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Abstract

Composition operatorS, between Orlicz spacds’ (2, T, 1) generated by measurable and nonsingular
transformationg from € into itself are considered. We characterize boundedness and compactness of
the composition operator between Orlicz spaces in terms of properties of the mapthirdunctiony

and the measure spat®, X, ). These results generalize earlier results knowrLfdspaces.
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1. Introduction

Let Q = (22, X, u) be ac-finite complete measure space anddet2 — Q be a
measurablagransformation, that is; *(A) € X forany A € . If u(r7*(A)) =0
forall A €  with u(A) = 0, thent is said to benonsingular This condition
means that the measyueo 2, defined byu o 771(A) := n(z *(A)) for Ac =, is
absolutely continuous with respectiqit is usually denoteg o t=* « ). Thenthe
Radon-Nikogim theorem ensures the existence of a non-negative locally integrable
function f, on Q such thaf o t*(A) = [, f.(H)du(t) for Ae =.

Any measurable nonsingular transformatiomduces a linear operatocdmposi-
tion operato) C, from L°(Q2) into itself defined by

(1.1) C.x(t) = x(r(t)), teQ, xelL%Q),

whereL°(Q2) denotes the linear space of all equivalence classEsmkasurable func-
tions on2, where we identify any two functions that are equahlmost everywhere
on €.

(© 2004 Australian Mathematical Society 1446-8107$2.00+ 0.00

189


http://www.austms.org.au/Publ/JAustMS/V76P2/n34.html

190 Yunan Cui, Henryk Hudzik, Romesh Kumar and Lech Maligranda [2]

Here the nonsingularity of guarantees that the operaty is well defined as a
mapping of equivalence classes of functions into itself since y u-a.e. implies
C.x=C,y u-a.e.

If C. maps an Orlicz spade’ (R2) into itself, then we calC, acomposition operator
in L?(€2). Note that, in this cas€;, as a positive linear operator it (2) is bounded.

Boundedness of composition operatord.if(2)-spaces (1< p < oo) for finite
measures appeared already in the Dunford-Schwartz bhdlenma 7, pages 664—
665] and foro -finite measures in Singh’s pap&]] (the sequence case i) and
also in the book75. Namely, a measurable transformatierinduces a bounded
composition operato€, in LP(Q) for1 < p < ocifand only if w o 7! « p and
the Radon-Nikogih derivatived o t=t/du = f, is essentially bounded 2. The
last two conditions can be written as one: there exists a constan such that

(1.2) w(@(A) < Ku(A) forall Ae X.
Moreover,

1/p
IICTIILMLP=< sup M(Tl(A))/M(A)> :

AeX,0<u(A)<oco

Observe that the composition operaiiis a bounded operator I (1) with norm 1,
that is, a nonexpansive mapping for any measurable nonsingular transformation

In the case thap is an N-function, some results on boundedness of composition
operators in the Orlicz spate (2) were obtained ing, Theorem 2.1] (see alsaf]).

Compactness results of composition operator were proved by Siop#r{d Singh-
Kumar [24, 22]in L?(2)-space. Then Petrav[15], Xu [28] and Takagi 6] extended
them to theL P(Q2)-spaces with 1< p < oo. It turns out that there is no compact
composition operator ohP(£2), wheny is either non-atomic or purely atomic with
all atoms of equal measure. But there are some weighted seglespaces which
do have compact composition operators.

We will present some new results on boundedness and compactness of compositio
operators in Orlicz spaces.

We need some notions from Orlicz spaces. ¢et{0, co) — [0, co] be anOrlicz
function that is, a convex function such that0) = 0, ¢(u) — oo asu — oo
and which is not identically zero or infinity ofD, co). Assume also thap is left-
continuous ab,, whereb, = sugu > 0 : ¢(u) < oo}. Note that ifb, < oo,
then we can have two caseéd,) < oo or ¢(b,) = co. Another important constant
connected with the Orlicz functiop is a, = inf{u > 0 : ¢(u) > 0}. Of course,
0<a, <h, <oco. Forx € L), define themodular

I, (X) =/¢(|X(S)I)du(5)
Q
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and theOrlicz space
LYQ) = LY(Q, 2, n) = {x € LAR) : I,(Ax) < oo for some = A(x) > O}.
This space is a Banach space with two norms:Lilneemburg-Nakano norm
IX]l, = inf{A > 0:1,(x/2) <1}
and theOrlicz norm(in the Amemiya form)
XI5 = LQE(H l,(kx))/k.

