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Abstract

Let T be a Fourier integral operator onRn of order−.n−1/=2. Seeger, Sogge, and Stein showed (among
other things) thatT maps the Hardy spaceH 1 to L1. In this note we show thatT is also of weak-type
(1, 1). The main ideas are a decomposition ofT into non-degenerate and degenerate components, and a
factorization of the non-degenerate portion.

2000Mathematics subject classification: primary 42B20.

1. Introduction

This note is concerned with the mapping properties of Fourier integral operators. As
our considerations will be local, we will work onRn for somen ≥ 2, and we will
define (as in [8]) a Fourier integral operatorT of orderm to be any linear operator of
the form

T f .x/ :=
∫
Rn

e2³ i8.x;¾/a.x; ¾ / f̂ .¾/d¾;(1)

where f̂ is the Fourier transformf̂ .¾/ := ∫
Rn e−2³ i x ·¾ f .x/dx, of f , a.x; ¾ / is a

standard symbol of orderm (that is, we have the bounds∣∣@Þx @þ¾ a.x; ¾ /
∣∣ ≤ CÞ;þ.1 + |¾ |/m−|þ|

for all multi-indicesÞ; þ) with compact support inx, and8 is a real phase function
which is homogeneous of degree 1 in¾ , is smooth in.x; ¾ / for ¾ 6= 0 on an open
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neighbourhood of the support ofa, and obeys the non-degeneracy condition

det

(
@28

@xi@¾ j

)
6= 0(2)

on an open neighbourhood of the support ofa.
A model case of Fourier integral operators arises in the translation-invariant setting,

when8.x; ¾ / = x · ¾ + �.¾/ for some real smooth�, homogeneous of degree 1,
and whena.x; ¾ / = a.¾/ is independent ofx (of course, this means thata is no
longer compactly supported inx, but by applying cutoff functions as necessary we
may make this operator consistent with the previous definition). ThenT becomes a
Fourier multiplier:

T̂ f .¾/ = e2³ i�.¾/a.¾/ f̂ .¾/:(3)

It is well-known (see for instance [8]) that Fourier integral operators of order
m ≤ 0 are bounded onL2. If m< −.n − 1/=2, then one can also show [5] that these
operators are bounded onL1 and also onL∞. At the endpointm = −.n−1/=2, it was
shown by Seeger, Sogge, and Stein [5] that Fourier integral operators map the Hardy
spaceH 1 to L1. From this and Fefferman-Stein interpolation one can show [5] that
a Fourier integral operator of orderm is bounded onL p provided that 1≤ p ≤ ∞,
|1=2 − 1=p| ≤ −m=.n − 1/, except at the endpoint case whenm = −.n − 1/=2 and
p = 1;∞. These results are sharp; see [5]. More precisely, these results are sharp if
∇2� has the maximal rank ofn − 1, otherwise one can increase the range ofp and
m somewhat. Indeed, it is this gain in the degenerate case which allows us to prove
Theorem1.1. We thank Michael Ruzhansky for pointing out this subtlety.

This leaves open the question of what happens to operatorsT of order m =
−.n − 1/=2 on L1. One cannot expectT to be bounded onL1; for instance in the
model case (3), if �.¾/ = |¾ | anda is a generic symbol of order−.n − 1/=2, then the
convolution kernelK .x/ of T has magnitude comparable to 1=.|x| − 1/, which has a
logarithmic divergence. However, we have

THEOREM 1.1. If T is a Fourier integral operator of orderm = −.n − 1/=2, then
T is of weak-type.1;1/.

The rest of the paper will be devoted to the proof of this theorem, but first we begin
an informal discussion.

We first consider the translation invariant case (3). To begin with we make the
non-degeneracy assumption that∇2�.¾/ has the maximal rank ofn − 1 for all ¾ 6= 0.
For sake of exposition we shall restrict ourselves to the case�.¾/ = |¾ |, which is
already typical. The principle of stationary phase then suggests that the convolution
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kernelK .x/ of T should be concentrated near the image of∇�, which in this case is
the unit sphere.

Let d¦ be the standard surface measure on the unit sphere. As is well-known we
have the Fourier transform expansion

d̂¦ .¾/ = e2³ i |¾ |a+.¾/+ e−2³ i |¾ |a−.¾/;

wherea+, a− are symbols of order−.n − 1/=2 which behave asymptotically like
a±.¾/ ∼ c±|¾ |−.n−1/=2 as|¾ | → ∞ for some non-zero constantsc±. If we ignore the
e−2³ i |¾ |a− term (which can be suppressed by an appropriate use of cutoff functions in
both space and frequency), we can thus factorize

e2³ i |¾ |a.¾/ = d̂¦.¾/b.¾/

for some symbolb of order 0. This gives us a factorizationT = S A, whereS is a
pseudo-differential operator of order 0 andA is the averaging operatorA f := f ∗d¦ .
Since theA operator is clearly bounded onL1, and since pseudo-differential operators
of order 0 are always of weak-type.1;1/ by standard Calder´on-Zygmund theory, we
thus see thatT is of weak-type.1;1/ as desired.

This simple example (which seems to be first observed in [2]) suggests that one
should try in general to factorize the Fourier integralT into a pseudo-differential
operator of order 0, and an operator bounded onL1. In the translation invariant case
(3), this idea works well if the matrix∇2

!8 is always non-degenerate (we will explain
what! is in the next section). However if∇2

!8 degenerates, then the corresponding
measured¦ develops cusps and it becomes difficult to control the asymptotics of
d̂¦ .¾/. In principle this can be avoided by damping the measure by a factor such
as det.∇2

!8/
1=2 (see for example [7, 1, 3]), however good asymptotics can only be

obtained when|¾ | is very large (for instance if|¾ | � .∇2
!8/

−1=" for some small").
Thus it remains to handle the contribution when� is close to degenerate, and when

|¾ | is not too large. However, it turns out that this portion of the Fourier integral
operator is in fact bounded onL1. For instance, in the completely degenerate case
when8.¾/ = x0 · ¾ is linear in¾ , the convolution kernelK is essentially a fractional
integral kernel 1=|x − x0|, which is clearly integrable. More generally, when8 is
close to degenerate, then the error terms in a Taylor expansion of8 become more
favorable, and one can coarsen the standard ‘second dyadic decomposition’ (see for
instance [5, 4]) in order to improve the standard estimates [5] on the kernelK (which
in the non-degenerate case, just barely fail by a logarithm to be integrable, because
the Fourier integral operator has the critical order−.n − 1/=2).

