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Abstract

We apply the Moser iteration method to obtain a pointwise bound on the norm of the second fundamental
form from a bound on itd" norm for a complete minimal submanifold in a sphere. As an application
we show that a complete minimal submanifold in a sphere with finite total curvature and Ricci curvature
bounded away from-co must be compact. This complements similar results of Osserman and Oliveira
in the case the ambient space is the Euclidean and the hyperbolic space respectively.

2000Mathematics subject classificatioprimary 53C21.

1. Introduction

In the theory of minimal surfaces k®, animportant role is played by the class of min-
imal surfaces with finite total Gaussian curvature. One celebrated result concerning
such surfaces is

THEOREM (Osserman)LetM? be a minimal surface iR with finite total Gaussian
curvature. TherM? is conformally equivalent to a compact Riemann surface minus
a finite number of points.

This result has a generalization to the case when the ambient space is the standat
hyperbolic space. In this g&1g, Oliveira proved

THEOREM ([8]). Let M? be a minimal surface in the standard hyperbolic space
with L2 second fundamental form. Thé#? is diffeomorphic to a compact Riemann
surface minus a finite number of discs.
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In this note, we look at a generalization of Osserman’s theorem in the case when
the ambient space is positively curved. Specifically, we consider the situation where
M" is a minimal submanifold sitting in the standard+ k)-dimensional sphere with
analogous curvature assumptions imposedidnWe are interested in understanding
what topological effect such curvature assumptions will haveMdn To be more
precise, we will prove

THEOREM1. If M" is a complete minimal submanifold of the sph&eP with
[y |AP2dM < oo, thenM" is compact.

ReEMARK 1. In the case whem = 2, this condition seems optimal, since the
condition becomeg,, |AI?dM < oo.

THEOREM 2. If M" is a complete minimal submanifold of the sph&eP with
Ju IAI"dM < oo andinfy Ric(M) > —oo, thenM" is compact.

This result together with the results of Osserman and Oliveira forms a rather
complete description of the topology of a minimal surface in a space form lufith
second fundamental form (that || € L2(M?)).

Ambient Space Result
hyperbolic space M?is conformally equivalentto a compact Riemann
surface minus finitely many discs
Euclidean space M?is conformally equivalentto a compact Riemann
surface minus finitely many points
sphere M? is compact

Related to Theoreis the following theorem of Shen and Wand 1 12)):

THEOREM. Let M" be a compact minimal submanifold of the unit sph8teP.
SupposeRic(X, X) > 0 (where X is any unit tangent vectdr Then there exists
a constantC(n) depending only om such that if [, |JA|"dM < C(n) then|A| is
identically equal to zero ant!" is totally geodesic.

We remark that Theore@can be used to weaken the compactness assumption in
the theorem of Shen and Wang to that of completeness.

2. Preliminaries

In this section, all the tools needed in the subsequent proofs will be collected.
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2.1. Simons’ inequality. Consider a minimal submanifoldl™ immersed inS™*P
and denote by (1 <i, ] <n, 1<« < p)its second fundamental form. Then the
following Simons’ inequality holds:

AlAl = n|Al — (2—-1/p)|AP® in distributional sense,

where| A| is the length of the second fundamental formMiT (see Chern3, page 41],
Berard [L, page 49]).

This can be seen by using the computations of Chern on an estimatdpihy;
followed by Kato's inequality (se€] and also Berardl]]) for the second fundamental
formh?. It follows that

AIAI+C(p)|AF = 0.

2.2. Isoperimetric-type inequality. Another important ingredient of our proof is
the following isoperimetric inequality of Li and Yau[

LEmMMA 1 (Liand Yau [7]). Let M be a complete noncompact Riemannian mani-
fold without boundary of dimension Let R(x) denote the pointwise lower bound of
the Ricci curvature, that ifRic(x) > R(x)g; and letR_(x) = max0, —R(x)} be the
negative part oR(x). If the geodesic ball of radius centered aty € M is denoted
by B (y), its volume is denoted by, (r), and the area of its boundary is denoted by
Ay(r), then for anyp > n — 1 there exist constants,, C, > 0 depending only on
such that for any > 0,

r
Ay(r) < Clrn1+C2r2n4vy(pn+l)/p(r)/ (/
0 Bi(r)

2.3. Ricci lower bound estimate for minimal submanifolds. The last result we
will need is the following estimate of Leung]f

(n=1)/p
RPd M) dt.

