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Abstract

We find necessary and sufficient conditions for completing an arbitrary 2 byn latin rectangle to ann
by n symmetric latin square, for completing an arbitrary 2 byn latin rectangle to ann by n unipotent
symmetric latin square, and for completing an arbitrary 1 byn latin rectangle to ann by n idempotent
symmetric latin square. Equivalently, we prove necessary and sufficient conditions for the existence of
an.n−1/-edge colouring ofKn (n even), and for ann-edge colouring ofKn (n odd) in which the colours
assigned to the edges incident with two vertices are specified in advance.

2000Mathematics subject classification: primary 05B15.

1. Introduction

An n by n (partial) latin squareis ann by n array in which each cell contains (at
most) one symbol, chosen from ann-set, such that each symbol occurs (at most) once
in each row and (at most) once in each column. A partial latin square is said to be
completed to(or embedded in) a latin squareif its empty cells are filled to produce a
latin square. There exist many results on completions or embeddings of partial latin
squares, see [2, Sections II.1.6 and IV.17]. Perhaps two of the best known relate to
theEvans ConjectureandHall’s Marriage Theorem[4]. In 1960, Evans conjectured
that any partialn by n latin square with at mostn − 1 filled cells can be completed to
a latin square. The conjecture was proved in 1981 by Smetaniuk [7].

An m by n latin rectangleis an m by n array in which each cell contains one
symbol, chosen from ann-set, such that each symbol occurs once in each row and at
most once in each column. Anm by n latin rectangle may be thought of as a partial
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n by n latin square in which the firstm rows are filled and the remaining cells are
empty. An easy corollary of Hall’s Theorem is that anym by n latin rectangle can be
completed to ann by n latin square.

A latin square issymmetricif for i 6= j , the symbol in cell.i; j / is also in cell. j; i /.
Consider the more difficult problem of completing latin rectangles to symmetric latin
squares. Ifm = 1, it is trivial to complete anym by n latin rectangle to a symmetric
latin square. Just take anyn by n symmetric latin square and permute the symbols so
that the first row is the 1 byn latin rectangle. However, the question is far from trivial
for m > 1. In this paper we prove necessary and sufficient conditions under which a
2 by n latin rectangle can be completed to a symmetric latin square; see Theorem3.3.

A latin square isunipotentif every diagonal cell contains the same symbol. If
there exists ann by n unipotent symmetric latin square, thenn is necessarily even
(since the number of occurrences of each symbol, other than the symbol which occurs
on the diagonal, must be even). A latin square isidempotentif symbol i is in cell
.i; i / for all i . If there exists ann by n idempotent symmetric latin square, thenn is
necessarily odd (since each symbol occurs once on the diagonal and an even number
of times not on the diagonal). We also prove necessary and sufficient conditions
under which a 2 byn latin rectangle can be completed to a unipotent symmetric latin
square (see Theorem3.1), and necessary and sufficient conditions under which a 1
by n latin rectangle can be completed to an idempotent symmetric latin square (see
Theorem3.2).

These results extend a rich literature of related embedding results. In the containing
n by n latin squareL, when either symmetry has been required ofL, or the diagonal
of L has been prescribed in some way, then results in the literature have limited the
filled cells to all occur in cells.i; j /, wherei; j ≤ r for somer < n. For example,
Cruse has settled such an embedding problem in the case whereL is required to be
symmetric [3]. It turns out that ifn is odd then because of thelimitation on where
the filled cells occur, this result also solves the embedding problem in the case where
L is both symmetric and idempotent. The more general result that predetermines the
diagonal ofL whenL is symmetric was later solved by Andersen [1]. The extremely
difficult related problem of specifying the diagonal ofL, but not requiringL to be
symmetric, has yet to be solved. However, it has been solved by Rodger in the case
wheren ≥ 2r + 1 [6], and in the idempotent case wheren = 2r [5]. In none of
the literature to this point has any result been able to deal with the case where the
non-diagonal filled cells span the rows or columns of the containing latin squareL,
and eitherL is required to be symmetric or the diagonal ofL is specified in some way.
Such completions are the main focus of this paper.

An edge colouringof a graphG is an assignment of colours to the edges ofG
such that adjacent edges are assigned distinct colours. Ifk colours are used then the
colouring is called ak-edge colouring. An n by n symmetric latin square defines a
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proper edge colouring ofKn as follows: with{v1; v2; : : : ; vn} being the vertex set of
Kn, let the symbol in cell.i; j /, i 6= j , be the colour assigned to the edgevi v j . For
n even, ann by n unipotent symmetric latin square is equivalent to an.n − 1/-edge
colouring ofKn (the colour corresponding to the symbol that occurs in the diagonal
cells is not assigned to any edge). Forn odd, ann by n symmetric latin square is
equivalent to ann-edge colouring ofKn (each symbol must occur exactly once on the
diagonal and the symbol in cell.i; i / is the colour which does not occur at vertexvi ).
Our results allow us to prove necessary and sufficient conditions for the existence of
ann-edge colouring ofKn in which the colours incident with two particular vertices
are specified in advance, see Theorem3.4and Theorem3.5.

The proof of our results will follow from the existence ofsymmetric quasi-latin
squareswith specified diagonals. We define and construct these in the following
section.

