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Abstract

In this paper, first, we study the existence of the positive solutions of the nonlinear elliptic equations in
unbounded domains. The existence is affected by the properties of the geometry and the topology of the
domain. We assert that if there exists a.PS/c-sequence withc belonging to a suitable interval depending
by the equation, then a ground state solution and a positive higher energy solution exist, too. Next, we
study the upper half strip with a hole. In this case, the ground state solution does not exist, however there
exists at least a positive higher energy solution.

2000Mathematics subject classification: primary 35J20, 35J25.
Keywords and phrases: Palais-Smale sequence, higher energy solution, upper half strip with a hole.

1. Introduction

In this paper we study the following problem:
−1u + u = f .x;u/ in �;

u > 0 in�;

u ∈ H1
0 .�/;

(1.1)

where� ⊂ R
N is an unbounded domain with smooth boundary@�, f : S�×R → R

is of classC1 and satisfies the following conditions:

(f1) f .x; y/ = o.y/ neary = 0 uniformly in x ∈ S�.
(f2) There existsa1 > 0 such that| fy.x; y/| ≤ a1.1 + |y|p−1/ for all x ∈ S� and

y ∈ R, where 1< p < .N + 2/=.N − 2/ if N > 2 and 1< p < ∞ if N = 1;2.
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(f3) There exists� > 2 such that 0< �F.x; y/ ≤ f .x; y/y for all x ∈ S� and
y ∈ R\{0}, whereF.x; y/ = ∫ y

0 f .x; − /d− .
(f4) f .x; ty/y=t is a strictly increasing function oft > 0 for all x ∈ S� and

y ∈ R\{0}.
Since we will only look for positive solutions of (1.1), it is convenient to define
f .x;u/ ≡ 0 for u ≤ 0 andx ∈ S�.

Associated with the problem (1.1) is the energy functionalI defined by

I .u/ = 1

2

∫
�

.|∇u|2 + u2/dx −
∫
�

F.x;u/dx:

And I ∈ C1.H1
0 .�/;R/.

It is well known that the solutions of (1.1) are the critical points of the energy
functional I . Moreover, standard arguments from elliptic regularity theory show that
critical points of I on H1

0 .�/ are classical solutions of (1.1). However, when� is
an unbounded domain the existence of a solution becomes a difficult problem, due to
the embeddingj : H 1

0 .�/ → L p.�/ which is not compact. The lack of compactness
implies thatI does not satisfy the Palais-Smale condition, and the standard variational
techniques cannot be applied to this problem, so new analyses are needed to solve
such problems.

Denote by

M.�/ =
{

u ∈ H1
0 .�/\{0}

∣∣∣ ∫
�

.|∇u|2 + u2/dx =
∫
�

f .x;u/u dx

}
;

ÞM.�/ = inf
u∈M.�/

I .u/:

Looking for solutions of (1.1) is equivalent to find critical points ofI constrained to
lie upon the manifoldM.�/. As a consequence of Ekeland’s variational principle,
there exists a sequence{uk} ⊂ M.�/ such that

I .uk/ → ÞM.�/; I ′.uk/ → 0 in H−1.�/:

AlthoughÞM.�/ does not guarantee the existence of a critical pointu ∈ H1
0 .�/ with

I .u/ = ÞM.�/, we can analyze Palais-Smale sequences to justify whether there exist
positive solutions of (1.1) or not. New analysis is needed for solving such problems
which will be described as follows. Let

�k = � ∩ BN
k .0/; where BN

k .0/ = {
x ∈ RN | ‖x‖ < k

}
;

�̃k = �\BN
k .0/:

For v ∈ H1
0 .�̃k+1/, it can be identified with an element ofH1

0 .�̃k/ by extendingv to
be zero iñ�k\�̃k+1.

In the following definitions, we abbreviate Palais-Smale by.PS/.
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DEFINITION 1.1. (1) Forc ∈ R, a sequence{uk} ⊂ H 1
0 .�/ is a.PS/c-sequenceif

I .uk/ → c andI ′.uk/ → 0 in H−1.�/;
(2) c ∈ R is a.PS/-valueif there exists a.PS/c-sequence;
(3) I satisfies the.PS/c-conditionif every .PS/c-sequence forI contains a conver-

gent subsequence.

This paper is organized as follows. In Section2,2.�/ is the set of all the positive
.PS/-values. In particular,2.�/ contains all the positive critical values ofI . Let
Ž.�/ be the infimum of2.�/, it will be shown that2.�/ is a nonempty set,Ž.�/ is
a positive number, and the optimal lower bound for2.�/ is ÞM.�/ when (f1)–(f4)
are satisfied, that is,Ž.�/ = ÞM.�/.

If u is a nontrivial solution of (1.1), then multiplying (1.1) by u and integrating by
parts showsu ∈ M.�/. For anyu ∈ H1

0 .�/\{0} andt > 0, let hu.t/ = I .tu/. By
(f1)–(f3), we havehu.0/ = 0, hu.t/ > 0 for t small, andhu.t/ < 0 for t large. So
u = 0 is a local minimum but not a global minimum ofI . Therefore, maxt≥0 hu.t/
exists and is achieved attu > 0, we get

h′
u.tu/ = 0 = tu‖u‖2

H 1.�/ −
∫
�

f .x; tuu/udx

which impliestuu ∈ M.�/. Moreover by (f4),tu is the unique value oft > 0 such
that tuu ∈ M.�/. This impliesM.�/ is radially homeomorphic to the unit ball in
H 1

0 .�/.
In Section3, we assert that ifÞM.�/ < ÞM.�̃k/ for some largek ∈ N, then there

exists a ground state solutionu of (1.1) with I .u/ = ÞM.�/. And if there exists a
.PS/c-sequence withÞM.�/ < c < ÞM.�̃k/ for some largek ∈ N, then there exist at
least two positive solutions of (1.1), that is, a ground state solutionu and a positive
higher energy solution.

In Section4, we describe the.PS/-conditions and give a necessary and sufficient
conditions in� for which I satisfies the.PS/ÞM .�/-condition.

In the final section, the domain is the upper half strip with a hole. For simplicity,
we consider the case wheref does not depend onx, so the problem is as follows:

−1u + u = f .u/ in 3;

u > 0 in3;

u ∈ H1
0 .3/;

(1.2)

where3 is the upper half strip with a hole. Denote by

Ar = {
.¾; �/ ∈ RN−1 × R | |¾ | < r

}
;

Ar
a = {.¾; �/ ∈ Ar | � > a} ; wherea ∈ R:
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For the strip domainAr , Chen [2] modified the results of Lions [6] and asserted
that there exists a ground state solution of (1.2) if 3 = Ar . Chen-Chen-Wang
[3] established its asymptotic behaviour and showed that the solution is spherically
symmetric in¾ and axially symmetric in�.