To summarize, our strategy in dealing with a general Fourier integral operatorT
will be to first decomposeT into a ‘degenerate part’ (roughly, this is where|¾ | .
det.∇2

!8/
−1="), and a ‘non-degenerate part’. The kernel of the degenerate part can be
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shown to be integrable, which is acceptable. The non-degenerate part will be factored
(modulo errors which are essentially Fourier integral operators of order strictly less
than−.n − 1/=2) as the product of a pseudo-differential operator of order 0, and an
operator whose kernelK .x; y/ is essentially a (smoothed out) measure on the singular
set{.x;∇¾8.x; ¾ // : .x; ¾ / ∈ supp.a/} corresponding to8, damped by the natural
factor of detn−1.∇2

!8/
1=2. In particular, the kernelK is integrable. (The smoothing

out will arise from the cutoff to the region|¾ | � detn−1.∇2
!8/

−1=", but this will not
affect the integrability of the kernel).

2. Notation and preliminary reductions

The dimensionn will always be fixed. We shall need a small number 0< " � 1
depending only onn; for instance" := n−10 will suffice. When a constantC appears
in front of ", for instance 2C"k, it is understood thatC is independent of" and depends
only onn. (In particular,C" can be made arbitrarily small by choosing" sufficiently
small).

We useT∗
R

n := {.x; ¾ / : x; ¾ ∈ R
n} to denote the cotangent bundle ofRn. We

shall use the Euclidean metric and standard basise1; : : : ;en throughout, and so we
will not bother very much to distinguish between a vector and covector, or between a
matrix and a quadratic form, etc.

We will use A . B or A = O.B/ to denote the estimate|A| ≤ C B, whereC
is a constant depending only onn, ", the CK norms of8 on the cosphere bundle
{.x; ¾ / ∈ T∗

R
n : x; ¾ ∈ R

n; |¾ | = 1} (where K = O.1/ depends only on the
dimension) and the constants in the symbol bounds fora.

We will write the frequency variable as¾ = .¾ ; ¾n/, where¾ ∈ Rn−1 and¾n ∈ R.
We similarly decompose the spatial variablex = .x; xn/. We shall also use ‘projective
co-ordinates’.½; !/, defined by

½ = ¾n; ! = ¾=¾n;

to analyze the frequency variable¾ (if ¾ is close to theen axis). Even though½ and¾n

are equal in value, we shall distinguish between the radial derivative@½ (which keeps
! fixed) and the vertical derivative@¾n

(which keeps¾ fixed). One of the key features
of the argument will be that all the cutoff functions are very smooth with respect to
the radial derivative@½ even if they become rather rough in the angular directions∇!.

Fix a,8. We now make some basic reductions to simplify the form ofT .
We first observe that we may assume that the symbola.x; ¾ / vanisheswhen|¾ | . 1.

This is because the portion of the operator on the region|¾ | . 1 is a Fourier integral
operator of arbitrarily large negative order, and is therefore bounded onL1 by (for
instance) the results in [5]. The main purpose of this reduction is to ensure that we
will not have to worry about any possible singularity at¾ = 0.
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Next, we can assume after a finite partition of unity of the frequency angular
variable¾=|¾ | and a rotation that the symbola.x; ¾ / is supported on the cone bundle

C := {.x; ¾ / ∈ T∗
R

n : ¾n � 1; |¾ | � ½}:
This allows us to use½ as a proxy for|¾ |, and! as a proxy for the angular variable
¾=|¾ |. This will be convenient technically because the hyperplaneR

n−1 is flatter than
the sphereSn−1. From the homogeneity of the phase function8 we have

8.x; ¾ / = ½8.x; .!;1//:

We will abuse notation and write8.x; !/ for8.x; .!;1//.
We will always be working on the support ofa.x; ¾ /, so we shall implicitly assume

that.x; ¾ / ∈ C throughout the rest of the paper.
Define thecanonical relation6 ⊂ .T∗

R
n/ × .T∗

R
n/ by

6 := {..∇¾8.x; ¾ /; ¾/; .x;∇x8.x; ¾ // : .x; ¾ / ∈ supp.a/}:
We will not use6 directly, but the geometry of this relation will be implicit in our
arguments. Observe from (2) that by restricting the support ofa if necessary we
can make6 an embedded manifold, and in particular we can assume that the map
.x; ¾ / 7→ .x;∇x8.x; ¾ // is a diffeomorphism on the support ofa. From (2) and the
Euler homogeneity relation

∇x8.x; ¾ / = ¾ · ∇¾∇x8.x; ¾ /

we observe the useful bound

|∇x8.x; ¾ /| ∼ |¾ |:(4)

Fix x ∈ Rn and! ∈ Rn−1. A key quantity in the analysis will be thecurvature

J.x; !/ := det.∇2
!8.x; !//:

This curvature measures the extent to which the phase function fails to be linear; thus
8 degenerates whenJ is small. Observe thatJ is smooth inx and!.

