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Abstract

We give a formula for the Dixmier-Douady class of a continuous-trace groupoid crossed product that
arises from an action of a locally trivial, proper, principal groupoid on a bundle of elementaryC∗-algebras
that satisfies Fell’s condition.
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1. Introduction

Throughout this noteG will denote a second countable, locally compact, principal
groupoid with Haar system,A will denote an elementaryC∗-bundle overG.0/ that
satisfies Fell’s condition, andÞ will denote a continuous action ofG on A via
isomorphisms. Thus the pair.A ; Þ/ is exactly what is needed to define an element
in the Brauer group Br.G/ as defined in [4, Definition 2.14]. As a special case of [3,
Theorem 1], it follows that the groupoid crossed productC∗.G;A / has continuous-
trace if and only ifG is a proper principal groupoid. Thus ifC∗.G;A / has continuous
trace we can, and do, assume that thatG = � ∗

p � = {.!;!′/ ∈ � × � : p.!/ =
p.!′/} for a continuous open surjectionp : � → Y. In this case we say thatG
is a locally trivial, proper principal groupoid. In this note, we want to consider
the Dixmier-Douady classŽ

(
C∗.G;A /

)
, and we computeŽ

(
C∗.G;A /

)
when p is

locally trivial. Our approach is motivated in part by [6, Section 1] where Raeburn and
Rosenberg consider the case whereG is the transformation group groupoidG = H×�
with � a locally trivial principal H -bundle, andÞ is pulled back from a locally
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unitary action
 of H on a stable continuous-traceC∗-algebraB. Just as in [6,
Theorem 1.1], we show that we can assume thatA is the pull-backp∗

B by the orbit
mapp : G → G.0/=G of some locally trivialK -bundle overG.0/=G. (Throughout,K
will denote the space of compact operators on a separable, infinite dimensional Hilbert
space. By a locally trivialK -bundle over a spaceX, we shall mean a locally trivial
fibre bundle overX, with fibre K and structure group Aut.K /. We shall use [8] as our
basic reference on fibre bundles, sheaves, cohomology, etc.) In the eventÞ satisfies
an additional hypothesis — similar to being pulled back from a locally unitary action
as in [6] — we show thatŽ

(
C∗.G;A /

)
is a naturally defined perturbation ofŽ.B/ in

complete analogy with [6, Theorem 1.5].

2. Locally trivial proper principal groupoids

Suppose that� andY are second countable locally compact Hausdorff spaces, and
that p : � → Y is a continuous, open surjection. LetG be the proper principal
groupoid� ∗

p � and identifyG.0/ with � andG.0/=G with Y. We’ll say thatG is
locally trivial if p : � → Y is a locally trivial fibre bundle with fibreX. That is, we
assume there is a coverU = {Ui } of Y and continuous mapshi : p−1.Ui / → Ui × X
such that the diagram

p−1.Ui /
hi //

p
##GG

GG
GG

GGG
Ui × X

pr1
{{xx

xxx
xxx

x

Ui

commutes for eachi . In particular, we assume that there are continuous functions
¾i : p−1.Ui / → X such that

hi .w/ = (
p.!/; ¾i .!/

)
for all ! ∈ p−1.Ui /.(1)

Consequently, ifUi j := Ui ∩ U j 6= ∅, then the diagram

Ui j × X
h−1

i

%%KKKKKKKKKK

��

pr1

##

p−1.Ui j /
p

//

h jyyssssssssss
Ui j

Ui j × X pr1

;;
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commutes. This, in turn, implies that for eachu ∈ Ui j there must be a continuous
map�i j .u/ : X → X such that

h j ◦ h−1
i .u; x/ = (

u; �i j .u/.x/
)

for all .u; x/ ∈ Ui j × X.(2)

Further, since�i j .u/−1 = � j i .u/, we see that each�i j .u/ is a homeomorphism of
X. Consequently,�i j may be viewed as a function fromUi j to Homeo.X/. A
straightforward computation shows that

�i k.u/ = � jk.u/ ◦ �i j .u/ for all u ∈ Ui jk := Ui ∩ U j ∩ Uk.(3)

REMARK 1. Homeo.X/ can be made into a topological group in such a way that
hn → h in Homeo.X/ if and only if given a netxn → x in X (with thesameindex
set), thenhn.xn/ → h.x/ andh−1

n .xn/ → h−1.x/. Then it is not hard to see that�i j is
continuous and that the transition functions{�i j } determinep in the usual way.

