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Abstract

Let T be a Fourier integral operator &1 of order—(n —1)/2. Seeger, Sogge, and Stein showed (among
other things) thall maps the Hardy spadé? to L. In this note we show thak is also of weak-type

(1, 1). The main ideas are a decompositiolfdhto non-degenerate and degenerate components, and a
factorization of the non-degenerate portion.

2000Mathematics subject classificatioprimary 42B20.

1. Introduction

This note is concerned with the mapping properties of Fourier integral operators. As
our considerations will be local, we will work oR" for somen > 2, and we will
define (as in §]) a Fourier integral operatdr of orderm to be any linear operator of

the form

) TH(X) :=/ e Oax, &) f (&) dé,
RH

where f is the Fourier transfornf (&) := [em€ X5 f(x)dX, of f, a(x,§) is a
standard symbol of orden (that is, we have the bounds

|0y 0fa(x, £)| < Cup(1+ &)™

for all multi-indices, B) with compact support ix, and® is a real phase function
which is homogeneous of degree 1&inis smooth in(x, &) for & # 0 on an open
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neighbourhood of the support af and obeys the non-degeneracy condition

02d

on an open neighbourhood of the supporaof

A model case of Fourier integral operators arises in the translation-invariant setting,
when®(x, &) = x - & + ¢ (&) for some real smootkp, homogeneous of degree 1,
and whena(x, §) = a(§) is independent ok (of course, this means thatis no
longer compactly supported ix, but by applying cutoff functions as necessary we
may make this operator consistent with the previous definition). Thbecomes a
Fourier multiplier:

©) TTE) =e®aE) f(&).

It is well-known (see for instance8]) that Fourier integral operators of order
m < 0 are bounded oh?. If m < —(n — 1)/2, then one can also sho®j that these
operators are bounded &n and also oL . Atthe endpointn = —(n—1)/2, it was
shown by Seeger, Sogge, and Stéihthat Fourier integral operators map the Hardy
spaceH?! to LY. From this and Fefferman-Stein interpolation one can sHgjvhjat
a Fourier integral operator of orderis bounded orLP provided that 1< p < oo,
|1/2—1/p] < —m/(n — 1), except at the endpoint case whan= —(n — 1)/2 and
p = 1, co. These results are sharp; sé [More precisely, these results are sharp if
V2¢ has the maximal rank af — 1, otherwise one can increase the rang aind
m somewhat. Indeed, it is this gain in the degenerate case which allows us to prove
Theoreml.l We thank Michael Ruzhansky for pointing out this subtlety.

This leaves open the question of what happens to operatas orderm =
—(n — 1)/2 on L. One cannot expeck to be bounded oh?!; for instance in the
model cased), if ¢(£) = |£] anda is a generic symbol of order(n — 1)/2, then the
convolution kerneK (x) of T has magnitude comparable tg(Ix| — 1), which has a
logarithmic divergence. However, we have

THEOREM1.1. If T is a Fourier integral operator of ordem = —(n — 1)/2, then
T is of weak-typé&l, 1).

The rest of the paper will be devoted to the proof of this theorem, but first we begin
an informal discussion.

We first consider the translation invariant ca8g (To begin with we make the
non-degeneracy assumption tR& (¢) has the maximal rank of — 1 for all&€ # 0.
For sake of exposition we shall restrict ourselves to the gage = |£]|, which is
already typical. The principle of stationary phase then suggests that the convolution
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kernelK (x) of T should be concentrated near the imag&¢f which in this case is
the unit sphere.

Letdo be the standard surface measure on the unit sphere. As is well-known we
have the Fourier transform expansion

do(6) = Fla, (&) + e >la_(§),

wherea,, a_ are symbols of order(n — 1)/2 which behave asymptotically like

a. (&) ~ c.|g|~"V/2 as|E| — oo for some non-zero constants. If we ignore the

e 2"¥la_ term (which can be suppressed by an appropriate use of cutoff functions in
both space and frequency), we can thus factorize

eila(g) = a(;(é)b(g)

for some symbob of order 0. This gives us a factorizatidn= S A whereSis a
pseudo-differential operator of order 0 aAds the averaging operatéyf := f xdo.
Since theA operator is clearly bounded drt, and since pseudo-differential operators
of order O are always of weak-typ#, 1) by standard Calden-Zygmund theory, we
thus see that is of weak-typg1, 1) as desired.

This simple example (which seems to be first observe@jnquggests that one
should try in general to factorize the Fourier integfainto a pseudo-differential
operator of order 0, and an operator bounded.énin the translation invariant case
(3), this idea works well if the matrix’2® is always non-degenerate (we will explain
whatw is in the next section). However W2® degenerates, then the corresponding
measuredo develops cusps and it becomes difficult to control the asymptotics of
do (£). In principle this can be avoided by damping the measure by a factor such
as detV2®)*? (see for example7, 1, 3]), however good asymptotics can only be
obtained wheré | is very large (for instance i&| > (V2®)~* for some smalk).