We shall frequently need smooth dyadic cutoffs of Littlewood–Paley type. We fix
�.¾/ = �0.¾/ to be a non-negative radial bump function onRn which is supported on
the ball{|¾ | ≤ 2} and equals 1 on the ball{|¾ | ≤ 1}. For anyk ∈ R, we define the
functions�k, �k by

�k.¾/ := �.¾=2k/; �k.¾/ := �k.¾/− �k−1.¾/:

By abuse of notation we shall also define these functions onR
n−1 andR in the

obvious manner.
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3. Splitting into degenerate and non-degenerate components

Let T be as in the previous section. We can decomposeT into Littlewood-Paley
components

T f .x/ =
∑
k�1

∫
Rn

e2³ i8.x;¾/a.x; ¾ /�k.¾/ f̂ .¾/d¾;

where the restrictionk � 1 is justified sincea.x; ¾ / is supported on the region
|¾ | � 1. (All summations will be over the integers unless otherwise indicated.)

We can thus splitT = Tdeg+ Tnondeg, where

Tdeg f .x/ :=
∑
k�1

∫
Rn

e2³ i8.x;¾/a.x; ¾ /�−"k.J.x; !//�k.¾/ f̂ .¾/d¾;

and

Tnondegf .x/ :=
∑
k�1

∫
Rn

e2³ i8.x;¾/a.x; ¾ /.1 − �−"k.J.x; !///�k.¾/ f̂ .¾/d¾:(5)

Informally, Tdegis the portion ofT where|J.x; !/| . |¾ |−", and conversely forTnondeg.
ThusTdeg captures the portions ofT which are even just a little degenerate.

We can now outline the remainder of the proof. In Section4 we will show thatTdeg

is bounded onL1:

‖Tdeg f ‖1 . ‖ f ‖1:

This will basically be a straightforward computation of the kernel ofTdeg, modifying
the standard second dyadic decomposition slightly.

To deal withTnondegrequires more work. We will obtain a factorization

Tnondeg= S A+ E

whereA, E are operators bounded onL1

‖A f‖1; ‖E f‖1 . ‖ f ‖1

andS is a standard pseudo-differential operator of order 0 (so in particular is of weak-
type.1;1/, see for instance [8]). From all the above estimates we immediately obtain
thatT is of weak-type.1;1/.

The operatorA will have a kernelK .x; y/ which is essentially a finite measure on
the set{.x;∇¾8.x; ¾ // : .x; ¾ / ∈ C } (that is, the spatial projection of the canonical
relation6). The measure is weighted by the natural damping factor|J.y; ¾ /|1=2, but
with some additional cutoffs and blurring arising from the truncation to the region
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|J.x; !/| � |¾ |−". The operatorA is thus the natural averaging operator correspond-
ing to the canonical relation6. We constructA and prove itsL1 boundedness in
Section5.

The operatorA will turn out to essentially be an Fourier integral operator of order
−.n − 1/=2 with the same phase function8.x; ¾ / asT . From the symbol calculus of
Fourier integral operators one can then solve forS, in such a way that the errorE is
essentially an Fourier integral operator of order 1=2 better than−.n − 1/=2 (except
that the symbol estimates have been slightly worsened by the presence of the cutoffs
�−"k). We perform this procedure and prove theL1 boundedness ofE in Section6.

4. Boundedness ofTdeg

We now prove theL1-boundedness ofTdeg. By the triangle inequality it suffices to
show that∥∥∥∥

∫
Rn

e2³ i8.x;¾/a.x; ¾ /�−"k.J.x; !//�k.¾/ f̂ .¾/d¾

∥∥∥∥
L1

x

. 2−"k‖ f ‖1

for all k � 1.
Fix k. By Minkowski’s inequality it suffices to show that∥∥∥∥

∫
Rn

e2³ i8.x;¾/a.x; ¾ /�−"k.J.x; !//�k.¾/e
−2³ iy·¾ d¾

∥∥∥∥
L1

x

. 2−"k(6)

for all y.
Before we prove (6), let us first informally review the proof (from [5]) of the more

standard estimate∥∥∥∥
∫
Rn

e2³ i8.x;¾/a.x; ¾ /�k.¾/e
−2³ iy·¾ d¾

∥∥∥∥
L1

x

. 1;(7)

this estimate does not restrict the integration to the degenerate region, but on the other
hand it does not obtain the crucial decay of 2−"k. In other words, (7) asserts that the
Littlewood-Paley pieces ofT are uniformly bounded onL1.

To prove (7) we apply the ‘second dyadic decomposition’ and partition the!

variable smoothly into about 2.n−1/k=2 disksD of radius 2−k=2. It then suffices to show
that ∥∥∥∥

∫
Rn

e2³ i8.x;¾/ak;D.x; ¾ /e
−2³ iy·¾ d¾

∥∥∥∥
L1

x

. 2−.n−1/k=2(8)

for each of these disksB, whereak;D is the symbola smoothly cut off to the tubular
region{.x; ¾ / ∈ C : ½ ∼ 2k;! ∈ D}. Note that the¾ variable is now restricted to a
tube of volume∼ 2.n+1/k=2.
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Note that in applying this cutoff, a large portion of the angular regularity of the
symbola is destroyed, in that the angular derivatives∇! are much larger when applied
to ak;D rather thanak. To put this another way, much of the angular regularity ofak

is superfluous. This spare regularity in the angular directions will be crucial in all of
our arguments.

We continue our informal discussion. Let!D denote the center of the diskD.
Observe from homogeneity and the Taylor expansion that

8.x; ¾ /− y · ¾ = ½.8.x; !/− y · .!;1//
= ½.8.x; !D/− y · .!D;1/

+ .∇!8.x; !D/ − y/ · .!− !D/+ E.x; ¾ /

wherex · ¾ is the usual Euclidean inner product and the error termE.x; ¾ / has a
leading term of

1

2
∇2
!8.x; !D/.! − !D; ! − !D/(9)

(where we think of∇28 as a quadratic form).
Because½ = O.2k/ and! − !D = O.2−k=2/, the contribution of the error term

E.x; ¾ / to the phase8.x; ¾ / − y · ¾ is O.1/, which can then be absorbed into the
amplitude functionak;D. From the principle of stationary phase we thus see that the
integrand in (8) should be extremely small unless we have

8.x; !D/− y · .!D;1/ = O.2−k/

and

∇!8.x; !D/− y = O.2−k=2/:

Because of the non-degeneracy condition (2), this restricts the variablex to a disk;
this disk can be viewed as the projection of the above tube in phase space via the
canonical relation6. On this disk we can crudely estimate the integrand of (8) using
absolute values by∫

½∼2k;!∈D

|ak;D.x; ¾ /| d¾ . 2.n+1/k=22−.n−1/k=2 = 2k:

Since the volume of the disk isO.2−.n+1/k=2/, the claim (8) (and hence (7)) then
follows.

