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Abstract

A subset? of an associative ring is auniform insulatorfor R provideda.’b # 0 for any nonzero
a,b € R TheringR is calleduniformly strongly prime of bouneh if R has uniform insulators and the
smallest of those has cardinality Here we compute these bounds for matrix rings over fields and obtain
refinements of some results of van den Berg in this context.

More precisely, for a fieldF and a positive integéy, letm be the bound of the matrix ringly (F), and
letn be dim: (77), where’?” is a subspace d¥l, (F) of maximal dimension with respect to not containing
rank one matrices. We show that+ n = k2. This implies, for example, that = k? — k if and only if
there exists a (nonassociative) division algebra évef dimensiork.

2000Mathematics subject classificatioprimary 16S50, 16N60.

1. Introduction

Following Handelman and Lawrenck page 211], we call a subsét of an associa-
tive ring# auniform insulatorfor Z if a.#’b # 0 for alla, b € #Z with a £ 0 # b.
The ringZ is said to bauniformly strongly primef it contains a finite uniform insu-
lator. For such a ring we set(#) = min{|.7| | . is a uniform insulator of#}, and
we sayZ is uniformly strongly prime of bound providedm(#) = n.

In what follows F is a field andM(F) stands for the algebra &f x k matrices
over F, wherek is a positive integer. Note théM,(F) is always uniformly strongly
prime in view of R, Theorem 3] (or §, Theorem 1]). Forz = M(F) we put
my(F) := m(Z%).

The systematic study ofi(%) was initiated by van den Berg i2,[3] and we recall
the following of his results {, Theorems 4, 7, 11]).
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THEOREM1.1.
(i) LetZ be adivision ring and? = M (%). Thenk < m(#) < 2k — 1.
(i) If Fis an algebraically closed field, then,(F) = 2k — 1.
(i) LetF be afield and assume there exists a nonassociative divisialyebra
of dimensiork, thenm, (F) = k.

In [3, Remark 2], van den Berg asks if the converse of assertion (iii) holds. In the
present paper we obtain a positive answer to this question (see Cofoldiiy)). We
sharpen the above results by studying connections of the uniform boulig (&%)
with (maximal) dimension of certain subspacedwfF) andM,.(F). We also pose
some open questions.

Before stating our results we fix some notation. Given positive intdgers/e
denote byM,  (F) thek x |-matrices over the fieleF.

alj_B alzB cee d B
AeB — anB  a,B ay B € My (F).
aqB agB --- ayB

If| =1, thenAe B = AB, and itis known that a matri€ € M(F) has rank one
if and only if there exist nonzero matricédse M, 1(F) andB € My (F) such that
C=AB=AeB.

IfI =Kk, itiswellknown that : M (F)® M (F) — M (F), the linear extension
of the mapA ® B — A e B, is an algebra isomorphism.

With this in mind we introduce the following entities which will be helpful for our
purposes:

n(F) = max{dimp(“//) 7 is a subspace d¥l (F) and} ’

7 0 {My1(F) e My (F)} =0

2 C Me(F) is aleftideal ant}
N {M(F) e M (F)} =0

We are now in a position to state the main results of the present paper.

IW(F) = max{dimp(%)

THEOREM1.2. Given a fieldF and positive integek, we have

(i) mg(F) =2k — 1, forall k, if and only if F is algebraically closed.
(i mg(F) = k if and only if there exists a nonassociative divisieralgebra of
dimensiork.

The above result sharpens (ii) and (iii) in Theorérh We note that the theorem
is essentially a corollary to van den Berg’s results. The next observations provide
relationships between the dimensions under consideration.
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THEOREM 1.3. Given a fieldF and positive integek, we haven, (F) +n,(F) = k?
andl (F) = K2 - ne(F).

We list some immediate implications.

COROLLARY 1.4. Let 7" be ak dimensional vector space over a figfdand letF
be the algebraic closure df. Then
(i) KK—2k+1<n(F) <k®—k.
(i) ne(F) =k?— 2k + 1, for all k, if and only if F is algebraically closed.
(i) n(F) = k?—kif and only if there exists a nonassociative divisieralgebra
of dimensiork.
(iv) A subspace” c M(F) contains a rank one matrix, providetimg (%) >
k? —k, or F = F anddimg (%) > k? — 2k + 1.
(v) Asubspac#” C ¥ ®¢ ¥ contains a non-zero element of the foAn® B for
someA, B € 7, provideddim(#) > k* —k, or F = F anddim(#") > k? — 2k + 1.