2. Symmetric quasi-latin squares

We define asymmetric quasi-latin square(SQLS) with symbolsx0; x1; : : : ; xn to
be ann by n array of cells such that

.i/ each cell not on the diagonal contains exactly one symbol;
.ii/ each cell on the diagonal contains exactly two distinct symbols;
.iii / each of the symbolsx1; x2; : : : ; xn occurs in exactly two diagonal cells andx0

occurs in no diagonal cells;
.iv/ for 1 ≤ i < j ≤ n, cell .i; j / contains the same symbol as cell. j; i /; and
.v/ each symbol occurs exactly once in each row and exactly once in each column.

It is clear from (iii) and (iv) that the number of occurrences ofeach symbol is even
and so there are non by n SQLS’s whenn is odd.

Suppose an SQLS has symbolx in cells .i1; i 1/; .i2; i 3/; .i4; i 5/; : : : ; .i k−1; i k/ and
symbol y in cells .i1; i 2/; .i3; i 4/; .i5; i 6/; : : : ; .i k−2; i k−1/; .i k; i k/ wherei1; i 2; : : : ; i k

are distinct. If we puty instead ofx in the cells

.i1; i 1/; .i2; i 3/; .i3; i 2/; .i4; i 5/; .i5; i 4/; : : : ; .i k−1; i k/; .i k; i k−1/

andx instead ofy in the cells

.i1; i 2/; .i2; i 1/; .i3; i 4/; .i4; i 3/; .i5; i 6/; .i6; i 5/; : : : ; .i k−2; i k−1/; .i k−1; i k−2/; .i k; i k/

then we obtain a new SQLS whose diagonal differs from that of the original SQLS
only in thaty is in cell .i1; i 1/ instead ofx, andx is in cell .i k; i k/ instead ofy. We
call such a configuration of cells and symbols an.x; y/-path from cell .i1; i 1/ to cell
.i k; i k/.
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The diagonal of ann by n SQLS defines a 2-regular multigraph withn vertices
in an obvious way: the vertices are the symbols occurring on the diagonal anduv
is an edge if and only ifu and v occur together in a diagonal cell (so a 2-cycle
results whenever two distinct diagonal cells contain the same pair of symbols). An
SQLS whose diagonal defines a 2-regular multigraphF will be called an SQLS.F/.
If F = Cm1 + Cm2 + · · · + Cmk

is the vertex disjoint union ofk cycles of lengths
m1;m2; : : : ;mk, then an SQLS.F/with symbols 0;1; : : : ;n (n = m1+m2+· · ·+mk),
with

• i andi − mt + 1 in cell .i; i / for i = ∑t
r =1 mr , t = 1;2; : : : ; k; and with

• i andi + 1 in cell.i; i / for i ∈ {1;2; : : : ;n} \ {∑t
r =1 mr : t = 1;2; : : : ; k

}

is said to be instandard form. It is clear that an SQLS.F/ exists if and only if an
SQLS.F/ in standard form exists; either can be obtained from the other by applying
a permutation¦ to the symbols and a permutation³ to the rows and columns. Unless
stated otherwise, from here on, all SQLS.F/s will be assumed to be in standard form.
We will however rearrange the order of the cycles inF to aid our constructions. We
defineFn to be the class of all 2-regular multigraphs withn vertices.

If n ≡ 0 .mod 4/ then letm = .n−4/=2 and ifn ≡ 2 .mod 4/ let m = .n−2/=2.
We partition the cells of an SQLS into four regions as follows.

• The cells.i; j / with 1 ≤ i; j ≤ m will be called thetop left.
• The cells.i; j / with m + 1 ≤ i; j ≤ n will be called thebottom right.
• The cells.i; j / with 1 ≤ i ≤ m andm + 1 ≤ j ≤ n will be called thetop

right.
• The cells.i; j / with m + 1 ≤ i ≤ n and 1≤ j ≤ m will be called thebottom

left.

Before our main SQLS constructions, we need the following lemma.

LEMMA 2.1. Supposen ≥ 6 and letÞ be any permutation of{1;2; : : : ;n} with
Þ.i / ≤ i − 1 or Þ.i / = i + 1. There exists a colouring of the edges of then-
cycle.v1; v2; : : : ; vn/ with the colours{c1; c2; : : : ; cn} such that each edge receives a
different colour and such that fori ∈ {1;2; : : : ;n}, ci ; cÞ.i / and the colours of the two
edges incident withvi are all distinct.

PROOF. In this proof, the subscripts are reduced modulon to the residues 1; : : : ;n.
For i = 1; : : : ;n, call ci andcÞ.i / the colours assigned to the vertexvi . Let B be a
bipartite graph with bipartition{E.Cn/; {c1; : : : ; cn}} of the vertex setV.B/. Define
the edge setE.B/ by joining the edge{vi ; vi +1} to the colourcj if and only if cj

is not assigned to eithervi or vi +1. Then clearlyŽ.B/ ≥ n − 4. It is sufficient
the show thatB contains a perfect matching. Suppose there exists a subsetS ⊆
{c1; c2; : : : ; cn} such that the neighbourhoodNB.S/ of S contains fewer vertices than
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S. Then |S| ≥ |N.S/| ≥ Ž.B/ ≥ n − 4. If there is a vertexv ∈ E.Cn/ \ N.S/
then it is adjacent to at leastŽ.B/ vertices, none of which are inS. Therefore
n = |{c1; : : : ; cn}| ≥ |S|+ |N.v/| ≥ 2.n−4/; son ∈ {6;8}. It is now straightforward
to verify that there is no such setSand the result follows by Hall’s Theorem [4].