To improve (7) to (6) we have to take advantage of the degeneracy condition
J.x; !/ = O.2−"k/. The point is that this degeneracy allows one to estimate the
leading order error (9) slightly better, especially if! − !D lies in a direction where
∇2
!8.x; !D/ degenerates. This allows us to widen the disksD used in the second
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dyadic decomposition to slightly larger ellipsoids while keeping the phase error (9) of
the order ofO.1/. Intuitively, this should let us decompose into fewer tubular regions,
which will be the source of the 2−"k gain.

There is an apparent technical difficulty (whenn ≥ 3) in that the ellipsoid around
!D depends on the eigenvalues and eigenvectors of the symmetricn−1×n−1 matrix
∇2
!8.x; !D/, and so the eccentricity and orientation of the ellipsoid will vary with the

center!D. This raises the fear that one would need a Kakeya-type covering lemma to
partition phase space properly, but fortunately the above variations are very smooth,
so that nearby ellipsoids have almost identical orientation andeccentricity, and one
can use a standard continuous partition of unity to obtain the desired estimate (6).

We now turn to the details. We shall formalize the argument as the following
proposition:

PROPOSITION4.1. Letk � 1, y ∈ Rn, and letak.x; ¾ / be any function supported on
the region{.x; ¾ / ∈ supp.a/ : ½ ∼ 2k; |J.x; !/| . 2−"k} which obeys the symbol-type
bounds

|@þ!@
½ ak.x; ¾ /| ≤ Cþ;
2−.n−1/k=22−|
 |k2C"k|þ|(10)

for all multi-indicesþ; 
 (regularity in x will be unnecessary). Then we have∥∥∥∥
∫
Rn

e2³ i .8.x;¾/−y·¾/ak.x; ¾ /d¾

∥∥∥∥
L1

x

. 2−"k:(11)

The estimate (6) follows immediately from this proposition by setting

ak.x; ¾ / := a.x; ¾ /�−"k.J.x; !//�k.¾/:

Observe that the cutoff�−"k causes the unavoidable 2"k loss in the symbol esti-
mates (10). These losses mean that we lose control of the regularity for scales of
! greater than 2−C"k, but this will not be dangerous as all of our stationary phase
computations will be on tubes for which the fluctuation in! is at mostO.2C"k2−k=2/.

PROOF OFPROPOSITION4.1. We first begin by defining a positive-definite analogue
of the matrix∇2

!8, which will be used to define the ellipsoids mentioned earlier.
For all x; !, let Q.x; !/ denote the positive-definiten − 1 × n − 1 matrix

Q.x; !/ := .2−"kId + .∇2
!8.x; !//

2/1=2;

where we now think of∇2
!8 as a real symmetric matrix, and Id is then − 1 × n − 1

identity matrix. Observe that as quadratic forms we have the estimates

2−"k|� |2 + |J.x; !/.�; � /| . Q.x; !/.�; � / . |� |2;
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so in particularQ dominatesJ. We also have the smoothness property

|@þ! Q| ≤ Cþ2
C"k|þ|

for all multi-indicesþ. Finally, we observe that

2−C"k . detQ.x; !/ . | detJ.x; !/| + 2−"k:

Let x ∈ Rn and!D ∈ Rn−1. We define the function x;!D
.!/ by

 x;!D
.!/ := 2.n−1/k=2�−k.Q.x; !D/.! − !D; !− !D//

det.Q.x; !D//1=2
;

where�−k was defined in Section2; observe that this function isL1-normalized and
supported on some ellipsoid centered at!D which contains the disk{! = !D +
O.2−k=2/} but is contained inside the slightly larger disk{! = !D + O.2C"k2−k=2/}.
We then define the averaged function x.!/ by

 x.!/ :=
∫
!D ∈Rn−1

 x;!D
.!/d!D ;

note that this is well defined for.x; ¾ / in the support ofak andk sufficiently large,
since we must have!D = ! + O.2C"k2−k=2/ by the previous discussion.

The function x is clearly positive. In fact, we have the following estimates on x:

LEMMA 4.2. If .x; ¾ / is in the support ofak, and k is sufficiently large, we have
 x.!/ ∼ 1 and|@þ! x.!/| ≤ Cþ2C"k|þ| for all multi-indicesþ.

PROOF. We begin with the first estimate. We compute

 x.!/ =
∫
�∈Rn−1:�=O.2C"k2−k=2/

 x;!+� .!/d�

= 2.n−1/k=2

∫
�=O.2C"k2−k=2/

det.Q.x; ! + � //−1=2�−k.Q.x; ! + � /.�; � //d�:

By Taylor expansion and the constraints on� andQ.x; !/ we have

det.Q.x; ! + � //−1=2 = det.Q.x; !//−1=2 + O.2C"k2−k=2/

and

�−k.Q.x; ! + � /.�; � // = �−k.Q.x; !/.�; � // + O.2C"k2−k=2/:

It is clear (from the estimates on the non-degeneracy ofQ) that the error terms
O.2C"k2−k=2/ will contribute at mostO.2C"k2−k=2/ to x.!/; this will be acceptable if
" is sufficiently small. This leaves the main term

2.n−1/k=2 det.Q.x; !//−1=2

∫
�−k.Q.x; !/.�; � //d�:
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But by a change of variables this is equal to
∫
�0.�; � /d� , which is some positive

absolute constant, and we are done.
The second estimate is proven similarly to the first;when one applies an!derivative,

the main term
∫
�0.�; � /d� disappears (since it is just an absolute constant), and the

error term gets larger by about 2C"k for each derivative. We omit the details.