EXAMPLE 2. Of course, the basic example of a locally trivial proper principal
groupoid is the transformation groupoid associated to a principal (left)H -space� for
a locally compact groupH . In this case, the fibre spaceX is just H , and we also want
the local trivializationshi to be H -equivariant. In particular, there are continuous
functionssi j : Ui j → H such that�i j .u/.t/ = tsi j .u/ for all t ∈ H . Furthermore,
equation (3) is equivalent to

si j .u/sjk.u/ = sik.u/ for all u ∈ Ui jk .(4)

Therefore the elements{si j } determine the class[p] of the principal bundlep in
H 1.Y;H/ whereH is the sheaf of continuousH -valued functions andH 1.Y;H/
is the the first sheaf cohomologysetdetermined byH [8, Remark 4.54]. When we
return to this example in the sequel, we will identify the transformationgroup groupoid
H × � with G = � ∗

p � via the map.t; !/ 7→ .!; t−1 · !/. (Recall thatH × �

is the groupoid with unit space{e} × � identified with� and with range and source
mapss.t; !/ = t−1 · ! andr .t; !/ = !. Then we have.t; !/.s; t−1 · !/ = .ts; !/
and.t; !/−1 = .t−1; t−1 · !/.)

REMARK 3. It is a matter of taste as to whether�i j or � j i appears in (2). Our taste
might seem off in view of (3), but we have purposely endured bitter herbs in order
enjoy (4) even if H is not abelian. In either case, it is important fact of life that any
formula for the Dixmier-Douady class that depends on standard topological data, such
as transition functions like the�i j , depends up to a sign on choices such as that made
in (2). This will be important in comparing our result to other calculations in the
literature (see Example14).
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Now we want to see how the locally triviality ofp is reflected in the groupoid
structure ofG. We can define a topological groupoid isomorphismki : G|p−1.Ui / →
X × Ui × X by

ki .!;!
′/ := (

¾i .!/; p.!/; ¾i .!
′/
)
:(5)

Here X × Ui × X is the groupoid that has unit space identified withX × Ui , orbit
space identified withUi and multiplication given by.x;u; y/.y;u; z/ = .x;u; z/. If
p.2/ : G → G.0/=G ∼= Y is given byp.2/.!;!′/ := p.!/, then we have commutative
diagrams

G|p−1.Ui /

ki //

p.2/
##GGG

GG
GGG

G
X × Ui × X

pr2
yyssssssssss

Ui

and
X × Ui j × X

k−1
i

''NNNNNNNNNNN

��

pr2

!!

G|p−1.Ui j /

p.2/
//

kj
wwppppppppppp

Ui j :

X × Ui j × X pr2

==

In particular, we claim that

kj ◦ k−1
i .x;u; y/ = (

�i j .u/.x/;u; �i j .u/.y/
)
:(6)

To see this, consider

kj ◦ k−1
i .x;u; y/ = kj

(
h−1

i .u; x/;h−1
i .u; y/

)
= (

¾ j .h
−1
i .u; x//;u; ¾ j .h

−1
i .u; y//

)
which equals the right-hand side of (6) in view of (1) and (2).

We include the following lemma to motivate some of the constructions in the next
section. At this point, it will be convenient to introduce the notation!̇ for p.!/. This
will make some of the more complicated formulas below, and elsewhere, a bit easier
to digest.