Thus it remains to handle the contribution whigrs close to degenerate, and when
|| is not too large. However, it turns out that this portion of the Fourier integral
operator is in fact bounded dot. For instance, in the completely degenerate case
whend® (&) = X, - £ is linear in&, the convolution kernek is essentially a fractional
integral kernel f|x — Xo|, which is clearly integrable. More generally, whénis
close to degenerate, then the error terms in a Taylor expansidnb&come more
favorable, and one can coarsen the standard ‘second dyadic decomposition’ (see fc
instance p, 4]) in order to improve the standard estimatgpsdn the kerneK (which
in the non-degenerate case, just barely fail by a logarithm to be integrable, because
the Fourier integral operator has the critical ordgn — 1)/2).

To summarize, our strategy in dealing with a general Fourier integral opefrator
will be to first decomposd into a ‘degenerate part’ (roughly, this is wheig <
det(V2®)~Y/#), and a ‘non-degenerate part’. The kernel of the degenerate part can be
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shown to be integrable, which is acceptable. The non-degenerate part will be factorec
(modulo errors which are essentially Fourier integral operators of order strictly less
than—(n — 1)/2) as the product of a pseudo-differential operator of order 0, and an
operator whose kernél(x, y) is essentially a (smoothed out) measure on the singular
set{(x, V:®(x,&)) : (X,§) € suppa)} corresponding teb, damped by the natural
factor of def_;(V2®)"2. In particular, the kerneK is integrable. (The smoothing

out will arise from the cutoff to the regiof§| > det,_;(V2®)~Y¢, but this will not

affect the integrability of the kernel).

2. Notation and preliminary reductions

The dimensiom will always be fixed. We shall need a small numbet® « 1
depending only om; for instances := n=° will suffice. When a constar@ appears
in front of ¢, for instance 2, it is understood that is independent of and depends
only onn. (In particular,Ce can be made arbitrarily small by choosingufficiently
small).

We useT*R" := {(x, &) : X, & € R"} to denote the cotangent bundle®f. We
shall use the Euclidean metric and standard basis . , e, throughout, and so we
will not bother very much to distinguish between a vector and covector, or between a
matrix and a quadratic form, etc.

We will use A < B or A = O(B) to denote the estimatgd] < CB, whereC
is a constant depending only an ¢, the CK norms of ® on the cosphere bundle
{(X,&) € T*R" : x,& € R";|&] = 1} (whereK = O(1) depends only on the
dimension) and the constants in the symbol bounda.for

We will write the frequency variable d&s= (¢, &,), wheret € R"! andé, € R.
We similarly decompose the spatial variakle- (X, X,). We shall also use ‘projective
co-ordinates{}, w), defined by

A =&y a):g/én,

to analyze the frequency varialdl€if & is close to thes, axis). Even though andé,
are equal in value, we shall distinguish between the radial derivati@hich keeps
o fixed) and the vertical derivativé, (which keepg fixed). One of the key features
of the argument will be that all the cutoff functions are very smooth with respect to
the radial derivative, even if they become rather rough in the angular direct\gns
Fix a, ®. We now make some basic reductions to simplify the forri of
We first observe that we may assume that the symbqlé ) vanisheswhetg| < 1.
This is because the portion of the operator on the regipi. 1 is a Fourier integral
operator of arbitrarily large negative order, and is therefore bounded" day (for
instance) the results irb]. The main purpose of this reduction is to ensure that we
will not have to worry about any possible singularityéat 0.
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Next, we can assume after a finite partition of unity of the frequency angular
variableg /|&| and a rotation that the symbalx, &) is supported on the cone bundle

%= {(x, &) e T'R": & > 1|5 < AL

This allows us to use as a proxy forl&|, andw as a proxy for the angular variable
£/]&|. This will be convenient technically because the hyperpR#é is flatter than
the spheres’1. From the homogeneity of the phase functibrve have

DX, &) = A2D(X, (w, 1)).

We will abuse notation and writ@ (X, w) for ® (X, (w, 1)).

We will always be working on the support afx, &), so we shall implicitly assume
that(x, &) € % throughout the rest of the paper.

Define thecanonical relationz ¢ (T*R") x (T*R") by

L= {((VeP(X, §),8), (X, Vx®(X, §)) : (X, §) € supfa)}.

We will not useX directly, but the geometry of this relation will be implicit in our
arguments. Observe fron2)(that by restricting the support @f if necessary we

can makex an embedded manifold, and in particular we can assume that the map
(X, &) > (X, Vi@ (X, &)) is a diffeomorphism on the support af From @) and the
Euler homogeneity relation

Vi®(X,§) =& - Ve Vi @(X, §)
we observe the useful bound
(4) [Vx®(X, §)| ~ [&].
Fix x € R" andw € R"1. A key quantity in the analysis will be theurvature
J(X, w) := det V2D (X, w)).

This curvature measures the extent to which the phase function fails to be linear; thus
® degenerates whehis small. Observe that is smooth inx andw.