The following is well known, but is included for completeness.

LEMMA 2.2. There exists a1-factorization ofK2x+1 − H, whereH is a hamilton
cycle.

PROOF. The usual 1-factorization{F0; : : : ; F2x−1} of K2x+1 defined by

Fi = {{∞; i }; {i − j; i + j }|1 ≤ j ≤ x − 1
}

has the property thatF0 ∪ F1 is a hamilton cycle.

LEMMA 2.3. Let n ≥ 6 be even, letm = .n − 2/=2 if n ≡ 2 .mod 4/ and let
m = .n − 4/=2 if n ≡ 0 .mod 4/. If there exists anSQLS.F1/, F1 ∈ Fm, then there
exists anSQLS.F1 + F2/ for all F2 ∈ Fn−m.

PROOF. We fill the diagonal cells so that they defineF1 + F2 and complete the top
left to an SQLS.F1/. If n ≡ 2 .mod 4/, we can fill the remaining cells in the bottom
right with symbols chosen from{0;1;2; : : : ;m}, since this is equivalent to finding an
.n − m − 1/-edge colouring ofKn−m. If n ≡ 0 .mod 4/, then by Lemma2.1we can
fill the n−m diagonally opposite pairs of cells{.m+1;m+2/; .m+2;m+1/}; {.m+
2;m+3/; .m+3;m+2/}; : : : ; {.n −1;n/; .n;n −1/}; {.n;m+1/; .m+1;n/} with
the symbolsm + 1;m + 2; : : : ;n such that each symbol occurs in exactly one pair of
cells. We can then fill the remaining cells in the bottom right with symbols chosen
from {0;1;2; : : : ;m}, since this is equivalent to finding an.n−m−3/-edge colouring
of K.n−m/ with the edges of a hamiltonian cycle removed (see Lemma2.2).

Let R0 be the 2 byn−m latin rectangle constructedby placing, fori = 1;2; : : : ;n−
m, symbolm + i in cell .1; i / and the other symbol from cell.m + i;m + i / of the
existing partial SQLS in cell.2; i /. If n ≡ 2 .mod 4/, then we letR = R0 and if
n ≡ 0 .mod 4/, we let R be the 4 byn − m latin rectangle defined as follows. Let
rows 1 and 2 ofR be equal to rows 1 and 2 ofR0. For i = 1;2; : : : ;n − m − 1, place
the symbol from cell.m + i + 1;m+ i / of the existing partial SQLS in cell.3; i / and
the symbol from cell.m+ 1;n/ in cell .3;n − m/. For i = 2;3; : : : ;n − m, place the
symbol from cell.m + i − 1;m+ i / of the existing partial SQLS in cell.4; i / and the
symbol from cell.n;m + 1/ in cell .4;1/. Note that all the symbols inR are chosen
from {m + 1;m + 2; : : : ;n}.

We can fill the cells in the top right with symbols chosen from{m+1;m+2; : : : ;n},
since this is equivalent to completing the latin rectangleR to an.n − m/ by .n − m/
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latin square. We then complete the SQLS.F1 + F2/ by filling the cell. j; i / with the
symbol from cell.i; j / for 1 ≤ i ≤ m andm + 1 ≤ j ≤ n.

LEMMA 2.4. Let n = 6 or n ≥ 10 be even, letm = .n − 2/=2 if n ≡ 2 .mod 4/
and letm = .n − 4/=2 if n ≡ 0 .mod 4/. Let 2 ≤ r ≤ m − 2 or r = m and let
2 ≤ s ≤ n − m− 2 or s = n − m. If there exists anSQLS.F1 + Cr /, F1 ∈ Fm−r , then
there exists anSQLS.F1 + Cr +s + F2/ for all F2 ∈ Fn−m−s.

PROOF. Let F = F1 + Cr +s + F2 and letF ′ = F1 + Cr + Cs + F2. By Lemma2.3
there exists an SQLS.F ′/. Note that the diagonal cells of an SQLS.F ′/ differ from
those of an SQLS.F/ only in cell .m;m/, where symbolsm andm − r + 1 occur
instead of symbolsm andm + 1, and in cell.m + s;m + s/, where symbolsm + s
andm + 1 occur instead of symbolsm + s andm − r + 1.

However, by the construction of the SQLS.F ′/ in Lemma2.3, we have the freedom
to independently permute the rows in the top right (and simultaneously perform
the corresponding permutation to the columns in the bottom left) and the symbols
0;1;2; : : : ;m in the bottom right. We will carry out such permutations so that there
exists an.m − r + 1;m + 1/-path from cell.m;m/ to cell .m + s;m + s/. We can
then interchange symbolsm− r + 1 andm + 1 along this path so that the required an
SQLS.F/ results.