For the upper half strip domainAr
0 (an Esteban-Lions domain), Esteban-Lions [5]

asserted that there does not exist any solution of (1.2) if 3 is an Esteban-Lions domain.
The Esteban-Lions domain is defined as follows:

DEFINITION 1.2. � ⊂ R
N is an Esteban-Lions domainif there exists� ∈ R

N ,
‖�‖ = 1 such thatn.x/ ·� ≥ 0, andn.x/ · � 6≡ 0 on@�, wheren.x/ denotes the unit
outward normal to@� at the pointx.

An interesting question is whether there exists a positive higher energy solution of
(1.2) if 3 is an Esteban-Lions domain with a hole. The question seems to be quite
challenging and hard to give a complete answer. We had known that Pohozaev [7]
proved that the Dirichlet problem−1u + u.N+2/=.N−2/ = 0 in a ball does not have any
nontrivial solution, but Coron [4] proved that there exists a positive solution if we take
some small ball out. Whenf .u/ = up, Benci-Cerami [1] asserted that problem (1.2),
if 3 is an exterior domain, admits a positive higher energy solution. We use a new
method, different from Benci-Cerami [1], to prove that if there exists a.PS/c-sequence
with c> 0 andc =∈ 2.3̃m/ for somem ∈ N, then there exists at least a positive higher
energy solution of (1.2) if 3 is the upper half strip with a hole.

2. The (PS)-value

We will introduce some preliminaries to analyze the behaviour of Palais-Smale
sequence and study the set2.�/ of all the positive.PS/-values.

LEMMA 2.1. If {uk} is a .PS/c-sequence, then there exists a constantc̄ > 0 such
that ‖uk‖H 1.�/ ≤ c̄ for eachk, andc ≥ 0. If c > 0, then there exist a subsequence,
still denoted by{uk}, a constantc′ > 0, such that‖uk‖H 1.�/ ≥ c′.

PROOF. By (f3) and if k is large, then

c + o.1/.1 + ‖uk‖H 1.�// = I .uk/ − 1

�
.I ′.uk/;uk/

=
(

1

2
− 1

�

)
‖uk‖2

H 1.�/ −
∫
�

[
F.x;uk/− 1

�
f .x;uk/uk

]
dx

≥
(

1

2
− 1

�

)
‖uk‖2

H 1.�/:
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Thus‖uk‖H 1.�/ ≤ c̄ for eachk. Then for largek, we have.I ′.uk/;uk/ = o.1/ and

c + o.1/ = I .uk/− 1

�
.I ′.uk/;uk/ ≥

(
1

2
− 1

�

)
‖uk‖2

H 1.�/;

soc ≥ 0.
Suppose thatc > 0. If lim k→∞ ‖uk‖H 1.�/ = 0, then for largek, I .uk/ = o.1/.

Hence contradiction with the assumption thatc > 0. Thus there exist a subsequence,
still denoted by{uk}, a constantc′ > 0, such that‖uk‖H 1.�/ ≥ c′.

LEMMA 2.2. For anyu ∈ M.�/, there exists a constantK > 0 such thatI .u/ ≥
..� − 2/=.2�//.2K /.−2/=.p−1/ > 0.

PROOF. By (f1) and (f2), for any" > 0 there exists a constantC" > 0 such that

| f .x;u/| ≤ "|u| + C"|u|p:(2.1)

We take" = 1=2, and by the Sobolev inequality,

0 = .I ′.u/;u/ = ‖u‖2
H 1.�/ −

∫
�

f .x;u/u dx

≥ ‖u‖2
H 1.�/ −

∫
�

(
1

2
u2 + C1=2|u|p+1

)
dx

≥ 1

2
‖u‖2

H 1.�/ − K ‖u‖p+1
H 1.�/

= ‖u‖2
H 1.�/

(
1

2
− K ‖u‖p−1

H 1.�/

)
;

thus‖u‖H 1.�/ ≥ .2K /.−1/=.p−1/, and then by (f3),

I .u/ = 1

2
‖u‖2

H 1.�/ −
∫
�

F.x;u/dx ≥ 1

2
‖u‖2

H 1.�/ −
1

�

∫
�

f .x;u/u dx

=
(

1

2
− 1

�

)
‖u‖2

H 1.�/ ≥ � − 2

2�
.2K /−2=.p−1/:

Notice thatŽ.�/, the infimum of all positive.PS/-values, is a positive number.
This can be proved as follows. By Stuart [8], ÞM.�/ is a positive.PS/ÞM .�/-value, so
2.�/ is not empty andŽ.�/ ≤ ÞM.�/.

For an arbitrary sequence{uk} bounded inL2.RN /, we introduce the concentration
functions of|uk|2,

8k.t/ = sup
z∈RN

∫
BN

t .z/

|uk|2

defined fort ≥ 0.
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LEMMA 2.3. Let {uk} be bounded inH 1.RN/ and assume that for somet0 > 0,
8k.t0/ → 0. Thenuk → 0 strongly inLq.RN/ for all 2 < q < 2∗ = 2N=.N − 2/. If
in additionuk satisfies.I ′.uk/;uk/ → 0, thenuk → 0 strongly inH 1.RN/.

PROOF. We divide the proof into two steps.
Step 1. DecomposeRN into unit cubesF0 = {P1

i }∞
i =1 of length 1 with vertex at lattice

points. Continuing to bisect the cubes to obtain cubesFm = {Pm
i }∞

i =1 of length 1=2m

for eachPm
i . Letm0 satisfy

√
N.1=2m0/ < t0. For eachi , let Bm0

i be a ball with center
at the same as that ofPm0

i and of radiust0 in RN . ThenPm0

i ⊂ Bm0

i , RN = ⋃∞
i =1 Pm0

i ,
and {Pm0

i }∞
i =1 are nonoverlapping. WritePi = Pm0

i . If we takeq andr such that
2< q < r < 2∗, we can write, using the H¨older inequality and Sobolev imbedding,∫

RN

|uk|q =
∞∑

i =1

∫
Pi

|uk|q =
∞∑

i =1

∫
Pi

|uk|2.r −q/=.r −2/|uk|r .q−2/=.r −2/

≤
∞∑

i =1

(∫
Pi

|uk|2
).r −q/=.r −2/ (∫

Pi

|uk|r

).q−2/=.r −2/

≤ .8k.t0//
.r −q/=.r −2/

∞∑
i =1

(∫
Pi

|uk|r

).q−2/=.r −2/

≤ c.8k.t0//
.r −q/=.r −2/

∞∑
i =1

(∫
Pi

.|∇uk|2 + u2
k/

)r .q−2/=2.r −2/

:

Since limr →q.r .q − 2/=2.r − 2// = q=2 > 1, we may chooser such thats =
.r .q − 2/=2.r − 2// ≥ 1.