We shall frequently need smooth dyadic cutoffs of Littlewood—Paley type. We fix
¢ (&) = ¢o(&) to be a non-negative radial bump function®hwhich is supported on
the ball{|¢| < 2} and equals 1 on the bdllé| < 1}. For anyk € R, we define the
functionsgy, nx by

D(§) =B (5/29, M) = ¢(§) — Pa(§).

By abuse of notation we shall also define these function®or andR in the
obvious manner.
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3. Splitting into degenerate and non-degenerate components

Let T be as in the previous section. We can decomgogao Littlewood-Paley
components

TI) =Y / e Da(x, £)(€) (&) de,
RH

k>1

where the restrictiork > 1 is justified sincea(x, &) is supported on the region
l£] > 1. (All summations will be over the integers unless otherwise indicated.)
We can thus spliT = Tgeg+ Trondeg Where

Taegf () =) / e Oa(X, £)¢_ (I (X, )& T (&) dé,
k>1 RO
and

(5)  Toondeof () := ) / e Oa(x, )(1 — ¢ (I(X, ) (€) f(§) dE.
[Rn

k>1

Informally, Tyeqis the portion ofT where|J(x, )| < |£]7¢, and conversely fOF,ongeg
ThusTgeq captures the portions df which are even just a little degenerate.

We can now outline the remainder of the proof. In Sectlame will show thatTgeq
is bounded on.*:

I Taegflls S 11 F 1l

This will basically be a straightforward computation of the kernelQf, modifying
the standard second dyadic decomposition slightly.
To deal withT,ongegr€quires more work. We will obtain a factorization

Tnondeg= SA+E
whereA, E are operators bounded ar
IAfIL TEFIL S Ml

andSis a standard pseudo-differential operator of order O (so in particular is of weak-
type(1, 1), see for instanced]). From all the above estimates we immediately obtain
thatT is of weak-typa(l, 1).

The operatoA will have a kerneK (x, y) which is essentially a finite measure on
the set{(x, V: ®(x, §)) : (X,§) € €} (that is, the spatial projection of the canonical
relationX). The measure is weighted by the natural damping factoy, £)|%/2, but
with some additional cutoffs and blurring arising from the truncation to the region
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[J(X, w)| > |€]7°. The operatoA is thus the natural averaging operator correspond-
ing to the canonical relatioX. We constructA and prove itsL* boundedness in
Sectionb.

The operatoA will turn out to essentially be an Fourier integral operator of order
—(n — 1)/2 with the same phase functidn(x, £) asT. From the symbol calculus of
Fourier integral operators one can then solveSpin such a way that the errd is
essentially an Fourier integral operator of ordé® better than—-(n — 1)/2 (except
that the symbol estimates have been slightly worsened by the presence of the cutoff
¢_s). We perform this procedure and prove theboundedness dE in Section6.

4. Boundedness 0T g4

We now prove theé.*-boundedness df,eq By the triangle inequality it suffices to
show that

’ /R DA, £)¢_a I (X, @)m(®) F(€) dé RS 2711y
forallk > 1. *
Fix k. By Minkowski's inequality it suffices to show that
(6) ’ /R e Da(X, £)p (I (X, W) (E)e TV dE || < 27K
" L
forally.

Before we proveg), let us first informally review the proof (fron®d]) of the more
standard estimate

@) ] <1

)
Lk

/ e Da(x, Eme(§)e ™ dé
RN

this estimate does not restrict the integration to the degenerate region, but on the othe
hand it does not obtain the crucial decay of2 In other words, 7) asserts that the
Littlewood-Paley peces ofT are uniformly bounded oh®.

To prove () we apply the ‘second dyadic decomposition’ and partition ¢he
variable smoothly into about2 /2 disks D of radius 2*/2. It then suffices to show
that

®) ]

< 2—(n—1)k/2
~J
Ly

/ eZﬂiCD(X,E)ak’D(X’ é)e7271iy~é dé
Rn

for each of these diskB, wherea,  is the symboh smoothly cut off to the tubular
region{(x,£) € 4 : A ~ 2%,w € D}. Note that thet variable is now restricted to a
tube of volume~ 2+Dk/2,



8 Terence Tao [8]

Note that in applying this cutoff, a large portion of the angular regularity of the
symbolais destroyed, in that the angular derivati%sare much larger when applied
to a, p rather thara,. To put this another way, much of the angular regularitgof
is superfluous. This spare regularity in the angular directions will be crucial in all of
our arguments.

We continue our informal discussion. Let denote the center of the didR.
Observe from homogeneity and the Taylor expansion that

P(X,5) —y-§ =1P(X, 0) -y (w0, 1))
= M@ (X, wp) — Y- (wp, 1)
+ (Vo ®(X, wp) — y) - (w — wp) + E(X, §)

wherex - £ is the usual Euclidean inner product and the error t&tr, £) has a
leading term of

1
9) EV5¢OQwDXw——wmar—wD)
(where we think ofV2® as a quadratic form).