We now return to the proof of (11). We split the integrand as an average of integrals
over ellipsoids:∫

Rn

e2³ i .8.x;¾/−y·¾/ak.x; ¾ /e
−2³ iy·¾ d¾

=
∫
Rn−1

(∫
Rn

e2³ i .8.x;¾/−y·¾/ak.x; ¾ / x;!D
.!/

 x.!/
d¾

)
d!D :

Since!D effectively ranges over a compact set, it suffices by Minkowski’s inequality
to show that ∥∥∥∥

∫
Rn

e2³ i .8.x;¾/−y·¾/ak.x; ¾ / x;!D
.!/

 x.!/
d¾

∥∥∥∥
L1

x

. 2−"k

for all !D (this is the analogue of (8)).
Fix !D; we may assume thatQ.x; !D/ = O.2−"k/ since the integrand vanishes

otherwise. We split¾ into polar co-ordinates½, ! and rewrite as∥∥∥∥
∫
Rn−1

∫
R

e2³ i ½.8.x;!/−y·.!;1//½
n−1ak.x; ½.!;1// x;!D

.!/

 x.!/
d½d!

∥∥∥∥
L1

x

. 2−"k:

We make the change of variables

! = !D + 2−k=2Q.x; !D/
−1=2�(12)

and expand out x;!D
.!/ to rewrite the previous estimate as∥∥∥∥

∫
Rn−1

∫
R

e2³ i ½.8.x;!/−y·.!;1//bk;!D ;x.½; � /d½d�

∥∥∥∥
L1

x

. 2−.n−1/k=22−"k;(13)

wherebk;!D ;x.½; � / := 2−.n−1/k=2½n−1ak.x; ½.!;1//�0.|� |2/= x.!/ and! is of course
now given by (12).

The amplitudebk;!D ;x is supported on the region{½ ∼ 2k; � = O.1/}. Because of
the normalization factor 2−.n−1/k=2 and the estimates onak,  x we have the symbol
bounds|@þ½ @Ž�bk;!D ;x.½; � /| ≤ Cþ;Ž2−k|þ| for all þ, Ž (if " is sufficiently small), because
any losses of 2C"k in differentiation in the� variable are always accompanied by gains
of 2−k=2 thanks to the change of variables (12).
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We now expand the phase in a Taylor series as before, to obtain

8.x; !/− y · .!;1/ = 8.x; !D/− y · .!D;1/

+ 2−k=2� · Q.x; !/−1=2.∇!8.x; !D/− y/+ ek;x;y;!D
.� /;

where the errorek;x;y;!D
.� / has an expansion

ek;x;y;!D
.!/ = 1

2
2−k∇2

!8.x; !D/.Q.x; !D/
−1=2�;Q.x; !D/

−1=2� /+ O.2C"k2−3k=2/:

SinceQ dominates∇28, it is easy to obtain the bounds

|@Ž�ek;x;y;!D
.!/| ≤ CŽ2

−k

for all multi-indicesŽ; once again, any losses of 2C"k are compensated for by gains
of 2−k=2. Thus the phase term exp.2³ i½ek;x;y;!D

/ can be harmlessly absorbed into the
amplitude functionbk;!D ;x.

By the principle of non-stationary phase (see for instance [8]), we can thus bound
the integrand of (13) pointwise by

2k
(
1 + 2k |.8.x; !D/− y · .!D;1//|

)−100n

× (
1 + 2k=2

∣∣Q.x; !D/
−1=2.∇!8.x; !D/− y/

∣∣)−100n
:

This function has maximum size 2k, and is rapidly decaying outside of the eccentric
disk{

x : 8.x; !D/ = y · .!D;1/+ O.2−k/; ∇!8.x; !D/ = y + Q.x; !D/
1=2O.2−k=2/

}
:

Because detQ.x; !D/ . 2−"k, this disk has volumeO.2−"k2−.n+1/k=2/. The claim (13)
follows. The proof of theL1 boundedness ofTdeg is now complete.

5. Construction and boundedness ofA

We now construct the averaging operatorA. This operator needs to be bounded
on L1, and also essentially be a Fourier integral operator with the same phase function
8.x; ¾ / asT . To motivate matters, let us first suppose we are in the non-degenerate
case, so that|J.x; !/| ∼ 1 throughout. Then the most natural choice forA is the
operatorA0 defined by

A0 f .x/ :=
∫

f .∇¾8.x; !//'.x; !/d!;
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where∇¾8.x; !/ is the function∇¾8.x; ¾ / evaluated at¾ = .!;1/, and'.x; !/ is
a suitable bump function to be chosen later. One can motivate the choice ofA0 from
an inspection of the canonical relation6, but we will instead use the principle of
stationary phase in the informal argument which follows.

It is clear from (2) that A0 is bounded onL1, since for each! the mapx 7→
∇¾8.x; !/ is a local diffeomorphism. Now let us writeA0 as a Fourier integral
operator. From the Fourier inversion formula we have

A0 f .x/ =
∫ (∫

e2³ i ¾ ′·∇¾8.x;!/'.x; !/d!

)
f̂ .¾ ′/ d¾ ′:

In accordance with the principle of stationary phase, we now look at where the phase
is stationary in!: ∇!.¾

′ · ∇¾8.x; !// = 0. From homogeneity we have

∇¾8.x; !/ = (∇¾8.x; .!;1//; @¾n
8.x; .!;1//

)
= (∇!8.x; !/;8.x; !/− ! · ∇!8.x; !/

)
and hence we have the identity

∇!.¾
′ · ∇¾8.x; !// = ∇!

