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Abstract

We find necessary and sufficient conditions for completing an arbitrary 2 lagin rectangle to am

by n symmetric latin square, for completing an arbitrary 2rblatin rectangle to am by n unipotent
symmetric latin square, and for completing an arbitrary IhBgtin rectangle to an by n idempotent
symmetric latin square. Equivalently, we prove necessary and sufficient conditions for the existence of
an(n— 1)-edge colouring oK, (n even), and for an-edge colouring oK, (n odd) in which the colours
assigned to the edges incident with two vertices are specified in advance.

2000Mathematics subject classificatioprimary 05B15.

1. Introduction

An n by n (partial) latin squareis ann by n array in which each cell contains (at
most) one symbol, chosen from asset, such that each symbol occurs (at most) once
in each row and (at most) once in each column. A partial latin square is said to be
completed tqor embedded ina latin squareif its empty cells are filled to produce a
latin square. There exist many results on completions or embeddings of partial latin
squares, se€[ Sections 11.1.6 and 1V.17]. Perhaps two of the best known relate to
the Evans ConjecturandHall’'s Marriage Theoreni4]. In 1960, Evans conjectured
that any partiah by n latin square with at most — 1 filled cells can be completed to
a latin square. The conjecture was proved in 1981 by Smetarfjuk [

An m by n latin rectangleis anm by n array in which each cell contains one
symbol, chosen from an-set, such that each symbol occurs once in each row and at
most once in each column. An by n latin rectangle may be thought of as a partial
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n by n latin square in which the firgn rows are filled and the remaining cells are
empty. An easy corollary of Hall's Theorem is that anyoy n latin rectangle can be
completed to am by n latin square.

A latin square isymmetridf for i £ j, the symbolincel(i, j)isalsoincellj,i).
Consider the more difficult problem of completing latin rectangles to symmetric latin
squares. Ifm = 1, it is trivial to complete anyn by n latin rectangle to a symmetric
latin square. Just take amby n symmetric latin square and permute the symbols so
that the first row is the 1 b latin rectangle. However, the question is far from trivial
for m > 1. In this paper we prove necessary and sufficient conditions under which a
2 byn latin rectangle can be completed to a symmetric latin square; see Th8dem

A latin square isunipotentif every diagonal cell contains the same symbol. If
there exists am by n unipotent symmetric latin square, tharis necessarily even
(since the number of occurrences of each symbol, other than the symbol which occurs
on the diagonal, must be even). A latin squar@&mpotentf symboli is in cell
(@i,i) for alli. If there exists am by n idempotent symmetric latin square, theis
necessarily odd (since each symbol occurs once on the diagonal and an even numbe
of times not on the diagonal). We also provecessary and sufficient conditions
under which a 2 by latin rectangle can be completed to a unipotent symmetric latin
square (see Theorefl), and necessary and sufficient conditions under which a 1
by n latin rectangle can be completed to an idempotent symmetric latin square (see
Theorens3.2).

These results extend arich literature of related embedding results. Inthe containing
n by n latin squarel., when either symmetry has been required.pbr the diagonal
of L has been prescribed in some way, then results in the literature have limited the
filled cells to all occur in cellgi, j), wherei, j < r for somer < n. For example,
Cruse has settled such an embedding problem in the case Whsnequired to be
symmetric B]. It turns out that ifn is odd then because of thienitation on where
the filled cells occur, this result also solves the embedding problem in the case where
L is both symmetric and idempotent. The more general result that predetermines the
diagonal ofL whenL is symmetric was later solved by Anderséh [The extremely
difficult related problem of specifying the diagonal bbf but not requiringL to be
symmetric, has yet to be solved. However, it has been solved by Rodger in the case
wheren > 2r + 1 [6], and in the idempotent case whaere= 2r [5]. In none of
the literature to this point has any result been able to deal with the case where the
non-diagonal filled cells span the rows or columns of the containing latin square
and eithelL is required to be symmetric or the diagonalois specified in some way.
Such completions are the main focus of this paper.

An edge colouringof a graphG is an assignment of colours to the edgesGof
such that adjacent edges are assigned distinct coloukscdiours are used then the
colouring is called &-edge colouring An n by n symmetric latin square defines a
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proper edge colouring df,, as follows: with{vs, v, ..., v,} being the vertex set of
Ko, let the symbol in celli, j), i # j, be the colour assigned to the edge;. For
n even, am by n unipotent symmetric latin square is equivalent to(an- 1)-edge
colouring ofK,, (the colour corresponding to the symbol that occurs in the diagonal
cells is not assigned to any edge). Foodd, ann by n symmetric latin square is
equivalent to am-edge colouring oK,, (each symbol must occur exactly once on the
diagonal and the symbol in c€ll, i) is the colour which does not occur at vertgx
Our results allow us to prove necessary and sufficient conditions for the existence of
ann-edge colouring oK, in which the colours incident with two particular vertices
are specified in advance, see Theofzrand Theoren3.5.