∞∑
i =1

(∫
Pi

.|∇uk|2 + |uk|2/
)r .q−2/=2.r −2/

=
∞∑

i =1

(∫
Pi

.|∇uk|2 + |uk|2/
)s

≤
( ∞∑

i =1

∫
Pi

.|∇uk|2 + |uk|2/
)s

=
(∫

RN

.|∇uk|2 + |uk|2/
)s

= ‖uk‖2s
H 1.RN / ≤ c:

Therefore,uk → 0 strongly inLq.RN/ for all 2< q < 2∗ = 2N=.N − 2/.
Step 2. If, in addition,uk satisfies.I ′.uk/;uk/ → 0, then for largek, ‖uk‖2

H 1.RN /
=∫

RN f .x;uk/uk dx + o.1/. By (2.1), if k is large,

‖uk‖2
H 1.RN / ≤

∫
RN

| f .x;uk/| |uk| dx + o.1/

≤ "‖uk‖2
H 1.RN / + C"‖uk‖p+1

L p+1.RN /
+ o.1/;
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or by Step 1,

.1 − "/‖uk‖2
H 1.RN / ≤ C"‖uk‖p+1

L p+1.RN /
+ o.1/ = o.1/:

Henceuk → 0 strongly inH 1.RN/.

LEMMA 2.4. Let{uk} be a.PS/c-sequence withc > 0. Then there exists a sequence
{tk} in R+ such that{tkuk} ⊂ M.�/, {tk} is bounded, and for largek, ÞM.�/ ≤
I .tkuk/ ≤ c + o.1/.

PROOF. Let {uk} be a.PS/c-sequence withc > 0, thus for largek, uk 6≤ 0, and
uk 6→ 0 strongly in H 1.RN/, whereuk is identified with an element ofH 1.RN/

by extendinguk to be zero onRN\�, then by Lemma2.3, there exist a sequence
{zk} ⊂ R

N and"1 > 0 such thatuk 6≤ 0 in BN
1=2.zk/, and∫

BN
1=2.zk/

|uk.x/|2 dx ≥ "1:

Hence there exist"2 > 0, "3 > 0, such that

|Dk| ≡ ∣∣{x ∈ BN
1=2.zk/ | uk.x/ ≥ "2

}∣∣ ≥ "3;

where|Dk| denotes the Lebesgue measure of the setDk.
Foruk 6≡ 0, by (f4), there exists a unique positive numbertk such thattkuk ∈ M.�/,

then

‖uk‖2
H 1.�/ =

∫
�

f .x; tkuk/uk

tk
dx:

Eithertk ≤ 1 or tk > 1 in which case by (f3),F.x; ty/=t� is a nondecreasing function
of t > 0 for all x ∈ � andy ∈ R\{0}, then

t2
k ‖uk‖2

H 1.�/ =
∫
�

f .x; tkuk/tkuk dx ≥ �

∫
�

F.x; tkuk/dx ≥ �

∫
�

t �k F.x;uk/dx:

Consequently by Lemma2.1,

t �−2
k ≤ �−1

‖uk‖2
H 1.�/∫

�
F.x;uk/dx

≤ �−1 c̄2∫
Dk

F.x;uk/dx

≤ �−1 c̄2∫
Dk

F.x; "2/dx
≤ �−1 c̄2

"3.minx∈Dk
F.x; "2//

;
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thus{tk} must be bounded.

I .tkuk/ − I .uk/

= 1

2
t2
k ‖uk‖2

H 1.�/ −
∫
�

F.x; tkuk/dx − 1

2
‖uk‖2

H 1.�/ +
∫
�

F.x;uk/dx

= 1

2
.t2

k − 1/
∫
�

f .x;uk/uk dx −
∫
�

F.x; tkuk/dx +
∫
�

F.x;uk/dx + o.1/

= g.tk/+ o.1/;

whereg.t/ = ..t2−1/=2/
∫
�

f .x;uk/uk dx−∫
�

F.x; tuk/dx+∫
�

F.x;uk/dx. Since

g′.t/ = t
∫
�

f .x;uk/uk dx −
∫
�

f .x; tuk/uk dx

= t

(∫
�

f .x;uk/uk

1
dx −

∫
�

f .x; tuk/uk

t
dx

)
;

it follows from (f4) that g′.t/ > 0 if t ∈ .0;1/ andg′.t/ < 0 if t ∈ .1;∞/. Thus
g.1/ = maxt∈[0;∞/ g.t/, g.1/ = 0, and for largek,

I .tkuk/− I .uk/ = g.tk/+ o.1/ ≤ g.1/+ o.1/ = o.1/:

Hence ifk is large,ÞM.�/ ≤ I .tkuk/ ≤ c + o.1/.

Next, we prove that an optimal lower bound for2.�/ isÞM.�/ when (f1)–(f4) are
satisfied.

THEOREM 2.5. If (f1)–(f4) hold, thenŽ.�/ = ÞM.�/.

PROOF. It suffices to showŽ.�/ ≥ ÞM.�/, since the reversed inequality is always
true. Let{uk} be a.PS/c-sequence withc > 0, and by Lemma2.4, there existstk ∈
.0;∞/, such thattkuk ∈ M.�/, {tk} is bounded, and for largek, ÞM.�/ ≤ I .tkuk/ ≤
c+ o.1/. Sincec is arbitrary positive.PS/-value, it follows thatÞM.�/ ≤ Ž.�/.

3. Existence of solutions

In this section, we show that ifÞM.�/ < ÞM.�̃k/ for some largek ∈ N, then there
exists a ground state solutionu of (1.1) with I .u/ = ÞM.�/, and if there exists a
.PS/c-sequence withÞM.�/ < c < ÞM.�̃k/ for some largek ∈ N, then there exist at
least two positive solutions of (1.1), that is, a ground state solutionu and a positive
higher energy solution.

First, we state some properties of Palais-Smale sequences.
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LEMMA 3.1. Let{uk} be a.PS/-sequence forI satisfyinguk * u weakly inH 1
0 .�/.

Then

(1) u is a weak solution of(1.1).
(2) If u 6≡ 0, thenu is a positive solution of(1.1).
(3) If {uk} is a .PS/ÞM .�/-sequence forI satisfyinguk * u weakly inH 1

0 .�/ andu
6≡ 0, thenuk → u strongly inH1

0 .�/.