Itis well known that]|x||, < ||x||2 < 2|Ix|l, and||x|l, < lifand only ifl,(x) <1
(see for example7, page 80]). Moreover, ifA € ¥ and 0 < u(A) < oo, then
Ixall, = /o 1 (1/n(A), wherep=t(t) = inf{s > 0 : ¢(s) > t} is the right-
continuous inverse gb. Note that the equality of the Orlicz norm and the Amemiya
norm was recently proved irb]. Before only an estimate of the Orlicz norm from
above by the Amemiya norm was known (s&8,[Theorem 1.2.6]) with equality when
bothg and its complementary functigst are N-functions (see’[ Theorem 111.10.4],
[11, Theorem 8.6] andl[7, Theorem 11.3.13]) .

The Orlicz spacd.?(2) with each of the above two norms is a rearrangement-
invariant space, that is, a symmetric space with the Fatou property Isdégo-
rem 8.9], B, page 104]).

We say that an Orlicz functiop satisfies theondition A, for all u (respectively,
for large u; for smallu) if there exists a positive constakit(respectively, a positiv&
andu, > 0 with p(ug) < oo; a positive constark andug > 0 with ¢ (up) > 0) such
thatep(2u) < Kg(u) forall u > 0 (respectively, for all > uy; for all 0 < u < ug).

If ¢ satisfies the condition, for all u, then for any -finite measure space the dual
of the Orlicz spac&? () is the Orlicz spac&¥’ (2) generated by the complementary
functiong* of ¢, defined byy*(u) := sup_,(Uv — ¢(v)). Moreover,

(L), 1 1,)" = (L, 1-15)  and (LS, 11 10)" = (L (@), ] - ll,) -

The paper is organized as follows. In Sectibwe study modular continuity and
norm continuity of composition operatdCs in Orlicz space& “ (2). We were able to
completely characterize modular continuity®f. It is surprising that the necessary
and sufficient conditions for modular continuity do not depend on Orlicz functions
¢ but only on the transformation. Our results on norm continuity d&, are also
complete. The form of the necessary and sufficient conditions for the norm continuity
established in this paper depends on the regularity of the Orlicz fungtibmthe case
wheng satisfies the condition, for all u > 0, the conditions have the same form as
for the modular continuity, so they do not dependgrfor any measuree. If 1 is
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nonatomic and finite the same is truepifsatisfies the condition\, for large values
of u > 0. If the measurg is nonatomic and infinite, then the conditian for large
values ofu > 0 is enough to explain the necessary and sufficient itiondfor the
continuity ofC, from L (2) into itself in terms ofp. Without any regularity condition
for ¢, and without any restriction on the measurigis established that the composition
operatolC, generated by a nonsingular transformatida continuous from an Orlicz
spaced ¥ (2) into itself if and only if L?(€2) is contained in the Musielak-Orlicz
spacelL?(£2), wherey (t,u) = ¢(Ww(t) andw is the Radon-Nikogrm derivative
du o 7t/du. It means that in the general case we were not able to explain the
conditions directly in terms of the generating functian

In Section3, we investigate compactness of composition operators in Orlazesp
Asinthel P-case, compactness of a composition oper@tdan the Orlicz spacé ?(£2)
implies that the underlying measuytes purely atomic. Under some assumptions on
the functionp and the atoms qi, we prove necessary and sufficient conditiongGor
to be compact. In particular, we can have compactness of the composition operator ir
weighted Orlicz sequence spaces.

2. Modular and norm continuity of composition operators

For the modular continuity of the composition opera@rin an Orlicz space
L?(2), we present necessary and sufficient conditions for any Orlicz fungtiemd
anyo-finite measure spad&, =, 1). For any Orlicz functiorp which satisfies the
conditionA, for all u, the same is done for norm continuity of the composition operator
C.in L?(Q). If ¢ satisfies the condition, for large u, then the problem of continuity
of the composition operatd®, in L¥(Q2) is completely solved if the measure space
is nonatomic of finite or infinite measure. Without any regularity conditiorp ptihe
conditions for continuity ofC, from L?() into itself are explained in terms of the
Radon-Nikogm derivatived o 7=%/dp.