The proof of our results will follow from the existence symmetric quasi-latin
squareswith specified diagonals. We define and construct these in the following
section.

2. Symmetric quasi-latin squares

We define asymmetric quasi-latin squaSQLS) with symbolsxg, X, ..., X, t0
be ann by n array of cells such that

(i) each cell not on the diagonal contains exactly one symbol;
(i) each cell on the diagonal contains exactly two distinct symbols;
(i) each of the symbols,, x,, ..., X, occurs in exactly two diagonal cells argl
occurs in no diagonal cells;
(iv)y forl<i < j <n,cell(, j) contains the same symbol as aglli); and
(v) eachsymbol occurs exactly once in each row and exactly once in each column.
It is clear from (iii) and (iv) that the number of occurrencesath symbol is even
and so there are noby n SQLS’s whem is odd.
Suppose an SQLS has symboin cells (i1, i1), (i5,13), (is,i5), ..., (ik_1, k) and
symboly in cells (iy, i,), (i3, i4), (i5,16), ..., (ix_2, ik=1), (ix, ix) Whereiy, i, ..., I
are distinct. If we puy instead ofx in the cells

(i1,11), (ip,i3), (i3, 1), (i, i5), (is,1a), ..., (ike1s 1)y (ks k1)
andx instead ofy in the cells
(i1,12), (ip,11), (i3,14), (ia,i3), (is,i6), (ig,i5)s ..., (k2 ikc1)s (ikets Tk2)s (ks 1)

then we obtain a new SQLS whose diagonal differs from that of the original SQLS
only in thaty is in cell (i4, i,) instead ofx, andx is in cell (iy, i) instead ofy. We

call such a configuration of cells and symbols(@ny)-pathfrom cell (i,, i,) to cell

(ik’ Ik)
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The diagonal of am by n SQLS defines a 2-regular multigraph withvertices

in an obvious way: the vertices are the symbols occurring on the diagonahand
is an edge if and only it and v occur together in a diagonal cell (so a 2-cycle
results whenever two distinct diagonal cells contain the same pair of symbols). An
SQLS whose diagonal defines a 2-regular multigr&phill be called an SQLEF).
If F =C,, +Cy, + -+ Cy, is the vertex disjoint union ok cycles of lengths
my, My, ..., M, thenan SQLE) withsymbols01,...,n(n = my+my+---+my),
with

e iandi—m;+1incell,i)fori = Z:zlmr,t =12, ...,k; and with

e iandi+1lincell(,i)forie(l,2,....n\{>_m:t=12...k}
is said to be instandard form It is clear that an SQLJ) exists if and only if an
SQLS(F) in standard form exists; either can be obtained from the other by applying
a permutatiorr to the symbols and a permutatiarto the rows and columns. Unless
stated otherwise, from here on, all SQIESs will be assumed to be in standard form.
We will however rearrange the order of the cycledsino aid our constructions. We
define.%Z, to be the class of all 2-regular multigraphs witlertices.

Ifn=0 (mod 4 thenletm = (n—4)/2 andifn =2 (mod 4 letm = (n—2)/2.

We partition the cells of an SQLS into four regions as follows.

e The cells(i, j) with 1 < i, ] < mwill be called thetop left

e The cells(i, j) withm+ 1 < i, j < nwill be called thebottom right

e The cells(i, j)with1 <i <mandm+ 1 < j < nwill be called thetop
right.

e Thecells(i, j)withm+1<i <nandl1l< j <muwill be called thebottom
left.

Before our main SQLS constructions, we need the following lemma.

LEMMA 2.1. Supposen > 6 and leta be any permutation ofl, 2, ..., n} with
a(i) <i—L1lora() =i+ 1 There exists a colouring of the edges of te
cycle(vy, vo, ..., v,) With the colourgc,, ¢,, ..., ¢} such that each edge receives a
different colour and such that fare {1, 2, ..., n}, ¢, ¢, and the colours of the two
edges incident with; are all distinct.

PrOOF. In this proof, the subscripts are reduced moduto the residues,1.., n.
Fori = 1,...,n, callc andc,g, the colours assigned to the vertex Let B be a
bipartite graph with bipartitiodE(C,,), {cy, ..., c,}} of the vertex seV (B). Define
the edge seE(B) by joining the edggu;, vi;1} to the colourc; if and only if c;
is not assigned to eithers or v,;. Then clearly§(B) > n — 4. It is sufficient
the show thatB contains a perfect matching. Suppose there exists a s@bset
{Cy, C, ..., Cy} SUCh that the neighbourhoddk (S) of S contains fewer vertices than
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S. Then|S| > IN(S)| > §(B) > n— 4. Ifthereis a vertexw € E(C,) \ N(S
then it is adjacent to at leasi{B) vertices, none of which are i®. Therefore
Nn=I{Cy,...,C}l =[S +|N@)| > 2(n—4); son € {6, 8}. Itis now straightforward
to verify that there is no such s8tand the result follows by Hall's Theorer][ O

The following is well known, but is included for completeness.