PROOF. (1) Take a subsequence{uk} such thatuk * u weakly in H 1
0 .�/, a.e. in�,

and strongly inLq
loc.�/ for 1 ≤ q < 2∗. Given� ∈ C∞

c .�/, we get∫
�

∇uk · ∇� →
∫
�

∇u · ∇�;
∫
�

uk� →
∫
�

u�;

and by (f2),| f .x;uk/ − f .x;u/| |�| ≤ a1.|uk| + |uk|p + |u| + |u|p/|�|, then by the
generalization of the Lebesgue dominated convergence theorem, we have∫

�

f .x;uk/� →
∫
�

f .x;u/�:

Hence.I ′.u/; �/ = limk→∞.I ′.uk/; �/ = 0. SinceC∞
c .�/ is dense inH1

0 .�/, we
haveI ′.u/ = 0. Thereforeu is a weak solution of (1.1).
(2) If u is a nonzero solution of (1.1), thenu ∈ M.�/. By elliptic regularity, any
critical point of I is a classical solution of (1.1). Let u−.x/ = max.−u.x/;0/. Since

0 = .I ′.u/;u−/ =
∫
�

∇u · ∇u− +
∫
�

uu− −
∫
�

f .x;u/u− = −‖u−‖2
H 1.�/;

henceu ≥ 0. By the maximum principle,u > 0 in�.
(3) By Part (2),u ∈ M.�/ and applying Fatou’s lemma yields

ÞM.�/ ≤ I .u/ = 1

2
‖u‖2

H 1.�/ −
∫
�

F.x;u/dx

= 1

2

∫
�

f .x;u/udx −
∫
�

F.x;u/dx

≤ lim inf
k→∞

∫
�

(
1

2
f .x;uk/uk − F.x;uk/

)
dx = lim

k→∞
I .uk/ = ÞM.�/;

or

I .u/ = ÞM.�/:(3.1)

Set pk = uk − u to get pk * 0 weakly inH 1
0 .�/, a.e. in�, and strongly inLq

loc.�/

where 1≤ q < 2∗, then for largek, we have

‖pk‖2
H 1.�/ = ‖uk‖2

H 1.�/ − ‖u‖2
H 1.�/ + o.1/:(3.2)
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Sinceu ∈ H1
0 .�/, by (f1) and (f2), for any" > 0, there existsr > 0 such that for

�̃r = �\BN
r .0/,∫

�̃r

|u|2 < ";

∫
�̃r

|u|p+1 < ";

∫
�̃r

|F.x;u/| < ":(3.3)

By the generalization of the Lebesgue dominated convergence theorem, we have∫
�r

F.x;uk/ →
∫
�r

F.x;u/ and
∫
�r

F.x; pk/ → 0:

Then ∫
�r

|F.x; pk/− F.x;uk/+ F.x;u/| < ":(3.4)

Now by the Hölder inequality and the fact that‖pk‖H 1.�/ and‖uk‖H 1.�/ are bounded,
we have ∫

�̃r

|F.x; pk/− F.x;uk/|(3.5)

=
∫
�̃r

| f .x; tpk + .1 − t/uk/‖u| for some 0< t < 1

≤ c
∫
�̃r

.|pk| + |uk| + |pk|p + |uk|p/|u|
≤ c

(‖pk‖H 1.�/‖u‖L2.�̃r / + ‖uk‖H 1.�/‖u‖L2.�̃r /

+ ‖pk‖p
H 1.�/

‖u‖L p+1.�̃r / + ‖uk‖p
H 1.�/

‖u‖L p+1.�̃r /

)
< c":

Therefore by (3.3), (3.4), and (3.5), for largek,∫
�

F.x; pk/ =
∫
�

F.x;uk/ −
∫
�

F.x;u/+ o.1/:(3.6)

By (3.1), (3.2), and (3.6), for largek,

I .pk/ = I .uk/ − I .u/+ o.1/ = ÞM.�/ − ÞM.�/ + o.1/ = o.1/;

and it follows that

‖pk‖2
H 1.�/ = 2

∫
�

F.x; pk/dx:(3.7)

For � ∈ C∞
c .�/, by (f2), | f .x;uk − u/�| ≤ a1.|uk − u| + |uk − u|p/|�|, then by

the generalization of the Lebesgue dominated convergence theorem again, we have
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�

f .x;uk − u/� → 0. SinceC∞
c .�/ is dense inH1

0 .�/, f .x;uk − u/ → 0 in
H−1.�/. Similarly, f .x;uk/ − f .x;u/ → 0 in H−1.�/. So for largek, we have

I ′.pk/ = −1pk + pk − f .x; pk/ = −1.uk − u/ + .uk − u/− f .x;uk − u/

= .−1uk + uk − f .x;uk//− .−1u + u − f .x;u//

− . f .x;uk − u/ − f .x;uk/ + f .x;u//

= I ′.uk/ − I ′.u/ + o.1/ = o.1/;

and it follows that

‖pk‖2
H 1.�/ =

∫
�

f .x; pk/pk dx:(3.8)

From (f3), (3.7), and (3.8), for largek, we have‖pk‖H 1.�/ = o.1/, that is,uk → u
strongly inH 1

0 .�/.

We shall see what will happen whenu is zero. Let

�k = � ∩ BN
k .0/; �̃k = �\BN

k .0/:

LEMMA 3.2. Let {uk} be a.PS/c-sequence withc > 0. Then

(1) If (f1)–(f3) hold, suppose thatuk * 0 weakly in H 1
0 .�/, then there exists a

subsequence{uk} such that for�2k, if k is large,∫
�2k

|uk|q = o.1/ for each 1 ≤ q < 2∗:

(2) In addition to(f1)–(f3), that (f4) satisfied, suppose there exists a subsequence,
still denoted by{uk}, such that for�2k, if k is large,∫

�2k

|uk|q = o.1/ for each 1 ≤ q < 2∗:

Then we havec ≥ ÞM.�̃k/ for all large k.
(3) If (f1)–(f4) hold, suppose thatuk * 0 weakly inH 1

0 .�/, thenc ≥ ÞM.�̃k/ for
all large k.

PROOF. (1) Sinceuk * 0 weakly in H 1
0 .�/, a.e. in�, and strongly inLq

loc.�/,
where 1≤ q < 2∗. Thus for eachm ∈ N, limk→∞

∫
�m

|uk|q = 0. We can take a
subsequence{ukm

} such that
∫
�m

|ukm
|q < 1=m. Therefore, there exists a subsequence,

still denoted by{uk}, such that for�2k, if k is large,
∫
�2k

|uk|q = o.1/ for each
1 ≤ q < 2∗.
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(2) Let{uk} be a.PS/c-sequence, so for largek,

I .uk/ = 1

2
‖uk‖2

H 1.�/ −
∫
�

F.x;uk/dx = c + o.1/;

‖uk‖2
H 1.�/ =

∫
�

f .x;uk/uk dx + o.1/:

Let � ∈ C∞.[0;∞// such that

0 ≤ � ≤ 1; �.t/ =
{

0 for t ∈ [0;1];
1 for t ∈ [2;∞/:

Let �k.x/ = �.|x|=k/. Since{�2
k uk} is bounded inH 1

0 .�/, for largek,

o.1/ = .I ′.uk/; �
2
k uk/(3.9)