Whenn ≡ 2 .mod 4/, we permute the symbols 0;1;2; : : : ;m in the bottom right
so that symbolm − r + 1 occurs in cell.m + s; t/ wheret is such that cell.m; t/
contains the symbolm + 1. This ensures that there exists an.m − r + 1;m + 1/-path
involving cells.m;m/; .m; t/; .m + s; t/; .m + s;m + s/; .t;m + s/; .t;m/.

Whenn ≡ 0 .mod 4/, we permute the symbols 0;1;2; : : : ;m in the bottom right
so that symbolm − r + 1 occurs in cell.m + s; t/ wheret is such that the occurrence
of symbolm + 1 in columnt is in the top right. Sincem ≥ 4, this is always possible
(note thatm + 1 occursm times in the top right, there arem + 1 occurrences of the
symbols 0;1;2; : : : ;m in each row of the bottom right, and 2m+1 > n−m = m+4).
We then permute the rows in the top right so that symbolm + 1 occurs in cell.m; t/.
Then, as in then ≡ 2 .mod 4/ case, we have an.m − r + 1;m + 1/-path involving
cells.m;m/; .m; t/; .m + s; t/; .m + s;m + s/; .t;m + s/; .t;m/.

LEMMA 2.5. Let n ≡ 0 .mod 4/, n ≥ 12, m = .n − 4/=2, 3 ≤ r ≤ m − 2 or
r = m, and let2 ≤ s ≤ n − m − 2 or s = n − m. If there exists anSQLS.F1 + Cr /,
F1 ∈ Fm−r , then there exists anSQLS.F1 + Cr −1 + Cs+1 + F2/ for all F2 ∈ Fn−m−s.

PROOF. Let F = F1 + Cr −1 + Cs+1 + F2 and letF ′ = F1 + Cr + Cs + F2. By
Lemma2.3there exists an SQLS.F ′/. Note that the symbols in the diagonal cells of
an SQLS.F ′/ differ from those of an SQLS.F/ only
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• in cell .m − 1;m − 1/ where symbolsm − 1 andm occur instead of symbols
m − 1 andm − r + 1;

• in cell .m;m/ where symbolsm andm − r + 1 occur instead of symbolsm
andm + 1; and

• in cell .m+s;m+s/ where symbolsm+s andm+1 occur instead of symbols
m + s andm.

However, by the construction of the SQLS.F ′/, we have the freedom to indepen-
dently permute the rows in the top right and the symbols 0;1;2; : : : ;m in the bottom
right. We will carry out such permutations so that there exists an.m;m + 1/-path
from cell.m − 1;m− 1/ to cell.m+ s;m+ s/, an.m − r + 1;m+ 1/-path from cell
.m− r +1;m− r +1/ to cell.m+1;m+1/, and such that no cell is common to these
two paths. By switching the symbols along these two paths and then interchanging
symbolsm − r + 1 andm + 1 throughout the SQLS we will obtain the required
SQLS.F/.

The.m;m+1/-path will involve cells.m−1;m−1/; .m−1; t/; .m+ s; t/; .m+
s;m+s/; .t;m+s/ and.t;m−1/wheret is some integer in the rangem+1 ≤ t ≤ n.
Chooset arbitrarily such that the symbolm+1 in columnt is in the top right and such
that cell.m + s; t/ contains one of the symbols 0;1;2; : : : ;m. Sincem ≥ 4 implies
n − m ≥ 8, since there are four occurrences of symbolm + 1 in the bottom right, and
since in each row of the bottom right there are two off-diagonal cells which are filled
with symbols other than 0;1;2; : : : ;m, there are at least two choices fort . Permute
the symbols in the bottom right so thatm is in cell.m + s; t/ and permute the rows in
the top right so that symbolm + 1 is in cell.m− 1; t/, thus ensuring that the required
.m;m + 1/-path exists.

The.m − r + 1;m + 1/-path will involve cells.m − r + 1;m − r + 1/; .m − r +
1; t ′/; .m+1; t ′/; .m+1;m+1/; .t ′ ;m−r +1/ and.t ′;m+1/ wheret ′ is some integer
in the rangem + 1 ≤ t ′ ≤ n. We require thatt ′ 6= t , the symbolm + 1 of columnt ′ is
in the top right, and that cell.m+1; t ′/ contains one of the symbols 0;1;2; : : : ;m−1.
As in the case of findingt for the .m;m + 1/-path, we have at least two choices for
t ′ after excluding the columns in whichm + 1 occurs in the bottom right and the two
cells which do not contain one of the symbols 0;1;2; : : : ;m. However, we now also
need to ensure thatt 6= t ′ and that the cell.m + 1; t ′/ does not containm. But since
the two columns that do not contain one of the symbols 0;1;2; : : : ;m in row m + s
of the bottom right are not the same as the two columns that do not contain one of
the symbols 0;1;2; : : : ;m in row m + 1 of the bottom right, we can always find a
suitablet ′. We now permute the symbols, leaving symbolm fixed, in the bottom right
so that symbolm − r + 1 is in cell .m + 1; t ′/ and we permute the rows in the top
right, leaving rowm − 1 fixed, so that symbolm + 1 is in cell.m − r + 1; t ′/, thus
ensuring that the required.m − r + 1;m + 1/-path exists.
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LEMMA 2.6. Let n ≡ 2 .mod 4/, n ≥ 10, m = .n − 2/=2, 2 ≤ r ≤ m − 2 or
r = m and let3 ≤ s ≤ n − m − 2 or s = n − m. If there exists anSQLS.F1 + Cr /,
F1 ∈ Fm−r , then there exists anSQLS.F1 + Cr +1 + Cs−1 + F2/ for all F2 ∈ Fn−m−s.