LEMMA 2.2. There exists d-factorization ofK,; — H, whereH is a hamilton
cycle.

PrOOF. The usual 1-factorizatioff, . .., Fo_1} of K51 defined by
Fi={{oo,i} (i —ji+j}1<]<x-1}
has the property thdt, U F, is a hamilton cycle. O

LEMMA 2.3. Letn > 6 be even, lem = (n — 2)/2if n = 2 (mod 4 and let
m = (n—4)/2if n= 0 (mod 4. If there exists aBQLSF,), F, € %, then there
exists arfSQLSF; + F,) forall F, € .Z,_.

ProoF. We fill the diagonal cells so that they defifre + F, and complete the top
left to an SQL$F;). If n =2 (mod 4, we can fill the remaining cells in the bottom
right with symbols chosen frof0, 1, 2, ..., m}, since this is equivalent to finding an
(n —m — 1)-edge colouring oK _,. If n =0 (mod 4, then by Lemm&.1we can
fill the n—m diagonally opposite pairs of celfgm+1, m+2), (m+2, m+ 1)}, {(m+
2,m+3),M+3, m+2)},...,.{(n=21n),(n,n—=21}, {(n,m+1), (m+ 1, n)} with
the symbolsn+ 1, m+ 2, ..., n such that each symbol occurs in exactly one pair of
cells. We can then fill the remaining cells in the bottom right with symbols chosen
from{0, 1, 2, ..., m}, since this is equivalent to finding &n— m— 3)-edge colouring
of K,_m) with the edges of a hamiltonian cycle removed (see Lerr#a

Let R, be the 2 byn—m latin rectangle constructed by placing,foe 1, 2, ..., n—

m, symbolm + i in cell (1,1) and the other symbol from celin + i, m + i) of the
existing partial SQLS in celi2,i). If n = 2 (mod 4, then we letR = R, and if
n =0 (mod 4, we letR be the 4 byn — m latin rectangle defined as follows. Let

rows 1 and 2 oR be equaltorows 1 and 2 &,. Fori =1,2,...,n—m—1, place
the symbol from cellm+i + 1, m+i) of the existing partial SQLS in ceB, i) and
the symbol from cellm+ 1, n) incell (3,n—m). Fori =2,3,...,n—m, place the

symbol from cellm +i — 1, m+i) of the existing partial SQLS in ce(#, i) and the
symbol from cell(n, m+ 1) in cell (4, 1). Note that all the symbols iR are chosen
from{im+1m+2,...,n}.

We canfill the cells in the top right with symbols chosen friom+1, m+2, . .. , n},
since this is equivalent to completing the latin rectarigl® an(n — m) by (n — m)
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latin square. We then complete the SQES+ F») by filling the cell(j, i) with the
symbol fromcell(i, j) forl <i <mandm+1<j <n. O

LEMMA 2.4. Letn = 6 orn > 10be even, lem = (n— 2)/2if n = 2 (mod 4
andletm = (n—4)/2ifn=0 (mod 4. Let2<r <m-—2orr = mand let
2<s<n-m-2ors=n-m. Ifthere exists alBQLSF, +C,), F, € Z,._,, then
there exists aBQLSF, + C,,c + F,) forall F, € Z,_n_s.

PrOOF. LetF = F; +C, s+ F,and letF’ = F, + C, + C; + F,. By Lemma2.3
there exists an SQLE’). Note that the diagonal cells of an SQUS) differ from
those of an SQL& ) only in cell (m, m), where symbolsn andm — r + 1 occur
instead of symbolsn andm + 1, and in celllm + s, m + s), where symbolsn + s
andm + 1 occur instead of symbota + sandm —r + 1.

However, by the construction of the SQUES) in Lemma2.3, we have the freedom
to independently permute the rows in the top right (and simultaneously perform
the corresponding permutation to the columns in the bottom left) and the symbols
0,1,2,...,min the bottom right. We will carry out such permutations so that there
exists an(m —r + 1, m + 1)-path from cell(m, m) to cell(m + s, m+s). We can
then interchange symbats — r 4+ 1 andm + 1 along this path so that the required an
SQLSF) results.

Whenn =2 (mod 4, we permute the symbols 0, 2, ..., min the bottom right
so that symbom — r + 1 occurs in cellm + s, t) wheret is such that cellm, t)
contains the symbah + 1. This ensures that there exists@n—r + 1, m + 1)-path
involving cells(m, m), (m,t), (m +s,t), (M+s,m+5s), (t, m+5s), (t, m).

