(a)

u(ra,a) = a/2 for somer, € (0, T (a)), sinceu(r, a) — o by (2.4). Using @.2)
and estimating as ir8(4) we get

a a\ B+ 1 1/(B+1) 1
(5.2) - <aM (ra’ _) <—> n I'g,
2 2 y+1 0
whered = (y —a+ B+ 2)/(8 + 1), and thus
1/(p+1) 1/(B+D)
1_[ftaa/ 1 1
2 = | (a/2)p+t y+1 0

for somet, € (0,r,). But this is impossible by1(5 and so«/ # ¢. Setting
A = inf & we claim that O< A < co. Indeed, at first notice thah < oo because
</ # ¢. Now, to show thatA > O we consider two cases:

Case 1o < 0. Setforr € [0,1/2],

U(r,a) =u(,a) — h(r,a), whereh(r,a) =a-— 2ar.

We claim thatU(r,a) > 0. Indeed, notice first thd > 0 in (0, ry) for some
ro € (0,1/2). If U(r,, a) < 0 for somer, € (rq, 1/2) then we find some; € (ro, )
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with U’(r;, a) < 0 and further sinc® (1/2, a) > 0 we find some; € (r,, 1/2) with
U'(r;,a) > 0. But this is impossible because singe< 0 it follows using (3.6)
thatU”(r,a) < O for allr € (0,1/2). As a consequenceyr,a) > a — 2ar for
r € [0, 1/2] and hence using2(2) and (L.4),

1/2 s f (t a) 1/(p+1)
—u(1/2,a) > —a+/ [s“/ tr——@- 2at)f’“dt] ds
0 0 art

1/2 s 1/(p+1)
= —a+am(1/2, a)/# v / [s“ / t7 (1 — 2t)f’+1dt] ds.
0 0

Hence by (.69, —u(1/2,a) > 0 for somea small enough. But sinca(-, a) is
a solution of 2.1), it follows thatu(1/2,a) = 0 so thatT(a) = 1/2. So using
Lemma2.3, A > 0.

Case 2:a > 0. If A = 0 it follows using Lemma2.3 that & = (0, co) so that
u(l,a) > Oforalla > 0. Now, since 2u(1,a) — u(1/2,a)) = U(b,, a), for some
0, € (1/2,1) and O< u(l,a) <u(l/2,a) < aitfollows that

0Oa
/ t f(t, u(t, a)) dt 223 0.
0

By (1.68 we get, for smalh > O,

1/2 0a
/ t7 (1) dt < / t7 f(t, uct, a)) dt,
0 0

impossible. This shows that > 0.

In orderto prove thai(-, A) is a solution of {.1) it suffices to show thah € < and
u(l, A) =0. If T(A) < 1picke > 0suchthall (A)+¢ < 1andasequenag € «
with a, N\ A. Consider the sequencgT (A) + ¢/2, a,) which by Lemma2.3
is decreasing and s@t o = inf,{u(T(A) + €/2,a,)}. We claim thatT_, > 0.
Otherwise, it follows remarking that(T (A) + €, a,) < U(T(A) + ¢/2, a,) and

U(T(A) +€,ay) —UT(A) +€/2,8,) = U (6, an)(€/2)

for somes, € (T(A) + €/2, T(A) + ¢) thatu' (6, a,) — 0. Now, since

On
(60) U (Bn, @) 1PU' (Bn, @) = —/ t7 f(t, u(t, a,)) dt
0

T2 £t uct, ay) dt S 0.

By Lemma2.4we have

we get/,

T(A)/2 T(A)/2
/ t f(t,u(t, a,))dt — / t” f(t,u(t, A)dt.
0 0
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But this is impossible, becau#gT(A)/thf(t, u(t, A))dt > 0. Thereforel, 5, > O.

Chooses, > 0 such thau(r, A) < T.a/4 forr € [T(A) — 8, T(A) — 50/2]. By
Lemma?2.4,

UG, @) — UG, Allcgo sz = O
and so there igg > 1 such that
lu(r, a,,) —u(r, A)| < T.a/4 forall r € [0, T(A) — &0/2].
Thus, forr € [T(A) — 8, T(A) — §o/2] we have
u(r, ay,) < [u(r, a,) —ur, Al +ur, A) < T a/2.
Sinceu(r, a,) > T. aforn > L andr € [0, T(A)], it follows that
U(T (A) = 8o, @) < Tea/2 < Tea = U(T(A), 8n,),

impossible. Thereford € «/. Now assume thai(1, A) > 0, and pick a sequence
a, /" A. We claim that

(5.2) T(a) — 1L

Indeed, notice thal'(a,) < T(a,.1) < 1 and hencel(a,) / T. If T < 1
setT, = u(T, A). For eachn large enough (for instance, such tlegt> T,) take
t, € (0, T) satisfyingu(t,, a,) = Ta/4.