(
½′!′ · ∇!8.x; !/+ ½′.8.x; !/ − ! · ∇!8.x; !//

)
(14)

= ½′.!′ − !/ · ∇2
!8.x; !/;

where we of course write¾ ′ = .¾ ′; ¾ ′
n/ and½′ = ¾ ′

n, !′ = ¾ ′=¾ ′
n. Since we are in

the non-degenerate regime|J| ∼ 1, we thus see that the only stationary point occurs
when! = !′. By (14), the Hessian at this stationary point is

det.∇2
!.¾

′ · ∇¾8.x; !///|!=!′ = det.−½′∇2
!8.x; !//|!=!′ = .−½′

n/
n−1 J.x; !′/(15)

and the value of the phase at the stationary point is

2³ i ¾ ′ · ∇¾8.x; !
′/ = 2³ i8.x; ¾ ′/(16)

so by the principle of stationary phase (see for instance [8]) we have the asymptotics∫
e2³ i ¾ ′·∇¾8.x;!/'.x; !/d! = e2³ i8.x;¾ ′/'.x; !′/e¼.x;!

′/³ i =4½−.n−1/=2|J.x; !′/|−1=2 + · · ·

for large¾ ′, where¼.x; !′/ is an integer quantity which depends only onn and the
signature of∇2

!8.x; !/ (and in particular is a constant in the non-degenerate case
|J| ∼ 1). Ignoring the error term (which will give a Fourier integral operator of lower
order), we thus see thatA0 is an Fourier integral operator of order−.n − 1/=2 with
phase8.x; ¾ / and symbol given by

'.x; !′/e¼³ i =4.½′/−.n−1/=2|J.x; !′/|−1=2:
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This choice ofA will work in the non-degenerate case, but asJ becomes degenerate
we see that the symbol ofA0 can get large, so thatA0 is no longer of order−.n−1/=2.
The obvious remedy is to dampA0 whenJ is small, and use a new operator

A1 f .x/ :=
∫

f .∇¾8.x; !//'.x; !/e
−¼.x;!/³ i =4|J.x; !/|1=2 d!

=
∫ (∫

e2³ i ¾ ′·∇¾8.x;!/'.x; !/e−¼.x;!/³ i =4|J.x; !/|1=2 d!

)
f̂ .¾ ′/d¾ ′:

since this (heuristically at least) will be an Fourier integral operator with phase8.x; ¾ /
and amplitude'.x; !/.½′/−.n−1/=2. (Compare this with [1, 7].) However, the integrand
in the above definition ofA1 has singularities on the zero set ofJ.x; !/, and so we
need to apply a cutoff away from that region, compatible with the cutoff (5) used to
defineTnondeg.

From the above informal discussion, it is now natural to constructA via the formula

A f .x/ :=
∑
k�1

∫ (∫
e2³ i ¾ ′·∇¾8.x;!/'.x; !/e−¼.x;!/³ i =4.1 − �−"k.J.x; !///

× �k.¾
′/|J.x; !/|1=2 d!

)
f̂ .¾ ′/d¾ ′

(compare this with (5) and the definition ofA1). Observe that the cutoff.1 −
�−"k.J.x; !// ensures that|J|1=2 and¼.x; !/ are smooth functions on the region
of integration; indeed, the integer-valued function¼ is constant on each connected
component of this region.

In the remainder of this section we show whyA is still bounded onL1. In the next
section we explain why we can factorizeTnondeg = S A+ E, whereS is a pseudo-
differential operator of order 0 andE is bounded onL1.

We make thea priori assumption thatf̂ is smooth and compactly supported; this
assumption can be removed by the usual limiting argument. We can also assume that
f vanishes for|¾ | . 1, since on this region of frequency space,k is bounded and it is
easy to show theL1-boundedness ofA in this case.

We write �k.¾
′/ = �k.¾

′/ − �k−1.¾
′/ and apply summation by parts, to rewrite

A f .x/ as

−
∑
k�1

∫ (∫
e2³ i ¾ ′·∇¾8.x;!/'.x; !/e−¼.x;!/³ i =4

(
�−".k+1/.J.x; !// − �−"k.J.x; !//

)

× �k.¾
′/|J.x; !/|1=2 d!

)
f̂ .¾ ′/d¾ ′

(the vanishing properties off ensures that there are no boundary terms). It will thus
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suffice to show the estimate∥∥∥∥
∫ (∫

e2³ i ¾ ′·∇¾8.x;!/'.x; !/e−¼.x;!/³ i =4
(
�−".k+1/.J.x; !//− �−"k.J.x; !//

)
× �k.¾

′/|J.x; !/|1=2 d!

)
f̂ .¾ ′/d¾ ′

∥∥∥∥
L1

x

. 2−"k=2‖ f ‖1;

since the claim then follows by summing ink using the triangle inequality.
Fix k. By the Fourier inversion formula we can rewrite the left-hand side as∥∥∥∥

∫
Pk f .∇¾8.x; !//'.x; !/e

−¼.x;!/³ i =4

× .�−".k+1/.J.x; !// − �−"k.J.x; !//|J.x; !/|1=2 d!

∥∥∥∥
L1

x

wherePk f is the Littlewood-Paley operator̂Pk f .¾/ := �k.¾/ f̂ .¾/. Taking absolute
values everywhere, we can estimate the previous crudely by∫∫

|Pk f .∇¾8.x; !//||'.x; !/|2−"k=2 dxd!:

By (2) one can bound this by∫
|!|.1

2−"k=2‖Pk f ‖1 d! ∼ 2−"k=2‖Pk f ‖1 . 2−"k=2‖ f ‖1;

as desired.

