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Abstract

We give a formula for the Dixmier-Douady class of a continuous-trace groupoid crossed product that
arises from an action of a locally trivial, proper, principal groupoid on a bundle of elemeZitaalgebras
that satisfies Fell's condition.
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1. Introduction

Throughout this not& will denote a second countable, locally compact, principal
groupoid with Haar systemy/ will denote an elementarg*-bundle overG®© that
satisfies Fell's condition, and will denote a continuous action d& on </ via
isomorphisms. Thus the paix/, ) is exactly what is needed to define an element
in the Brauer group BG) as defined in4, Definition 2.14]. As a special case &, [
Theorem 1], it follows that the groupoid crossed proddt(G; <) has continuous-
trace if and only ifG is a proper principal groupoid. ThusGf*(G; <) has continuous
trace we can, and do, assume that Bat Q@ * Q = {(w,0) € Q x Q: p(w) =
p(w")} for a continuous open surjectiom : 2 — Y. In this case we say th&

is alocally trivial, proper principal groupoid In this note, we want to consider
the Dixmier-Douady cIasS(C*(G; ﬁ/)), and we computé(C*(G; JZL/)) whenp is
locally trivial. Our approach is motivated in part b, [Section 1] where Raeburn and
Rosenberg consider the case whaiis the transformation group groupdil= H x
with @ a locally trivial principal H-bundle, andx is pulled back from a locally
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unitary actiony of H on a stable continuous-trac&‘-algebraB. Just as in §,
Theorem 1.1], we show that we can assume tds the pull-backp* % by the orbit
mapp : G — G©@/G of some locally trivialk -bundle oveiG® /G. (ThroughoutK

will denote the space of compact operators on a separable, infinite dimensional Hilbert
space. By a locally triviaK -bundle over a spack¥, we shall mean a locally trivial

fibre bundle oveiX, with fibre K and structure group AUK). We shall use§] as our

basic reference on fibre bundles, sheaves, cohomology, etc.) In thenesatisfies

an additional hypothesis — similar to being pulled back from a locally unitary action
as in [] — we show thatS(C*(G; «/)) is a naturally defined perturbation &B) in
complete analogy withd, Theorem 1.5].

2. Locally trivial proper principal groupoids

Suppose tha® andY are second countable locally compact Hausdorff spaces, and
that p : @ — Y is a continuous, open surjection. L@&tbe the proper principal
groupoidQ * € and identifyG® with 2 andG© /G with Y. We'll say thatG is
locally trivial if p: @ — Y is alocally trivial fibre bundle with fibre&X. That is, we
assume there is a cover= {U;} of Y and continuous magds : p}(U;) — U; x X
such that the diagram

piU) — U x X

R

commutes for each In particular, we assume that there are continuous functions
& : p~1(U;) — X such that

(1) hi(w) = (p(w), & (@) forallw e p~*(U)).
Consequently, itJ;; := U; NU; # @, then the diagram

Uij X X pr,
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commutes. This, in turn, implies that for eache U;; there must be a continuous
mapg;; (u) : X — X such that

(2) h; o hy*(u, x) = (u, ¢y (U)(x)) forall (u,x) € Uy x X.

Further, sincep; (u)™* = ¢;i (u), we see that eact; (u) is a homeomorphism of
X. Consequentlyg; may be viewed as a function frotd;; to HomegX). A
straightforward computation shows that

(3) ¢ik(u) = ¢jk(U) o ¢ij ()] forallu e Uijk =U; N Uj N Uy.

RemMARK 1. Homed X) can be made into a topological group in such a way that
h, — hin HomedX) if and only if given a net, — X in X (with the sameindex
set), therh,(x,) — h(x) andh_*(x,) — h™*(x). Thenitis not hard to see tha} is
continuous and that the transition functidig } determinep in the usual way.

ExamMPLE 2. Of course, the basic example of a locally trivial proper principal
groupoid is the transformation groupoid associated to a principal He&pace? for
a locally compact groupi. In this case, the fibre spageis justH, and we also want
the local trivializationsh; to be H-equivariant. In particular, there are continuous
functionss; : U; — H such thatg; (u)(t) = ts;(u) for allt € H. Furthermore,
equation B) is equivalent to

4) S; (Wsj(u) = sk(u) forallu e Ujy.