PROOF. Let F = F1 + Cr +1 + Cs−1 + F2 and letF ′ = F1 + Cr + Cs + F2. By
Lemma2.3there exists an SQLS.F ′/. Note that the symbols in the diagonal cells of
an SQLS.F ′/ differ from those of an SQLS.F/ only

• in cell .m;m/ where symbolsm andm − r + 1 occur instead of symbolsm
andm + 1;

• in cell .m+1;m+1/where symbolsm+1 andm+2 occur instead of symbols
m + 1 andm − r + 1; and

• in cell .m+s;m+s/ where symbolsm+s andm+1 occur instead of symbols
m + s andm + 2.

As in the previous lemma, we have the freedom to permute the rows in the top right
and we have an amount of freedom when we fill the cells in the bottom right with
the symbols 0;1;2; : : : ;m. We will ensure that there exists an.m − r + 1;m + 1/-
path from cell.m;m/ to cell .m + s;m + s/, an.m − r + 1;m + 2/-path from cell
.m− r +1;m− r +1/ to cell.m+2;m+2/, and such that no cell is common to these
two paths. By switching the symbols along these two paths and then interchanging
symbolsm − r + 1 andm + 2 throughout the SQLS we will obtain the required
SQLS.F/.

The .m − r + 1;m + 1/-path will involve cells.m;m/; .m; t/; .m + s; t/; .m +
s;m + s/; .t;m + s/; .t;m/ and the.m − r + 1;m + 2/-path will involve cells
.m−r +1;m−r +1/; .m−r +1; t ′ /; .m+2; t ′/; .m+2;m+2/; .t ′ ;m−r +1/; .t ′ ;m+2/
wheret andt ′ are integers in the rangem + 1 ≤ t ≤ n.

There aren − m− 3 = m− 1 columns in the top right that contain bothm + 1 and
m+2 (the columns that do not contain bothm+1 andm+2 are columnsm+1;m+2
andm + s). Sincen ≥ 10, m ≥ 4, and so we always have at least 3 such columns in
the top right. Let these columns bet; t ′ andt ′′. We permute the rows in the top right
so that symbolm + 1 is in cell.m; t/. This may force symbolm + 2 into cell.m; t′/
or into cell.m; t ′′/ but not both, and so we can assume without loss of generality that
symbolm + 2 is not in cell.m; t ′/. Thus we can permute the rows in the top right
(leavingm + 1 in cell .m; t/) so that symbolm + 2 is in cell.m − r + 1; t′/.

When constructing the SQLS.F ′/, we ensure that symbolm− r +1 occurs in cells
.m + s; t/ and.m + 2; t ′/. This is possible, as filling in these cells is equivalent to
finding an.n−m−1/-edge colouring ofKn−m (with vertex set{m+1;m+2; : : : ;n})
and we can ensure by relabeling the vertices that the the edges corresponding to the
cells.m + s; t/ and.m + 2; t ′/ are assigned the same colour. Note that our choice of
t andt ′ ensures thatm + 2;m + s; t andt ′ are distinct.
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LEMMA 2.7. Letn ≤ 12be even and letF ∈ Fn. Then there exists anSQLS.F/ if
and only ifF 6= C2 + C2.

PROOF. Forn = 2 andn = 4, the only casesareF = C2; F = C4 andF = C2+C2.
It is easy to see that there is no SQLS.C2 + C2/. An SQLS.C2/ and an SQLS.C4/ are
shown below. Forn = 6, the result follows by Lemma2.3 (and the existence of an
SQLS.C2/) if F contains a 2-cycle. ForF = C6, we can use Lemma2.4with r = 2
ands = 4. This leaves only the case of an SQLS.C3 + C3/ which is shown below.

1;2 0
0 2;1

1;2 4 0 3
4 2;3 1 0
0 1 3;4 2
3 0 2 4;1

1;2 4 5 6 3 0
4 2;3 6 1 0 5
5 6 3;1 0 4 2
6 1 0 4;5 2 3
3 0 4 2 5;6 1
0 5 2 3 1 6;4

For the casen = 8, the result follows by Lemma2.3 (and the existence of an
SQLS.C2/) if F contains a 2-cycle. This leaves only an SQLS.C8/, an SQLS.C4+C4/

and an SQLS.C5 + C3/ which are shown below.