ProoF (i) follows at once from Theorerfi.1 and Theoreni.3. (ii) and (iii) are
immediate consequences of Theorem(ii) together with Theorem.3. (iv) follows
from (i) and (ii). Clearly? = M (F) and? = My(F) as vector spaces. Next,
the linear extension of the map ® B — AB, A € M (F), B € My(F), is an
isomorphism of vector spacdé.(F) ® My (F) — M (F). Therefore there exists
an isomorphisn?” @ ¥ — My(F) of vector spaces sending vectors of the form
v ® U to matrices of rank 1. The result now follows from (iv). O

2. Proof of the main theorems

Given a division ringZ and a positive integds, we denote bys L (k; &) the group
of invertiblek x k matrices ovetZ. We need the following result.

COROLLARY 2.1 ([3, Corollary 5]). The following assertions are equivalent for a
division ringZ and a positive integek:

() My(2) is uniformly strongly prime of bourkl

(i) GL(k; 2) U {0} contains a&k-dimensionalZ-subspace oM (%).

Recall that a nonassociatifealgebra? is said to be alivision algebraprovided
that for anya, b € & with a # 0 both equationax = b andya = b have unique
solutions inZ. We are now in a position to prove Theordn.

PrOOF OFTHEOREM 1.2 (i) If F is algebraically closed, then,(F) = 2k — 1 by
Theoreml.1 Conversely, ifF is not algebraically closed, then it has a finite extension
& of dimensiork > 1. Thereforem(F) = k < 2k — 1 by Theorend..1 (jii).
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(ii) If there exists a nonassociative divisioR-algebra of dimensiork, then
my(F) = k by Theoreml.1 (iii). Conversely, assume that,(F) = k. Then
Corollary2.1vyields thatG L (k; F) U {0} contains &-dimensionalF-subspace” of
My (F). ConsideringM,(F) as the endomorphism algebra of the vector spécee
define a product: ¥ x 7 — 7 by the ruleAB = A(B) forall A, B € #". We claim
that (7, -) is a nonassociative division algebra overof dimensionk. Indeed, let
A, B € 7 with A # 0. Considerthemap : 7" — 7 givenbyp (X) = XA = X(A).
Clearly¢ is an endomorphism of the vector space Since? \ {0} € GL(k; F) and
A # 0, X(A) # 0forall X € ¥ with X = 0. That is ketp) = 0 and sop is an
automorphism of/”. In particular, there exists a uniqlfee #" such thaty A= B.
Finally, sinceA € GL(k; F), there exists a uniqu¥ € 7 with AX = A(X) = B.
Thus(?, ) is a nonassociative division algebra and the proof is complete. O

Lettr, : M (F) — F be the trace map. Given a subsp#teC M(F), we set
W+ ={Ae M(F) | tr(A%?) = 0.
Given A € My, (F) andB € M, «(F), one can easily check that
(1) tr(AB) =t (BA).

LEMMA 2.2. Let " C M(F) be a subspace containing no rank one matrices.
Then any basis o+ is a uniform insulator forM,(F). Conversely, let¥ be a
uniform insulator forM,(F) and let¥” = ",_. FA. Then?"* contains no rank one
matrices.

ProOF. It is well known that the magA, B) — tr,(AB), A, B € My(F), is a
nondegenerate symmetric bilinear form. Therefore,

(2) dimg (%) + dimg(%*) =k* and {*)t =%

for any subspac& < M,(F).

Let # be as in the lemma and let’ be a basis o##’*. Given 0# A € M, 1(F)
and 0# B € My (F), AB € M(F) has rank one and sAB ¢ # = {#*}*
forcing 0 # tre(ABX) for someX € .. Making use of {), we conclude that
BXA =tri(BXA # 0. We see thaB.¥A # 0 for all 0 # A € M1(F) and
0# B € Myx(F). Now letP, Q € My(F) be nonzero. Write

P=| .| and Q=(QQ%...,Q",
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whereP, € My (F) andQ’ € My 1(F). ThenPXQ= (PR XQ! i'szl forall X e .7
and soP.”Q # 0. Therefore¥ is a uniform insulator foM, (F).