LEMMA 2 (Leung f]). Let M" be a minimal submanifold itg""P with constant
sectional curvature<. Then the following inequality holds

n—1
n

Ric(X, X) > (NK — |A]?},

whereX is any unit tangent vector.

In the next section, we will prove the main result, that is, TheoBefThis is done
by using a technical lemma on the decay| Af(p) (to be proved in the Appendix
using Moser’s iteration technique on Simons’ inequality while keeping control on the
support of test functions) ag escapes compact sets dh Having done this, the
Ricci lower bound estimate shows then that the Ricci curvaturil 6§ positively
pinched outside some compact sethdf A modification of Myer’s theorem yields
subsequently the compactness.
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3. Proof of main theorem

We shall prove in this and the next section the following two theorems which
complement a result of Oliveira].

THEOREM 3. Let M" be a complete noncompact minimal submanifol&Th® with
fu IAI"dM < oo and letRic(X, X) > (n — 1)k (whereX is any unit tangent vector
and« a constant. Then for any poing € M,

sup |Al -0 as R— oo,
M\Br(q)

whereBg(q) is a geodesic ball of radiuR centered at] € M.

THEOREM4. Let M" be a complete noncompact minimal submanifol&TP and
suppose thaf,, |A|*"2dM < co. Then for any poing € M,

sup |Al -0 as R— oo,
M\Br(q)

whereBg(q) is a geodesic ball of radiuR centered at] € M.

PrROOF OFTHEOREM 3 (the casen > 3). Our key analytical tool is the following
lemma, which will be proved in Appendix via Moser iteration:

LEMMA 3. LetM" be a minimal submanifold such that smooth functions supported
in geodesic balls of radius < f (' is independent of the centen satisfy the
generalized Sobolev inequality of Hoffman and Spi{atk Then there exist > 0,

c > 0,t > 0, wheret < f, such that for each geodesic bdl(p) cc M, the
following holds

1/n 1/n
if {/ |A|"} <e, then |Al(p) < c{/ |A|”} .
Bu(p) Bu(p)

To prove Theoren3, note that since the Ricci curvaturesdf' are greater than or
equal to(n — 1)k, by Bishop’s theorem, for aifl > 0,x € M,

(1) V() < V()

whereV,(r) is the volume of a ball with radius in the space form with constant
sectional curvatures equalto

Now, a theorem of Hoffman and Spruci psserts the existence of a numbes 0
depending only on the injectivity radius and the sectional curvature of the ambient
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space (and hence only df) such that for ank andr > 0 satisfyingV,(r) < 6, a
generalized Sobolev inequality holds f©§° functions compactly supported B (x).
ChoosingV, () < 6 implies then the existence of the radiusith properties required
by Lemma3.

Choosing geodesic balls &fi" with radiir < f, we can apply Lemma&. Fix
g € M, sincef,, |AI"dM < oo, there existR > 0 such thaR > R implies

/ |AI"dM <,
M\Br(@

wheree is the constant in Lemma Take anyB;(p) cc M\Bg(q) witht < F; then
Lemma3implies|A|(p) < ce. Lettinge go to zero completes the proof. O

PROOF OFTHEOREM 4 (the casen > 3). Applying Lemma2to a complete minimal

submanifoldM" in S™P we have Ri¢X, X) > —((n — 1)/n)K|AJ? (whereX is a unit
tangent vector oM) and hence we conclude that the integf@!r) | A|?P d M satisfies

/ |AI?PdM zconstamx/ RP dM.
By (1)

By(r)

Next choosingp = n — 1 in Lemmal, we have

.
Ayr) <Cyor"™t+Cyr 2”4/ (/ R™1d M) dt
0 By(r)