=
∫
�

.� 2
k |∇uk|2 + 2�kuk∇�k · ∇uk + � 2

k u2
k/dx −

∫
�

f .x;uk/�
2
k uk dx:

Note that|∇�k.x/| ≤ c=k, if k is large,
∫
�2k

|uk|q = o.1/ for each 1≤ q < 2∗, so for
largek, ∫

�

�kuk∇�k · ∇uk = o.1/;(3.10)

and by (f2),
∫
�2k

f .x;uk/uk dx = o.1/. Then we have∫
�

f .x;uk/�
2
k uk dx =

∫
�

f .x;uk/uk dx + o.1/ = ‖uk‖2
H 1.�/ + o.1/;(3.11)

again by (f2),∫
�

f .x; �kuk/�kuk dx =
∫
�

f .x;uk/�kuk dx + o.1/ = ‖uk‖2
H 1.�/ + o.1/;(3.12)

and ∫
�

F.x; �kuk/dx(3.13)

=
∫
�

.F.x; �kuk/ − F.x;uk//dx +
∫
�

F.x;uk/dx

=
∫
�2k

f .x; .1 − t/uk + t�kuk/.�kuk − uk/dx +
∫
�

F.x;uk/dx

=
∫
�

F.x;uk/dx + o.1/; where 0< t < 1:
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For largek, substituting (3.10), (3.11) into (3.9) yields∫
�

� 2
k .|∇uk|2 + u2

k/ = ‖uk‖2
H 1.�/ + o.1/:(3.14)

Then by (3.13) and (3.14), for largek,

I .�kuk/ = 1

2

∫
�

[|∇�k|2u2
k + � 2

k .|∇uk|2 + u2
k/+ 2�kuk∇�k · ∇uk](3.15)

−
∫
�

F.x; �kuk/dx

= 1

2
‖uk‖2

H 1.�/ −
∫
�

F.x;uk/dx + o.1/

= I .uk/+ o.1/ = c + o.1/:

By (3.14), (3.12), for largek,

.I ′.�kuk/; �kuk/ = ‖�kuk‖2
H 1.�/ −

∫
�

f .x; �kuk/�kuk dx(3.16)

= ‖uk‖2
H 1.�/ − ‖uk‖2

H 1.�/ + o.1/ = o.1/:

Let vk = �kuk ∈ H 1
0 .�̃k/. For vk 6≡ 0, by (3.15), (3.16) and Lemma2.4, there exists

tk ∈ .0;∞/ such thattkvk ∈ M.�̃k/, {tk} is bounded, and for largek, ÞM.�̃k/ ≤
I .tkvk/ ≤ I .vk/+ o.1/ = c + o.1/. So we haveÞM.�̃k/ ≤ c for all largek.
(3) It follows immediately from Step (1) and Step (2).

Now we will prove the existence of a ground state solution and a positive higher
energy solution of (1.1).

THEOREM 3.3. Suppose(f1)–(f4) hold, there exists a ground state solutionu of
(1.1) with I .u/ = ÞM.�/ if ÞM.�/ < ÞM.�̃k/ for some largek ∈ N.

PROOF. As a consequence of Ekeland’s variational principle, there exists a sequence
{uk} ⊂ M.�/ which weakly converges tou, such that{uk} is a.PS/ÞM .�/-sequence. If
ÞM.�/ < ÞM.�̃k/ for some largek ∈ N, by Lemma3.2, replacingc byÞM.�/, u 6≡ 0,
and then by Lemma3.1, u > 0, uk → u strongly inH1

0 .�/, andI .u/ = ÞM.�/.

THEOREM 3.4. If (f1)–(f4) hold, suppose there exists a.PS/c-sequence with
ÞM.�/ < c < ÞM.�̃k/ for some largek ∈ N, then there exists a positive higher
energy solutionv of (1.1) with c ≥ I .v/ > ÞM.�/.

PROOF. Let {vk} ⊂ H 1
0 .�/ be a.PS/c-sequence withÞM.�/ < c < ÞM.�̃k/ for

some largek ∈ N. Take a subsequence{vk} such thatvk * v weakly in H1
0 .�/, a.e.
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in �, and strongly inLq
loc.�/ where 1≤ q < 2∗. By Lemma3.2, v 6≡ 0, then by

Lemma3.1, v is a positive solution of (1.1) with c ≥ I .v/ ≥ ÞM.�/.
SupposeI .v/ = ÞM.�/. From Theorem3.3, I .u/ = ÞM.�/. Settingwk = vk − v

and following the same line of proof as in Lemma3.1(3), for largek, we have

I .wk/ = I .vk/ − I .v/+ o.1/ = c − ÞM.�/ + o.1/;

I ′.wk/ = I ′.vk/− I ′.v/ + o.1/ = o.1/;

so {wk} is a .PS/c−ÞM .�/-sequence. Since 0< c − ÞM.�/ < ÞM.�̃k/ for some large
k ∈ N, by Lemma3.2(3), it follows thatwk * w 6≡ 0, a contradiction.

4. The (PS)-conditions

Let32 be a smooth domain inRN and31 be a closed subset of32, then the relation
betweenÞM.32/ andÞM.31/ is given by the following theorem.

THEOREM 4.1. Let31 ⊂ 32. If the functionalI satisfies the.PS/ÞM .31/-condition,
thenÞM.32/ < ÞM.31/.

PROOF. 31 ⊂ 32, so ÞM.32/ ≤ ÞM.31/. SupposeÞM.32/ = ÞM.31/. As a
consequence of Ekeland’s variational principle, there exists a sequence{uk} ⊂ M.31/

such thatI .uk/ → ÞM.31/, I ′.uk/ → 0 in H−1.31/. SinceI satisfies the.PS/ÞM .31/-
condition, there exist a subsequence{uk}, and u ∈ H1

0 .31/, satisfyinguk → u
strongly in H 1

0 .31/. SinceÞM.31/ > 0, u 6≡ 0, then by Lemma3.1, u > 0 with
I .u/ = ÞM.31/, I ′.u/ = 0. And I .u/ = ÞM.32/ = infu∈M.32/ I .u/. It is known
that every minimizer ofÞM.32/ is a critical point of I , thereforeu solves (1.1) if
� = 32. By Lemma3.1, u > 0 in 32. This contradictsu ∈ H1

0 .31/. Therefore,
ÞM.32/ < ÞM.31/.

Then we can verify that the.PS/ÞM .�/-condition is satisfied.

THEOREM 4.2. If (f1)–(f4)hold, thenI satisfies the.PS/ÞM .�/-condition if and only
if ÞM.�/ < limk→∞ ÞM.�̃k/.