LEMMA 4. Suppose thatp : � → Y is a locally trivial fibre bundle with fibreX and
that G = � ∗

p �. If H is a topological groupoid and ifÞ : G → H is a continuous
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groupoid homomorphism, then there is open cover{Ui } of Y and continuous maps
 i : p−1.Ui / → H such that

Þ.!;!′/ =  i .w/ i .!
′/−1 for .!;!′/ ∈ G|p−1.Ui /.(7)

REMARK 5. It is implicit in the statement of Lemma4thatr . i .!// = r .Þ.!;!′//,
while s. i .!// and, more generally, i .!/

−1 j .!/ depend only onp.!/, for
! ∈ p−1.Ui j /.

PROOF OFLEMMA 4. Choose{Ui }, hi : p−1.Ui / → Ui × X andki : G|p−1.Ui / →
X × Ui × X as above. For eachi , fix zi ∈ X and define

 i .!/ := Þ ◦ k−1
i .¾i .!/; !̇; zi /;

and observe that if.!;!′/ ∈ G|p−1.Ui /, then

Þ.!;!′/ := Þ ◦ k−1
i .¾i .!/; !̇; ¾i .!

′//

= Þ ◦ k−1
i .¾i .!/; !̇; zi /Þ ◦ k−1

i .zi ; !̇; ¾i .!
′// =  i .!/ i .!

′/−1

as required.

3. The Dixmier-Douady class

First, it will be helpful to recast [3, Theorem 1] in terms of Brauer groups as
defined in [4]. (We follow the notation and terminology of [4]. In particular,Br.G/
denotes the collection of pairs.A ; Þ/ of the kind we have been considering, while
Br.G/ denotes their Morita equivalence classes.) To start off, we only needG to be
a proper and not necessarily locally trivial. Our next result should be compared with
[4, Proposition 11.2].

THEOREM 6. If G is a second countable, locally compact, proper principal group-
oid, then there is an isomorphism ofBr.G/ onto Br.G.0/=G/ which sends.A ; Þ/ ∈
Br.G/ to the class of the bundle representing the crossed productC∗.G;A / in
Br.G.0/=G/. The inverse is given by sendingB ∈ Br.G.0/=G/ to .p∗

B; − ⊗ 1/
where p : G.0/ → G.0/=G is the quotient map,p∗

B = {.!;b/ : !̇ = pB.b/} is the
pull-back and.− ⊗ 1/.!;!′ /.!

′;b/ = .!;b/.

PROOF. It follows from [5, Proposition 2.2] and [4, Theorem 4.1] that[A ; Þ] 7→
[A G.0/ ] is an isomorphism of Br.G/ onto Br.G.0/=G/, whereA G.0/ = s∗.A /=G and
wheres∗.A / is the pull-back ofA to G via the source maps (see, for example, [4,
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page 914]). Furthermore, [3, Theorem 1] implies thatC0.G.0/=G;A G.0/
/ is Morita

equivalent toC∗.G;A /. This proves the first assertion.
On the other hand, [4, Theorem 4.1] implies that the inverse is given by

[B] 7→
[
B

G.0/op

; idG.0/op
]
;

whereG.0/op is G.0/ regarded as a left-G, right-G.0/=G equivalence (see, for example,
[4, page 924]). However,G.0/op is easily seen to be isomorphic (as an equivalence)
to the graph ofp, Gr.p/, where Gr.p/ := {.!; !̇/ : ! ∈ G.0/} (see also Section 6 of
[4]). Therefore [4, Lemma 6.5] implies that

[
B

G.0/op

; idG.0/op
]

= [
B

Gr.p/; idGr.p/
] = [ p∗

B; p∗ id] :

Noting thatp∗ id = − ⊗ 1 completes the proof.

As a corollary, we get the following version of [6, Theorem 1.1].