Whenn = 0 (mod 4, we permute the symbols 0, 2, ..., min the bottom right
so that symboin — r + 1 occurs in cellm + s, t) wheret is such that the occurrence
of symbolm + 1 in columnt is in the top right. Sincen > 4, this is always possible
(note thatm + 1 occursm times in the top right, there ara + 1 occurrences of the
symbols 01, 2, ..., min eachrow of the bottom right, ané2+-1 > n—m = m+4).

We then permute the rows in the top right so that synmbet 1 occurs in cellm, t).
Then, as in the = 2 (mod 4 case, we have afm — r + 1, m + 1)-path involving
cells(m, m), (m,t), (m+s,t), (Mm+s, m+5s), (t,m+5s), (t, m). O

LEMMA 25. Lletn =0 (mod 4, n > 12 m=(Mn—-4/2,3<r <m-—2o0r
r=m,andlet2<s<n-m-—2ors=n-—m. Ifthere exists alIsQLSF, + C,),
F, € Z._, then there exists aBQLSF, + C,_; + Cs,1 + F,) forall F, € Z,_1n_s.

PrOOF. LetF = F; +C_1 + Csu + Foand letF' = F; + C, + Cs + F,. By
Lemma2.3there exists an SQLE’). Note that the symbols in the diagonal cells of
an SQLSF") differ from those of an SQLS) only
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e incell(m— 1, m— 1) where symbolsn — 1 andm occur instead of symbols
m-—1landm-—r +1;

e in cell (m, m) where symbolsn andm — r 4+ 1 occur instead of symbols
andm+ 1; and

e incell(m+s, m+s) where symbolsn+s andm+1 occur instead of symbols
m+ sandm.

However, by the construction of the SQUS), we have the freedom to indepen-
dently permute the rows in the top right and the symbols @, ..., min the bottom
right. We will carry out such permutations so that there existgraym + 1)-path
fromcell(m—1, m—1) tocell(m+s, m+s),an(m—r + 1, m+ 1)-path from cell
(m—=r+1 m—r+1)tocell(m+1, m+ 1), and such that no cell is common to these
two paths. By switching the symbols along these two paths and then interchanging
symbolsm — r + 1 andm + 1 throughout the SQLS we will obtain the required
SQLSF).

The(m, m+ 1)-path will involve cellsim—1, m—1), (m—1,t), (m+s,t), (m+
s, m+5s), (t, m+s) and(t, m— 1) wheret is some integerintherange+1 <t < n.
Choose arbitrarily such that the symbat+ 1 in columnt is in the top right and such
that cell(m + s, t) contains one of the symbols D, 2, ..., m. Sincem > 4 implies
n —m > 8, since there are four occurrences of symhel 1 in the bottom right, and
since in each row of the bottom right there are two off-diagonal cells which are filled
with symbols other than,@, 2, ..., m, there are at least two choices torPermute
the symbols in the bottom right so thatis in cell(m + s, t) and permute the rows in
the top right so that symbah + 1 is in cell(m — 1, t), thus ensuring that the required
(m, m + 1)-path exists.

The(m —r + 1, m+ 1)-path will involve cellstm —r +1, m—r +1),(m—r +
1,t), (m+1,t"), (m+1, m+1), (', m—r+1) and(t’, m+1) wheret’ is some integer
in the rangan+ 1 < t’ < n. We require that’ # t, the symboim + 1 of columnt’ is
in the top right, and that celm+ 1, t’) contains one of the symbols D, 2, ..., m—1.

As in the case of finding for the (m, m + 1)-path, we have at least two choices for
t" after excluding the columns in whiah + 1 occurs in the bottom right and the two
cells which do not contain one of the symbolsl02, ..., m. However, we now also
need to ensure that# t’ and that the cellm + 1, t') does not contaim. But since
the two columns that do not contain one of the symbols @, ..., minrowm+s

of the bottom right are not the same as the two columns that do not contain one of
the symbols 01, 2,...,min row m + 1 of the bottom right, we can always find a
suitablet’. We now permute the symbols, leaving symbdiixed, in the bottom right
so that symbom —r 4+ 1 is in cell(m + 1,t’) and we permute the rows in the top
right, leaving rowm — 1 fixed, so that symbah + 1 is in cell(m —r + 1,t'), thus
ensuring that the requirgdh — r + 1, m + 1)-path exists. O
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LEMMA 2.6.Letn =2 (mod 4, n > 10 m=(n—2)/2,2<r <m-—2o0r
r=mandlet3<s<n-m-2ors=n-m. Ifthere exists alBSQLSF, + C,),
F, € Z._., then there exists aBQLSF, + C,,; + C_1 + F,) forall F, € Z,_1_s.

