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Abstract

In this paper, first, we study the existence of the positive solutions of the nonlinear elliptic equations in
unbounded domains. The existence is affected by the properties of the geometry and the topology of the
domain. We assert that if there exist&R5).-sequence witle belonging to a suitable interval depending

by the equation, then a ground state solution and a positive higher energy solution exist, too. Next, we
study the upper half strip with a hole. In this case, the ground state solution does not exist, however there
exists at least a positive higher energy solution.
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Keywords and phrase$alais-Smale sequence, higher energy solution, upper half strip with a hole.

1. Introduction

In this paper we study the following problem:

—Au+u= f(x,u) inQ,
(1.1) u>0 in <,
ue Hol(Q),

where2 ¢ RN is an unbounded domain with smooth bounda®; f : @ x R — R
is of classC* and satisfies the following conditions:

(f1) f(x,y) = o(y) neary = 0 uniformly inx € Q.
(f2) There exists; > 0 such that f,(x, y)| < a;(1+ |y|P™Y) for all x € Q and
yeR,wherel< p<(N+2)/(N—-2)if N>2and1l< p<ooif N=1,2.
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(f3) There exist® > 2 such that 0< 6F(x,y) < f(x,y)y for all x € Q and
y € R\{0}, whereF (x,y) = ) f(x,7)dr.

(f4) f(x,ty)y/t is a strictly increasing function of > O for all x € © and
y € R\{O}.
Since we will only look for positive solutions ofL(1), it is convenient to define
f(x,u) = 0foru < 0andx € Q.

Associated with the probleni (1) is the energy functiondl defined by

I (u) =%/(|Vu|2+u2)dx—/ F(x, u)dx.
Q Q

And | € CH(H(Q), R).

It is well known that the solutions ofl(1) are the critical points of the energy
functionall . Moreover, standard arguments from elliptic regularity theory show that
critical points ofl on H(2) are classical solutions of.(1). However, wher2 is
an unbounded domain the existence of a solution becomes a difficult problem, due to
the embedding : H} () — LP(£2) which is not compact. The lack of compactness
implies thatl does not satisfy the Palais-Smale condition, and the standard variational
techniques cannot be applied to this problem, so new analyses are needed to solv
such problems.

Denote by

M(Q) = {u € Hy(2)\{0} ‘ /(|Vu|2 + u?)dx =/ f(x, wu dx} ,
Q Q
ay () = ueim‘m I (u).

Looking for solutions of {.1) is equivalent to find critical points df constrained to
lie upon the manifoldM (©2). As a consequence of Ekeland’s variational principle,
there exists a sequenfg} c M () such that

[ (u) = au(R), 1'(u) — 0 in HYQ).

Althoughay (€2) does not guarantee the existence of a critical poiatHg (€2) with

I (U) = ay (), we can analyze Palais-Smale sequences to justify whether there exist
positive solutions ofX.1) or not. New analysis is needed for solving such problems
which will be described as follows. Let

Q= QnNBY©0); where BY(©0) ={xeR"|[x]| <Kk},
Q= Q\BN0).

Forv ¢ Hg(§k+1), it can be identified with an element bt)l(fik) by extendingv to
be zero inQ\ Qx4 1.
In the following definitions, we abbreviate Palais-SmalgB$).
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DerFINITION 1.1. (1) Forc € R, a sequencgu} C Hi () is a(PS.-sequencé
I (u) — candl’(u) — 0in HY(Q);
(2) c e Risa(P9-valueif there exists dPS.-sequence;
(3) | satisfies th&PS).-conditionif every (PS.-sequence fot contains a conver-
gent subsequence.

This paper is organized as follows. In Sect®r® () is the set of all the positive
(P9-values. In particular®(2) contains all the positive critical values of Let
3(2) be the infimum of® (), it will be shown that® () is a nonempty seb,(Q) is
a positive number, and the optimal lower bound ®&(<2) is oy (2) when (f1)—(f4)
are satisfied, that i$,(Q) = any ().

If uis a nontrivial solution of 1.1), then multiplying (.1) by u and integrating by
parts showsi € M(Q). For anyu € HJ(2)\{0} andt > 0, leth,(t) = I (tu). By
(f1)—(f3), we haveh,(0) = 0, hy(t) > 0 fort small, andh,(t) < O fort large. So
u = 0 is a local minimum but not a global minimum of Therefore, max, hy(t)
exists and is achieved gt> 0, we get

hi(ty) = 0 = ty[|ull%q —/ f (X, tyu)udx
Q

which impliest,u € M(2). Moreover by (f4)t, is the unique value of > 0 such
thatt,u € M(). This impliesM (R2) is radially homeomorphic to the unit ball in
HA(R).

In Section3, we assert that ifiy (2) < ay (€ for some largk € N, then there
exists a ground state solutianof (1.1) with | (u) = ay(R2). And if there exists a
(PSc-sequence witlry (2) < € < ay (€, for some largek € N, then there exist at
least two positive solutions ofi(1), that is, a ground state solutieanand a positive
higher energy solution.

In Section4, we describe théPS-conditions and give a necessary and sufficient
conditions inQ for which | satisfies th&PS),,, q,-condition.