Because. = O(2%) andw — wp = O(27%/?), the contribution of the error term
E(x, &) to the phaseb(x, &) — y - & is O(1), which can then be absorbed into the
amplitude functiors, . From the principle of stationary phase we thus see that the
integrand in 8) should be extremely small unless we have

(X, wp) — Y - (wp, 1) = 0279
and
V,®(X, p) —y = 0O(27%).

Because of the non-degeneracy citind (2), this restricts the variable to a disk;

this disk can be viewed as the projection of the above tube in phase space via the
canonical relatiork. On this disk we can crudely estimate the integrand3iiing
absolute values by

[ o eids g 20z o 2 2
A~2KweD

Since the volume of the disk i©(2-™Y%/2) the claim B) (and hence 7)) then
follows.

To improve () to (6) we have to take advantage of the degeneracy condition
J(X,w) = O(27%). The point is that this degeneracy allows one to estimate the
leading order error9) slightly better, especially if» — wp lies in a direction where
V2 (x, wp) degenerates. This allows us to widen the difksised in the second
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dyadic decomposition to slightly larger ellipsoids while keeping the phase &jrof (
the order ofO(1). Intuitively, this should let us decompose into fewer tubular regions,
which will be the source of the 2 gain.

There is an apparent technical difficulty (wher- 3) in that the ellipsoid around
wp depends on the eigenvalues and eigenvectors of the symmetfic n — 1 matrix
VZ®(x, wp), and so the eccentricity and orientation of tiigoeoid will vary with the
centerwp. This raises the fear that one would need a Kakeya-type covering lemma to
partition phase space properly, but fortunately the above variations are very smooth,
so that nearby ellipsoids have almost identical orientationesegntricity, and one
can use a standard continuous partition of unity to obtain the desired esthate (

We now turn to the details. We shall formalize the argument as the following
proposition:

ProPOsSITION4. 1. Letk > 1,y € R", and leta (X, &) be any function supported on
the region{(x, &) € supf@) : A ~ 2, |J(x, )| < 27} which obeys the symbol-type
bounds

(10) 190) a(x, &)| < Cp,, 27 " P/227rikgCekdd

for all multi-indicesg, y (regularity in x will be unnecessaly Then we have

< —ek
L

(11) ]

/ e (®O-Yhg (x, £) dE
[Rﬂ

The estimateq) follows immediately from this proposition by setting

a(X, &) := a(X, §)¢_ak(J (X, @) ni(§).

Observe that the cutofp_,, causes the unavoidablé*2oss in the symbol esti-
mates (0). These losses mean that we lose control of the regularity for scales of
o greater than 2¢, but this will not be dangerous as all of our stationary phase
computations will be on tubes for which the fluctuationuiiis at mostO (26:<2-+/2),

ProOOF OFPrROPOSITION4. L We first begin by defining a positive-definite analogue
of the matrixV2®, which will be used to define the ellipsoids mentioned earlier.
For allx, w, let Q(X, w) denote the positive-definite— 1 x n — 1 matrix

Q(X, ®) := (27Id + (V2D (X, ))»)*?,

where we now think oV2® as a real symmetric matrix, and Id is the- 1 x n — 1
identity matrix. Observe that as quadratic forms we have the estimates

27 P+ I, )G, 0] £ QX )6, 6) S Ig
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so in particulaiQ dominates]. We also have the smoothness property
10£Q| < C,z20 K7
for all multi-indicesg. Finally, we observe that
276 < detQ(x, w) < | detd(x, )| + 27,
Letx € R" andwp € R"1. We define the functiow, .. (w) by

20DK2¢_ (Q(X, wp)(® — wp, © — wp))

det(Q(X, wp))*? ’
where¢_, was defined in Sectio®; observe that this function is*-normalized and
supported on some ellipsoid centeredwgt which contains the diskw = wp +
O(27%/2)} but is contained inside the slightly larger digk = wp + O(2°¢k27%/2)}.
We then define the averaged functigp(w) by

Yx,op (@) =

V(@) = / Vo (@) dosp;
wp eRN-1

note that this is well defined fdix, &) in the support ofy andk sufficiently large,
since we must havep = o + O(2°¢27%/2) by the previous discussion.
The functiomy, is clearly positive. In fact, we have the following estimates/gn

LEMMA 4.2, If (X, &) is in the support ok, andk is sufficiently large, we have
Uk (@) ~ 1and|df Yy (w)] < C42°°K#! for all multi-indicesp.

ProOOF. We begin with the first estimate. We compute
b = [ Vi (@) dE
reRN-1:z =0 (2Cek2-k/2)

_ o012 / detQ(x, & + £)) P (Qx, & + £)(&, £)) de.
£=0(20ekp-k2)

By Taylor expansion and the constraintsandQ(x, w) we have

det(Q(X, w + {))’1/2 = det(Q(x, ) Y2 + O(2C£k2—k/2)
and
QX0+ )&, ) = ¢ W(QX, ©)(Z, §) + OXH27472),

It is clear (from the edmates on the non-degeneracy @f) that the error terms
O(26¢k27%/2) will contribute at mostO(2°¢%27%/2) to . (w); this will be acceptable if
¢ is sufficiently small. This leaves the main term

202 dey Q(x, ) V2 / -1 (QUX, )£, ) dz.
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But by a change of variables this is equal t@,(¢, £) d¢, which is some positive
absolute constant, and we are done.