PrOOF. LetF = F +C 1+ Cs1+ Foand letF' = F; + C, + Cs + F,. By
Lemma2.3there exists an SQLE’). Note that the symbols in the diagonal cells of
an SQLSF") differ from those of an SQLS) only

e in cell (m, m) where symbolsn andm — r 4+ 1 occur instead of symbols
andm + 1;

e incell(m+1, m+1) where symbolsn+ 1 andm+ 2 occur instead of symbols
m+ 1andm—r +1; and

e incell(m+s, m+s) where symbolsn+s andm+1 occur instead of symbols
m+ sandm + 2.

As in the previous lemma, we have the freedom to permute the rows in the top right
and we have an amount of freedom when we fill the cells in the bottom right with
the symbols 01, 2, ..., m. We will ensure that there exists @am —r + 1, m + 1)-
path from cell(m, m) to cell(m+ s, m+s), an(m —r + 1, m + 2)-path from cell
(Mm—=r+1 m—r+1)tocell(m+2, m+2), and such that no cell is common to these
two paths. By switching the symbols along these two paths and then interchanging
symbolsm — r + 1 andm + 2 throughout the SQLS we will obtain the required
SQLSF).

The (m —r + 1, m + 1)-path will involve cells(m, m), (m,t), (m + s,t), (m +
s,m+s), (t,m+ s), (t,m) and the(m — r + 1, m + 2)-path will involve cells
(m=r+1, m—r+1), (m—r+1,t), (m+2,t"), (M+2, m+2), (t', m—r+1), (t', m+2)
wheret andt’ are integersintherange+ 1 <t <n.

There aren — m — 3 = m— 1 columns in the top right that contain bati4- 1 and
m+ 2 (the columns that do not contain baetht 1 andm+ 2 are columnsn+1, m+-2
andm + s). Sincen > 10,m > 4, and so we always have at least 3 such columns in
the top right. Let these columns bg’ andt”. We permute the rows in the top right
so that symboim + 1 is in cell(m, t). This may force symbah + 2 into cell(m, t")
or into cell(m, t”) but not both, and so we can assume without loss of generality that
symbolm + 2 is not in cell(m, t). Thus we can permute the rows in the top right
(leavingm + 1 in cell (m, t)) so that symbom + 2 isincell(m —r + 1, t).

When constructing the SQILE"), we ensure that symbat —r + 1 occurs in cells
(m+s,t) and(m + 2,t'). This is possible, as filling in these cells is equivalent to
finding an(n — m— 1)-edge colouring oK, _, (with vertex se{fm+1, m+2,...,n})
and we can ensure by relabeling the vertices that the the edges corresponding to th
cells(m + s, t) and(m + 2, t) are assigned the same colour. Note that our choice of
t andt’ ensures thah 4+ 2, m + s, t andt’ are distinct. O
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LEMMA 2.7. Letn < 12be even and lef € .Z,. Then there exists @QLSF) if
and only ifF #£ C, + C,.

PROOF. Forn = 2 andn = 4, theonlycasesafe = C,, F = C,andF = C,+C,.
It is easy to see that there is no SQCs5+ C,). An SQLSC,) and an SQL&C,) are
shown below. Fon = 6, the result follows by Lemma.3 (and the existence of an
SQLSCy)) if F contains a 2-cycle. FdF = Cg, we can use Lemm2a.4withr = 2
ands = 4. This leaves only the case of an SQCS+ C;) which is shown below.

1,2 4 5 6 3 0

1,2 4 0 3 4 12,3| 6 1 0 5

1,2 0 4 12,3 1 0 5 6 (31| 0 4 2
021 0 1134 2 6 1 0 45| 2 3
3 0 2 141 3 0 4 2 /56| 1

0 5 2 3 1 16,4

For the casen = 8, the result follows by Lemma.3 (and the existence of an
SQLSC,))if F contains a 2-cycle. This leaves only an SQCS, an SQLSC,+C,)
and an SQL&C; + C;) which are shown below.

1208|7103 |5(6|4]|L,28|7]|5]3|4|6|0
8123674015 8123 6|7]4,0|5|1
716113481250 7163481502
0| 7,845 2|1|3|6 5/7,81(410| 2|3 |6
314,1|2|56/8|0)|7 3/4,1|0156/ 8|27
5102|1867 4|3 4105|2867 1|3
6| 1,5|3|0)|4178 2 6|5/0]|3|2)|1/7,8 4
4|15|0|6|7|3|2(81 0|12 |6|7]|3|4]85
1,2/8|7]6|3]54]0
8123674105
7163482051
6|7 ,8|45 02|13
314,2|01(51 8|6 |7
5/1,0|2|81]67/ 3|4
410|5|1|6|317,8 2
O/ 5|13 |7|4] 286

For the casen = 10, the result follows by Lemma.3 (and the existence of an
SQLSCy)) if F contains a 4-cycle. Also, iF contains a cycl€, with x > 6 then
the result follows by Lemma.4withr = 4 ands = x — 4. ForF = Cs + Cs and
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F = Cs+C3+C, we use Lemma.6withr = 4 and withs = 6 ands = 4 respectively.
This leaves only an SQLE;+C3+C,+C,) and an SQLBC, +C, +C,+C,+Cy)
which are shown below.