In the final section, the domain is the upper half strip with a hole. For simplicity,
we consider the case whefedoes not depend an so the problem is as follows:

—Au+u=f) inA,
(1.2) u>20 in A,
u e Hi(A),

whereA is the upper half strip with a hole. Denote by

A={EmneRVTxR|E <r},
A, ={E,neA|n>a}, whereaecR.
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For the strip domairA’, Chen P] modified the results of Lions6] and asserted
that there exists a ground state solution of2( if A = A". Chen-Chen-Wang
[3] established its asymptotic behaviour and showed that the solution is spherically
symmetric iné and axially symmetric iny.

For the upper half strip domaiAg (an Esteban-Lions domain), Esteban-Lio8js [
asserted that there does not exist any solutiod @ {f A is an Esteban-Lions domain.
The Esteban-Lions domain is defined as follows:

DEFINITION 1.2. @ C RN is an Esteban-Lions domaiif there existsy € RN,
lIxll = 1suchthah(x)-x > 0, andn(x) - x # 0 ond<2, wheren(x) denotes the unit
outward normal t@® Q2 at the pointx.

An interesting question is whether there exists a positive higher energy solution of
(1.2) if A is an Esteban-Lions domain with a hole. The question seems to be quite
challenging and hard to give a complete answer. We had known that PohdZaev |
proved that the Dirichlet problem Au + uN+2/(N=2 = 0 in a ball does not have any
nontrivial solution, but Corord]] proved that there exists a positive solution if we take
some small ball out. Wheh(u) = uP, Benci-Cerami]] asserted that problem (),
if A is an exterior domain, admits a positive higher energy solution. We use a new
method, different from Benci-Ceranii]| to prove that if there exists@9.-sequence
with ¢ > O andc ¢ ©(A,,) for somem € N, then there exists at least a positive higher
energy solution ofL.2) if A is the upper half strip with a hole.

2. The (PS-value

We will introduce some preliminaries to analyze the behaviour of Palais-Smale
sequence and study the §2tQ2) of all the positive(PS-values.

LEmmA 2.1 If {uy} is a (PS¢-sequence, then there exists a const@ant 0 such
that ||u|ln: < Cfor eachk, andc > 0. If ¢ > O, then there exist a subsequence,
still denoted by{uy}, a constant’ > 0, such that|uy|| 1) > C.

PrOOF. By (f3) and ifk is large, then

1
C+oMA+ [[ulinye) =1 (W) — 5(|/(Uk), Ui)

1 1 ) 1

= (E - 5) ”uk”Hl(Q) - /{; [F(Xs Uk) - 5f(X, uk)uki| dx
1 1 )

> (E - 5) ”uk”Hl(Q)'
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Thus||uk|ly1q < Cfor eachk. Then for largek, we have(l’ (uy), uy) = o(1) and

1, 11 ,
¢+ 0(1) = I (u) — 7 (1'(U). u) = (5 - 5) 10l

soc > 0.

Suppose that > 0. If limy_ . [[Ukllhye = O, then for largek, | (uy) = o(1).
Hence contradiction with the assumption that 0. Thus there exist a subsequence,
still denoted by{uy}, a constant’ > 0, such thafjuk||y1q > C'. O

LEMMA 2.2. For anyu € M(2), there exists a constait > 0 such thatl (u) >
(6 —2)/(20))(2K)2/P=D > (,

PrOOF. By (f1) and (f2), for anye > O there exists a consta@t > 0 such that
(2.2) | f(x,u)| <elul 4+ C,.|ulP.

We takes = 1/2, and by the Sobolev inequality,

0= (I'(w,u) = [[ullfeq —/ f(x, uyudx
Q

1
> ||u||2H1(Q) —/ <5u2+cl/2|u|p+1> dx
Q

1 1
2 p+1 2 p-1
> lullfyg Klulljyg = ullfse Klullisg, | -
2 (€2) (€2) (€2) 2 (€2)

thus||u|lpyq > (2K)EY/®=D and then by (f3),
1 1 1
I (U) = E||U||.2.|1(Q) _/ F(Xs U)dX > §||U||2H1(Q) - 5/ f(X’ U)U dX
Q Q

= (% - 51> ||u||2H1(Q) = 92_62(2K),2/(p,1)' O
Notice thats(£2), the infimum of all positive(PS-values, is a positive humber.
This can be proved as follows. By Stuad},[am (€2) is a positive(PS),,, «)-value, so
O(R) is not empty and () < oy ().
For an arbitrary sequende,} bounded inL2(R"), we introduce the concentration
functions of|uy|?,

®,(t) = sup |ui|?
zeRN JBN(2)

defined fort > 0.
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LEMMA 2.3. Let {u,} be bounded inH*(RN) and assume that for sontg > 0,
@, (tp) — 0. Thenu, — Ostrongly inL%(RN) forall 2 < q < 2* = 2N/(N — 2). If
in additionu, satisfies(1’(uy), uy) — 0, thenu, — 0 strongly inH*(RN).

PrOOF. We divide the proof into two steps.
Step 1. DecomposR" into unit cubes, = {P*}, of length 1 with vertex at lattice
points. Continuing to bisect the cubes to obtain cubgs= {P"}, of length /2™
for eachP™. Letm, satisfyv/N(1/2™) < t,. For each, let B™ be a ball with center
at the same as that &™ and of radiug, in RN. ThenP™ c B™, RN = [ J=, P™,
and {P™}>, are nonoverlapping. Writ® = P™. If we takeq andr such that

2 < q<r < 2 we canwrite, using the délder inequality and Sobolev imbedding,

oo oo
2(r— -2 —-2)/(r—2
/ |uk|q=2/ |uk|q=2/ Uy |27/ =2y, @2/
RN i=1 /P i=1 /P

00 r—)/(r—2) @-2)/(-2)
2 r
< [Ug| ) (/ [Ug| )
; </P P
00 @-2)/(—2)
—q)/r =2
< (Pi(tp)) /¢ )Z< / |uk|f>
i=1 R

00 rQ-2/2(r-2)
< C(Py(tp) V2N ( / (VU + ui)) .
i=1 /P

Since lim_4(r(Q—2)/2(r —2)) = q/2 > 1, we may choose such thats =
(r(@—2/20 —2)>1.