THEOREM2.1. Assume that : Q — Q is a measurable nonsingular transforma-
tion.

(@) If0<a, =b, < oo, thenl,(C,x) = 1,(x) whenevel,(x) < co.
(b) 1f0<a, <b, < oo, then the inequality

(2.1) [,(C.x) = K1,(x)
holds for all x such that, (x) < oo with someK > 0 independent of x if and only if
(2.2) u(TH(A) < Ku(A)

forall A e ¥ with u(A) < cc.
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PROOF. (a) In this case the functianis 0 on the interval0, a,) andoo on(a,, 00).
Therefore |, (x) < oo if and only if ||, < &, and so||C.X|l» < &,, which finally
givesl,(C,x) = 0= 1,(x).

(b) Assume that G< a, < b, < oc.

Sufficiency Assume that condition2(2) is satisfied. It gives that o 77 <« 1
and by the Radon-Nikaah theoremy o t1(A) = [, f.(1)du(t) for A €  and for
some functionf, locally integrable orf2. Notice thatf, € L>°(Q) and|| f,||. < K.
Otherwise, there i\ € X with 0 < u(A) < oo such thatf,(t) > K foranyt € A.
This yieldsp o t71(A) = [, f.()du(t) > Ku(A), which contradicts conditior2(2).

Therefore,

1, (C:x) =/¢(|C1X(S)I)du(5) =/¢(|X(T(S))I)du(5)
Q Q
=/ e(IXODd( o T H (1) < / e(IXOD d(u o T H ()
(2) Q

= / p(Ix@®D f.®) du(t) < K/fp(lx(t)l)du(t) = Kly(X).
Q Q

Necessity Assume that condition2(1) holds. If A € ¥ andu(A) = 0, then
the nonsingularity of yields (z71(A)) = 0 and we have equality ir2(2). Thus
suppose thaf € X and O< u(A) < co. Takea € (a,, b,) and sex = axa. Then

l,(X) = /Aw(a)du(S) = gp@u(A) < oo.
ASC, xa = X:-1n), It follows by (2.1) that
p@ur H(A) = 1,(C.x) < Kl,(x) = Kg@pu(A).
Since 0< ¢(a) < oo, this gives 2.2). O

THEOREM 2.2. Assume that : Q — Q is a measurable nonsingular transforma-
tion. Then the composition operat@r. is bounded from an Orlicz spadef (2) into
itself, that is, there exists! > 0 such that

(2.3) IC.x|l, < M|x]l, forall xe L*(S)

if condition(2.2) holds. If, in additiong satisfies the condition, for all u > 0, then
(2.3) and(2.2) are equivalent.

ProoF. Sufficiency By Theorenm?.1we know that if @.2) is satisfied withK > 1,
then @.1) holds and

C.x 1 C.x X
I(p =< _I(p =< I(p o =< 1’
Kiixl, K 1, 1,
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whence||C. x|, < K][x]|, forall 0 # x € L¥(), that is, .3) holds withM = K.
Note that this part of the theorem holds without the condition.

Necessity Setting in inequalityZ.3) x = x, whereA € ¥ and O< u(A) < oo,
we get the estimate

1 _ M
e M/ (T HA)) T ¢ H1/n(A)’

or equivalently

1 1
2 e
2.4) v (M(A) =M L)

forall Ae Z with0 < u(A) < cc.
Sinceg satisfies the condition, for all u > 0, it follows that

Mu
L:= sup(p( ) < 00,

u=0 @(U)

andg(Mu) < Le(u) for all u > 0, which gives folu = ¢~(v) that

p(Mo t(v)) < Lo(p *(v)) < Lv
and so
Mo () < ¢ Ho(Me ()} < ¢ (L)

for all v > 0. Consequently, condition (2.4) yields

(i) e )=o)
n(A /)~ pn(HA) /)~ p(T=H(A)

or equivalentlyu(t=1(A)) < Lu(A) forall A € = with 0 < u(A) < oo, which
finishes the proof of the necessity with= L. O

REMARK 1. Theorem2.2 was, in fact, already formulated ir][ when ¢ is an
N-function but in case oM > 1 the proof was not complete.