Sinceu(-, a,) is decreasing, consider9 f, < t, < T such thau(t,, a,) = Ta/2.
We will show next thaf, — T. Indeed, noticing thaf, is monotonef, — T < T.
If T < T thereisn, > 1 such thafl (a,) > T. Henceu(r, a,) < Ta/2 foralln > n,
andr e [T, T (an,)] because otherwise, there would be same (T, T (an,)] with
Ta/2 < U(rs, a7) < u(fs, aq) = Ta/2, impossible.

We infer thatju(r, a,) — u(r, A)| > Ta/2 forr € [T, T + ¢) and for some > 0
with T 4 € < T(a,,). But this is impossible because by Lemé,

UG ) = UG, Allegof ey — O.
Therefore,T = T. Now, noticing that

u(t,, a,) — u(fn, a,) = U/(Qn, a) (th — fn)a fn <6, <t
we get
Ta

U/Q, =—~—n>OO
a0 = g
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But this is impossible, becausdiesating asin 8.4) it follows thatu'(r, a,) is bounded
forr € [0, T]. Claim (5.2) is proved.
Setl = u(l, A). By (1.4 and (.5 pickt; € (0, 1) such that

1 s 1/(p+1)
(5.3) / [s/ tVf(t,I/Z)dt] ds < 12/4A.
tl 0

Using Lemma2.4and 6.2), we have
IuC, ) = UG, Allcgony > O.

and as a consequende(t;, a,) — u(ty, A)| 5 0. But sincau(t;, A) > | + ¢ for some
€ >0,

u(t17 an) > u(tl7 A) —€> I

for largen. Now pickt, € (t;, 1) such thau(t,, a,) = 1/2. We have,

1/(B+D)
} ds.

to S
U(tz,an):U(tl,an)—/ [S/ t7 f(t, u(t, a,)) dt
ty

0

Estimating the above integral as iB.4) and using $.3), we get

contradicting /2 = u(t,, a,). Thereforeu(l, A) = 0 and the solutiomu = u(-, A)
given by Theoren2.1solves (.1).

It remains to show uniqueness. Liet= u(-, B) be another solution ofl(1) with
A < B. By Lemma2.3 u(r, A) < u(r,B)for0O <r < 1. Setw = (—u and
letrg € [0, 1) be a point wherev attains a local maximum so that(r,) > 0 and
o' (rg) = 0.

Integrating the differential equation id.{l) fromrq tor withr € [ro, 1] and using
the fact thatf (r, s) is nonincreasing i3, we obtain

reqaePar) = umPu' ) = —/ tLf, ae) — ft,u)ldt = 0.

Using the following inequality (see Simon{]),
Cplx — y|P*? if >0

(IXIPx = lylPy, x —y) = c X —y[?
P+ X+ 1D

for all x, y € R and for some; > 0 it follows thatw'(r) = U'(r) — u'(r) > 0 for
r € [ro, 1]. Hence 0= w(1) > w(ry), a contradiction.

f —1<B8<0
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6. Appendix

We prove 8.1) (i) first. If u € C([0, €]) then.Zu € C((0, €]). On the other hand,

r s 1/(p+1) 1 1/(B+1) 1
/ [s/ tyf(t,u(t))dt] ds < aM(r,a/l,)Y¢D [—] =,
0 0 y+1 0

wherer € (0, €], 0 asin 6.1). Actually,

r—0 f(o’ a/la)
M(r,a/la) —> T

As a consequence? (u) € C([0, €]). Pickinge > 0 small enough we have

. s B+ L1
/ [s“/ tVf(t,u(t))dt] ds< 2*—"a
0 0 Ia

sothata/l, < Z(u)(r) <a,0<r <e¢, showing 8.1) (i).
Next we show 8.1) (ii). Letu; € C([0, €]),i = 1, 2. We have

[ ZUs(r) — Fuy(r)| < / |Xl(s)1/(ﬁ+1) _ XZ(S)l/(ﬁ+1)|dS,
0

whereX;(s) = s fOStV f(t,u (t))dt (i =1,2). Using the inequality
[1x17x — 1y1Py| < ca(IxIP + 1yI)Ix —y| X,y eR

for somec; > 0 whereg > —1, we have by making = —g/(8 + 1)
Wmm—ﬂwm§%/OM@WH&@WM@—&@MS
0

We distinguish two cases.
Case 1:—1 < B < 0. Givene > 0 and takings € [0, €] we have

B
[ Xi (s)|f3 <a?’ M g Ar—e+D/(+1)

| = + 1
and

[X1(8) — Xa(8)| = S“/ 1, u(t) — f(t, up(t)] dt
0

o~

<

—at1
=7 1||U1 — Uzllco.ens” ™,
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whereK is the Lipschitz constant of on[a/l,, a]. From these inequalities we infer
that

a? K [M(, a/l,
\FUy(r) — Fuy(r)] < 26,5 [ (yrf/l)

]
0
€ [|[Ug — U
51 } l llco.en

and @.2) (ii) follows by takinge small.
Case 2:8 > 0. Asin Case 1, givea > 0 we have,

N B
X1 < @/l [@} P g <5 <e
Y
and
S, a
[Zui(r) — Zuy(r)| < 2; (a/la) P |: )/(—I— 1)i| 9||U1 — Uz llcqo,en

showing B.1) (ii).
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