The second estimate is proven similarly to the first; when one appliederivative,
the main term/ ¢o(¢, ¢) d¢ disappears (since it is just an absolute constant), and the
error term gets larger by about® for each derivative. We omit the details. [

We now return to the proof ofl(l). We split the integrand as an average of integrals
over ellipsoids:

/ ezni(q)(x-g;‘)*yf)ak(x’ é)efZﬂiyf dg
RN

_ 6001 B s @) ) .
/mm </Re ) ) deo

Sincewy, effectively ranges over a compact set, it suffices by Minkowski’s inequality
to show that

for all wp (this is the analogue oBY).
Fix wp; we may assume thad(x, wp) = O(2°%) since the integrand vanishes
otherwise. We spli¢ into polar co-ordinates, w and rewrite as

-1
’ / / ezni,\(<1><x,w)—y~<w,1)>)‘n (X, M@, D)¥wp (@) drdw
rR-1 JR

Yy (@)
We make the change of variables

dé 5 278k

Lk

/ leri (d)(x_g),y‘g)ak(x’ é)vfx,wo (0))
R" Yx(w)

< —ek
Ly

(12) = wp + 272Q(X, wp) V%

and expand ouy, ,,, (w) to rewrite the previous estimate as

< 27(n71)k/2278k
~J 9
Ly

@

/ / @RI YO () drds
RM-1 JR

whereby ,, x (A, &) 1= 2-"-DK2)n=15 (X, Mw, 1))po(1¢ %) /¥« (w) andw is of course
now given by (2).

The amplitudeby ,,  is supported on the regigqn ~ 2¢;¢ = O(1)}. Because of
the normalization factor2"-Y%2 and the estimates o, v, we have the symbol
boundslafagbk,w,),x(k, &) < Cy 27K for all B, § (if « is sufficiently small), because
any losses of 2¥ in differentiation in the; variable are always accompanied by gains
of 27%/2 thanks to the change of variables.
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We now expand the phase in a Taylor series as before, to obtain

CD(Xs a)) - y : (a)s l) = d)(X, wD) - y . (a)D’ l)
+ 2792 Q% ) YV, B (X, D) — Y) + Bexyn (©):

where the erroe 4 y ., (£) has an expansion

1 3 —
Q(,X,y-wo((l)) = EZ*kvaz)cD(X, a)D)(Q(X, a)D)*l/Zé-’ Q(X, a)D)fl/Zé-) 4 O(2C5k2 3k/2)‘
SinceQ dominatesv?®, it is easy to obtain the bounds
|3§Q<,x,y.m ()] <Cs27%

for all multi-indicess; once again, any losses of*® are compensated for by gains
of 272, Thus the phase term ef@riie.«...,) can be harmlessly absorbed into the
amplitude functiorby ,, x-

By the principle of non-stationary phase (see for instaBfe \ve can thus bound
the integrand of {3) pointwise by

—100n

2(1+ 2 |(@(x, wp) — ¥ - (w0, D))

x (14 22| Qx, 0p) Y2V, ® (X, wp) — y)[) .

This function has maximum sizé&,2and is rapidly decaying outside of the eccentric
disk

[x: @0 @0) =y (@o. D+ 0@ H); Vb (x, wp) = y + Qx, wp) 202 )} .
Because deQ(x, wp) < 27, this disk has volum®(2-k2-"+/2) The claim (3)

follows. The proof of theL* boundedness 0OfeqiS NOw complete. O

5. Construction and boundedness ofA

We now construct the averaging operafar This operator needs to be bounded
onL?, and also essentially be a Fourier integral operator with the same phase function
d(x, &) asT. To motivate matters, let us first suppose we are in the non-degenerate
case, so thatJ(x, w)| ~ 1 throughout. Then the most natural choice fois the
operatorA, defined by

Ao T (X) ::/ f(V: (X, w)e(X, w) dw,
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whereV; ® (X, w) is the functionV,®(x, §) evaluated af = (w, 1), andg(X, w) is
a suitable bump function to be chosen later. One can motivate the chofgefimm
an inspection of the canonical relatialy but we will instead use the principle of
stationary phase in the informal argument which follows.