Therefore the elements;} determine the claspp] of the principal bundlep in
H(Y, H) whereX is the sheaf of continuousl-valued functions andd (Y, H)

is the the first sheaf cohomologgtdetermined by [8, Remark 4.54]. When we
return to this example in the sequel, we will identify the transformation group groupoid
H x Qwith G = Q * Q via the map(t, w) — (w,t™* - w). (Recall thatH x

is the groupoid with unit space} x Q identified with2 and with range and source
mapss(t,w) = t™! - w andr (t, ) = w. Then we havet, w)(s,t™! - w) = (ts, w)
and(t,w) =ttt w).)

REMARK 3. It is a matter of taste as to whethgy or ¢;; appearsinZ). Our taste
might seem off in view of §), but we have purposely endured bitter herbs in order
enjoy @) even if H is not abelian. In either case, it is important fact of life that any
formula for the Dixmier-Douady class that depends on standard topological data, suct
as transition functions like thg;, depends up to a sign on choices such as that made
in (2). This will be important in comparing our result to other calculations in the
literature (see Exampled).
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Now we want to see how the locally triviality gb is reflected in the groupoid
structure ofG. We can define a topological groupoid isomorphigsm G|,-1,, —
X x U; x X by

®) ki (@, @) = (& (@), p(®), & (@)).

Here X x U; x X is the groupoid that has unit space identified with< U;, orbit
space identified withJ; and multiplication given byx, u, y)(y, u, 2) = (X, u, 2). If
p?:G — G?/G = Y is given byp? (v, ) := p(w), then we have commutative
diagrams

Glpiu) ——— X x U x X

R

XXUinX P

and

XXUinX pr,

In particular, we claim that

(6) kj o k™1 (x, U, y) = (¢ (U)(X), U, ¢ (U)(Y)).

To see this, consider

ki ok t(x, u, y) = ki (hy*(u, x), hy*(u, y))
= (& (U, x)), u, & (h7*(u, y)))

which equals the right-hand side @) (n view of (1) and @).

We include the following lemma to motivate some of the constructions in the next
section. At this point, it will be convenient to introduce the notatiofor p(w). This
will make some of the more complicated formulas below, and elsewhere, a bit easier
to digest.

LEMMA 4. Supposethap : 2 — Y is alocally trivial fibre bundle with fibreX and
thatG = Q * Q. If H is a topological groupoid and i& : G — H is a continuous
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groupoid homomorphism, then there is open cdki of Y and continuous maps
Y : p~(U;) — H such that

(7) a(w, ) = P (W) (@)t for (w, @) € Glyrw,)-

REMARK 5. Itisimplicit in the statement of Lemméthatr (v (w)) = (¢ (w, o)),
while s(¢;(w)) and, more generallyy;(w) *¢;(w) depend only onp(w), for
w e pHUy).

PROOF OFLEMMA 4. Choose{U;}, h; : p~*(U;) — U; x X andk : G|y, —
X x U; x X as above. For eadhfix z € X and define

Yi(w) == a ok (& (w), &, 2),
and observe that (fw, ') € G|p-1y,), then

a(w, o) = a ok (& (W), d, & (@)
= a ok (& (@), &, z)a ok (Z, @, § (@) = V(@i (@)

as required. O

3. The Dixmier-Douady class

First, it will be helpful to recastd, Theorem 1] in terms of Brauer groups as
defined in fi]. (We follow the notation and terminology of]. In particular,5t(G)
denotes the collection of pai(s7, «) of the kind we have been considering, while
Br(G) denotes their Morita equivalence classes.) To start off, we only Getdbe
a proper and not necessarily locally trivial. Our next result should be compared with
[4, Proposition 11.2].

THEOREM 6. If G is a second countable, locally compact, proper principal group-
oid, then there is an isomorphism Bf(G) onto Br(G® /G) which sends.«, «) €
Br(G) to the class of the bundle representing the crossed pro@i@E; <) in
Br(G?/G). The inverse is given by sending € Br(G?/G) to (p*Z,t ® 1)
wherep : G© — G©/G is the quotient mapp*%Z = {(w,b) : ® = px(b)} is the
pull-back and(t ® 1),/ (o', b) = (w, b).