> r(q-2)/2(r—2) o0 s
> (/ (IVuil* + |uk|2>) =3 (/ (IVuil* + |uk|2>)
i=1 \/h i=1 \/h
< (Z/(|Vuk|2+|uk|2>>
i=1 /P

= (/ (IVul? + IUkI2)>
[RN

2
= ”uk”HSl([RN) <C.

Thereforep, — 0 strongly inL%(RN) forall 2 < g < 2* = 2N/(N — 2).
Step 2. If, in additionp satisfies(l’(uy), uy) — 0, then for largek, ”ukHZHl([RN) =
Jen FOX uucdx+ o(1). By (2.2), if kiis large,

Ul 2, < /R | £x, U U dx + o(1)

2 p+1
=< €||uk||H1(n§N) + Cs”uk”LpH(RN) + 0(1)»
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or by Step 1,
+1
(1 - 8)||uk|||2-|1(n§N) =< Cé‘”uk”EPJrl([RN) + 0(1) - 0(1)

Henceu, — 0 strongly inH(RN). O

LEmmA 2.4. Let{u,} be a(PS.-sequence with > 0. Then there exists a sequence
{t} iIn R, such that{t,u,} € M(Q), {t} is bounded, and for larg&, ay(2) <
I (teuy) < c+ o(d).

PrOOF. Let {u,} be a(P9S.-sequence witlt > 0, thus for largek, u, £ 0, and
ue # 0 strongly in HY{(RN), whereu, is identified with an element oH*(RN)
by extendingu, to be zero onRN\Q, then by Lemma2.3, there exist a sequence
{z} € RN ande; > 0 such thaty £ 0in B}),(z), and

/ luk(X)[>dx > &;.
Bl (%)

Hence there exigt, > 0, &5 > 0, such that

D] = [{x € Bj,(Z) | Uc(X) = &}| = ea,

where|Dy| denotes the Lebesgue measure of thebget
Foruy # 0, by (f4), there exists a unique positive numtesuch that,u, € M(Q2),

then
f (X, teU) Uy
1, =/ T AU
Q t

Eithert, < 1 ort, > 1in which case by (f3)F (x, ty)/t? is a nondecreasing function
oft > Oforallx € Q andy € R\{0}, then

tk2||uk|||2-|1(§2) =/ f(X,tkUk)tkdeXZQ/ F(Xstkuk)dXZQ/tlfF(Xs uy) dx.
Q Q

Q

Consequently by Lemma.1,
-2 < gt Ul 1 ¢
“ T LFcugdx T [y F(x, U dx
. CZ . CZ

< t—— _<9¢ . :
Jo, F(X, £2) dx ez(Min, 5, F(X, &2))
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thus{t,} must be bounded.

I (teu) — 1 (uy)

1 1
= Etk2||uk||2H1(Q) —/ F (X, teu) dX — §||Uk||2H1(Q)+/ F (X, u) dx
Q Q
1
=5(tk2—1)/ f(x,uk)ukdx—/ F(x,tkuk)dx+/ F(x, uy) dx + o(1)
Q Q Q

= 9g(t) +o(1),

whereg(t) = (t2*-1)/2) [, f (X, uoucdx— [, F(x, tu) dx+ [, F(x, u) dx. Since

g =t/ f(x,uk)ukdx—/ f (X, tuu, dx
Q Q

=t</ f(x,uk)ukdx_/ f(x,tuk)ukdx>’

it follows from (f4) thatg'(t) > 0ift € (0,1) andg(t) < 0ift € (1, 00). Thus
g(1) = Ma%c.00) 9(t), 9(1) = 0, and for largex,

I'(tu) — 1 () = gt) +0(1) <g(1) +0o(1) = o(l).
Hence ifk is large,an (2) < | (ux) < c+ o(D). O

Next, we prove that an optimal lower bound f8(2) is oy (2) when (f1)—(f4) are
satisfied.

THEOREM 2.5. If (f1)—(f4) hold, thens (2) = oy ().

PrOOF. It suffices to shows (2) > ay (2), since the reversed inequality is always
true. Let{uc} be a(PS.-sequence witlt > 0, and by Lemma&.4, there existgy €
(0, 00), such thatyu, € M (), {t} is bounded, and for larde apn(2) < | (tuy) <
c+0(1). Sincecis arbitrary positivg PS-value, it follows thatyy (2) < §(R2). O

3. Existence of solutions

In this section, we show thatdfy () < oy () for some largk € N, then there
exists a ground state solutienof (1.1) with | (u) = au(2), and if there exists a
(PSc-sequence withry (2) < ¢ < ay () for some largek € N, then there exist at
least two positive solutions ofi.(1), that is, a ground state solutieanand a positive
higher energy solution.

First, we state some properties of Palais-Smale sequences.
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LEMMA 3.1. Let{uy} be a(PS-sequence for satisfyingu, — u weakly inH} ().
Then

(1) uis aweak solution of1.1).

(2) If u# 0, thenu is a positive solution of1.1).