COROLLARY 7. Suppose that[A ; Þ] ∈ Br.G/. Then there is a locally trivialK -
bundleB overY such that[A ; Þ] = [p∗

B; þ]. In particular, the Dixmier-Douady
classŽ.A /must lie in the imagep∗.H3.Y;Z// of the mapp∗ : H 3.Y;Z/ → H3.�;Z/
induced byp.

PROOF. Since−G.0/ := .G.0/×K ; −⊗1/ acts as the identity in Br.G/, we can replace
.A ; Þ/ with .A ⊗G.0/ .G.0/ × K /; Þ ⊗ .− ⊗ 1//. Thus we may as well assume that
A := C0.G.0/;A / is stable. It follows from Theorem6 and [7, Proposition 1.4(1)]
that Ž.A / := Ž.A/ ∈ p∗.H3.Y;Z//. Thus there is a stable continuous-traceC∗-
algebraB with spectrumY such thatA = p∗ B [7, Proposition 1.4(2)]. In view of
[8, Proposition 5.59], we may assume thatB = C0.Y;B/ whereB is a locally trivial
K -bundle with structure group AutK as required.

LetB be a locally trivialK -bundle overY as in Corollary7. It follows from [8,
Proposition 4.53] for example, that there is a coverU = {Ui } of Y by pre-compactsets
and continuous functions¦i j from Ui j into Aut K with the point-norm topology such
that¦ = {¦i j } form a 1-cocycle in theset Z1.U;S/ (where we’ll useS for the sheaf
of germs of continuous AutK valued functions onY) such thatB is isomorphic to

∐
i

Ui × K=∼;(8)

where we identify. j;u;T/ with .i;u; ¦i j .u/.T //. Furthermore, the Dixmier-Douady
classŽ.B/ is the image of1.[¦ ]/ ∈ H2.Y;S/ in H 3.Y;Z/ where1 : H1.Y;S/ →
H 2.Y;S/ is the bijection given in [8, Proposition 4.83]. Thus, refiningU if necessary,
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we can assume that there are continuous functions¼i j from Ui j into the unitary group
U .K / of (the multiplier algebra of)K with the strict topology such that

¦i j .u/ = Ad¼i j .u/ for all u ∈ Ui j .(9)

(Of course,U .K / is the isomorphic to the unitary group of the underlying Hilbert
space ofK endowed with the strong topology.) Then1.[¦ ]/ is represented by
¹ := {¹i jk} ∈ H 2.U;S/ given by¹i jk.u/¼i k .u/ = ¼i j .u/¼ jk.u/.

If B is of the form (8), thenA := p∗
B is of the form∐

i

p−1.Ui / × K=∼;(10)

where we identify. j; !;T/with
(
i; !; ¦i j .!̇/.T/

)
. Thus if.p∗

B; Þ/ ∈ Br.G/, there
must be continuous groupoid homomorphisms

³i : G|p−1.Ui / → Aut K(11)

such that

Þ.!;!′/
([i; !′;T]) = [i; !; ³i .!;!

′/.T/]:
Note that if.!;!′/ ∈ G|p−1.Ui /, then!̇ = !̇′ and

¦i j .!̇/ ◦ ³i .!;!
′/ = ³ j .!;!

′/ ◦ ¦i j .!̇/:(12)

Assume thatG is locally trivial with ki , hi , ¾i and�i j defined as in Section 1. Then
we fix somezi ∈ X and define

 i : p−1.Ui / → Aut K

by

 i .!/ = ³i

(
k−1

i .¾i .!/; !̇; zi /
)
:

Then, as in Lemma4,

³i .!;!
′/ =  i .!/ i .!