.
<Cyr"t4 cer““/ (/ |A]?—2d M) dt,
0 M

where C;, C, denotes constants independent of the choice of the cgngr in
Lemmal. From this and the hypothesis th#{ is in L2"2 (M), it follows that

(2) A (r) <Cyr" 4 Cora 2,

Recall that for almost all > 0,

dV,(r)
3) ar = A
hence integrating the above inequali®y ¢ives the estimate
C Cs e
(4) Vy(r) = —r +2n_2r2 2

which impliesV(r) < Cr"forr < 1, whereC := C;/n + C3/(2n — 2). We have
omitted the subscript since the estimate is independent of the choice of the cgnter
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The last inequality and the monotonicity of the volume of geodesic balls together
imply that smooth functions supported in subsets of geodesic Balls satisfy the
hypothesis for the Sobolev inequality, provided< r, for somer, > 0. Having
established this fact, the rest of the proof is completely analogous to that of Theorem
except that for the initial step of Moser iteration one starts with the assumption (see
for example (7) in Appendix) [,, |AI*"?dM < oo instead off,, |AI"dM < oo.
However, from the fact thaf, |A|***dM < oo andV (r) < Cr", one can conclude

5) / |A"dM - 0 asR— oo
M\Br(@)

(whereq is an arbitrary but fixed point itM), which is all that is needed to move
terms involving higheL? norms in inequality 17) of Appendix and other related
inequalities to the relevant side in the Moser iteration. The fgcfollows from our
assumption because for< 1, we haveV (r) < Cr" < C, hence

n/(2n—-2)
/ |A|ndM < (/ |A|2n—2d M) V(r)l—(n/(Zn—Z)) < Cr{l—(n/(Zn—Zt))}n < 00.
Br Br

As a conclusion, foB, sitting outside large compact sBk(q), one has
/ |AI*"2dM — 0,
B

which impliesf& |AI"dM — 0. Having established this, the rest follows the proof
of Theorems. O

4. The casen =2

Decay estimate undef| A||, bound. Inthe case when the dimension of the minimal
submanifold is two, Theoreri covers Theorem. It therefore suffices to prove
Theoremd. To this end, we need the following stability result for minimal swds

ProOPOSITIONL. If M2 — S**P is a minimal surface satisfying the condition
fuIAI?dM < oo, then it is stable over small balls sitting outside some large com-
pact setBt(py) (po is some arbitrary but fixed point on the surfader which
fM\BT(pD) |Al2d M is sufficiently small.(More precisely, there exi§, f > 0 depend-
ing only onf,, |A]?dM and M but not on the choice of the center of the geodesic balls
B (p) such that for allr,if 0 <r <7 and B (p) CC M\Br(po), thenB; »(p) is a
stable minimal surfacg.
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ProOOF. Without loss of generality we assume that the sectional curvatires
S"P satisfy K = 1. By the isoperimetric inequality of Li and Yau (see inequality
(4) in Section3), we have quadratic growth for geodesic balls, thaVjgr) < Cr2
(whereC depends orf,, |AI*dM and is independent of the choice of the pgint

We follow Oliveira [8] (the first inequality on page 14 of his paper) and apply the
L! Sobolev inequality (thatis, (3.3) of Oliveir&]) to certain class of test functiogs
(to be specified later) satisfying the condition sgpgpc B, (p), wherer < F with f
defined as in the proof of Theorefrto get

1&1AR]2 < 2C; (IEIAIVIAIlL + ITAPVENL) . VE € CF(B (D).