1;2 8 7 0 3 5 6 4
8 2;3 6 7 4 0 1 5
7 6 3;4 8 1 2 5 0
0 7 8 4;5 2 1 3 6
3 4 1 2 5;6 8 0 7
5 0 2 1 8 6;7 4 3
6 1 5 3 0 4 7;8 2
4 5 0 6 7 3 2 8;1

1;2 8 7 5 3 4 6 0
8 2;3 6 7 4 0 5 1
7 6 3;4 8 1 5 0 2
5 7 8 4;1 0 2 3 6
3 4 1 0 5;6 8 2 7
4 0 5 2 8 6;7 1 3
6 5 0 3 2 1 7;8 4
0 1 2 6 7 3 4 8;5

1;2 8 7 6 3 5 4 0
8 2;3 6 7 4 1 0 5
7 6 3;4 8 2 0 5 1
6 7 8 4;5 0 2 1 3
3 4 2 0 5;1 8 6 7
5 1 0 2 8 6;7 3 4
4 0 5 1 6 3 7;8 2
0 5 1 3 7 4 2 8;6

For the casen = 10, the result follows by Lemma2.3 (and the existence of an
SQLS.C4/) if F contains a 4-cycle. Also, ifF contains a cycleCx with x ≥ 6 then
the result follows by Lemma2.4 with r = 4 ands = x − 4. For F = C5 + C5 and
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F = C5+C3+C2 we use Lemma2.6with r = 4 and withs = 6 ands = 4 respectively.
This leaves only an SQLS.C3 +C3 +C2 +C2/ and an SQLS.C2 +C2 +C2 +C2 +C2/

which are shown below.

1;2 10 9 8 0 7 3 4 5 6
10 2;1 8 9 7 0 4 3 6 5
9 8 3;4 10 1 2 5 6 7 0
8 9 10 4;3 2 1 6 5 0 7
0 7 1 2 5;6 8 9 10 3 4
7 0 2 1 8 6;5 10 9 4 3
3 4 5 6 9 10 7;8 0 1 2
4 3 6 5 10 9 0 8;7 2 1
5 6 7 0 3 4 1 2 9;10 8
6 5 0 7 4 3 2 1 8 10;9

1;2 10 9 8 0 7 3 4 5 6
10 2;3 8 9 7 1 4 5 6 0
9 8 3;1 10 2 0 5 6 7 4
8 9 10 4;5 1 2 6 3 0 7
0 7 2 1 5;6 8 9 10 4 3
7 1 0 2 8 6;4 10 9 3 5
3 4 5 6 9 10 7;8 0 1 2
4 5 6 3 10 9 0 8;7 2 1
5 6 7 0 4 3 1 2 9;10 8
6 0 4 7 3 5 2 1 8 10;9

For the casen = 12, the result follows by Lemma2.3 (and the existence of an
SQLS.C4/) if F contains a 4-cycle. Also, ifF contains a cycleCx with x ≥ 6 then the
result follows by Lemma2.4with r = 4 ands = x − 4. For F = C3 + C3 + C3 + C3

andF = C3 + C3 + C2 + C2 + C2, we use Lemma2.5 with r = 4, s = 2 and with
F2 = C3 + C3 andF2 = C2 + C2 + C2 respectively. ForF = C3 + C5 + C2 + C2,
we use Lemma2.5 with r = 4, s = 4 and withF2 = C2 + C2. This leaves only an
SQLS.C5 + C5 + C2/ and an SQLS.C2 + C2 + C2 + C2 + C2 + C2/ which are shown
in Figure1.

LEMMA 2.8. Letn be an integer and letF ∈ Fn. Then there exists anSQLS.F/ if
and only ifn is even andF 6= C2 + C2.

PROOF. The proof is by induction. We have already noted that there do not exist
n by n SQLS’s for n odd and the result is true for allF ∈ Fn with n ≤ 12 by
Lemma2.7. So assumen ≥ 14 is even and assume the result is true for all even
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1;2 10 11 12 9 8 4 0 5 6 3 7
10 2;1 12 11 8 9 0 4 6 5 7 3
11 12 3;4 10 7 0 6 9 1 8 2 5
12 11 10 4;3 0 7 5 6 2 1 9 8
9 8 7 0 5;6 1 2 12 11 3 4 10
8 9 0 7 1 6;5 2 11 4 12 10 2
4 0 6 5 2 3 7;8 10 12 11 1 9
0 4 9 6 12 11 10 8;7 3 2 5 1
5 6 1 2 11 4 12 3 9;10 0 8 7
6 5 8 1 3 12 11 2 0 10;9 7 4
3 7 2 9 4 10 1 5 8 7 11;12 0
7 3 5 8 10 2 9 1 7 4 0 12;11

1;2 10 11 12 9 8 4 0 5 3 6 7
10 2;3 12 11 8 9 0 4 6 5 7 1
11 12 3;4 10 7 0 6 1 2 8 5 9
12 11 10 4;5 0 2 1 6 7 9 3 8
9 8 7 0 5;1 3 2 12 11 4 10 6
8 9 0 2 3 6;7 5 11 4 12 1 10
4 0 6 1 2 5 7;8 10 12 11 9 3
0 4 1 6 12 11 10 8;9 3 7 2 5
5 6 2 7 11 4 12 3 9;10 1 8 0
3 5 8 9 4 12 11 7 1 10;6 0 2
6 7 5 3 10 1 9 2 8 0 11;12 4
7 1 9 8 6 10 3 5 0 2 4 12;11

FIGURE 1. An SQLS.C5 + C5 + C2/ and an SQLS.C2 + C2 + C2 + C2 + C2 + C2/.

integers less thann. We use Lemmas2.3–2.6. As before, letm = .n − 2/=2 if n ≡ 2
.mod 4/ andm = .n − 4/=2 if n ≡ 0 .mod 4/. Sincen ≥ 14, m ≥ 6 and so an
SQLS.F ′) exists for allF ′ ∈ Fm.