PROOF. (1) SupposeÞM.�/ < limk→∞ ÞM.�̃k/, thenÞM.�/ < ÞM.�̃k/ for some
largek ∈ N. Let {uk} be a.PS/ÞM .�/-sequence satisfyinguk * u weakly in H 1

0 .�/.
By Lemma3.2, u 6≡ 0, then by Lemma3.1, uk → u strongly inH1

0 .�/. We conclude
that I satisfies the.PS/ÞM .�/-condition.

(2) We argue indirectly. SupposeÞM.�/ = limk→∞ ÞM.�̃k/, then ÞM.�/ =
ÞM.�̃k/ for all k ∈ N. We claim thatI does not satisfy the.PS/ÞM .�/-condition in�.
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In fact, suppose on the contrary,I satisfies the.PS/ÞM .�/-condition in�. Then we
claim that I |H 1

0 .�̃k/ satisfies the.PS/ÞM .�/-condition in�̃k for all k ∈ N. In fact, let
{un} ⊂ H 1

0 .�̃k/ ⊂ H1
0 .�/ satisfyI .un/ → ÞM.�̃k/, I ′.un/ → 0 in H−1.�̃k/. SinceI

satisfies the.PS/ÞM .�/-condition in�, there exist a subsequence{un}, andu ∈ H1
0 .�/

satisfyingun → u strongly inH1
0 .�/, that is,uk → u strongly inH1

0 .�̃k/. Therefore
I |H 1

0 .�̃k/ satisfies the.PS/ÞM .�̃k/-condition. By Theorem4.1, ÞM.�/ < ÞM.�̃k/. This
is a contradiction.

5. Upper half strip with a hole

In this section, the domain is the upper half strip with a hole. For simplicity, we
consider the case wheref does not depend onx, so the problem is as follows:

−1u + u = f .u/ in 3;

u > 0 in 3;

u ∈ H1
0 .3/;

(5.1)

where3 = Ar
0\D, D ⊂ BN

² ..0; �0// ⊂ Ar
0, and�0 is sufficiently large,² is sufficiently

small, and they are suitably chosen. Let

Qs.�0/ = {
.¾; �/ ∈ RN−1 × R | |¾ | < r; |�− �0| < s

}
;

Q̃s.�0/ = Ar
0\Qs.�0/; 3m = 3 ∩ Qm.�0/; 3̃m = 3\Qm.�0/:

THEOREM 5.1. (1) ÞM.3/ = ÞM.Ar /.
(2) The functionalI does not satisfy the.PS/ÞM .3/-condition, and the only possible

solutions of(5.1) are higher energy solutions.

PROOF. (1) Let w ∈ H1
0 .A

r / be the positive solution of (5.1) if 3 = Ar with
I .w/ = ÞM.Ar /. Take{.0; �n/} ⊂ 3, rn → ∞ such thatQrn

.�n/ ⊂ 3. Consider the
cut-off function ∈ C∞

c .[0;∞// such that

0 ≤  ≤ 1;  .t/ =
{

1 for t ∈ [0;1];
0 for t ∈ [2;∞/:

Letwn.¾; �/ =  .2|� − �n|=rn/w.¾; � − �n/. Thenwn ∈ H 1
0 .3/. Since for largek,

‖wn.¾; �/−w.¾; � − �n/‖2
H 1.Ar /

= ‖ .2|�− �n|=rn/w.¾; � − �n/ −w.¾; � − �n/‖2
H 1.Ar /

≤
∫

Ar ∩Q̃rn=2.�n/

(|∇w.¾; � − �n/|2 +w.¾; � − �n/
2
)+ o.1/

= o.1/;
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and by (f2), for largek,∫
Ar

|F.wn.¾; �//− F.w.¾; � − �n//|

=
∫

Ar ∩Q̃rn=2.�n/

| f .twn.¾; �/+.1−t/w.¾; �−�n//| |wn.¾; �/−w.¾; �−�n/|

≤ c
∫

Ar ∩Q̃rn=2.�n/

(|w.¾; � − �n/|2 + |w.¾; � − �n/|p+1
)

= o.1/; for some 0< t < 1;∫
Ar

| f .wn.¾; �//wn.¾; �/− f .w.¾; � − �n//w.¾; � − �n/|

≤
∫

Ar

| f .wn.¾; �//wn.¾; �/− f .wn.¾; �//w.¾; � − �n/|

+
∫

Ar

| f .wn.¾; �//w.¾; � − �n/ − f .w.¾; � − �n//w.¾; � − �n/|
= o.1/;

then we have

I .wn/ = 1

2
‖wn‖2

H 1.3/ −
∫
3

F.wn/(5.2)

= I .w/ + o.1/ = ÞM.A
r /+ o.1/;

.I ′.wn/;wn/ = ‖wn‖2
H 1.3/ −

∫
�

f .wn/wn(5.3)

= ‖w‖2
H 1.Ar / −

∫
Ar

f .w/w + o.1/ = o.1/:

Forwn ∈ H 1
0 .3/, wn 6≡ 0, by (5.2), (5.3), and Lemma2.4, there existstn ∈ .0;∞/

such thattnwn ∈ M.3/, {tn} is bounded, andÞM.3/ ≤ I .tnwn/ ≤ I .wn/ + o.1/ =
ÞM.Ar /+ o.1/ for largen. Hence we obtainÞM.3/ = ÞM.Ar /.

(2) By Part 1 and Theorem4.1, I does not satisfy the.PS/ÞM .3/-condition. If u is
a ground state solution of (5.1), by puttingu = 0 in Ar \3, we see thatu could be
regarded as an element ofH 1

0 .A
r /; then by the strong maximum principle,u would

be a positive solution inAr , a contradiction. Therefore the only possible solutions of
(5.1) are positive higher energy solutions.

Using the same argument as in the proof of Theorem5.1, we obtain

PROPOSITION5.2. (1) Let 6 be a closed subset ofAr . If for any s > 0 there
exists.0; �/ ∈ 6 such thatQs.�/ ⊂ 6, thenÞM.6/ = ÞM.Ar /. As a more concrete
example,6 can be a upper half stripAr

0, a upper half strip with a hole3 or the union
of Ar

0 with a bounded set.
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(2) lim�→∞ ÞM.Q�.�// = ÞM.Ar
0/ = ÞM.Ar / = ÞM.Ar

a/, for everya ∈ R.

From Theorem5.1and Proposition5.2, we know that there doesn’t exist any.PS/c-
sequence withÞM.3/ < c < ÞM.3̃k/ for anyk ∈ N, so we cannot use Theorem3.4
to get the existence of any higher energy solution of (5.1). Hence we take a new
approach to obtain a higher energy solution of (5.1).

THEOREM 5.3. If (f1)–(f4) hold, suppose there exists a.PS/c-sequence withc > 0
andc =∈ 2.3̃m/ for somem ∈ N, then there exists a positive higher energy solution
of (5.1).