ReEMARK 2. The sufficiency of Theoren2.2 can be proved (again without the
A,-condition) in two different ways, namely by using simple functions and by the
Orlicz interpolation theorem which is saying that any Orlicz spate?) is an exact
interpolation space betwedn'(2) and L*(R2) (see [L2]). We present below the
second alternative proof.

ALTERNATIVE PROOF Sincer is nonsingular, the operat@r, is continuous between
L>(R) with |C. X[« =< X[l for all x € L*(R). Condition .2 yields that
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C, is continuous onL(2) with ||C, x| < K| x]|; for all x € L}(). By the
Orlicz interpolation theorem (se&Z, Theorem 1'], L1, Theorem 13.2']; see alsd [
Theorem 2.2.2] and3] Theorem I1.4.9], where there is even more general version of
this theorem, the so called CalderMitjagin interpolation theorem), we g€, x ||, <
max{K, 1}||x|, for all x € L#(£2). More precisely,
¢ 1 (Ku)
1CMLemre = sup 20)

(see L2, Theorem 15.13] or{, estimate (4.24) on page 100]).

ReEMARK 3. From the above proofs we obtain that if conditi@ndj holds, then we
have the estimates

e 11/ (A)
Ao -0 9 ML (T H(A))

—1 -1
0 (SUPacs. 0-u(ay o (L (T LA /1 (AN)U
< [ICellLemis < SUP (SUPhep.o-uin = / )
u=0 (ﬂ (U)

’

which is a generalization of theP-case into Orlicz spaces.

REMARK 4. Condition @.2) is sufficient for the continuity of any composition
operator from any symmetric spa¥ento itself if X has either the Fatou property oran
absolutely continuous norm (see, for exampleTheorem 2.2.2] or§, Theorem 11.4.9
and 4.10]), becaus¥ is then an interpolation space betwdenandL>.

REMARK 5. If 0 < a, < b, < oo, then the Orlicz spack?(Q2) is equal toL>*($2)
with an equivalent norm. Hence the composition oper&tois norm-continuous on
L¢(2) for every nonsingular transformatian However, in order to obtain modular
continuity of C, which is stronger than norm continuity, we need the additional
assumptionZ.2) on r as shown in Theorerd.1 In particular, note thaa, = b, is
allowed (seel7, first paragraph on page 52]).

THEOREM 2.3. Assume thajc is a non-atomic infinite measure,: Q — Q is
a measurable nonsingular transformation apds an Orlicz function satisfying the
condition A, for large u. Then the composition operat@r is bounded inL? () if
and only if there exists a constakt > 1 such that

1 K
o L pcHA)) — o Ln(A)

forall Ae S with0 < u(A) < cc.

(2.5)
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PrROOF. The necessity is clear by putting= x into the assumption.

Sufficiency Sinceg satisfies the conditiod\, for large u it follows that ¢ is
finite-valued and so liq. ., ¢~ 1(U) = oo.

Note first that 2.5 guarantee that o t=! <« u. In fact, assume that(A) — O.
Then by the assumptio@ (5 and from the assumption grwe obtainuoz ~*(A) — 0,
which shows thati o 7~! « 1 because by the nonsingularityofve may assume that
n(A) > 0. Letg=du ot t/du. Theng e L'+ L™ andu o r71(A) = [, g(t) du
foranyA e X.

Now we will prove thatg € L>(£2). We can prove in the same way as in the proof
of Theorem2.2 with 2K instead ofK thaty € A3 (that is,¢ satisfies the condition
A, for largeu) yields K ¢~1(v) < ¢~1(Lv) for v > 0 large enough and an absolute
constant. > 2K or equivalently that K ¢ ~*(w/L) < ¢~*(w) for w > a with some
a > 0. We will show that||g|l,, < L. Assume thaf|g|l., > L. Then, asu is
nonatomic there exists a sate ¥ with 1/u(A) > a such that O< u(A) < 1/a and
g(t) > L for u-almost allt € A. Consequently,

wot\(A) = / gty du > Lu(A),
A

whencep (1/u(z7*(A)) < ¢ (1/Lu(A)) and so

1 - 1 - 2K K
> )
eI/ (A)) T o HI/Lu(A) T e A/ u(A) e A/ u(A)

a contradiction. Thugjgll., < L and the rest of the proof is the same as the proof of
the sufficiency in Theorer.2. O

REMARK 6. Condition @.2) implies condition 2.5. Morover, if u(2) < oo and
¢ satisfies theA,-condition for large u, then condition&.6) and @.2) are equiv-
alent. In fact, theA,-condition of ¢ on [ug, c0) can be extended to the interval
le~2(1/u(t71(R))), 00) and @.5) is equivalent to

/(A < o(Kg H(2/n(z ™ (A))),

therefore we get conditior2(2). Note that conditionsA.5) and @.2), in the case when
() = oo, are different which will be shown in the next theorem.