It is clear from @) that A, is bounded orL?, since for eachn the mapx
V:®P (X, w) is a local diffeomorphism. Now let us writé, as a Fourier integral
operator. From the Fourier inversion formula we have

pofo = [ (/ I p(x, ) dw) fe) de'

In accordance with the principle of stationary phase, we now look at where the phase
is stationary inw: V,(§" - V: (X, w)) = 0. From homogeneity we have

Ved (X, 0) = (V:2(X, (@, 1)), 9, (X, (0, 1)))
= (V,®(X, ), P(X, ) — 0 - V,P(X, w))

and hence we have the identity

(14) V(- V@ (X, 0) = V, (M0 - V,D(X, 0) + X (P(X, 0) — w - V,D(X, »)))
= V(0 — ) VO(X, w),

where we of course writ¢’ = (£',&;) and\' = &, o' = £'/&/. Since we are in
the non-degenerate regim&| ~ 1, we thus see that the only stationary point occurs
whenew = o'. By (14), the Hessian at this stationary point is

(15) det(VZ(E" - VD (X, ) |oew = deU—A'V2P (X, 0))]ow = (—=A))" T I(X, &)
and the value of the phase at the stationary point is
(16) 27iE - Ve d(X, ') = 2mi d(X, &)

so by the principle of stationary phase (see for instaBpenfe have the asymptotics
/ eZﬂiE/»ng)(x,a))(p(X’ a)) da) — eZﬂiGD(X,E/)(p(X’ a)/)ep(x,a)/)ni/él)\‘f(nfl)/ZlJ(X’ a)/)|7l/2 4.

for large&’, whereu(x, o) is an integer quantity which depends only mand the
signature ofV2®(x, w) (and in particular is a constant in the non-degenerate case
|J| ~ 1). Ignoring the error term (which will give a Fourier integral operator of lower
order), we thus see tha, is an Fourier integral operator of ordetn — 1)/2 with
phased(x, &) and symbol given by

P (X, AR 3 (x, )| V2,
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This choice ofA will work in the non-degenerate case, butidsecomes degenerate
we see that the symbol &% can get large, so tha&, is no longer of order(n—1)/2.
The obvious remedy is to damfy, whenJ is small, and use a new operator

A f(X) ::/ f (Ve (X, 0)g(X, w)e " */4 J(x, w) | dw
:/ (/ eZnig/»Vgcb(x,w)(p(X’ w)e—p,(x,w)ni/4|J(X’ a))ll/z dw) fA(f/) d%./

since this (heuristically at least) will be an Fourier integral operator with pbéses)
and amplitudey(x, w) (1)~ "~1/2, (Compare this with], 7].) However, the integrand
in the above definition of\; has singularities on the zero setdfx, w), and so we
need to apply a cutoff away from that region, compatible with the cu&)fied to
defineThondeg

From the above informal discussion, it is now natural to consthuga the formula

Af() =) / ( / VPN (X, )e YL — ¢y (I(X, @)

k>1

X nk(é/)lJ(X,w)ll/zdw> f(g)dg’

(compare this with §) and the definition ofA;). Observe that the cutoffl —
¢_(J(X, w)) ensures thatJ|¥? and u(x, w) are smooth functions on the region
of integration; indeed, the integer-valued functjenis constant on each connected
component of this region.

In the remainder of this section we show whys still bounded orl.1. In the next
section we explain why we can factoridg,ngseg = SA+ E, whereSis a pseudo-
differential operator of order 0 arfl is bounded ori.*.

We make thea priori assumption thaf is smooth and compactly supported; this
assumption can be removed by the usual limiting argument. We can also assume tha
f vanishes fof&| < 1, since on this region of frequency spakés bounded and it is
easy to show th& -boundedness ok in this case.

We write n (") = ¢(&) — ¢d_1(&§") and apply summation by parts, to rewrite
Af(x) as

-y / ( / E VR (%, )e T (B (I(X, @) — (I (X, @)))

k>1

X PN I (X, w)|[Y? dw) f(&)dg’

(the vanishing properties df ensures that there are no boundary terms). It will thus
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suffice to show the estimate

H/ (/ T (x, )€ T (I (X, @) = P I(X, @)))

—ek/2
S 27,
L

X ¢(ENIX, w)|[Y? dw) f(&)dg’

since the claim then follows by summinghkrusing the triangle inequality.
Fix k. By the Fourier inversion formula we can rewrite the left-hand side as

H/ P f (VD (X, 0))p(X, w)e Hxomi/4

X (f-eksn (J(X, @) = -k (I (X, @) I(X, )|V dw

Lk

wherePy f is the Littlewood-Paley operatcﬁk\f &) = ¢ (&) F(&). Taking absolute
values everywhere, we can estimate the previous crudely by

/ |PF (Ve (X, )] [o(X, @)|27? dx .
By (2) one can bound this by
[ 2 R de ~ 2R R s £ 2 1,
lo|<1

as desired.