Now let.¥ and? be as in the lemma. Assume to the contrary thatcontains a
matrix C of rank one. WriteC = AB whereA € M, 1(F) andB € My (F). Clearly
A # 0 andB # 0 (otherwiseC = 0 would be of rank 0). Sinc&B = C € ¥+,
BXA=1tr(BXA =tn(ABX) =0forall X € .. LetP, Q € M(F) be matrices
such that the first row o is equal toB and all the other ones are equal to 0, the first
column ofQ is equal toA and all the other ones are equal to 0. Cled&ly: 0 # Q
andP.¥Q = 0, a contradiction. The proof is thereby complete. O

We denote byA — 'A, A € M(F), the transpose map M, (F). Define an action
of My (F) ®¢ My(F) on M (F) by the rule

UX=<2n:Ai®Bi>X=2n:AiXtBi
i=1 i=1

wheneveld = Zi”:l A ® B;. Itis well known thatM(F) is a simple faithful left
module over the algebd, (F) ®¢ My(F) under this action anil,(F) ®¢ My(F) is
the algebra of all linear transformations of the vector spdeg-).

LEMMA 2.3. With the above notation we have

(i If # is a finite uniform insulator foM(F) such that the set” is linearly
independent ovelr, then.?z = {U € My (F) ®¢ My (F) | U.¥ = 0} is aleftideal in
My (F) ®= M (F) containing no nonzero elements of the folved B, A, B € M(F),
anddimg (7)) = k2(K2 — |.)).

(i) If ¢ is a left ideal ofM(F) ®¢ My (F) containing no nonzero elements of
the formA ® B and.#” is a basis of the vector spa¢® € M (F) | ¢’ X = 0}, then
7" is a uniform insulator foM,(F) anddimg (_#") = k?(k? — |.7")).

PrROOF. Let.# and.#” be asin the lemma. Clearly” is a left ideal of the algebra
M (F) ®c M (F). Since. is a uniform insulator foM,(F), (A® B).¥ # 0 for all
nonzeroA, B € My(F) and sa’#” contains no nonzero elements of the foAn® B.
Write . = {Xy, X5, ..., X} wherem = |.¥|. Define a linear map

Vo Mk(F) @ Mi(F) = My (F)™, ¢ (U) = (UX, U Xz, ..., U Xp)

forallU € My (F) ® My(F). Clearlyy.» is a left M (F) ®¢ M (F)-module map
and.? = ker(yrs). Since{Xy, Xs, ..., X} is linearly independent oveff and

M (F) ®¢ My (F) is the algebra of all linear transformations of the vector space
My (F), we conclude thay - is an epimorphism. Therefore,

dimg (7)) = dime (ker(y»)) = K* — dime (Im(y.»))
=k* — K?|.7| = K*(K® — |.¥)).
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Further let7” and.¥” be as in the lemma. Sinc#” is a proper left ideal of
My (F) ®c My (F) = My.(F), there exists an idempoteBte My (F) ® My (F) such
that 7’ = (M (F) ®: M (F))E andE # 1 where 1 is the identity of the algebra
My (F) ®¢ M (F). Clearly

QL—-E)YM(F) ={X e M(F) | #'X=0}

and so.¥” is a basis of the vector spaceé — E)M(F). Write." = {Y1,...,Y,}
wherer = |.#’|. Consider the linear map

Vot Mi(F) ® M(F) — My (F)", U > (UY,UY,, ..., UY).

We claim that ket ») = (M(F) @ M(F))E = 2¢7. Indeed, the inclusion
ker(yr5) 2 ¢ follows from the definition ofyy.... Next, letU € kern(y»). Then
UY, =0foralli =1,2,...,r. Since{Yy, Y, ..., Y, }is abasis of1 — E)M(F),
we conclude thafU (1 — E)]M(F) = 0. Recalling thatM,(F) is a faithful left
My (F) ®¢ My(F)-module, we get thalt) (1 — E) = 0 forcingU = UE. Thatis
U e ¢ and our claim is proved.