In our next theorem, the spateg (©2) N L>(R) is considered with the classical
norm X |lynee = Max(||Xlly, [[Xloo)-

THEOREM 2.4. Assume that2, =, 1) is a non-atomic infinite measure space and
7 : Q — Qis a measurable nonsingular transformation. ketbe an Orlicz function
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satisfying the conditiom\, for all u > 0. Then the composition operat@, is
bounded inL?(€2) (N L>(L2) if and only if there exists a constakt > 1 such that

(2.6) max{1, u(z~*(A)} < K max(l, u(A)}
forall Ae S with0 < u(A) < cc.

PrOOF. NecessityPuttingx = x, whereA € ¥ and O< u(A) < oo, we obtain

1
e 11/ n(z=1(A)))

max{l, } = max{|C.X. C.XIl,}

< Cmax{||X[lco, [IXIly}

=C max{l, ;} ,
o1/ n(A)

with a constan€ > 0 independent oA. The functiong(u) = 1/¢(1/u) is increasing
and continuous on0, co) with limy_q g(u) = 0 andg(u) — oo asu — oo.
In particular, there exista > 0 such thatg(a) = 1. Moreover,g satisfies the
condition A, for all u sinceg is such. Thus

max(L, u(z *(A)
R T T S S
=MD Ay ) T o A N(A)

1 1
=9 (C max{a’ wl(l/M(A))}) =Do (max{a’ wl(l/M(A))D

=D max{g(a), g (

1

wl(l/M(A))>} D maxtd mAL
and @.6) holds.

Sufficiency We first show that (2.6) implies th&}, is bounded irL1(22) (M L*(R)
and next using an appropriate interpolation theorem we will extend the boundedness
of C, into L?(2) | L™(R).

Let x be a simple positive function, that is,= > |, & xa, whereA, C --- C A,
anda > 0,andA € , u(A) <o00,i =1,2,...,n. ThenC,x = 37, & x; 1(a)»

||x||1=/2amt>du<t>
2=

=Y an(A) + > an(A\ A+ +agu(A\ Avr) = Y au(A),

i=1 i=2 i=1
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1CXll1n00 = Max((|C: X[[1, [CXlloc)
n n
= maX( YA | 5 [ Do axeua )
i=1 1 i=1 00
n n
< max(z allxe il Y a)
i=1 i=1

<Y amaxu(r(A), D < K) amaxu(A), 1

i=1 i=1

<KDY au(A) +1) = KXl + [1X])

i=1

< 2K max(||X|l1, Xllos) = 2K [IX][1r100-
If x is a simple function irL* () L*, then

IC:Xll1n00 = I1C: X4 — CoXollinoe = I1C: X4 ll1nos + 1C X [l1n00
< 2K (X ll1nse + 1X-ll1n0e) < AKXl 1000-

Finally, since simple functions are dense Lif(2) () L>(2) (see B, page 77]),
we have||C. X |1 < 4K |[|X|l1n for all x € L1(2)() L>*(2) and we proved the
boundedeness of the composition oper&om L1(Q) () L*(Q).

The composition operat@;, is obviously bounded ih > (£2) and we showed above
that it is also bounded ih*(2) () L>*(22) when @.6) holds. Now, we will show
using the interpolation theory (or precisely, the Catdet‘ozanovskiinterpolation
construction) tha€, is bounded irL?(£2) (M) L>(L2).

Sincep(L>®, LY L*®) = LY, wherey~1(t) = p(1, min(1,t)) (see L1, Exam-
ple 3 or Example 4 and Example 5 on pages 179-181]; seelispdges 459—-461])
it follows that for p(1,t) = ¢~ 1(t) we obtainy(u) = inf{t > 0: vy~ 1(t) > u} =
inf{t > 0: min{p~1(1), ¢ (1)} > u}, and so

) if0<u<gel);

v = {oo if u> o 1(1).