It is clear that for anyF ∈ Fn, the cycles ofF can be arranged in some order
Cm1;Cm2; : : : ;Cmk

such thatm − 1 =∈ {∑t
i =1 mi : t = 1;2; : : : ; k

}
unless there exists

an integer that divides bothm−1 andn. Similarly, the cycles of anyF ∈ Fn can be ar-
ranged in some orderCm1;Cm2; : : : ;Cmk

such thatm+1 =∈ {∑t
i =1 mi : t = 1;2; : : : ; k

}

unless there exists an integer that divides bothm + 1 andn.
Whenn ≡ 2 .mod 4/, m − 1 andn are relatively prime, and so the cycles ofF

can be ordered such that we can use either Lemma2.3, 2.4 or 2.6 to construct an
SQLS.F/. Similarly, whenn ≡ 0 .mod 4/, m + 1 andn are relatively prime, and so
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the cycles ofF can be ordered such that we can use either Lemma2.3, 2.4 or 2.5 to
construct an SQLS.F/.

3. Main results

With Lemma2.8 in hand, we are now ready to prove our main results. Unless
stated otherwise, alln by n latin squares will have symbols 1;2; : : : ;n.

THEOREM 3.1. Letn ≥ 2 be an integer. A2 by n latin rectangle can be completed
to a unipotentn byn symmetric latin square if and only if

.i/ n is even;
.ii/ the symbol in cell.1;2/ is also in cell.2;1/;
.iii / the symbol in cell.1;1/ is also in cell.2;2/; and
.iv/ the2 by n latin rectangle cannot be obtained from

1 2 3 4 5 6
2 1 4 3 6 5

or
1 2 3 5 4 6
2 1 4 6 3 5

or
1 2 3 5 6 4
2 1 4 6 5 3

by any symbol permutation.

PROOF. Conditions (i), (ii) and (iii) are clearly necessary. Suppose a latin rectangle
satisfying conditions (i)–(iv) is completed to a 6 by 6 symmetric latin square. By
symmetry row 3 contains symbols 3 and 4 in cells.3;1/ and.3;2/. Therefore the
occurrence in row 3 of symbols 1 and 2 must be in the columns that already contain
symbols 5 and 6; so symbol 1 does not occur in cell.3;3/ and the latin square is not
unipotent. Hence condition (iv) is also necessary.

We use Lemma2.8 to prove sufficiency. To construct the required latin square
L, we first place, fori = 3;4; : : : ;n and t = 1;2, the symbol in cell.t; i / of the
latin rectangle in cell.i; t/ of L. By Lemma2.8 and condition (iv), there exists an
.n − 2/ by .n − 2/SQLST with diagonal defined by placing, fori = 3;4; : : : ;n, the
symbols in cells.1; i / and.2; i / of the latin rectangle in cell.i − 2; i − 2/ of T . Let 0
be the symbol not occurring on the diagonal ofT and lety andz be the symbols in
cells .1;1/ and.1;2/ of L respectively. For 3≤ j ≤ n, if cell .i − 2; j − 2/ of T
contains symbolx then placey; z or x in cell .i; j / of L if i = j; x = 0, or otherwise
respectively.

THEOREM 3.2. Letn ≥ 1 be an integer. A1 by n latin rectangle can be completed
to an idempotentn by n symmetric latin square if and only if

.i/ n is odd;
.ii/ the symbol in cell.1;1/ is 1;
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.iii / for i = 2;3; : : : ;n, symboli is not in cell.1; i /; and

.iv/ the1 by n latin rectangle is not

1 3 2 5 4 or 1 4 5 2 3 or 1 5 4 3 2 :

PROOF. Conditions (i), (ii) and (iii) are clearly necessary. To see that the latin rect-
angles given in condition (iv) cannot be completed to a 5 by 5 idempotent symmetric
latin square, fill in the first column (by symmetry) and the diagonal, and then observe
that symbol 1 is forced to occur in at least two cells of column 2.

Sufficiency follows almost immediately from Theorem3.1. First, construct a 2
by n + 1 latin rectangleR with first row ∞;1;2; : : : ;n, symbol 1 in cell.2;1/,
symbol∞ in cell .2;2/ and the symbol from cell.1; i / of the given latin rectangle in
cell .2; i +1/ for i = 2;3; : : : ;n. By Theorem3.1, Rcan be completed to ann+1 by
n+1 unipotent symmetric latin squareU . The requiredn by n idempotent symmetric
latin square can then be obtained fromU by deleting the first row and column, and
then replacing the symbol in cell.i; i / with symboli for all i .