Combining with the Cauchy-Schwarz inequality on the right-hand-side, this be-
comes

IEIAP 28, p < 251||XIAII|z,&<p>(||§V|AI||z,a<p> + IAIVE 28 )
whereyx = characteristic function of sugp

On the other hand, Simons’ inequality multiplied b3 A|? (whereq = 1) and
integrated, yields (se&][(3.14)]),

(6) 1EVIA28m < Cs (1E1 APl 2,8.p + INAIVE ll2.6,(p) -
Combining the above inequalities, we have

1EVIAlll2 80 < 2CCallxIAlllz.6 (1€ VIAlL2 8,y + ITAIVE ll2.8,p)
+ CallIAIVE 28 (p)-

By teLkng B (p) € M\Br(po) for some large numbeF, we obtain|| x| Alll2g p <
1/(4C,C,) which implies

(7 1EVIAll28m < Cslll AlIVEll26.0

(see B, (3.18)]).
To prove stability, choose a non-negative functfosuch that

|1 x € Bgu(p);
é(x)_{o X € M\B.(p)

with |[V&| < 8/r and consider arbitrary € C3°(B;2(p)). By the L' Sobolev
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inequality,
IAIpEl28 @ < CslIVIAl@IE) e m (WhereCs is the Sobolev constant)

= G( lpllVAIS)]+ E|AIIVeD)
B (P) B (p)

= G( I¢|§|V|AII+/ |¢||A||V§|+/ IAIEIVel)

B (p) B (p) B (p)
= GAlIEIVIAIz e lI@llze @ + 19128 @ TAIVEl2E p)

+ A28 @I Vellzeml-
Using the fact thag = 1 on By /4(p),
®)  MAlelzs .0 = A ll2.84,4p

< G{IEIVIANllz e ml@lze @ + I¢llz8m ITAIVEl 2B @)
+ IAE e @ IVell2e @)

Now we study the terms on the right-hand side of this inequality. First we observe
that

L A l2em I Velze e < (1/(BC)IV@l2g g, if we choose
1Al < 1/(6Cs).
2. From (), [EIVIAllll2gm < Call|AIVEll2g p < 1/(6Cs) by choosing
A5 < /(48CsCo).
3. IAIVE], < | Allzg »8/r < 1/(6Cs) by choosing| Allz gy < I/(48C).

Putting all these inequalities back int®)(we have

9) IHA@l28,.m < 2lell2sm + 1Vel2e m!/6
= {21928, + V@28 .00} /6.

Next, apply the isoperimetric inequality of Li and Yau to functions
¢ € C'(Br2(p)  (with 1 <T)

together with the Sobolev inequality of Hoffman and Spruck and get the following
estimate on|¢|l2.s,,p) :

(10) ez, < CsllVOllLp a0 < Cs/ [Ve|dM
Br/2(p)

< CollVllag o Vo(r /272
< CslV@ll2g .0 C?r /2 = Cer IV@ll2 8, (-
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This estimate, when applied t8)( yields

ITAl@ll28,.0 = (1/6){2Cer [V@ll2B o0 + IVOl2B 2m}-

Finally, choosing” < 1/(4Cs), we obtain

(11) INAl@ll28,.0 = (L/O{(L/DNVl28 .0 + IVOll28 200}
= /DIVellze . = L/INVEl2E 200

which implies

1
(12) / |AZp?dM < —/ Vo2 dM;
Br/2(p) 9 Br/2(p)
this completes one half of the stability inequality. The other half follows by applying
(10) again tog:

llelle < CeflIVellz < IVell2/2;

this upon squaring gives

1
(13) /2¢2§/ ~|Vel|*
M M 2

Adding (12) to (13) gives the stability inequality in the ball; .

Having obtained the stability of the surface restricted to balls of radiRisitting
inside M\ Br (o), we can follow Oliveira §] to use Schoen’s result, Theorem 3]
and obtain the existence of consta@tsandu not depending o with the following

property:

(14) O0<wnu=<1/2 and supAl <C,.

Byr

Furthermore, the Li-Yau isoperimetric inequality provides a bound on the volume of
ballsB,, (p), that is,

(15) Vo(ur) < Cu?r® < G

becauseur < 1 by definition.

Inequalities 4) and (L5) enable us to follow Oliveira (see also Appendix) to
obtain the decay in the dimension 2 case. This finishes the proof of Theldrethe
dimension 2 case (see Oliveirg, pages 15-16]). O
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5. Proof of the two main theorems

TheorenB and Theorerd when combined with the following lemma will give our
main result.