ThusL? = L¥ () L*> and the interpolation theorem for Orlicz spaces or the Caluer”
Lozanovski'construction (se€lfl, Theorem 14.12 or Theorem 15.14]; see alsf [
Theorem 8.2.2]) gives th&, is bounded ino(L>, L*( L*) = LY L™. O

REMARK 7. Under the same assumptions on the meagard the Orlicz function
¢ as in Theoren2.4we can prove, similarly as in Theore2r, that the composition
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operatolC, is bounded inL?(2) + L>(R2) if and only if there exists a constalit > 1
such that mifil, «(z71(A))} < Kmin{1, x(A)} forall A € £ with 0 < u(A) < oo.

We formulate a necessary and sufficient condition for boundedness of composition
operators in Orlicz spacds’ (R2) in terms of the embedding of these Orlicz spaces
into weighted Orlicz spacds? (€2) with the norm

XMl = inf {A >0: / 7 (&) w(t)du < 1},
Q )\.

where the weightv is the Radon-Nikogh derivative ofu o 7= with respect tqu.

THEOREM 2.5. Let (L2, X, u) be ao-finite nonatomic measure space andQ—Q
be a measurable nonsingular transformation witl®2) = Q. Denote byw the Radon-
Nikodym derivatived .ot =1 /de. Thenthe following conditions are equivalent

(&) The composition operatdE, is bounded fronL?(2) into itself.
(b) For everyx € L?(R), there exists. > 0 such that

/w(MX(t)I)w(t) du(t) < oo.
Q

(c) The Orlicz spacd_“(R2) is embedded continuously into the weighted Orlicz
spaceL? (£2).

(d) There area,b > 0and0 < g € LY(Q) such thatp(@au)w(t) < bp() + g(t)
forall u > Oandt € Q\ Awith x(A) =0.

PROOF. Sincet(Q2) = Q it follows that
(27) I(p(CTX) = |¢(X),

whered(t, u) = p(u)w(t) is the Musielak—Orlicz function (see, for exampl&3]).
In fact,

1, (C:x) =/¢(|Cfx(t)l)du(t) =/ p(IX(r () du(s)
Q Q
=/ e(IXOD d(u o T7H(D)) =/ p(IX®Dw(®) d(u(t))
() (@)

= / p(IX®ODw®) du(t) = lo(X).
Q

From (2.7) it follows thatC, is anisometry fronL. ®(R2) into L* (£2). Namely, defining

IXle = inf {x ~0: / @ (t, 'X(”'> du < 1},
Q A
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we have for any € L®(Q) \ {0}, thatl,(C,x/|IXlle) = lo(X/[IX]le) < 1, whence
IC.x/lIXllsll, <1, or, equivalently||C.x|l, < [IX|]lo. On the other hand, iI€,x e

L\ {0}, thenlo(X/IIC.X[l,) = 1,(C.x/[IC.x]l,) < 1, whencg|x]|l» < |IC.X],, and
the proof thatC, is an isometry fronL ®(€2) into L¥(R2) is finished.

The continuity of the operat@@, in L¥(2) means that there exists a constént 1
such that| x|l < K|x]|, for all x € L#(€2). This gives a continuous embedding of
L¢() into L*().

It is well known that the last embedding holds if and only if condition (d) is
satisfied (seell3, Theorem 8.5] for the finite valued functiogs ® and [6, 3, 19
in the arbitrary case). Consequently, we get implications=fajb) = (c) = (d).
Moreover, condition (d) yields easily condition (a), so the proof is finished. O

If the measure spac€, ¥, u) is o -finite and purely atomic, thati€ = |, A,
whereA, are the atoms with the measunegA,,) = a, > 0 for alln € N, then the
Orlicz sequence spaté{a,}) is defined as the space of all real sequemnces{x,}>* ;
such thatl, (Ax, {a,}) < oo for somei > 0, wherel, (X, {a,}) = > oo, @([XaDan.
This space is considered with the norm

1X[lg oy = INF{A > 0 : 1,(x/X, {an}) < 1}.

THEOREM2.6. Let (2, =, u) be ao-finite and purely atomic measure space with
atoms{A,} of measureu(A,) = a, > Oforanyn e N. Lett : Q - Q be a
nonsingular transformation with(Q2) = Q andh, := w(t (A)))/uw(A,). Then the
following conditions are equivalent

(a) The composition operatdZ, is bounded fronh? ({a,}) into itself.