PROOF. Let {uk} be a.PS/c-sequence withc > 0 andc =∈ 2.3̃m/ for somem ∈ N.
Take a subsequence{uk} such thatuk * u weakly in H 1

0 .3/, a.e. in3, and strongly
in Lq

loc.3/, where 1≤ q < 2∗. Moreover,I ′.u/ = 0 and I .u/ ≤ c. We claim that
u 6≡ 0. Supposeu ≡ 0, as in the proof of Lemma3.2, there exists a subsequence{uk}
such that forQk.�0/, if k is large,∫

Qk.�0/

|uk|q = o.1/ for each 1≤ q < 2∗:(5.4)

Let ¾ : RN → [0;1] be aC∞-function which satisfies

¾.x/ =
{

0 for x ∈ BN
m .0; �0/;

1 for x =∈ BN
m+1.0; �0/:

Letwk = ¾uk, wk ∈ H 1
0 .3̃m/. Then we want to show that{wk} is a.PS/c-sequence in

H 1
0 .3̃m/.
It suffices to show that

lim
k→∞

|I .wk/− I .uk/| = 0;(5.5)

and

lim
k→∞

sup
‖�‖H1.3̃m/

≤1
|.I ′.wk/; �/ − .I ′.uk/; �/| = 0:(5.6)

By a direct computation,

|.I ′.wk/; �/ − .I ′.uk/; �/|(5.7)

≤
∣∣∣∣∫
3̃m

.¾.x/− 1/uk�

∣∣∣∣ + ∣∣∣∣∫
3̃m

.¾.x/− 1/∇uk · ∇�
∣∣∣∣

+
∣∣∣∣∫
3̃m

uk∇¾ · ∇�
∣∣∣∣ + ∣∣∣∣∫

3̃m

. f .uk/− f .¾uk//�

∣∣∣∣
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≤
(∫

3̃m
⋂

BN
m+1.0;�0/

|uk|2
)1=2

+
(∫

3̃m
⋂

BN
m+1.0;�0/

|∇uk|2
)1=2

+ ‖∇¾‖L∞

(∫
3̃m

⋂
BN

m+1.0;�0/

|uk|2
)1=2

+ 2a1

(∫
3̃m

⋂
BN

m+1.0;�0/

|uk|2
)1=2

+
(∫

3̃m
⋂

BN
m+1.0;�0/

|uk|2p

)1=2
 :

Since3̃m

⋂
BN

m+1.0; �0/ ⊂ 3k−1 if k is large, (5.6) follows from (5.7) and (5.4),
provided that ∫

3̃m
⋂

BN
m+1.0;�0/

|∇uk|2 → 0 as k → ∞:(5.8)

Now we prove (5.8). Let ¾k : RN → [0;1] be a C∞
0 -function which satisfies

0 ≤ ¾k ≤ 1, |∇¾k| ≤ 1, and

¾k.x/ =
{

1 for x ∈ BN
k−1.0; �0/;

0 for x =∈ BN
k .0; �0/:

Since{¾kuk} is bounded inH 1
0 .3/, if k is large,

o.1/ = .I ′.uk/; ¾kuk/(5.9)

=
∫
3k

¾k|∇uk|2 +
∫
3k

uk∇¾k · ∇uk +
∫
3k

¾ku2
k −

∫
3k

f .x;uk/¾kuk:

By (5.4), we conclude that the last three integrals of (5.9) tend to zero ask → ∞ and
consequently∫

3̃m
⋂

BN
m+1.0;�0/

|∇uk|2 ≤
∫
3k−1

|∇uk|2 ≤
∫
3k

¾k|∇uk|2 → 0 ask → ∞:

Observe that

I .wk/− I .uk/ = 1

2

∫
3

[
.¾ 2 − 1/.|∇uk|2 + u2

k/ + |∇¾ |2|uk|2 + 2¾uk∇¾ · ∇uk

]
−
∫
3

.F.wk/− F.uk//:

Thus (5.5) follows from several estimates which are similar to the above. Hence
c ∈ 2.3̃m/, this is contrary to the hypothesis, so there exists a positive higher energy
solutionu.
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Next, we will use a mini-max structure to obtain a positive higher energy solution
of (5.1).

From Theorem5.1 and Proposition5.2, we have lim�→∞ ÞM.Q�.�// = ÞM.3/,
then for any"4 > 0, there exists̄� = �̄."4/ sufficiently large such that

ÞM.A
r
a/ = ÞM.3/ < ÞM.Q�̄.�̄// < ÞM.3/ + "4; for every a ∈ R:

So we can choose�0 = 9�̄=2 and D ⊂ BN
² ..0; �0// ⊂ Q�̄=4.�0/ ⊂ Ar

4�̄, and then
choosez− ∈ M.Q�̄.�̄// andz+ ∈ M.Ar

7�̄/ such that max.I .z−/; I .z+// < ÞM.3/+"4.
Set

0 = {
 ∈ C.[0;1];M.3// | 
 .0/ = z− and
 .1/ = z+}; ¼ = inf

∈0

max
�∈[0;1]

I .
 .�//:

We will show that there exists a.PS/¼-sequence with¼ > ÞM.3/, provided thatz+
and z− are suitably chosen. Let' be aC∞ function which satisfies 0≤ ' ≤ 1,
|∇'| ≤ 2=�̄, ' ≡ 0 on Q�̄=2.�0/ and' ≡ 1 on Q̃�̄.�0/. Straightforward calculation,
gives the following lemma:

LEMMA 5.4. For any "5 ∈ .0; ÞM.3/=2/, there existsŽ = Ž."5/ > 0 such that if
u ∈ M.3/ and I .u/ < ÞM.3/ + Ž thenI .t'u'u/ < ÞM.3/ + "5, wheret'u > 0 and
t'u'u ∈ M.3/.

With Lemma5.4, we want to show that¼ > ÞM.3/.

LEMMA 5.5. ¼ ≥ ÞM.3/ + Ž, whereŽ is the number defined in Lemma5.4.

PROOF. Suppose¼ < ÞM.3/ + Ž. From the definition of¼, there exists a
0 ∈ 0
such that max�∈[0;1] I .
0.�// < ÞM.3/ + Ž. Let 
 .�/ = t'
0.�/'
0.�/, it follows from
Lemma5.4that
 ∈ 0 and

max
�∈[0;1]

I .
 .�// < ÞM.3/ + "5 <
3

2
ÞM.3/:(5.10)

By the definition of', 
 .�/ = 
+.�/+
−.�/, where
+.�/ ∈ Ar
7�̄ and
−.�/ ∈ Q�̄.�̄/.

We claim that

there exists a�0 ∈ .0;1/ such that
+.�0/ ∈ M.3/ and
−.�0/ ∈ M.3/:(5.11)

Assuming (5.11) for now, we obtainI .
 .�0// = I .
+.�0// + I .
−.�0// > ÞM.3/ +
ÞM.3/ = 2ÞM.3/, which contradicts (5.10).