1,21 10| 9 8 0 7 3 4 5 6
10 | 2,1| 8 9 7 0 4 3 6 5
9 8 13410 1 2 5 6 7 0
8 9 |10 |43] 2 1 6 5 0 7
0 7 1 2 |56| 8 9 | 10 3 4
7 0 2 1 8 |65 10| 9 4 3
3 4 5 6 9 110(78| 0 1 2
4 3 6 5110 9 0 87| 2 1
5 6 7 0 3 4 1 2 19,10, 8
6 5 0 7 4 3 2 1 8 10,9

1,21 10| 9 8 0 7 3 4 5 6
10 | 2,3| 8 9 7 1 4 5 6 0
9 8 |31]10| 2 0 5 6 7 4
8 9 11045 1 2 6 3 0 7
0 7 2 1 56| 8 9 |110| 4 3
7 1 0 2 8 |64 10| 9 3 5
3 4 5 6 9 110(78| 0 1 2
4 5 6 3 10| 9 0 87| 2 1
5 6 7 0 4 3 1 2 19,10, 8
6 0 4 7 3 5 2 1 8 10,9

For the casen = 12, the result follows by Lemma.3 (and the existence of an
SQLSCy)) if F contains a 4-cycle. Also, if contains a cycl€, with X > 6 then the
result follows by Lemma&.4withr =4 ands =x — 4. ForF =C;+C3+ C3+C3
andF = C;+C3+C, +C, + C,, we use Lemma.5withr = 4, s = 2 and with
F, = C;+ CzandF, = C, + C, + C, respectively. FolF = C; + Cs + C, + Cy,
we use Lemma&.5withr = 4, s = 4 and withF, = C, + C,. This leaves only an
SQLSCs +Cs + C,) and an SQL&C, + C, + C, + C, + C, + C,) which are shown
in Figurel. O

LEMMA 2.8. Letn be an integer and leE € .%,,. Then there exists 8BQLSF) if
and only ifnis even and= # C, + C..

ProOOF. The proof is by induction. We have already noted that there do not exist
n by n SQLS’s forn odd and the result is true for af € %, with n < 12 by
LemmaZ2.7. So assum@& > 14 is even and assume the result is true for all even
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1,210} 11|12 | 9 8 4 0 5 6 3 7
10 12,1 12| 11| 8 9 0 4 6 5 7 3
11| 12 | 3,4| 10 | 7 0 6 9 1 8 2 5
12| 11| 10 |43] O 7 5 6 2 1 9 8
9 8 7 0 |56| 1 2 12| 11 3 4 10
8 9 0 7 1 16,5 2 | 11 4 12 10 2
4 0 6 5 2 3 7,8 10| 12 11 1 9
0 4 9 6 | 12| 11|10 (87| 3 2 5 1
5 6 1 2 11| 4 12| 3 910 O 8 7
6 5 8 1 3 | 12|11 2 0 10,9 7 4
3 7 2 9 4 110 1 5 8 7 | 1112 0
7 3 5 8 | 10| 2 9 1 7 4 0 12,11

1,210} 11|12 | 9 8 4 0 5 3 6 7
10 12,3 12| 11| 8 9 0 4 6 5 7 1
11| 12 | 3,4| 10 | 7 0 6 1 2 8 5 9
12| 11| 10 |45] O 2 1 6 7 9 3 8
9 8 7 0O |51| 3 2 12| 11 4 10 6
8 9 0 2 3 /67| 5 |11 4 12 1 10
4 0 6 1 2 5 17,8| 10| 12 11 9 3
0 4 1 6 | 12| 11|10 (89| 3 7 2 5
5 6 2 7 11| 4 12| 3 |910| 1 8 0
3 5 8 9 4 |12 11| 7 1 |10,6 0 2
6 7 5 3 110 1 9 2 8 0 1112 4
7 1 9 8 6 | 10| 3 5 0 2 4 12,11

FIGURE1. An SQLSC5 +Cs + Cz) and an SQL&Z +Co+Co+Co+Co+ Cz)

integers less than. We use Lemmag.3-2.6. As before,lem=(n—-2)/2ifn=2
(mod 9 andm = (n —4)/2 if n = 0 (mod 4. Sincen > 14, m > 6 and so an
SQLSF') exists for allF’ € .Z,,.