(3) If {uc}is a (P9, «-sequence fot satisfyingu, — u weakly inHg(2) andu
# 0, thenuy, — u strongly inHJ} ().

PROOF. (1) Take a subsequenéa} such that, — uweakly inHj(2), a.e. ing2,
and strongly inL;! () for 1 < q < 2*. Giveng € C>(R), we get

loc

/Vuk-V¢—>/Vu-V¢, /uk¢—>/u¢>,

and by (f2),| f(x, ug) — f(X, W l¢| < a(|ux| + [ulP + [u] + [u[P)[¢], then by the
generalization of the Lebesgue dominated convergence theorem, we have

/f(x,uk)¢>—>/ f(x,we.
Q Q

Hence(l'(u), ¢) = lim_ . (1'(ux), ¢) = 0. SinceCX(Q) is dense inHJ(2), we
havel’(u) = 0. Thereforau is a weak solution of](.1).

(2) If u is a nonzero solution ofi(1), thenu € M(£2). By elliptic regularity, any
critical point of | is a classical solution ofl(1). Letu™ (x) = max(—u(x), 0). Since

0= (I/(U),U):/

Q

Vu-Vu+/ uu—/ fO WU = —u [fyq)
Q Q

henceu > 0. By the maximum principley > 0 in .
(3) By Part (2)u € M(R2) and applying Fatou’s lemma yields

1
o () < 1 (W) = ZUlfq — / F (X, U) dx
Q

— }/ f(x,u)udx—/ F(x, u)dx
2 Q Q
< liminf / (E f (X, U U — F(X, uk)> dx = lim I (u) = au(RQ),
k— 00 Q 2 ko0
or
(3.1) I (U) = an(2).

Setpx = Uy — U to getp, — 0 weakly inHZ(2), a.e. inQ, and strongly inL;} ()

where 1< g < 2%, then for largek, we have

(32) ” pk”zHl(Q) = ||uk|||2-|1(Q) - ||u|||2-|1(Q) + 0(1)



256 Kuan-Ju Chen [10]

Sinceu € H (), by (f1) and (f2), for any > 0, there exists > 0 such that for
&, = Q\BN(0),

(3.3) /|u|2<8, /|u|P+1<e, /lF(x,u)|<e.

By the generalization of the Lebesgue dominated convergence theorem, we have

/F(x,uk)—>/ F(x,u) and /F(x, p«) — O.
Qr Qr Qr

Then
(3.4) / [F(X, po) — F(X,ug) + F(X,u)| < e.
o8

Now by the Hlder inequality and the fact thpy | 41, and||uk|l 41, are bounded,
we have

(3.5) /~ [F(X, P — F(X, uo]
Q

= | [fxXtpe+ (1 -tu)ful forsome O<t <1

Q

SC/~ (Pl + Tuil + [pcl® + [ue P ul
Qr

<cC (|| Pellhze IUllz@,) + TUkllnre) IUlle@,)
p - p -
+ 1Pl g lUllLpa,) + ||Uk||H1(9)||U||LP+1(Q,))

< Ce.

Therefore by 8.3, (3.4), and @8.5), for largek,

(3.6) / F(X, po) = / Fx, u) — / F(x,u) +o(1).
Q Q Q
By (3.1, (3.2), and @.6), for largek,
F(p) =1 (U) — 1 (W) +0(1) = ap(2) —au(2) +0(1) = 0(1),
and it follows that
(3.7) Pl = 2 [ Fix. podx.
Q

For¢ € C(Q), by (f2), | (X, ux — w¢| =< a(Juc — ul + [ux — ulP)|¢], then by
the generalization of the Lebesgue dominated convergence theorem again, we hav
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Jo T, ug —uwe¢ — 0. SinceCF(R) is dense inH  (R2), f(x,u —u) — 0in
H-1(2). Similarly, f(x,u) — f(x,u) — 0in H-X(Q). So for largek, we have

F'(p) = —Apc+ P — F (X, p) = =AU — U) + (U —u) — F(X, U —u)
= (=AU + U — F(X,u)) — (=AU +u— f(x,u))
— (f(X, ue—u) — f(x,u) + f(x,u))
= 1"(u) — I'(u) +0(1) = 0(2),

and it follows that

(38) ” pk”zHl(Q) = / f(X’ pk) Pk dx.
Q

From (f3), 3.7), and @.9), for largek, we have| p|ln: o = 0(1), thatis,ux — u
strongly inHg (£2). O

We shall see what will happen wheris zero. Let
Q=QNBNO0), & =Q\BNO).

LEMMA 3.2. Let{u,} be a(PS.-sequence witle > 0. Then

(1) If (f1)—(f3) hold, suppose that, — O weakly in Hj(2), then there exists a
subsequencgy,} such that forQy, if k is large,

/ |ug|*=0(1) foreachl<q < 2"
Q¢

(2) In addition to(f1)—(f3), that (f4) satisfied, suppose there exists a subsequence,
still denoted by{u,}, such that foi2y,, if k is large,

/ |ug|*=0(1) foreachl<q < 2"
Q¢

Then we have > oy, (Qy) for all large k. _
(3) If (f1)—(f4) hold, suppose that, — 0 weakly inH§(2), thenc > ay ($2) for
all large k.