6. Construction of S, and boundedness ofE

We now need to find a suitable pseudo-differential operator

S f.x/ :=
∫

e2³ i x ·¾s.x; ¾ / f̂ .¾/d¾

wheres satisfies the standard symbol estimates of order 0

|@Þx @þ¾ s.x; ¾ /| ≤ CÞ;þ .1 + |¾ |/−|þ|(17)

for all multi-indicesÞ, þ, such that we have a good factorization of the form

Tnondeg= S A+ E:
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We begin, as usual, with a heuristic discussion. By repeating the stationary phase
computations of the previous section we see thatA should essentially be a ‘Fourier
integral operator’ with phase8.x; ¾ / and symbol∑

k�1

'.x; !/½−.n−1/=2.1 − �−"k.J.x; !///�k.¾/:

We enclose ‘Fourier integral operator’ in quotes, because the symbol does not quite
obey standard symbol estimates (there is a slight 2"k loss of regularity in the angular
variable!). From standard symbol calculus (or more stationary phase) we thus expect
S Ato also be a ‘Fourier integral operator’ with phase8.x; ¾ / and symbol

s.x;∇x8.x; ¾ //
∑
k�1

'.x; !/½−.n−1/=2.1 − �−"k.J.x; !///�k.¾/:

Meanwhile,Tnondegis a ‘Fourier integral operator’ with phase8.x; ¾ / and symbol∑
k�1

a.x; ¾ /.1 − �−"k.J.x; !//�k.¾/:

Thus, if we choose' to be bounded away from zero on the support ofa, and defines
implicitly by

s.x;∇x8.x; ¾ // := ½.n−1/=2a.x; ¾ /

'.x; !/
(18)

on the support ofa, and defines to vanish otherwise, then we see (from (4) and the
hypothesis that.x; ¾ / → .x;∇x8.x; ¾ /) is a diffeomorphism on the support ofa)
thats does indeed obey the symbol estimates (17).

It remains to show that the error operatorE := Tnondeg− S A is bounded onL1. It
suffices to show that‖TnondegŽz − S AŽz‖1 . 1 for all z ∈ R

n, whereŽz is the Dirac
delta atz.

Fix z. We can expandS AŽz.x/ as

∑
k�1

∫∫∫∫
e2³ i [.x−y/·�+¾ ′·.∇¾8.y;!/−z/]s.x; � /'.y; !/e−¼.y;!/³ i =4

× .1 − �−"k.J.y; !///�k.¾
′/|J.y; !/|1=2 d!d�d¾ ′dy:

On the other hand, from (18) and (5) we can writeTnondegŽz.x/ as

∑
k�1

∫
e2³ i .8.x;¾ ′/−¾ ′·z/s.x;∇x8.x; ¾

′//.½′/−.n−1/=2'.x; !′/

× .1 − �−"k.J.x; !
′///�k.¾

′/d¾ ′:
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It thus suffices by the triangle inequality to show that∥∥∥∥
∫

e2³ i .8.x;¾ ′/−¾ ·z/.Wx;k;z.¾
′/− W0

x;k;z.¾
′//�k.¾

′/d¾ ′
∥∥∥∥

L1
x

. 2C"k2−k=2(19)

for all k � 1, where

Wx;k;z.¾
′/ :=

∫∫∫
e2³ i9x;k;z.!;�;y/s.x; � /'.y; !/e−¼.y;!/³ i =4

× .1− �−"k.J.y; !/// |J.y; !/|1=2 d!d�dy

W0
x;k;z.¾

′/ := s.x;∇x8.x; ¾
′//.½′/−.n−1/=2'.x; !′/.1 − �−"k.J.x; !

′///

and the phase9x;k;z is given by

9x;k;z.!; �; y/ := .x − y/ · � + ¾ ′ · ∇¾8.y; !/−8.x; ¾ ′/

= .x − y/ · � + ¾ ′ · .∇¾8.y; !/− ∇¾8.x; ¾
′//:

The functionW0 is basically a symbol of order−.n − 1/=2, modulo errors of
O.2C"k/. What is not as obvious is that the quantityW − W0 is a symbol of slightly
smaller order. More precisely, we have

PROPOSITION6.1. We have the estimates

|@þ¾ ′.Wx;k;z − W0
x;k;z/.¾

′/| ≤ Cþ2
Cþ "k2−k=22−.n−1/k=22−k|þ|(20)

when|¾ ′| ∼ 2k.

In other words, apart from some errors of 2C"k, W − W0 is a symbol of order
−.n − 1/=2 − 1=2. Assuming this proposition, we can repeat the derivation of (7)
(taking some losses of 2C"k) and thus bound the left-hand side of (19) by 2C"k2−k=2,
which is acceptable if" is sufficiently small. Thus to complete the proof of Theorem1.1
we just need to verify the proposition.

PROOF OFPROPOSITION6.1. Fix x; k; z; ¾ ′. We begin by using the principle of
non-stationary phase in the!, y, and� variables in turn to truncate the integrals inW
substantially.

We first observe from (14) that∇!9x;k;z.!; �; y/ = ½′.!′ −!/ · ∇2
!8.x; !/. Since

the integrand is supported on the region where|J.y; !/| & 2−"k, we thus have

|∇!9x;k;z.!; �; y/| & 2k|!′ − !|:
Thus if we insert the cutoff 1− �−.1=2−"/k.!′ − !/ in the integrand ofW, we have
|∇!9x;k;z.!; �; y/| & 2"k2k=2. Repeated integration by parts in the! variable (gaining
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2−"k2−k=2 from the non-stationary phase, but losing at most 2"k2k=2 from differentiating
the�−.1=2−"/k function) then shows that this portion of the integral isO.2−Ck/ for any
C, and similarly for derivatives. Thus we may freely insert or remove a cutoff
�−.1=2−"/k.!′ − !/ in the integrand forW. In other words, we may restrict ourselves
(smoothly) to the region

! = !′ + O.2"k2−k=2/(21)

without any penalty.
Now we argue similarly in the� variable, beginning with the identity

∇�9x;k;z.!; �; y/ = x − y:

Thus if we insert the cutoff 1− �−.1=2−"/k.x − y/ in the integrand ofW, we have
|∇�9x;k;z| & 2.1=2−"/k. Repeated integration by parts in the� variable using (17) thus
shows that this portion of the integral isO.2−Ck/ for any constantC, and the same is
clearly true for any¾ ′ derivatives ofW. Thus we may restrict ourselves (smoothly) to
the region

y = x + O.2"k2−k=2/(22)

without any penalty.