It remains to show (5.11) to complete the proof. Since
+.0/ = 0 and
+.1/ = z+,
there exists a�1 ∈ .0;1/ such thatI ′.
+.�1//
+.�1/ > 0. This together with
 .�1/ ∈
M.3/ implies thatI ′.
−.�1//
−.�1/ < 0. Let

�2 = sup{� | I ′.
−.�/
−.�/ < 0 or
−.�/ ∈ M.3/}:(5.12)
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Since
−.1/ = 0 and
−.0/ = z−, it follows that �2 ∈ .0;1/. Using I ∈ C1 and
I ′.
−.�2//
−.�2/ = 0. Since
 .�2/ ∈ M.3/, it follows that I ′.
+.�2//
+.�2/ = 0.

To complete the proof of (5.11), we need to show that
−.�2/ 6= 0 and
+.�2/ 6= 0.
We argue indirectly. If
−.�2/ = 0, then either
−.�/ = 0 for all � ∈ .�2;1/ or there
exists a�3 ∈ .�2;1/ such thatI ′.
−.�3//
−.�3/ > 0. This contradicts (5.12). Suppose

+.�2/ = 0. Then there exists a�4 ∈ .�2;1/ such thatI ′.
+.�4//
+.�4/ > 0. This
together with
 .�4/ ∈ M.3/ yieldsI ′.
−.�4//
−.�4/ < 0;which again violates (5.12).
Thus the proof is complete.

Then we will show the existence of a Palais-Smale sequence with the.PS/-value¼.

LEMMA 5.6. There exists a.PS/¼-sequence, where¼ is the number defined in
Lemma5.4.

PROOF. Suppose there does not exist a.PS/¼-sequence. Then there existb > 0 and
"̂ > 0 such that‖I ′.u/‖ ≥ b for all u with ¼ − "̂ < I .u/ ≤ ¼+ "̂. We may assume
without loss of generality thatb < 1 and"̂ < .1=2/.¼ − ÞM.3/ − .Ž=4//, whereŽ
is the number defined in Lemma5.4. Let Y1 = {u ∈ M.3/ | ‖I ′.u/‖ ≤ b=2 and
I .u/ ≤ 3¼=2} andY2 = {u ∈ M.3/ | ‖I ′.u/‖ ≥ b and I .u/ ≤ 3¼=2}. Choose

" ∈ .0; "1/; where "1 = min."̂;b2=2;b=4/:(5.13)

LetY3 = {u ∈ M.3/ | I .u/ ≤ ¼−"̂ or I .u/ ≥ ¼+"̂} andY4 = {u ∈ M.3/ | ¼−" ≤
I .u/ ≤ ¼ + "}. For u ∈ M.3/, setg1.u/ = ‖u − Y3‖=.‖u − Y3‖ + ‖u − Y4‖/ and
g2.u/ = ‖u − Y1‖=.‖u − Y1‖ + ‖u − Y2‖/. Let X.u/ be a pseudo-gradient vector
field for I on M.3/ and

W.u/ = −g1.u/g2.u/h.‖X.u/‖/X.u/;(5.14)

whereh.s/ = 1 if s ∈ [0;1] andh.s/ = 1=s if s ≥ 1.
Consider the Cauchy problem:

d�

dt
= W.�/; �.0;u/ = u:(5.15)

The basic existence-uniqueness theorem for ordinary differential equations implies
that, for eachu ∈ M.3/, (5.15) has a unique solution�.t;u/ which is defined fort
in a maximal interval[0;T.u//. Moreover, since‖W.u/‖ ≤ 1 andM.3/ is a closed
subset ofH 1

0 .3/, soT.u/ = +∞. Since

d

dt
I .�.t;u// = −I ′.�.t;u//g1.�.t;u//g2.�.t;u//h.‖X.�.t;u//‖/X.�.t ;u//:
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Define Ĩ a = {u ∈ M.3/|I .u/ ≤ a}. Since I .�.t;u// is a non-increasing function
of t , hence

�.1; Ĩ ¼−"/ ⊂ Ĩ ¼−":(5.16)

We claim that

�.1;Y4/ ⊂ Ĩ ¼−":(5.17)

Indeed, if there existsu ∈ Y4 such that�.1;u/ =∈ Ĩ ¼−", then, for all t ∈ [0;1],
�.t;u/ ∈ Y4. Consequentlyg1.�.t;u// = 1 and g2.�.t;u// = 1. If for some
t ∈ .0;1/, ‖X.�.t;u//‖ ≤ 1, thenh.‖X.�.t;u//‖/ = 1 and

d

dt
I .�.t;u// ≤ −‖I ′.�.t;u//‖2 ≤ −b2:(5.18)

On the other hand, if for somet ∈ .0;1/, ‖X.�.t;u//‖ > 1, then by the definition of
pseudo-gradient vector field,

d

dt
I .�.t;u// ≤ −‖I ′.�.t;u//‖2‖X.�.t;u//‖−1 ≤ −1

2
‖I ′.�.t;u//‖ ≤ −b

2
:(5.19)

Since�.t;u/ ∈ Y4 for all t ∈ [0;1], by (5.18) and (5.19), we have

2" ≥ I .�.0;u// − I .�.1;u// = −
∫ 1

0

d

dt
I .�.t;u//dt ≥ min.b=2;b2/:(5.20)

Since (5.20) is contrary to (5.13), we conclude that (5.17) must hold. Combining
(5.16) and (5.17), we have

�.1; Ĩ ¼+"/ ⊂ Ĩ ¼−":(5.21)

By the definition of¼, there exists a
 ∈ 0 such that max�∈[0;1] I .
 .�// < ¼+ ". Let

1.�/ = �.1; 
 .�//. It follows from (5.21) that

max
�∈[0;1]

I .
 .�// ≤ ¼− ":(5.22)

Sinceg1.u/ = 0 if u ∈ Ĩ ¼−"̂, it follows from (5.14) and (5.15) that�.1;u/ = u if
u ∈ Ĩ ¼−"̂. In particular, max.I .z+/; I .z−// < ÞM.�/ + .Ž=4/ implies
1.0/ = 
 .0/,

1.1/ = 
 .1/ and consequently
1 ∈ 0. But then (5.22) is contrary to the definition
of ¼. The proof is complete.

We are now ready to prove the existence of a positive higher energysolution of (5.1).

THEOREM 5.7. Assume that(f1)–(f4) hold. If¼ =∈ 2.3̃m/ for somem ∈ N, then
there exists a positive higher energy solution of(5.1).

PROOF. By Lemma 5.5 and Lemma5.6, there exists a.PS/¼-sequence with
¼ > ÞM.3/, then by Theorem5.3, we obtain a positive higher energy function
of (5.1).
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