ProOF. It follows from [5, Proposition 2.2] and4, Theorem 4.1] thats’, ] +—
[«7®”] is an isomorphism of BG) onto B(G® /G), where«/¢’ = s,(«/)/G and
wheres, (&) is the pull-back ofeZ to G via the source map (see, for example4|
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page 914]). Furthermore3| Theorem 1] implies tha€y(G© /G, «7¢) is Morita
equivalent taC*(G; ). This proves the first assertion.
On the other hand4] Theorem 4.1] implies that the inverse is given by

(2] > [@G(°’°”, idG(°’°p] ,

whereG©® is G© regarded as a lefB, right-G© /G equivalence (see, for example,
[4, page 924]). HoweveG©* is easily seen to be isomorphic (as an equivalence)
to the graph ofp, Gr(p), where Gtp) := {(w, ®) : € G?} (see also Section 6 of
[4]). Therefore i, Lemma 6.5] implies that

[@G(O;op’ idG(owv] _ [e%;Gr(p)’ idGr(p)] — [p*e%)’ p* id] )

Noting thatp* id = T @ 1 completes the proof. O

As a corollary, we get the following version d3,[Theorem 1.1].

COROLLARY 7. Suppose that«, o] € Br(G). Then there is a locally triviaK -
bundleZ overY such thatl.«/, «] = [p*#, B]. In particular, the Dixmier-Douady
classs () mustlie in the image* (H3(Y; 2)) of the mapp* : H3(Y;Z) — H3(Q;2)
induced byp.

PROOF. Sincergo = (G© x K, T®1) acts as the identity in BG), we can replace
(&, a) with (& ®go (G? x K),a ® (r ® 1)). Thus we may as well assume that
A = Cy(G?, &) is stable. It follows from Theoreri and [7, Proposition 1.4(1)]
that§(«) := 8(A) € p*(H3(Y;Z)). Thus there is a stable continuous-trae
algebraB with spectrumY such thatA = p*B [7, Proposition 1.4(2)]. In view of
[8, Proposition 5.59], we may assume tigaE Cy(Y, B) where# is a locally trivial
K -bundle with structure group At as required. O

Let % be a locally trivialK -bundle overY as in Corollary?. It follows from [8,
Proposition 4.53] for example, that there is a cdvet {U;} of Y by pre-compactets
and continuous functions; from U;; into AutK with the point-norm topology such
thato = {o;} form a 1-cocycle in theetZ*(U, §) (where we’ll useS for the sheaf
of germs of continuous AWK valued functions ofY) such that# is isomorphic to

(®) L[ui x K/~,

where we identify(j, u, T) with (i, u, o3; (u)(T)). Furthermore, the Dixmier-Douady
classs () is the image ofA([o]) € HA(Y, 8) in H3(Y;Z) whereA : H(Y, §) —
H2(Y, 8) is the bijection given in§, Proposition 4.83]. Thus, refinifg if necessary,



[7] The Dixmier-Douady class of groupoid crossed products 229

we can assume that there are continuous funciignsom Uj; into the unitary group
U (K) of (the multiplier algebra ofK with the strict topology such that

9) 0 (u) = Ad wj (u) forallu e U;.

(Of course,U (K) is the isomorphic to the unitary group of the underlying Hilbert
space ofK endowed with the strong topology.) Thex([o]) is represented by

v = {vj} € HA(U, 8) given by (U) ik (U) = pij (U) i (W).
If % is of the form @), thens/ := p*Z is of the form

(10) []p W) x K/~
where we identify( j, w, T) with (i, o, oij (@)(T)). Thusif(p* %, a) € Br(G), there
must be continuous groupoid homomorphisms
(11) 7t Glpr,) = AutK
such that
a(w, ) (i, ', T]) = [i, ®, 7 (0, ' )(T)].
Note that if(w, »') € Glp-1u,), theno = &’ and
(12) 0 (@) o T (w, ') = 7j (@, @) o 71 ().

Assume thaG is locally trivial with ki, h;, & and¢;; defined as in Section 1. Then
we fix somez, € X and define

¥i: pHU) — AutK
by
Yi(@) = m (k& (), o, 2)).
Then, as in Lemmég,
(@, ') = Y (@) (@)

Now we observe that
(13) Vi () o aij (@) o ¥ (w)

=1 (K& (@), 0, ) om (KE (@), @, 7)) 0 03 (&)
which, sincep;; (o) (&j(w)) = & (w), is

=7 (K (z, @, & ())) o 7 (K& (), &, ¢ji (©))) 0 03 (@)
(14) =7 (kK (7, . $;i (©)(7))) 0 0ij ().