′/−1:

Now we observe that

 i .!/
−1 ◦ ¦i j .!̇/ ◦  j .!/(13)

= ³i

(
k−1

i .¾i .!/; !̇;ai /
)−1 ◦ ³i

(
k−1

j .¾ j .!/; !̇; zj /
) ◦ ¦i j .!̇/

which, since� j i .!̇/.¾ j .!// = ¾i .!/, is

= ³i

(
k−1

i .zi ; !̇; ¾i .!//
) ◦ ³i

(
k−1

i .¾i .!/; !̇; � j i .!̇//
) ◦ ¦i j .!̇/

= ³i

(
k−1

i .zi ; !̇; � j i .!̇/.zj //
) ◦ ¦i j .!̇/:(14)

In particular, (13) depends only on the class!̇ of ! in Y.
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THEOREM 8. Suppose thatG is a second countable, locally compact, locally trivial,
proper principal groupoid, thatB is a locally trivial K -bundle overY and.p∗

B; Þ/ ∈
Br.G/, U,  i and¦i j are as defined above. Then

þi j .!̇/ =  i .!/
−1 ◦ ¦i j .!̇/ ◦  j .!/(15)

defines a classþ in H 1.Y;S/which depends only on[p∗
B; Þ] ∈ Br.G/. Furthermore,

the Dixmier-Douady class of the corresponding groupoid crossed productC∗.G; p∗
B/

is the image of1.þ/ in H3.Y;Z/.

PROOF. It follows from Theorem6 thatŽ.C∗.G; p∗
B// depends only on[p∗

B; Þ].
It is clear from (14) and (15) that{þi j } defines a cocycle inZ1.U;S/ and therefore a
classþ in H 1.Y;S/. It will suffice to see that the image of1.þ/ is Ž.C∗.G; p∗

B//.
Since the proof of [3, Theorem 1] implies thatC∗.G; p∗

B/ is Morita equivalent
to C0.Y; p∗

B=G/ wherep∗
B=G is the orbit space onp∗

B with respect to the right
action of G given by [i; !;T] · .!;! ′/ = [i; !′; ³i .!

′; !/.T/], it will suffice to
computeŽ.p∗

B=G/. We’ll denote the image of[i; !;T] in p∗
B=G by [[i; !;T]].

Let V = {Vi } be a cover ofY such thatV i ⊂ Ui ([8, Lemma 4.32]). LetP be a
rank-one projection inK . If w ∈ p−1.Ui /, then

[i; !; i .!/.T/] · .!;!′/ = [i; !′; ³i .!
′; !/ ◦  i .!/.T/] = [i; !′;  i .!

′/.T/]:

Therefore!̇ 7→ [[i; !; i .!/.P/]] is a rank-one projection field in.p∗
B=G/|p−1.Ui /.

Fell’s vector-valued Tietze extension theorem [2, Theorem II.14.8] implies that the
restriction toVi extends to a global sectionqi ∈ C0.Y; p∗

B=G/ such that

qi .!̇/ = [[i; !; i .!/.P/]] for all !̇ ∈ Vi .

We may as well assume that there are continuous functions�i j : Ui j → U .K / such
that

þi j .!̇/ = Ad �i j .!̇/ for all !̇ ∈ Ui j .

Of course,V is a refinement ofU with the same index set and1.þ/ is given by the
2-cocycle{ži jk } onV defined by

�i j .!̇/� jk.!̇/ = ži jk .!̇/�i k.!̇/ for !̇ ∈ Vi jk .

As above, there is avi j ∈ C0.Y; p∗
B=G/ such that

vi j .!̇/ = [[i; !; i .!/.P�i j .!̇/
∗/]] for !̇ ∈ Vi j .
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For !̇ ∈ Vi j , we certainly have

vi j .!̇/vi j .!̇/
∗ = [[i; !; i .!/.P/]] = qi .!̇/;(16)

while

vi j .!̇/
∗vi j .!̇/ = [[i; !; i .!/.�i j .!̇/P�i j .!̇/

∗/]](17)

= [[i; !; i .!/ ◦ þi j .!̇/.P/]]
= [[i; !; ¦i j .!̇/ ◦  j .!/.P/]]
= [[ j; !; j .!/.P/]]
= qj .!̇/:

Thus we have just the set-up for [8, Lemma 5.28]. So to find the Dixmier-Douady
class, we compute that

v jk.!̇/
∗vi j .!̇/

∗ = [[ j; !; j .!/.� jk .!̇/P/]][[i; !; i.!/.�i j .!̇/P/]]
= [[i; !; ¦i j .!̇/ ◦  j .!/.� jk .!̇/P/]][[i; !; i.!/.�i j .!̇/P/]]
= [[i; !; i .!/ ◦ þi j .!̇/.� jk.!̇/P/]][[i; !; i.!/.�i j .!̇/P/]]
= [[i; !; i .!/.�i j .!̇/� jk.!̇/P�i j .!̇/

∗/]][[i; !; i.!/.�i j .!̇/P/]]
= ži jk .!̇/[[i; !; i .!/.�i k .!̇/P/]]
= ži jk .!̇/vi k.!̇/

∗:

Thus [8, Lemma 5.28] implies that1.þ/ = [{ži jk }] gives the Dixmier-Douady class
of C∗.G; p∗

B/ as claimed.

DEFINITION 9. Let G = � ∗
p � be a locally trivial proper principal groupoid, and

letB be a locally trivialK -bundle with structure group AutK . Then an action ofÞ of
G on p∗

B is called alocally unitary pull-backif there is a coverU of Y and continuous
functionsvi : p−1.Ui / → U .K / such that i .!/ = Ad vi .!/ for all ! ∈ p−1.Ui /.

REMARK 10. Note that ifÞ is as in Definition9, then there are actually groupoid
homomorphismsui : G|p−1.Ui / → U .K / such that³i .!;!

′/ = Ad ui .!;!
′/, where

ui .!;!
′/ =  i .!/ i .!

′/−1.

Since¦i j .!̇/ ◦ ³i .!;!
′/ = ³ j .!;!

′/ ◦ ¦i j .!̇/, there are continuousgroupoid ho-
momorphisms

½i j : G|p−1.Ui / → C such that¦i j .!̇/
−.uj .!;!

′// = ½i j .!;!
′/uj .!;!

′/:(18)

REMARK 11. We want to think of{½i j } as ageneralized Phillips-Raeburn obstruc-
tion for Þ. It is possible to view (18) as defining a class in a certain sheaf cohomology
group, which we would naturally denoteH 1.Y;G/, but we will not pursue that here.
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EXAMPLE 12. Suppose thatB is a locally trivialK -bundle with transition functions
{¦i j } as above and that
 : H → Aut C0.Y;B/ is a locally unitary automorphism
group. If p : � → Y is a principalH -bundle, then letG = � ∗

p � andÞ the
action of G on p∗

B obtained by the pull-back:p∗
 : H → Aut p∗
B given by

p∗
s. f /.!/ = 
s. f .s−1 · !//. Since
 is locally unitary, we can assumeU has
been taken so that there are strongly continuous homomorphismsvi : Ui × H →
U .K / such thatÞ.s · !;!/([i; !̇;T]) = [i; !̇; v i

s.!̇/Tv
i
s.!̇/

∗]. Then the continuous
functions�i j : Ui j → Ĥ defined by¦i j .!̇/.v

j
s .!̇// = �i j .!̇/.s/vi

s.!̇/ determine a class
�.
 / ∈ H1.Y; Ĥab/ called the Phillips-Raeburn obstruction for
 (see, for example,
[1, Proposition 3.3]). (HerêHab is the dual of the abelianizationH=[H; H ] of H
which coincides with the collection of characters onH .) Note that forÞ as above,

³i .!;!
′/ = Ad ui .!;!

′/ where ui .s · !;!/ = vi
s.!̇/:

Thus the generalized Phillips-Raeburn obstruction and the original are, in this case,
related by½i j .s · !;!/ = �i j .!̇/.s/.