Since ke(y») = ¢, it follows from our assumption oK’ that ke(.») contains
no nonzero matrices of the ford® B, A, B € My(F). Thatis to say,¥” is a uniform
insulator forM,(F). As above we get

dime (¢") = dime (Yo) = K — K217 = KE(K2 — |.77)).
The proof is thereby complete. O

PROOF OFTHEOREM 1.3. Let .¥ be a uniform insulator foM,(F) with || =
my(F) and let?” = }",_., FA. According to Lemma.2, 7"+ contains no rank one
matrices and sd?] yields

Ne(F) = dime (74) = k2 — dime(7) = K — my (F).

That is to sayn,(F) + n(F) > k2. On the other hand, i# is a subspace dfl, (F)
of dimensiomy(F) containing no rank one matrices aftlis a basis o+, then.7
is a uniform insulator foM,(F) by Lemma2.2and so

M(F) < | 7] =dime(#*) = K — dime (7)) = k* — n(F)

forcingm,(F) + n(F) < k2. Thereforem,(F) + n(F) = k2.
Let 7" be any left ideal oM (F) ®¢ M(F) containing no nonzero elements of
the formA® B, A, B € M\ (F). We claim that

®3) dime (7)) < K- ne(F).
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Indeed, let¥” be a basis of the vector space € M (F) | 2#’X = 0}. According to
Lemma2.3, . is a uniform insulator foM,(F) and sincd.¥’| > m,(F),

dime (#7) = K¥(K* — |.7]) < K*(K* — mc(F)) = Kni (F).

Now let .# be a uniform insulator foM,(F) with || = m(F). It follows at
once from the definition af, (F) that.# is a linearly independent subsetdf,(F).
Therefore Lemma&.3implies that? = {U € My (F) & My(F) | U.¥ =0} is a
leftideal of M (F) ®¢ M (F) containing no nonzero elements of the foAn® B and
dime () = k?(k? — m(F)) = k?n,(F) by the above result. It now follows frons)
that

4) max{dimg (J77)} = k*ny(F),

where 7" is a left ideal ofM(F) ®¢ M(F) containing no nonzero elements of the
form A® B.

SinceM(F) ®¢ M (F) is isomorphic toM,:(F) underg : AQ B —~ Ae B (see
Sectionl), we conclude from4) thatl, (F) = k? - n,(F). The proof is complete. (]

REMARK 2.4. We conclude our discussion of the uniform bounds of primeness by
considering the following implications for a field and a positive integek.

(i) If . is a uniform insulator foM,(F) and? =" ,_., FA, then?” contains
a uniform insulator¥” for My (F) with |."| = m(F).
(i) If # is a subspace oM (F) maximal with respect to the property
W N M 1(F) e My (F)} = 0, then dim(#") = n(F).
(i) If 2 is a left ideal of M(F) maximal with respect to the property
N {M(F) e M (F)} = 0, thendim (2#¢) = I, (F).

We cannot prove any of these but we show that they are equivalent:

PROOF. Suppose that (i) is satisfied. We prove (ii). #tbe as in (ii). According
to Lemma2.2 any basis of#"* is a uniform insulator foM,(F). It now follows
from our assumption tha#’+ contains a uniform insulata#” for My (F) with %" =
m¢(F). Set? =) ,., FA and note that dim(?") = my(F) because the se¥”
is linearly independent. Next, the inclusioh € #* together with 2) yield that
v+t o (whHt = . By Lemma2.2 7+ contains no rank 1 matrices and so the
maximality of % implies that¥* = #". Therefore? = (¥ )+ = #* and so
dimg (#'4) = dime () = m(F). Recalling that dim(#") = k> — dims(#'*) =
k? — m(F), we conclude that dip(*#") = n(F) by Theoremnl.3,

Now assume that (ii) is fulfilled and show that (i) is true. L%tand? be as in (i).
Then?* contains no rank 1 matrices by Lem&. Let”” be a subspace ol (F)
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containing?’+ and maximal with respect to the prope#yn {M (F) e My (F)} = 0.
By our assumption dim(#") = ny(F) and so ) together with Theorem.3 imply
that v = (¥5H* > #* and dim(#*) = k> — n(F) = m(F). Let.¥ be a
basis of#’+. Then.#” is a uniform insulator foM,(F) by Lemma2.2. Clearly
.| = m(F)and.¥” C 7.

Finally, making use of Lemma.3 the proof of the equivalence of statements (i)
and (iii) is similar to that of (i) and (ii). O
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