LEMMA 4. If M"is a complete Riemannian manifold with
Ric(X, X) > (n— L« > 0 (whereX is any unit tangent vector
outside some compact sub&:of M", thenM" is compact.

PrROOF. Let Br(p) be a geodesic ball with radius centered at a poinp in the
interior of G and containings. By definition, the boundary of this ball is a connected
set. Takep € the closure oBr(p), then we havel(p, p) < T. If p € M\B;(p),
then the completeness bf guarantees the existence of an arc-length parametrized
geodesicy joining P to q € dBr(p) realizing the distancel(p, 9Br(p)). This
geodesic lies outsidBr (p) from the definition ofBr(p). But the proof of Myer's
Theoremimplied (y) < w//k + T, since Ri¢y’, y') > (n— 1)k outsideG. Hence
by the triangle inequality, we hax& p, p) < d(p, q) +d(q, p) < 7/ /. It follows
that dianm{M) < 27 /./k + 2T. O

Now the two main theorems (Theorethand?2) can be proved by contradiction.
SupposeM is non-compact, fix a poinpy € M" and denote the geodesic distance
from this point byR. By Theorems3 and4, |A| — 0 asR — oo, which implies that
outside a big compact subsBtof M", |A]? < nK/2. Hence by Lemma the Ricci
curvatures oM" is bounded away from zero outside a big compact subskt"ofA
contradiction by Lemmd.

6. Appendix (proof of Lemma 3)

The proof of LemmaB follows the standard Moser iteration procedure. However,
care has to be taken to guarantee that the volumes of the geodesic balls can be bounde
uniformly from above byCr".

ProOOF(n > 3). In the sequel, we shall occasionally denpé by u.

Choose a geodesic ball with radiusand centered ap, by the hypothesis of
Lemma3 all functions onM" supported inB, (p) with r <  (p is arbitrary here!)
satisfy the generalized Sobolev inequality of Hoffman and Spruck.

Restricting to functions i€3°(B; (p)), we can apply the standard Moser iteration
argument to the Simons’ inequality to obtain ecdy eimate of, |A|(p) (see for
example 8]). We shall now give the details.



[11] An application of Moser iteration 161

Lets > 2and € C°(B: (p)), x denote the characteristic function of sgppJsing
the Holder inequality, we can estimafg £%| A|?u® d M and obtain (for simplicityd M
will be omitted in the sequel)

2/s (s-2)/2
/ §2|A|2U2q < {/ (X|A|2)S/2} {/ (%.Zqu)s/(sz)}
M M M

2 2
= X APlls 26U -

On the other hand, Simons’ inequality yields the following inequality after multipli-
cation through by?d-1£2 and estimating in a standard way (sép:[

IVEUD 2 < Co/a {IUTIVE]l2 + UTE]L)
Applying the Sobolev inequality of Hoffman and Spruéj, [that is,
n-1
—m

~m
I f lamym-m < Cs - IVflm, VfeCy(B(p), Ym<n,

with m = 2 and&u? replacingf gives

~2n—-1
(16) €W llznn-2 < ClIVEUI (Where C.— & (n _2>>

< CeCo /A { U VE[ll2 + U™ .}
= €@ (IU1VE 2 + x| APIBIEW ass )

with C = C,Cg which depends on.
Now takes = n andq = n/2. Then the above inequality reads

A7) 16U oz < Cov/A{IU2IVE 2+ X ARIZIE U oo |
whereC, = C/V/?2.