PROOF. (1) Sinceu, — 0 weakly in H}(2), a.e. ing, and strongly inL;} (),
where 1< q < 2*. Thus for eactm € N, lim,_, fgmluqu = 0. We can take a
subsequencty_} such thatfgm |ug,. 1% < 1/m. Therefore, there exists a subsequence,
still denoted by{u,}, such that forQy, if k is Iarge,fQZk lu|® = o(1) for each

l1<qg<2.
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(2) Let{u,} be a(PS.-sequence, so for larde
1 2
I(u) = EIIUkIIHl(Q) - / F(x,u)dx =c+0(1),
Q
Ukl =/ f (X, uu, dx 4 o(2).
Q

Let¢ € C*([0, o0)) such that

0 fort e]0,1];

0 1, t) =
=f= ¢® {1 for t € [2, 00).

Let&i(x) = £(|x|/k). Since{¢?uy} is bounded inHJ(2), for largek,
(3.9) o(1) = (I'(u), &uy)
= / GV U + 265UV g - VU + Geudx — / f (X, u)gcucdx.
Q Q

Note that| V& (x)| < c/k, if kis large, [, |u|® = o(1) for each 1< q < 2, so for
largek,

(3.10) /ngukvgk - Vue = 0(1),
and by (f2),fQZk f (X, uug dx = o(1). Then we have
(3.11) /Q f (X, ug2u, dx =/Q f (X, uu dx +o(1) = Ul +0(D),
again by (f2),
(3.12) /Qf(x,gkuk);kukdx=/gf(x,uk);kukdx+o(1) = [Ukll3j1 g + OCD),
and
(3.13) /Q F(x, &uy) dx
=/Q(F(x,§kuk) — F(x, uk))der/Q F (X, uy) dx
= f(X, (1 — t)uy + t&euy) (ScUk — Uy) dX +/ F (X, uy) dx

Qok Q

=/ F(x,u)dx+o0(1), where O<t < 1.
Q
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For largek, substituting 8.10), (3.17) into (3.9 yields

(3.14) / (VU + ud) = [Ukllfyr g + 0(D).
Q
Then by 8.13 and @.14), for largek,
1 2,,2 2 2 2
(3.15) I (Geu) = > /[Ivzkl U + Z2(IVU + Up) + 25UV - V]
Q
—/ F (X, gl dx
Q

1
= E”ukHZHl(Q) - /Q F(x, u) dx + o(1)
=1 (u) +0o(l) =c+o(l).

By (3.14, (3.12), for largek,

(3.16) (1" (&), Sklk) = ||§kUk||2H1(Q) — / (X, Skl Uk dX
Q
= ||uk|||2-|1(Q) - ||uk|||2-|1(Q) + 0(1) - 0(1)

Let v = gU, € HE(S). Fory # 0, by 3.19, (3.1 and Lemma2.4, there exists
t, € (0, 00) such thatt,v, € M (), {t) is bounded, and for largle, am () <
| (teu) < 1 (v) +0(1) = ¢+ 0(1). Sowe havey, () < c for all largek.

(3) It follows immediately from Step (1) and Step (2). O

Now we will prove the existence of a ground state solution and a positive higher
energy solution of{.1).

THEOREM 3.3. Supposgfl)—(f4) hold, there exists a ground state solutianof
(L. with | (U) = o () if oy () < an () for some largek € N.

PrROOF. Asaconsequence of Ekeland’s variational principle, there exists a sequence
{uc} € M(£2) which weakly converges to, such thafuy} is a(PS,,, «)-sequence. If
an () < ay (fik) forsome largk € N, by Lemma3.2, replacingc by ay (2), u # 0,
and then by Lemma.1, u > 0, ux — u strongly inHy(€2), andl (u) = o (2). O

THEOREM 3.4. If (f1)—(f4) hold, suppose there exists @9S.-sequence with
an(R) < ¢ < ayu () for some largek € N, then there exists a positive higher
energy solutiorv of (1.1) withc > | (v) > an ().

PROOF. Let {v} C Hi(2) be a(PS.-sequence withry (2) < ¢ < apy Q) for
some largek € N. Take a subsequen¢a} such thaty, — v weakly in Hi(2), a.e.
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in Q, and strongly inL; () where 1< q < 2*. By Lemma3.2, v # 0, then by
Lemmag3.], v is a positive solution ofi(.1) with ¢ > | (v) > ay ().
Supposd (v) = ay(R2). From Theoren3.3, | (U) = ay(R). Settinguy, = vy — v

and following the same line of proof as in Lem4. (3), for largek, we have

I(w) =1 (w) — 1(w) +0(1) = ¢ —an(€2) +o(1),
I (wi) = 1"(w) = 1I'(v) + 0(1) = 0o(D),

S0 {wy} is a(P¢_q, @-S€Quence. Since @ ¢ — ay(RQ) < ay (&) for some large
k € N, by Lemma3.2(3), it follows thatw, — w # 0, a contradiction. O

4. The (P9-conditions

Let A, be a smooth domainiRN andA ; be a closed subset of,, then the relation
betweenxy (A,) anday (A1) is given by the following theorem.

THEOREM4.1. Let A; C A,. If the functionall satisfies th&PS),,,,,, -condition,
'[hel’lotM (Az) < Opm (Al)

PROOF A; C Ay, SOan(Az) < ay(A1). Supposery(Az) = ay(A). As a
consequence of Ekeland’s variational principle, there exists a seqghce M (A ;)
such thatl (uy) — am(Ay), I'(u) — 0in H71(A,). Sincel satisfies théPS,,, ,)-
condition, there exist a subsequerieg}, andu € HZ(A,), satisfyingu, — u
strongly inHy(A1). Sinceayn(A;) > 0, u # 0, then by Lemma&.1, u > 0 with
[ (u) = am(Ay), I'(u) = 0. And I (U) = au(Az) = iNfucmny | (L), Itis known
that every minimizer ofxy (A,) is a critical point ofl, thereforeu solves (.1) if
Q = A,. By Lemma3.1, u > 0in A,. This contradictss € Hg(A;). Therefore,
ap(Az) < am(Ayg). U

Then we can verify that théPS),,, ,-condition is satisfied.