THEOREM 13. Suppose thatG is a second countable, locally compact, locally
trivial, proper principal groupoid, and that.p∗

B; Þ/ ∈ Br.G/ is a locally unitary
pull-back, withB a locally trivial K -bundle as above. Then, with½i j as defined in
(18), the equation

−i jk.!̇/ = ½i j

(
k−1

j .zj ; !̇; �k j .!̇/.zk//
)

defines an element〈Þ; p〉 in H 3.Y;Z/ which depends only on[p∗
B; Þ] ∈ Br.G/ and

Ž.B/. Furthermore, the Dixmier-Douady class of the crossed-product is given by the
formula

Ž.C∗.G; p∗
B// = Ž.B/ + 〈Þ; p〉:(19)

PROOF. Since the class of the crossed product only depends on[p∗
B; Þ], it will

suffice to establish (19). We adopt the notation used in the proof of Theorem8. Thus
Ž.C∗.G; p∗

B// is given by{ži jk } where

vi k.!̇/
∗vi j .!̇/

∗ = ži jk .!̇/vi k.!̇/
∗ for all !̇ ∈ Vi jk , and

vi j .!̇/ := [[i; !; i .!/.P/]]:

We may assume thatŽ.B/ is given by a cocycle{¹i jk} which is determinedby functions
¼i j : Ui j → U .K / such that

¦i j .!̇/ = Ad¼i j .!̇/ and ¹i jk.!̇/¼i k.!̇/ = ¼i j .!̇/¼ jk.!̇/:
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SinceÞ is a locally unitary pull-back, we can, in view of (14), write

þi j .!̇/ = Ad �i j .!̇/; where �i j .!̇/ = ui

(
k−1

i .zi ; !̇; � j i .!̇/.zj //
)
¼i j .!̇/

with ui as defined in Remark10. But then

�i j .!̇/� jk.!̇/ = ui

(
k−1

i .zi ; !̇; � j i .!̇/.zj //
)
¼i j .!̇/

× uj

(
k−1

j .zj ; !̇; �k j .!̇/.zk//
)
¼ jk.!̇/

= −i jk .!̇/ui

(
k−1

i .zi ; !̇; � j i .!̇/.zj //
)
ui

(
k−1

j .zj ; !̇; �k j.!̇/.zk//
)

× ¼i j .!̇/¼ jk.!̇/

= −i jk .!̇/¹i jk .!̇/ui

(
k−1

i .zi ; !̇; �ki .!̇/.zk//
)
¼i k.!̇/:

= −i jk .!̇/¹i jk .!̇/�i k.!̇/:

It follows that {−i jk¹i jk} is a 2-cocycle definingŽ
(
C∗.G; p∗

B/
)
. In particular,−i jk is

also a 2-cocycle and we’re done.

EXAMPLE 14. We should compare our Theorem13, in the setting of Example12,
with [6, Theorem 1.5]. To see that our formula coincides with Raeburn and Rosen-
berg’s, we have to see that our〈Þ; p〉 is the same as their〈
; p〉. However,

½i j

(
k−1

j .zj ; !̇; �k j .!̇/.zk//
) = ½i j

(
h−1

j .zj ; !̇/;h−1
j .zk · skj .!̇/; !̇/

)
:

If, as we may, we takezi = e for all i , then

½i j .!; skj .!̇/ · !/ = �i j .!̇/.sjk.!̇//

which certainly appears to be a representative for Raeburn and Rosenberg’s〈
; p〉.
Unfortunately we used a different convention in (2) and (4) from the one used in [6,
Theorem 1.5]. In view of this, our〈Þ; p〉 should be−〈
; p〉. The difference seems
to be that the expression “Ad.ui

½i j .t/
.t/vi j .t//” in the middle of page 15 in the proof of

[6, Theorem 1.5] should be “Ad.ui
½ j i .t/

.t/vi j .t//”.
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