It is clear that for anyF € .%,, the cycles ofF can be arranged in some order
Crys Cmgs -+ Ce such tham — 1 ¢ {37 m; :t = 1,2, ...k} unless there exists
an integer that divides both—1 andn. Similarly, the cycles of anff € .#, canbe ar-
ranged insome ord€};,, , C,.. ..., Cy, suchtham+1 ¢ {Zitzl m:t=12...k}
unless there exists an integer that divides ot 1 andn.

Whenn = 2 (mod 4, m — 1 andn are relatively prime, and so the cycles©f
can be ordered such that we can use either Lerar§a2.4 or 2.6 to construct an
SQLSF). Similarly, whenn = 0 (mod 4, m+ 1 andn are relatively prime, and so
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the cycles ofF can be ordered such that we can use either Leidrg&.4 or 2.5to
construct an SQLG). O

3. Main results

With Lemma2.8 in hand, we are now ready to prove our main results. Unless
stated otherwise, afl by n latin squares will have symbols 2, ..., n.

THEOREM3.1. Letn > 2 be an integer. £ by n latin rectangle can be completed
to a unipotenn by n symmetric latin square if and only if
(i) niseven
(i) the symbolin cel(1, 2) is also in cell(2, 1);
(i) the symbolin cel(l, 1) is also in cell(2, 2); and
(iv) the2byn latin rectangle cannot be obtained from

w
ol
»
N

112|3]4|5|6 or 112|3|5/4|6 or 112
211{4|3|6(5 211/4/6|3|5 211/4/6|5|3

by any symbol permutation.

ProOF. Conditions (i), (ii) and (iii) are clearlyecessary. Suppose a latin rectangle
satisfying conditions (i)—(iv) is completed to a 6 by 6 symmetric latin square. By
symmetry row 3 contains symbols 3 and 4 in c€Bsl) and(3,2). Therefore the
occurrence in row 3 of symbols 1 and 2 must be in the columns that already contain
symbols 5 and 6; so symbol 1 does not occur in ¢&IB) and the latin square is not
unipotent. Hence condition (iv) is alsecessary.

We use Lemma&.8 to prove sufficiency. To construct the required latin square
L, we first place, foi = 3,4,...,n andt = 1, 2, the symbol in cellt, i) of the
latin rectangle in celli, t) of L. By LemmaZ2.8 and condition (iv), there exists an
(n —2) by (n — 2) SQLST with diagonal defined by placing, for= 3,4, ..., n, the
symbols in cell§1, i) and(2, i) of the latin rectangleinceli —2,i —2) of T. LetO
be the symbol not occurring on the diagonalloind lety andz be the symbols in
cells(1,1) and(1, 2) of L respectively. For 3z j < n,ifcell i —2,j —2)of T
contains symbok then placey, zor x incell (i, j) of L if i = j, x = 0, or otherwise
respectively. O

THEOREM3.2. Letn > 1 be an integer. A by n latin rectangle can be completed
to an idempotent by n symmetric latin square if and only if

(i) nisodd

(i) the symbolincel(1,1)is1;
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(i) fori =2,3,...,n,symbol is notin cell(1,i); and
(iv) thelbyn latin rectangle is not

|1]3|2|5]4] or [1]4]5]2]3] or [1]5[4][3]2]

ProOF. Conditions (i), (ii) and (iii) are clearlyecessary. To see that the latin rect-
angles given in condition (iv) cannot be completed to a 5 by 5 idempotent symmetric
latin square, fill in the first column (by symmetry) and the diagonal, and then observe
that symbol 1 is forced to occur in at least two cells of column 2.

Sufficiency follows almost immediately from Theore®rl First, construct a 2
by n + 1 latin rectangleR with first row oo, 1,2,...,n, symbol 1 in cell(2, 1),
symboloo in cell (2, 2) and the symbol from celll, i) of the given latin rectangle in
cell(2,i+1)fori =2,3,...,n. By TheorenB.1, Rcan be completed to ar4- 1 by
n+ 1 unipotent symmetric latin squalke The requirech by n idempotent symmetric
latin square can then be obtained fradimby deleting the first row and column, and
then replacing the symbol in c«ll, i) with symboli for alli. O

THEOREM 3.3. Letn > 2 be an integer. £ by n latin rectangle can be completed
to ann by n symmetric latin square if and only if

(i) the symbolin cel(1, 2) is also in cell(2, 1);
(i) if nis odd, the symbols in celld, 1) and (2, 2) are distinct and
(i) the2byn latin rectangle cannot be obtained from

112|345 or 112(4|3|5 or 1124
213/1|5|4 2|13|5|1|4 213|541

ol
w

by any symbol permutation.