THEOREM4.2. If (f1)—(f4) hold, thenl satisfies th&PS),,, «,-condition if and only
if oy () < limy, o am (L2¢).

PROOF. (1) Supposery (2) < lim,_ am (S, thenay () < au () for some
largek € N. Let{u} be a(P9,, «-sequence satisfying. — u weakly in H} ().
By Lemma3.2, u # 0, then by Lemma&.1, uy — u strongly inHg (2). We conclude
that! satisfies th&P9),,, ) -condition.

(2) We argue indirectly. Supposey (Q) = lim_. an (%), thenay(Q) =
am (S forallk € N. We claim thatl does not satisfy théPS),,, ) -condition in<2.
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In fact, suppose on the contraily,satisfies th&P9,,, ) -condition inQ. Then we
claim thatl |,43@,, satisfies theP9),,, )-condition in Q forall k € N. In fact, let
(U} € HAQ) © HE(Q) satisfyl (Uy) — aw (), 1'(Uy) — 0in H1(,). Sincel
satisfies théP9,,, « -condition in<, there exist a subsequeneg}, andu € Hy ()
satisfyingu, — u strongly inHZ(2), that is,u, — u strongly inHZX($,). Therefore
llni@, satisfies thePS,, s, -condition. By Theoremd.1, a () < aw (). This
is a contradiction. O

5. Upper half strip with a hole

In this section, the domain is the upper half strip with a hole. For simplicity, we
consider the case wheffedoes not depend ox, so the problem is as follows:
—Au+u= f(u) inA,
(5.2) u>20 in A,
ue Hi(A),
whereA = Aj\D, D C B/')‘((O, no)) C AG, andn, is sufficiently largep is sufficiently
small, and they are suitably chosen. Let
Qs(no) ={(&,m) e RN x R [ [E] <, [n—no| <5},
Qs(mo) = A)\Qs(m0):  Am= AN Qulno), Am = A\Qu(no)-
THEOREMS5.1. (1) am(A) = ay(A).

(2) The functionall does not satisfy thePS),,,, 1)-condition, and the only possible
solutions of(5.1) are higher energy solutions.

PROOF. (1) Letw € Hg(A") be the positive solution of5(1) if A = A" with
I (w) = an(A). Take{(0, n,)} C A, r, — oo such thatQ, (n,) C A. Consider the
cut-off functiony € C([0, 00)) such that

1 fortelO,1];

0 1, t) =
sv= v {0 for t € [2, 00).
Letwn (&, n) = ¥ (2ln — nal/ra)w(&, n — ny). Thenw, € H}(A). Since for largek,

”wn(§7 T)) - U)(g, n-— nn)”zHl(Ar)
= 1Y @0 — nal /r)w(E, 0 — na) — wE, 1 — 10 [Faa),

5/ C (IVwEn— P+ wE g — 1) + o)
A NQrp/2(nn)

=0o(D),



262 Kuan-Ju Chen [16]

and by (f2), for large,
| It = F e n = o)
Ar

=/ | f (twn(E, )+ A—w(E, n— )] |wn(E. 1) —w(E, 7 —n0)]
;

NQrn/2(1n)

SC/ ) (lwE. n =) + lw&, n — na) [P
A'NQrny2(n)

=0(1), forsome O<t <1,

/ [f(wn(&, M)wa(&, n) — F(w&, n—n))wE, n—n)l
Ar
5/ [ f(wn(&, M) wa(&, ) — F(wa (&, nM)H)wE, n —nn)l
Ar

+/ [ (wn (€, mw(E, n —nn) — fwE, n—n)wE, n— )l
Ar

= 0(D),
then we have
1
(5.2) I (wy) = Ellwnllel(A) —/ F(wn)
A
=1l (w)+0) =ay(A) +0(1),
(5-3) (1" (wn), wy) = ”wn”zHl(A) - / f (wn)wn
Q

= Nl — / f (w)w + 0(1) = o(D).
Ar

For w, € HJ(A), wy, # 0, by 6.2), (5.3, and Lemma2.4, there exists, € (0, c0)
such that,w, € M(A), {t,} is bounded, andy(A) < | (t,w,) < | (w,) +0(1) =
ay (A") 4+ o(1) for largen. Hence we obtaiay (A) = oy (A").

(2) By Part 1 and Theored1, | does not satisfy théPS,,, »,-condition. Ifu is
a ground state solution o6(1), by puttingu = 0 in A"\ A, we see thati could be
regarded as an element B (A"); then by the strong maximum principle would
be a positive solution i\, a contradiction. Therefore the only possible solutions of
(5.2) are positive higher energy solutions. O

Using the same argument as in the proof of Theosemwe obtain

PrOPOSITION5S.2. (1) Let X be a closed subset &'. If for anys > O there
exists(0, n) € X such thatQs(n) C X, thenay (X) = ay(A"). As a more concrete
example X can be a upper half strig\;, a upper half strip with a hole\ or the union
of Ay with a bounded set.
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(2) lim,_ o am(Q, (1) = am(AY) = an(A) = ay(A), for everya € R.