In particular, (3) depends only on the clagsof w in Y.
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THEOREM 8. Suppose thab is a second countable, locally compact, locally trivial,
proper principal groupoid, tha# is a locally trivial K -bundle ovelY and(p*#, «) €
Bt(G), U, ¥; ando;; are as defined above. Then

(15) Bij (@) = ¥ (@) o 0j (@) o ¥j(w)

definesaclasg in H(Y, §) which depends only dp* 4, «] € Br(G). Furthermore,
the Dixmier-Douady class of the corresponding groupoid crossed pr@id&; p* %)
is the image ofA(B) in H3(Y;Z).

ProOF. It follows from Theoren® thats (C*(G; p*#)) depends only ofip* %, «].
It is clear from (14) and (L5) that{g;;} defines a cocycle iZ*(U, §) and therefore a
classg in H(Y, 8). It will suffice to see that the image &f(B) is §(C*(G; p*%)).

Since the proof of 3, Theorem 1] implies that*(G, p*#) is Morita equivalent
to Co(Y, p*#/G) wherep*#/G is the orbit space op*# with respect to the right
action of G given by [i,w, T] - (w,®") = [i, o, 7 (', w)(T)], it will suffice to
computes(p*#/G). We'll denote the image dfi, w, T] in p*#/G by [[i, w, T].
LetV = {V;} be a cover ofY such thatV;, c U; ([8, Lemma 4.32]). LetP be a
rank-one projectioniiK. If w € p~1(U;), then

[i, 0, ¥i(@)(T)] - (0, @) =i, &, 71 (&, 0) o Yi (@) (T)] = [I, &', P () (T)].
Thereforew — [[i, w, ¥i(w)(P)]l is a rank-one projection field ip*#/G)|y-1u,)-
Fell’s vector-valued Tietze extension theore?y Theorem 11.14.8] implies that the
restriction toV, extends to a global sectiap € Co(Y, p*%#/G) such that

g (@) =[i, o, i@ P)] foralloe V.

We may as well assume that there are continuous functipndJ;; — U (K) such
that

Bij(w) = Ad 6 (w) forallw e U;.

Of course)V is a refinement ot with the same index set ami(8) is given by the
2-cocycle{ejj} onV defined by

0j (@)0jk (@) = €ijx (@) (@) for @ e Vij.
As above, there is a&; € Cy(Y, p*#/G) such that

vij (@) = [[i, o, ¥i (@)(PE; (@))] forw e V.
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Foro € Vjj, we certainly have

(16) vij (@)vij (@) =i, w, ¥i(0)(P)] = g (®),
while
(17) vij (@) v (@) = [[i, ©, ¥ (@) (G (@) PG (@))]]

= [[i, o, ¥i () o Bij (@)(P)]]

= [[i, w, 0ij (@) o Yj(w)(P)]

= [}, o, ¥j(@)(P)]l

= (;j ().
Thus we have just the set-up fd@,[Lemma 5.28]. So to find the Dixmier-Douady
class, we compute that

V(@) vij (@) = [[], 0, ¥j(@) O (@) P, @, Yi(w) (@ (@) P)]]
= [[i, o, 0ij (@) o ¥ (@) O (@) P)IIlI, @, Yi(w) (@ (@) P)]]
= [[i, w, ¥i(w) o Bij (@) O (@) P)II[li, @, ¥i(w) (6 (@) P)]]
= [[i, w, ¥i(0) (6 ()0 (@) PO (@) ]li, @, ¥i(w) (6 (@) P)]]
= gjk (@)[[i, », ¥i(w) Gk (@) P)]l
= €jk (@) vi(w)".
Thus B, Lemma 5.28] implies thah (8) = [{€x}] gives the Dixmier-Douady class
of C*(G; p*#) as claimed. O

DEFINITION 9. LetG = Q * Q be a locally trivial proper principal groupoid, and
let # be alocally trivialK -bundle with structure group Alt. Then an action ok of
G on p*Z is called docally unitary pull-backf there is a covel) of Y and continuous
functionsy; : p~*(U;) — U (K) such thaty; (w) = Ad v (w) for all o € p~1(U)).