(b) For everyx € 1¢({a,}) there exists. > Osuch that)_ -, p(x|X,))b, < 0.

(c) The Orlicz spacd®({a,}) is embedded continuously into the Orlicz space
1“({asbn}).

(d) There area, b, > 0 and a sequencéc,} in I* of nonnegative numbers such
thatp(Wa, < § = p(@uwa,b, < bp(u)a, +c,foralln e Nandallu > 0.

PrROOF. Itis very similar to the proof of Theore 5, but we present it for the sake
of completeness. We have

1,(CoX. {anh) = > 0(ICXDan = D (X )an

n=1 n=1
= > exDuE ™ (A)) = D o(XaD)anby = 1,(x, {anby)).
net () n=1

For anyx € I“(fa,bn}) \ {0},

C.X X
l, | ————. {an}> = | <— {a,b }> <1,
g <||X||<p,{aqbn) Xl g agb !
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whence||C. X/ Xly. @b lo.a) < 1 OF, equivalently]|C. X|l, ja,; < IXlly.(ab,- ON the
other hand, ifC.x € 1“({a,}) \ {0}, then

|< X {anb})—l< C:x {an})<1
NICXIpay ) P NUIC X e -

whencel|X ||, jab, < IIC:Xlly. (o). COnsequently, the equalifyC, Xll,.(a) = X1y, anbn)

is proved and it shows th&x, is an isometry fronh?’ ({a,b,}) intol¥({a,}). Taking into
account that conditions (c) and (d) are equivalent (48eTheorem 8.11, page 51]
for the finite valued functions and.§] in the arbitrary case), we can finish the proof
in the same way as the proof of Theor&rb. O

3. Compactness of composition operators in Orlicz spaces

We start with the following result.

THEOREM 3.1. Letgy be an Orlicz function vanishing only at zero with finite values,
that is,a, = O andb, = co. Lett be a measurable nonsingular transformation from
Q into itself such that (2) = Q. If C, is a compact operator frorh? into itself, then
the measurg: is purely atomic.

PrROOF. We can writeQ2 = ©Q; U Q,, whereQ; N Q, = @, ulq, is honatomic and
g, is purely atomic. Sincg ot ~! <« u, then by the Radon-Nikagai theorem there
exists a function h locally integrable &y such tha o t=*(A) = [, h(t) du for any
Ac N, DefineAy = {t € Q;: h(t) > 0}. We will show thatu o 771(Ay) = 0.
Assume for the contrary thato t=1(As) > 0. Then there ig > 0 such that the set
A; = {t € Ay : h(t) > €} has positive measure. Take a sequefig of pairwise
disjoint subsets oE N A; with 0 < u(B,) < 1/2" for n € N large enoughr( > ny).

Define
Xy = 1 n>n
n=¢ (Bn) XBy» 0-

Thenl,(x,) = 1, whencex, € L¥(2) and||x,]l, = 1 forn > ny,. Consequently, we
have form, n > ny with m # n,

lo(CoXm — CXn) = / P(IC:Xm(S) — C;Xn(8)]) dpu(s)
Q

= / @ (IXm(T(8)) — Xa(T(S)]) da(S)
Q

- / o ([Xm(t) — X)) dpz 0 T1(t)
7(Q2)
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= / P(IXm(®) =X () dp o T7H()
Q
= / @ (IXm(t) — X (O Dh(t) dpa(t)
Q

=/ P (IXm(®Dh(®) da(t) +/ p(IXa (D) du(t)
B By

B,
= By ey

Therefore||C, xm — C. Xnll, > 2¢ for m, n > ng with m s n. This means thgC, x,}
contains no subsequence which is a Cauchy sequence, tBatByL* (2))), where
B(L?(£2)) denotes the unit ball df* (£2), is not relatively compact. Consequently, the
operatorC, is not compact, a contradiction. The assumption that the transformation
7 is nonsingular yields that (Ay) = 0. The proof of the theorem is finished. [

en(By) = 2e.

THEOREM 3.2. Let ¢ be a finite-valued Orlicz function and I€f2, X, u) be a
o-finite and purely atomic measure space with the atdp®f measureu(A,) =
a, > 0. For a measurable nonsingular transformatienfrom €2 into itself, denote
by = n(z 71 (A))/u(A,). If C, is a compact operator froit ({a,}) into itself, then
lim,_. b, =0.