From Theoren®.1and Propositiof.2, we know that there doesn't exist a(®S).-
sequence withey (A) < ¢ < ay(Ay) for anyk € N, so we cannot use Theoredmw
to get the existence of any higher energy solution%f)( Hence we take a new
approach to obtain a higher energy solution®fl).

THEOREM5.3. If (f1)—(f4) hold, suppose there existgfRS.-sequence with > 0
andc ¢ ©(A,,) for somem e N, then there exists a positive higher energy solution
of (5.1).

PROOF. Let{u} be a(PS.-sequence witls > 0 andc ¢ ©(A,,,) for somem € N.
Take a subsequende,} such thau, — u weakly inHg(A), a.e. inA, and strongly
in L .(A), where 1< g < 2*. Moreover,1’'(u) = 0 andl (u) < c. We claim that
u # 0. Supposel = 0, as in the proof of Lemma.2, there exists a subsequerog}

such that forQy (), if k is large,
(5.4) / |ug|* =0(1) foreach 1<q < 2"
Qk (o)

Let& : RN — [0, 1] be aC*>-function which satisfies

0 for x € BN(O, no);
() = o
1 forx¢B +l(O o).
Letwy = Euy, wy € Hol([\m). Then we want to show thét,} is a(PS.-sequencein
Hol(Am).
It suffices to show that

(5.5) IJLTOH (w) = 1w =0,
and
(5.6) lim sup [(I"'(w), @) — (I'(w), ¢)| = 0.

K= bl 1,y <1

By a direct computation,

(5.7) I (wi), @) — (1" (U, )|
) —Duop| +

[ U VE - v¢|

) = DVu - V¢‘

_|_

(f(Uk) - f(éuk))cbl
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12 12
2 2
< / [Uy| + / [Vuy
Am Bgﬂ(ov n0) AmN Bngl(Ov n0)
12
2
+ [IVE (L~ / [Ug|
AmM BN, 1(0.70)

1/2 1/2
2 2
+ 28 / || + / Uy |*P
Am N By, 1(0,m0) Am M BY,1(0,n0)

Since An () BN.1(0,n0) C A1 if k is large, 6.6) follows from (5.7) and §.4),
provided that

(5.8) / [Vu > - 0 ask — oco.
;\m m 5%1(0,170)

Now we prove 6.8). Leté& : RN — [0, 1] be aCg-function which satisfies

1 for x € BY (0, no);
0 for x ¢ BN(O, no).

§k(X) = {
Since{&uy} is bounded irtHg (A), if k is large,
(5.9) o)) = (I"(Uy), &)
=/ §k|VUk|2+/ Ukvék'vuk-l-/ fkuﬁ—/ f(X, U &Uy.
Ak Ak Ak Ak

By (5.4), we conclude that the last three integrals@®®) tend to zero ak — oo and
consequently

/: [Vu|* < / [Vu|? < / £|Vu > - 0ask — oo.
AmN Bﬂﬂ(ovno) Ax—1 Ax

Observe that
I (wo) — 1 (U = % / [(€% = (VU + u) + V& P|ugl* + 26 ucVE - Vug]
—/A(F(wk)— F(u)).
Thus 6.5 follows from several estimates which are similar to the above. Hence

c € ®(Ay), this is contrary to the hypothesis, so there exists a positive higher energy
solutionu. N
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Next, we will use a mini-max structure to obtain a positive higher energy solution
of (5.1).

From Theorenb.1 and Propositiorb.2, we have lim_, ., au(Q, (1)) = aw(A),
then for anye, > 0, there existg = 7(g,) sufficiently large such that

am(Ay) = au(A) < au(Q;() < am(A) +&,, foreveryae R.

So we can choosgy = 97/2 andD C B/']“((O, m0)) C Qja(no) C A, and then
choose. € M(Q;(17)) andz, € M(Ay;) suchthatmad (z), 1 (z,)) < am(A)+éa.
Set

I'={y eC(0,1],M(A)) | y(0) =z andy (1) =z}, p=inf maxl(y(®)).

yel' 0€[0,1]

We will show that there exists @$9),-sequence withy > ay(A), provided thatz,
and z_ are suitably chosen. Let be aC> function which satisfies G6< ¢ < 1,
IVo| < 2/i1, ¢ = 00nQ;2(n0) andg = 1 on Q;(no). Straightforward calculation,
gives the following lemma:

LEMMA 5.4. For anyes € (0, an(A)/2), there exist$ = §(e5) > 0 such that if
ue M(A)andl (u) < au(A) + 8 thenl (tupu) < ay(A) + €5, wheret,, > 0 and
tupu € M(A).

With Lemmabs.4, we want to show that > ay (A).
LEMMA 5.5. & > ay(A) + 8, wheres is the number defined in Lemraal.

PROOF. Supposer < ay(A) + 8. From the definition ofx, there exists g € T
such that mayo.1; | (16(0)) < am(A) + 6. Lety () = t,,,0910(0), it follows from
Lemmab5.4thaty € " and

3
(5.10) max | (y(©)) < om(A) +es < Sam(A).

By the definition ofp, y (6) = y,.(0) +y- (), wherey, () € A; andy_(0) € Q;(1).
We claim that

(5.11) there exists &, € (0, 1) such that/, (6p) € M(A) andy_(6p) € M(A).