THEOREM 3.3. Letn ≥ 2 be an integer. A2 by n latin rectangle can be completed
to ann by n symmetric latin square if and only if

.i/ the symbol in cell.1;2/ is also in cell.2;1/;
.ii/ if n is odd, the symbols in cells.1;1/ and.2;2/ are distinct; and
.iii / the2 by n latin rectangle cannot be obtained from

1 2 3 4 5
2 3 1 5 4

or
1 2 4 3 5
2 3 5 1 4

or
1 2 4 5 3
2 3 5 4 1

by any symbol permutation.

PROOF. Condition (i) is clearly necessary. Ifn is odd, then in anyn by n symmetric
latin square each symbol occurs exactly once on the diagonal and so condition (ii) is
also necessary. It is simpler if we deal separately with the casesn = 2;3;4;5 and 6.
First we make the following observation.

If we apply any permutation³ of {3;4; : : : ;n} to the columns of a given 2 by
n latin rectangleR (that is, we shift the symbol in cell.i; j / to cell .i; ³. j // for
i = 1;2 and j = 3;4; : : : ;n) and then apply any permutation¦ of {1;2; : : : ;n} to
the symbols, we obtain a 2 byn latin rectangleR′. If R′ can be completed to ann
by n symmetric latin squareL ′, thenR can be completed a symmetric latin squareL.
Applying the symbol permutation¦−1 to L ′ and then shifting the symbol in cell.i; j /
to cell .³−1.i /; ³−1. j // for 3 ≤ i; j ≤ n results in a symmetric latin squareL which
hasR as its first two rows. Hence we need only consider latin rectangles that cannot
be obtained from each other by applying such column and symbol permutations.
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The casesn = 2 andn = 3 are trivial and forn = 4, completions of the two latin
rectangles that we need to consider are shown below.

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

For n = 5, we need to consider the following two latin rectangles.

1 2 3 4 5
2 3 1 5 4

1 2 3 4 5
2 3 4 5 1

It is straightforward to check that the first has no completion and so condition (iii) of
the theorem is necessary. A completion of the second is shown below.

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

Forn = 6, there are five cases to consider and completions of each of these are shown
below.

1 2 3 4 5 6
2 1 4 3 6 5
3 4 5 6 1 2
4 3 6 5 2 1
5 6 1 2 3 4
6 5 2 1 4 3

1 2 3 4 5 6
2 1 4 5 6 3
3 4 1 6 2 5
4 5 6 1 3 2
5 6 2 3 1 4
6 3 5 2 4 1

1 2 3 4 5 6
2 3 1 5 6 4
3 1 2 6 4 5
4 5 6 2 3 1
5 6 4 3 1 2
6 4 5 1 2 3

1 2 3 4 5 6
2 3 4 1 6 5
3 4 5 6 1 2
4 1 6 5 2 3
5 6 1 2 3 4
6 5 2 3 4 1

1 2 3 4 5 6
2 3 4 5 6 1
3 4 1 6 2 5
4 5 6 1 3 2
5 6 2 3 1 4
6 1 5 2 4 3

Now assume thatn ≥ 7 is odd. We begin by adding an extra column and placing
a new symbol∞ in cells .1;n + 1/ and.2;n + 1/. We then switch the symbols in
cells .1;1/ and .1;n + 1/ and switch the symbols in cells.2;2/ and .2;n + 1/ to
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obtain an.n + 1/ by .n + 1/ latin rectangle. By Theorem3.1, this latin rectangle can
be completed to a unipotent symmetric latin square. Fori = 1;2; : : : ;n, we replace
symbol∞ in cell .i; i /with the symbol from cell.i;n +1/. We then delete rown +1
and columnn + 1 to obtain the requiredn by n symmetric latin square.

Now assume thatn ≥ 8 is even. Letx; y andz be the symbols in cells.1;1/; .2;2/
and.1;2/ respectively (it is possible thatx = y) and letw be a symbol, distinct from
x; y andz that is not in the same column as eitherx or y in the latin rectangle (since
n ≥ 8, such a symbol exists). Supposew is in cells.1; r / and.2; s/. We begin by
switching symbolsx andw in row 1 and symbolsy andw in row 2. The resulting latin
rectangle can be completed to a unipotent symmetric latin square by Theorem3.1. We
then switch symbolsx andw in rows 1 andr and switch symbolsy andw in rows 2
ands to obtain the required symmetric latin rectangle.

Because of the equivalence betweenn by n unipotent symmetric latin squares and
.n − 1/-edge colourings ofKn for n even, and the equivalence between symmetric
latin squares andn-edge colourings ofKn for n odd, we obtain the following two
results as immediate corollaries of Theorem3.1and Theorem3.3respectively.

THEOREM 3.4. Letn be evenand letu andv be two vertices ofKn. An assignmentA
of colours to the edges incident with eitheru or v can be completed to an.n−1/-edge
colouring ofKn if and only if

• A assigns distinct colours to adjacent edges; and
• if n = 6, each4-cycle that is assigned colours byA is assigned at least three

distinct colours.

THEOREM 3.5. Letn be odd and letu andv be two vertices ofKn. An assignment
A of colours to the edges incident with eitheru or v can be completed to ann-edge
colouring ofKn if and only if

• A assigns distinct colours to adjacent edges;
• every colour is assigned either tou or to v; and
• if n = 5, each4-cycle that is assigned colours byA is assigned at least three

distinct colours.
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