6. Construction of S, and boundedness oE
We now need to find a suitable pseudo-differential operator

S0 = [ s, ) f(e) de
wheres satisfies the standard symbol estimates of order 0
(17) 1858's(x, §)] < Cop(L+ 157"
for all multi-indicesw, 8, such that we have a good factorization of the form

Tnondeg= SA+E.
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We begin, as usual, with a heuristic discussion. By repeating the stationary phase
computations of the previous section we see thahould essentially be a ‘Fourier
integral operator’ with phas@ (x, £) and symbol

Do A PR = gy (X, 0))ni(®).

k>1

We enclose ‘Fourier integral operator’ in quotes, because the symbol does not quite
obey standard symbol estimates (there is a slighlo®s of regularity in the angular
variablew). From standard symbol calculus (or more stationary phase) we thus expect
S Ato also be a ‘Fourier integral operator’ with phagéx, £) and symbol

S(X, V@ (X, £) Y p(X, )" " V2(L = ¢y (I(X, )i (6).

k>1

Meanwhile,Tongeqis @ ‘Fourier integral operator’ with phase(x, £) and symbol

Y a5 (L — ¢ a(IX, ) (E).

k>1

Thus, if we choose to be bounded away from zero on the suppod,aind defines
implicitly by

)L(nfl)/Za(X’ g)

18 , Vi (X, =
(18) S(X (X, €)) (X, w)

on the support od, and defines to vanish otherwise, then we see (frof) &nd the
hypothesis thatx, &) — (X, V,®(X, &)) is a diffeomorphism on the support aj
thats does indeed obey the symbol estimateg.(

It remains to show that the error operafr= T,ongeq— S Ais bounded ori.*. It
suffices to show thaf T,onged, — SA, [l < 1 for all z € R", wheres, is the Dirac
delta atz.

Fix z. We can expan® AS,(x) as

Z //// eZni[(Xfy)»CJrE/.(Vs<I>(y,w)72)]S(X, ey, w)e*,u(y,w)ni/4

k>1

X (1= ¢_k(I(Y, @) n(ENNI (Y, 0)|V* dwds d'dy.

On the other hand, fronig) and ) we can writeT,onged,(X) as

> / e PR A5(x, v, d(x, E)) (V)P Pp(X, o)

k>1

X (1= ¢_a(I(X, )i (§) &
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It thus suffices by the triangle inequality to show that

5 2C£k2—k/2
L

(19) H/ e PXETED (W ,(8') — Wy L) (€)) dE’

forall k > 1, where

a8 1= /// e VA ENS(X D) (Y, w)e O/

X (1= ¢ (I(Y, @) [3(Y, 0)[*dewdsdy
W2, (8 == S(X, V@ (X, £ ()" P 2p(x, @) (1 = ¢_ k(I (X, @)

and the phasw,  , is given by

Wikz(@,8,Y) =X =Y) - &+ &V, 2y, 0) — P(X, &)
=(X=Y) L+ (VeP(y, 0) — Ve (X, ).

The functionW? is basically a symbol of order(n — 1)/2, modulo errors of
O(2°¢%). What is not as obvious is that the quantity— W° is a symbol of slightly
smaller order. More precisely, we have

ProPOSITIONG.1. We have the estimates
(20) 108 Wik 2 = Wiy ) (E)] < Cp 250K K2 (D2 Kil
when|g’| ~ 2%,

In other words, apart from some errors 6¥'2 W — WP is a symbol of order
—(n —1)/2 — 1/2. Assuming this proposition, we can repeat the derivatior/pf (
(taking some losses ofZ) and thus bound the left-hand side aR) by 2°¢k2-+/2,
whichis acceptable iis sufficiently small. Thusto complete the proof of Theorkfn
we just need to verify the proposition.

PROOF OFPROPOSITIONG.L Fix X, k, z, &’. We begin by using the principle of
non-stationary phase in thg y, ands variables in turn to truncate the integralsih
substantially.

We first observe fromi(4) thatV,, Wy « ,(w, &, y) = (o' — w) - V2O (X, w). Since
the integrand is supported on the region wheg/, w)| 2> 2%, we thus have

|Va)\llx,k,z(a)s ;7 y)| z 2k|a)/ — a)l

Thus if we insert the cutoff & ¢_,_ k(@ — w) in the integrand oW, we have
IV, Wy o(@, ¢, Y)| 2 2°2¥/2. Repeated integration by parts in th&ariable (gaining
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2-¢k2=%/2 from the non-stationary phase, but losing at m&'&2'?? from differentiating
the ¢_ 12— function) then shows that this portion of the integraQie2-¢%) for any

C, and similarly for derivatives. Thus we may freely insert or remove a cutoff
¢_a2-ok(@ — w) in the integrand folV. In other words, we may restrict ourselves
(smoothly) to the region

(21) 0 =o' + 02272

without any penalty.
Now we argue similarly in thé variable, beginning with the identity

Vt\llx,k,z(a)s ;v Y) =X-=Y.

Thus if we insert the cutoff - ¢_ .. k(X — y) in the integrand oW, we have
IV Wy k.| 2 23279k Repeated integration by parts in thevariable using {7) thus
shows that this portion of the integral @(2-¢%) for any constan€, and the same is
clearly true for anyt’ derivatives ofW. Thus we may restrict ourselves (smoothly) to
the region

(22) y =X 4+ O(2*27/2)
without any penalty.

REMARK. Aninspection of this argument shows that one can in factlocalize further,
to the regiony = x + O(2°27%). However if one does so, the uncertainty principle
then prohibits one from localizing to any scale finer tha®(2-¢¢2%), and one ends
up with worse estimates at the end.