REMARK. An inspection of this argument shows that one can in fact localize further,
to the regiony = x + O.2"k2−k/. However if one does so, the uncertainty principle
then prohibits one from localizing� to any scale finer thanO.2−"k2k/, and one ends
up with worse estimates at the end.

Now let us restrict ourselves smoothly to the regions (21) and (22). Then we have

∇y9x;k;z.!; �; y/ = ¾ ′ · ∇y∇¾8.y; !/− �

= ¾ ′ · ∇x∇¾8.x; !
′/− � + O.2"k2k=2/

= ∇x8.x; ¾
′/− � + O.2"k2k=2/:

Thus if we insert the cutoff 1− �.1=2+2"/k.∇x8.x; ¾ ′/ − � / in the integrand ofW, we
have|∇y9x;k;z.!; �; y/| & 2.1=2+2"/k. Repeated integration parts in they variable as
before (noting that the gain 2−.1=2+2"/k from the non-stationary phase exceeds the loss
2.1=2−"/k coming from differentiating�−.1=2−"/k.x − y/) thus shows that we can restrict
ourselves smoothly to the region

� = ∇x8.x; ¾
′/+ O.2.1=2+2"/k/(23)

once we have first restricted to the regions (21) and (22).
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Because of the above restrictions, we have

s.x; � / = s.x;∇x8.x; ¾
′// + O.2C"k2−k=2/:

If we estimate the contribution of the errorO.2C"k2−k=2/ by taking absolute values
everywhere and taking full advantage of the restrictions (21), (22), (23), we obtain
a bound ofO.2C"k2−k=22−.n−1/k=2/ as desired, with each derivative in¾ ′ gaining an
additional 2C"k2−k. Thus we may replaces.x; � / by s.x;∇x8.x; ¾ ′//.

Now we remove the�.1=2+2"/k.∇x8.x; ¾ ′/− � / cutoff by reversing the above argu-
ment. Strictly speaking, this creates some formal difficulties because� then ranges
over all ofRn and the oscillatory integral is not absolutely convergent. However one
can fix this by applying a suitably large cutoff�K .� / and eventually lettingK → +∞,
observing that with this cutoff the Fourier inversion formula holds in the weak limit.
We ignore this technicality.

We can then evaluate the� integration using the Fourier inversion formula∫
e2³ i .x−y/·� d� = Ž.y − x/

to simplify the above expression to

s.x;∇x8.x; ¾
′//

∫
e2³ i ¾ ′·.∇¾8.x;!/−∇¾8.x;!′//'.x; !/e−¼.x;!/³ i =4

.1 − �−"k.J.x; !///|J.x; !/|1=2�−.1=2−"/k.!′ − !/d!:

From (15), we observe the Taylor series expansion

¾ ′.∇¾8.x; !/− ∇¾8.x; !
′// = 1

2
½′∇2

!8.x; !
′/.! − !′; !− !′/+ O.2C"2−k=2/

on the support of�−.1=2−"/k.!′ − !/. The error termO.2C"2−k=2/ will give us a
contribution ofO.2C"k2−.n−1/k=22−k=2/ to W (as can be easily checked by replacing
every term by its absolute value), with each derivative in¾ picking up an additional
factor ofO.2C"k2−k/. Thus we may ignore this error. Similarly, we can use the Taylor
expansion

'.x; !/e−¼.x;!/³ i =4.1 − �−"k.J.x; !///|J.x; !/|1=2
= '.x; !′/e−¼.x;!′/³ i =4.1 − �−"k.J.x; !

′///|J.x; !′/|1=2 + O.2C"2−k=2/

(noting that¼must be constant, sinceJ cannot change sign from! to!′) and discard
the error termO.2C"2−k=2/ as before. Thus we may replaceW with

s.x;∇x8.x; ¾
′//'.x; !′/e−¼.x;!′/³ i =4.1 − �−"k.J.x; !

′///|J.x; !′/|1=2

×
∫

e³ i ½′∇2
!8.x;!

′/.!−!′;!−!′/�−.1=2−"/k.!′ − !/d!:
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One can replace the cutoff function�−.1=2−"/k.!′ − !/ by a more standard bump
function�0.!

′−!/ if desired, again by the principle of non-stationary phase. Standard
stationary phase asymptotics (see [8]) then give∫

e³ i ½′∇2
!8.x;!

′/.!−!′;!−!′/�0.!
′ − !/d!

= e¼.x;!
′/³ i =4|J.x; !′/|−1=2.½′/−.n−1/=2 + O.2−Ck/

for anyC, and similarly for all derivatives in¾ ′. Comparing this againstW0 we thus
obtain (20) as desired. The proof of Theorem1.1 is now complete.

7. Remarks

It seems that there is some room for improvement in Theorem1.1. First of all,
one can relax the angular regularity of the symbola.x; ¾ /, and measurea in a more
exotic symbol class. For instance, a natural class (which has appeared elsewhere, for
instance [6]) seems to be those symbols obeying the estimates

|@Þx @þ½ @
!a.x; ¾ /| ≤ CÞ;þ;
 |¾ |−.n−1/=2−|þ|+|Þ|=2:

Also, when the phase function becomes degenerate (that is, whenJ becomes small)
the estimates above improve, roughly by a factor of|J|1=2, when¾ is large. Of course,
in the most extreme case, when8 vanishes, then the Fourier integral operator collapses
to a pseudo-differentialoperator, and one has weak-type.1;1/ for operators of order 0,
and not just−.n−1/=2. In intermediate cases when∇28 consistently has rank strictly
between 0 andn −1, there are intermediate results (see [5, 4]). Perhaps one can unify
these results by introducing symbol classes adapted to the phase function8.x; ¾ /; for
instance one might study symbolsa.x; ¾ / which obeyed bounds such as

|a.x; ¾ /| . .1 + 2.n−1/k|J.x; ¾ /|/−1=2

together with some corresponding bounds on higher derivatives. It is not clear to the
author exactly what the best symbol classes to use are, but the techniques here are
likely to miss the optimal class by at least an" in the exponents.
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