Next, we try to absorb the last term of this expression to the other side of the
inequality by requiring (this choice determines th® be fixed later)

1
(A"dMY" < ———.
/a(m 2C;y/n

Hence we obtain

1/2
16U [l2n/(n-2) < C.IUM?|VE][|l2 < C, sup|V&| {/ IAI”} ,
Br (p) Br (p)
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whereC, = 2C,,/n. Chooset such that = 1 on By ,4(p) andé = 0 outsideB; (p),
|VE| < 8/r. Then we have

8C. 1/2 1/2
(18) ”|A|n/2||2n/(n72).83,/4(p) < {/ |A|”} < 8c, {/ |A|”} ,
r B (p) B (p)

wherec, = C./r = (2C,/r)/n. Choosee > 0 such thate < (1/8¢c.)?" and
€ < 1/(2C,y/m), henceiff,  |AI" < €, then the following inequalities hold:

1/2 R yno g
8c, {/ |A|"} <1 and ClJﬁ{/ |A|”} <=
B (p) B (p) 2

With this choice of, inequality (L8) gives for all§ € C5°(Bg,4(p)), x := SUpps,

(n—2)/2n
{/ |A|n2/(n2)} <1
Bar/4(p)

Because of this ineqlity and since fors = n?/n — 2

2n1/2

2112/n
U123 6y = IIU™2]

2n/(n—=2),Bsr/a(p)?
inequality (L6) ands = n?/(n — 2) gives
19) €W a2 < CVAUIUIVEl2 + 1EWC lsys-2 ), VE € CF(Baa(p)).

The next step is an interpolation argument. Recall the interpolation ifiggfea
LP-spaces:

(20) U252 < SlIEUWIan/n—2 + 715Uz, V8 >0 ands > n.

Puts = n?/n — 2,0 = n/n — 2 in (20) and choos@ such thaCs./q = 1/4, where
C is the constant in19). Then

5=@4C/q)t, 87 =4C /q)".

From (19) and @0), we have for ever§ € C3°(Bs/4(p))

1§ U l2n/n—2 < Cf{llquV€|||z+ H_Hsuq”m/n 2+ (4C Q) Iléuqllz}

< &/ {IV0VE] 2+ q7?Eul],}

wherec := (4C)** /3.



[13] An application of Moser iteration 163

To proceed further, leg; € C°(B;), whereB; := Ba112+1c(P), § = 1 on
Bi.1, & = 0onM\B;, x; := characteristic function of sugp and such thattVg;| <
2-2+2/r, then the previous inequality gives

(21) & U2 < cf{ 22 xul +q"/2||x.uq||z}
N 2i+2 )
sZCJa{r—leiuqllz+q”/ ||Xiuq||2}

N 2i+2 5
= 2C/qllxiu’l, (r— +q” )
2¢ )
_ —qnxi W[1,(2+2 +1q7?)

222+ g7/

as we can assume without loss of generality that 1. Since supf C {x € M :
&_1(X) =1}, (22) implies

{/Bmuzq }1/20 2Cf {/a Zq} 2{2i+2+qa/2};

squaring this implies

o =B Ly
=ca([ ) @t

wherec’ = (2€/r)? andc’ depends only on andn.
Next, let 21 = no'. Then

C/q (2i+2 + qa/2)2 anO' {2|+2 + (nU /2)(7/2}
_ an {2|+2 + (n/z)a/Z |(r/2} C*,

wherec! depends only on andr.
To conclude our iteration process, we have

Yo , .
{/ |A|“”'“} SCL/IAI””',
Bij1 B
‘ 1/Ui+1 o ‘ 1/Ui
{/ |A|“”'“} sc‘f"{/ |A|““'} :
Bij1 B
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Denoting the left-hand side of the last inequalitylby; and the right-hand side Ry,
we get

. i . . i—1 H i H i—1,
L Tl

which when passing to the limit, yields, < c,,lo, concluding the proof of Lemma
O

We conclude by a remark for the iteration whegs= 2.

REMARK 2 (the case = 2). Inthis case, one performs precisely the same iteration,
but using thel.*-Sobolev inequality, that ig, f ||n/n_1) < Cs[IV f |1 instead of the2-
Sobolev inequality, that i} f ||2n/n-2 < ClI'V f || with some simple modifications.
This leads to iteration inequality of the form

2,12 2111/2
1625 loyn-sy = consty/G {1UIVE] 2 + 1EUPIE1EW oo}

with s > 2. This last condition o requires for the initial step a higher norm bound
on | A] over small balls than the? norm, which is provided by the stability result of
Schoen 10].
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