Assuming 6.11) for now, we obtainl (y (6)) = | (¥4 (60)) + | (y_(6)) > am(A) +
am(A) = 2ay(A), which contradicts¥.10).

It remains to showX.11) to complete the proof. Since. (0) = 0 andy, (1) = z,,
there exists &; € (0, 1) such that ' (y,.(61))y. (61) > 0. This together withy (6,) €
M (A) implies thatl’(y_(61))y-(61) < 0. Let

(5.12) 0, = supld | 1I'(y_(0)y_(0) < 0o0ry_(0) € M(A)}.
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Sincey_(1) = 0 andy_(0) = z, it follows thatd, € (0,1). Usingl € C! and
I"(y_(82))y_(6,) = 0. Sincey (6,) € M(A), it follows thatl’(y..(62))y, (6,) = 0.

To complete the proof of5(11), we need to show that (6,) # 0 andy,(6,) # 0.
We argue indirectly. If_(6,) = 0, then either_(9) = 0 for all 6 € (6,, 1) or there
exists & € (6,, 1) such that ' (y_(63))y_(63) > 0. This contradicts¥.12. Suppose
y.+(6,) = 0. Then there exists & € (6,, 1) such thatl’(y,(64))y.(64) > 0. This
together withy (6;,) € M(A) yieldsl’(y_(64))y-(64) < O, which again violatesx.12).
Thus the proof is complete. O

Then we will show the existence of a Palais-Smale sequence witP8evalue ..

LEMMA 5.6. There exists aP9S,-sequence, wherg is the number defined in
Lemmab.4.

PROOF. Suppose there does not exis®H ,-sequence. Then there exist- 0 and
¢ > O suchthaf|l’(u)|| > bforalluwith u —& < I (U) < u + &. We may assume
without loss of generality thdd < 1 andé < (1/2)(u — apm(A) — (8/4)), wheres
is the number defined in Lemnta4. LetY, = {u € M(A) | |[I'(W)] < b/2and
I (u) <3u/2tandY, = {ue M(A) | |[I'(w)] > bandl (u) < 3r/2}. Choose

(5.13) e € (0,e), where & =min(¢, b?/2, b/4).

LetYs={ueMA) | l(U) <u—¢éorlu) >pu+etandy,={ue M(A) | u—e <
[(u) < u+e}. Foru e M(A), setgi(u) = [lu— Ya|l/([lu — Ya|| + [[lu — Yu)) and
g2(U) = flu—VYall/(JJu = Y|l + [Jlu — Y2|}). Let X(u) be a pseudo-gradient vector
field for | on M (A) and

(5.14) W(u) = =g gWh(IXu)HX(Wu),

whereh(s) = 1if s e [0, 1] andh(s) = 1/sif s > 1.
Consider the Cauchy problem:

d
(5.15) d—’z — W), 10, u) =u.
The basic existence-uniqueness theorem for ordinary differential equations implies
that, for eachu € M(A), (5.195 has a unique solution(t, u) which is defined fot
in a maximal interval0, T (u)). Moreover, sincé W(u)| < 1andM(A) is a closed
subset ofH (A), soT (u) = +oo. Since

d
al (n(t,w) = =I"(n(t, WG (nt, UG, WX (HE, U) DX (N, u)).
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Define? = {u € M(A)|l (u) < a}. Sincel (n(t,u)) is a non-increasing function
oft, hence

(5.16) n(L, 17 c 1+,
We claim that
(5.17) n(L, Y, C I*7.

Indeed, if there existsl € Y, such thatp(1,u) ¢ [#=¢, then, for allt € [0, 1],
n(t,u) € Yy Consequenthg;(n(t,u)) = 1 andg(n(t,u)) = 1. If for some
t e (0,1, [ X(nt,u)| <1, thenh(]|X(n(t,w)l) =1and

d
(5.18) gl G w) = — 1" (n(t, u)|* < —b?.

On the other hand, if for sontee (0, 1), || X(n(t, u))|| > 1, then by the definition of
pseudo-gradient vector field,

d 1 b
(5.19) a' ((t,w) < —[1";E u)IPIX @@ up)™ < —Elll/(n(t, wll = 5
Sincen(t,u) € Y, forallt € [0, 1], by (5.18 and £.19, we have

1

(5.20) 2¢ > 1(nO,u) — I (L, u) = — %| (n(t, u)) dt > min(b/2, b%).
0

Since 6.20 is contrary to .13, we conclude that¥.17) must hold. Combining
(5.16 and 6.17), we have

(5.21) n(L, 1%+ ¢ [+,

By the definition ofu, there exists & € I" such that max o1 | (¥ () < nu+¢. Let
y1(0) = n(1, y(0)). Itfollows from (.21) that

(5.22) max1(y(©) < u—e.

Sinceg,(u) = 0 if u e "%, it follows from (5.14 and 6.15 thatn(1,u) = u if
u e I*#. In particular, magl (z,.), | () < aw () + (8/4) implies y1(0) = y(0),
y1(1) = y (1) and consequently,; € I'. But then 6.22) is contrary to the definition
of u. The proof is complete. O

We are now ready to prove the existence of a positive higher energy solutii)of

THEOREM5.7. Assume thatf1)—(f4) hold. If u ¢ ©(A,,) for somem e N, then
there exists a positive higher energy solution(®f1).

PrOOF. By Lemma 5.5 and Lemma5.6, there exists aP$),-sequence with
u > au(A), then by Theorenb.3 we obtain a positive higher energy function
of (5.2). O
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