Now let us restrict ourselves smoothly to the regic?§ @nd ¢2). Then we have

Vy\IIX,k,Z((‘()s é‘v y) = g/ : Vyvéd)(ys a)) - Z
=& - V,V, (X, ) — & + 0223
= Vx®(x, §) — ¢ + O(22%).
Thus if we insert the cutoff & @242:k(Vx P (X, §') — &) in the integrand oWV, we
have |V, W, \,(», £, y)| > 222k Repeated integration parts in tievariable as
before (noting that the gainm2/2+2k from the non-stationary phase exceeds the loss

2/2=k coming from differentiatingd_,>_. k(X — y)) thus shows that we can restrict
ourselves smoothly to the region

(23) ¢ = V,d(x, &) + 0222k

once we have first restricted to the regio$)(and @2).
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Because of the above restrictions, we have
S(X, &) = S(X, Vx (X, ) + O(2°*27/?),

If we estimate the contribution of the err@(2°¢¥27%/2) py taking absolute values
everywhere and taking full advantage of the restrictidtig,((22), (23), we obtain
a bound ofQ(26¢k2-k22-(-Dk/2) a5 desired, with each derivative n gaining an
additional 2¢€27%. Thus we may replacgx, ¢) by s(x, V,® (X, £)).

Now we remove th@ 2.2k (Vx P (X, §') — ¢) cutoff by reversing the above argu-
ment. Strictly speaking, this creates some formal difficultiesause; then ranges
over all of R" and the oscillatory integral is not absolutely convergent. However one
can fix this by applying a suitably large cuteif (¢) and eventually lettingk — +o0,
observing that with this cutoff the Fourier inversion formula holds in the weak limit.
We ignore this technicality.

We can then evaluate tlgeintegration using the Fourier inversion formula

/ e ds = 8(y = x)
to simplify the above expression to
S(X, V,®(X, £)) /GZnié/»(VEGD(X,w)VEGD(X,w/))(p(X’ a))efu(x,w)r[i/ll
(1= ¢—ac (I, NI (X, ) "2¢_1/0- ek (@ — @) dov.
From (15), we observe the Taylor series expansion
E'(V. D (X, w) — Ve D (X, 0)) = %ijcb(x, o) w— o, w— )+ 025272

on the support ofp_u/2 k(@ — w). The error termO(2°¢2-%2) will give us a
contribution of O(2¢¢k2-("-Dk/22-k/2) tg W (as can be easily checked by replacing
every term by its absolute value), with each derivativé ipicking up an additional
factor of O(2°¢k2%). Thus we may ignore this error. Similarly, we can use the Taylor
expansion

P(X, @)@ L — ¢4 (I(X, @)]I(X, @)Y
= p(x, @)e DAL — ¢ (I(X, @))II(X, @)[Y2 + 02772797

(noting thatu must be constant, sinckcannot change sign fromto ') and discard
the error termD(2°¢27%/2) as before. Thus we may repladéwith

S(X, Vx @ (X, § N (X, )& * AL — ¢ 1 (I(X, @))]I(X, )|

i v2 / 4 ’
% /emk Vi@ (X, o) (w—w ,wfw)¢7(l/27e)k(w/ o a)) da)
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One can replace the cutoff functi@n ;.. (v’ — @) by a more standard bump
functiongy (' —w) if desired, again by the principle of non-stationary phase. Standard
stationary phase asymptotics (s8p fhen give

/ er[iA/Vf}d)(x,w/)(a)fw/,wfw/)(po(w/ . a)) dCl)
— ep,(X,a)/)r[i/lllJ(X’ a)/)|—1/2()\‘/)—(n—1)/2 + O(chk)

for any C, and similarly for all derivatives ig’. Comparing this againd, we thus
obtain 0) as desired. The proof of Theoreirl is now complete. O

7. Remarks

It seems that there is some room for improvement in Thedtelm First of all,
one can relax the angular regularity of the symag@t, &), and measura in a more
exotic symbol class. For instance, a natural class (which has appeared elsewhere, fc
instance §]) seems to be those symbols obeying the estimates

B —(n—1)/2— 2
[020, 97a(X, &)| < C, 4, €| "D/ I/,

Also, when the phase function becomes degenerate (that is, Whecomes small)
the estimates above improve, roughly by a factqdd¢t’?, whené is large. Of course,
in the most extreme case, wh@rvanishes, then the Fourier integral operator collapses
to a pseudo-differential operator, and one has weak«tyde for operators of order 0,
and notjust-(n—1)/2. Inintermediate cases wh&A3® consistently has rank strictly
between 0 and — 1, there are intermediate results (s&ef]). Perhaps one can unify
these results by introducing symbol classes adapted to the phase fub¢tion); for
instance one might study symbaléx, &) which obeyed bounds such as

la(x, )1 S Q420 3(x, £)) 2

together with some corresponding bounds on higher derivatives. It is not clear to the
author exactly what the best symbol classes to use are, but the techniques here ai
likely to miss the optimal class by at leastam the exponents.
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