ProOF. Condition (i) is clearly ecessary. If is odd, then in any by n symmetric
latin square each symbol occurs exactly once on the diagonal and sdi@o(id is
also necessary. Itis simpler if we deal separately with the caseg, 3,4, 5 and 6.
First we make the following observation.

If we apply any permutatiomr of {3,4,...,n} to the columns of a given 2 by
n latin rectangleR (that is, we shift the symbol in celi, j) to cell (i, 7(j)) for
i =12andj = 3,4,...,n) and then apply any permutatienof {1,2,...,n} to
the symbols, we obtain a 2 bylatin rectangleR’. If R’ can be completed to am
by n symmetric latin squark’, thenR can be completed a symmetric latin squiare
Applying the symbol permutatiom~* to L’ and then shifting the symbol in c&ll, j)
to cell (z=%(i), 771(j)) for 3 < i, j < nresults in a symmetric latin squakewhich
hasR as its first two rows. Hence we need only consider latin rectangles that cannot
be obtained from each other by applying such column and symbol permutations.
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The cases = 2 andn = 3 are trivial and foin = 4, completions of the two latin

Darryn Bryant and C. A. Rodger

rectangles that we need to consider are shown below.

11234 11234
211143 213|141
34|12 34|12
413|121 411123
Forn = 5, we need to consider the following two latin rectangles.
11213145 1121345
213|1|5|4 213|451

Itis straightforward to check that the first has no completion and so condition (iii) of
the theorem is necessary. A completion of the second is shown below.

112345
213|451
3/4|5|1|2
4151123
5/1|12|3|4
Forn = 6, there are five cases to consider and completions of each of these are showi
below.
112|3|4|5]|6 112|3|4|5]|6 112|3|4|5|6
211/4/3|6|5 2/1/4/5(6(3 2/3|1|5(6|4
3/4/5/6|1|2 3/14/1/6|2|5 3/1/2/6(4|5
4|13|6|5(2|1| |4|5|6|1|3|2| |4|5|6]|2|3]|1
5/6|/1|2(3|4 5/6[2[3|1|4 5/6[4[3|1|2
6(5/2|1(4|3 6/3|/5/2(4(1 645123
1/2(3|4|5|6 112|3|4|5|6
213|4]1|6|5] |2|3|4|5|6]1
3/4|5/6|1|2| |3|4|1]|6|2]|5
411|16|5|2|3| |4]|5|6|1]|3]|2
5/6(1/2|3|4| |5|6|2|3|1|4
6/5(2[3|4|1] |6|1|5]2|4]|3

Now assume that > 7 is odd. We begin by adding an extra column and placing
a new symbobo in cells(1,n + 1) and(2,n + 1). We then switch the symbols in
cells(1,1) and (1, n + 1) and switch the symbols in cell2, 2) and(2,n + 1) to
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obtain an(n + 1) by (n + 1) latin rectangle. By Theoref], this latin rectangle can
be completed to a unipotent symmetric latin square.ikerl, 2, ..., n, we replace
symbolocoin cell (i, i) with the symbol from celli, n+ 1). We then delete row + 1
and columm + 1 to obtain the required by n symmetric latin square.

Now assume that > 8 is even. Lek, y andz be the symbols in cellel, 1), (2, 2)
and(1, 2) respectively (it is possible that= y) and letw be a symbol, distinct from
X, y andz that is not in the same column as eithxeor y in the latin rectangle (since
n > 8, such a symbol exists). Suppaoses in cells(1,r) and(2,s). We begin by
switching symbolx andw in row 1 and symboly andw in row 2. The resulting latin
rectangle can be completed to a unipotent symmetric latin square by Thadcevie
then switch symbolg andw in rows 1 and and switch symboly andw in rows 2
ands to obtain the required symmetric latin rectangle. O

Because of the equivalence betwedny n unipotent symmetric latin squares and
(n — 1)-edge colourings oK, for n even, and the equivalence between symmetric
latin squares and-edge colourings oK, for n odd, we obtain the following two
results as immediate corollaries of Theorgrhand Theoren3.3respectively.

THEOREM 3.4. Letn be evenand lat andv be two vertices oK,. Anassignmeni
of colours to the edges incident with eitheor v can be completed to aim — 1)-edge
colouring ofK,, if and only if

e A assigns distinct colours to adjacent edges; and
e if n = 6, eachd-cycle that is assigned colours ldyis assigned at least three
distinct colours.

THEOREM 3.5. Letn be odd and leti andv be two vertices oK,. An assignment
A of colours to the edges incident with eitheor v can be completed to amedge
colouring ofK,, if and only if

e A assigns distinct colours to adjacent edges

e every colour is assigned either toor to v; and

e if n =5, eachd-cycle that is assigned colours ldyis assigned at least three
distinct colours.
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