ReMARK 10. Note that ifa is as in Definition9, then there are actually groupoid
homomorphismsy; : G|y, — U(K) such thatr (w, ') = Adu; (e, o), where
Ui (@, @) = i ()P (@)

Sinceojj (o) o i (w, ®') = 7;(w, ) o 0 (w), there are continuougroupoid ho-
momorphisms

(18)  Aij : Glpiuy — € suchthato (@)~ (U (w, ®)) = Aj; (w, @)U (v, @).
i p-1(U) i i i i

REMARK 11. We want to think off;; } as ageneralized Phillips-Raeburn obstruc-
tion for «. Itis possible to view18) as defining a class in a certain sheaf cohomology
group, which we would naturally denokg!(Y, §), but we will not pursue that here.
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ExampLE 12. Suppose tha# is a locally trivial K -bundle with transition functions
{0} as above and that : H — AutCy(Y, %) is a locally unitary automorphism
group. If p: @ — Y is a principalH-bundle, then lelG = @ * Q anda the
action of G on p*# obtained by the pull-backp*y : H — Aut p*# given by
pP*vs(f)(@) = ys(f(st- w)). Sincey is locally unitary, we can assumé has
been taken so that there are strongly continuous homomorphismg);, x H —
U (K) such that(s - o, w)(li,», T]) = [i, , vi(@) Tvi(w)*]. Then the continuous
functionsg;; : Uj; — H defined byj; (w) (vl (@) = & (w)(S)vy(w) determine a class
Z(y) € HY(Y, ﬁab) called the Phillips-Raeburn obstruction fer(see, for example,
[1, Proposition 3.3]). (Her&ab is the dual of the abelianizatiod /[H, H] of H
which coincides with the collection of charactersidr) Note that fore as above,

7 (0, 0) = AdUi (w, ) Wwhere U (s-w,») = V().

Thus the generalized Phillips-Raeburn obstruction and the original are, in this case,
related byr; (s - o, ) = & (@)(S).

THEOREM 13. Suppose thaG is a second countable, locally compact, locally
trivial, proper principal groupoid, and thatp*#, «) € Bt(G) is a locally unitary
pull-back, with# a locally trivial K-bundle as above. Then, with;, as defined in
(18), the equation

Tijk (@) = Ajj (kfl(zj , @, Prg (@) (2)))

defines an elemeii, p) in H3(Y;Z) which depends only omp* 4, «] € Br(G) and
5(#). Furthermore, the Dixmier-Douady class of the crossed-product is given by the
formula

(19) 8(C*(G, p'#)) = 8(#) + (a, p).

PrOOF. Since the class of the crossed product only dependpt#, «], it will
suffice to establishl©). We adopt the notation used in the proof of Theognthus
§(C*(G; p*#)) is given by{e;c } where

vik(d))*vij ((1))4< = eijk(d))vik(cb)* forallw € Vijk1 and

vij (@) == [[i, @, Yi(@)(P)].

We may assume th&{%) is given by a cocyclév;;} which is determined by functions
wij : Uij — U(K) such that

ojj (@) = Ad pij (@) and v (@) pik (@) = wij (@) pjx ().



[11] The Dixmier-Douady class of groupoid crossed products 233

Sincew is a locally unitary pull-back, we can, in view of4), write
Bij(@) = Ad6; (@), where 8;(@) = u(k (2, o, ¢ ()(Z)))wij (@)
with u; as defined in Remark0. But then

Gij (@)0jk (w) = i (kfl(Z L@, i (@)(Z))) ij (@)
X Uj (kfl(zj , @, Pii (@)(2)) 11 (@)
= T (@)U (K (Z, @, 95 (@) (Z))Ui (K (7, @, ¢y (@)(Z))
X pij (@) ik (@)
= Tjj (@) vij (@)U (kfl(l , @, Pyi () (Z)) ik (@)
= Tjj (@) Vijx (@) Ok (@).

It follows that {7 vij«} iS a 2-cocycle definin@(C*(G, p*%’)). In particular,zjx is
also a 2-cocycle and we're done. O

ExamvPLE 14. We should compare our Theorelf, in the setting of Examplé2,
with [6, Theorem 1.5]. To see that our formula coincides with Raeburn and Rosen-
berg’s, we have to see that olr, p) is the same as thely, p). However,

Aij (K 1(Z10 @, g (@)(2))) = hij (17, @), h (& - 5 (@), @)).
If, as we may, we take = eforall i, then
Aij (@, & (@) - w) = &j (0) (Sik(w))

which certainly appears to be a representative for Raeburn and Rosenpeng)s
Unfortunately we used a different convention &) and @) from the one used ing
Theorem 1.5]. In view of this, oufx, p) should be—(y, p). The difference seems
to be that the expression “M'Mj v (1)” in the middle of page 15 in the proof of
[6, Theorem 1.5] should be “A(d'Aji o v ).
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