ProOF. Assume for the contrary that the assumptions are satisfiedhapd O.
We may assume without loss of generality that thekreds(0, 1) such thab, > ¢ for

alln € N. Define
Xn=¢ Xa,,» neN.

n(T=1(A))
Then
_ 1 1

o =¢ (u(rl(An») e

and
pwA) 11

TS

whence||x, ||, < 1/e foralln e N.

On the other hand, we have for all £ n,
I(p(C'er - Crxn) = I(p(CT(Xm - Xn))

1 3 1 .
= = 2'
A A + s A

ConsequentlyC. Xn — C. X, ||, > 1 forallm # n, which means thdC, x,} contains
no Cauchy subsequence, that@s,is not compact. This contradiction finishes the
proof. O
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THEOREM 3.3. Let ¢ be an Orlicz function vanishing only at zero. L&, =, 1)
be a purely atomie -finite measure space withe the atofysof measureu(A,) =
a, > 0 andt be a measurable nonsingular transformation fr@minto itself such
thatlim,_, . b, = 0. Assume that eithey satisfies conditiom\, for all u > 0 when
Y > b, = oo or condition A, for large u > 0 when)_ " b, < co. Then the

n

composition operato€, acts froml?({a,}) into itself and it is compact.

PrOOF. The assumption op implies that (seed, Theorem 1.39],13))
(3.1) forany e > O there existss > 0 such thatl,(x) < é implies |||, < €.

Let{x,} be a sequence froB(“({a,})). Then there exists a subsequefxg} of {x,}
andx € 1?({a,}) such that{x, } is weakly convergent toc. We may assume without
loss of generality thax, — 0 weakly (if x # 0 we consider the sequenpg, — x}
instead of{x,}). Sinceb; — 0 asi — oo, there isj € N such thaty, < §/2 for all

i > ]j. Then

[ee}

Y bpxaDI(A) <8/2 Y p(xalDDi(A) < §/2

i=j+1 i=j+1

for all n € N. Note that ifx, — 0 weakly, thenx, — 0 pointwise. Really, the
predual ofi“({a,}) is the subspacke” of order continuous elements of the Musielak-
Orlicz sequence spatéover the counting measure with the Musielak-Orlicz function
v = {yn}2,, wherey,(u) = a,¢p*(u/a,) for allu > 0 andn € N. Take anyk € N.
Theny = g € h?. We havex,(k) = (X,, y) — 0 by assumption, which means that
X, — O pointwise.

Thus, there existen € N such thatzij:1 bio(X (O Du(A) < §/2 foralln > m.
Combining the above two estimates we get

1, (Cox) = Y p(Xa Dt (A) =D e(XadDb(A) < 8

i=1 i=1

for n > m. Applying condition (3.1), we obtaifiC, X,||, < € for all n > m, which
means tha€C,x, — 0. The proofis complete. O

The following example shows that in the last theorem the assumptionspthat
vanishes only at zero and thasatisfies a suitablé ,-condition are important.

ExaMPLE 1. Letg(u) = 0if0 < u < 1 andp(u) = oo if u > 1. Then for any
measure spad€?, X, u), we haveL?(Q2, =, u) = L* (R, =, u) with equality of the
norms||x|, and|X||«. Thus in the case of the counting measure space, we have
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IXll, = IXllo = SUR.N IX()]. Itis easy to see that the only compact composition
operatorg, : 1°(N) — I°°(N) are finitely dimensional operators.

Assume for the contrary th&, is not finite dimensional. Then we may assume
without loss of generality that, x», # 0 for any atomA,. Thus x,-1a, # O for
any atomA,, which means that(z~*(A,)) # 0, whencer (A, # ¢ for all
n € N. Definingx, = xa,, we have||X,|l.. = 1 foralln € N and ifm # n, we get
IC:Xm — C: Xmllso = 1, Which means that, is not compact.

THEOREM 3.4. Lety be an Orlicz function vanishing only at zero with < oo and
¢’ (b,) < oo, whereg’ stands for the left derivative @f. Assume that2, X, ) is a
purely atomico -finite measure space with the atoyg of measure.(A,) = a, > 0
such thatliminf,_ . u(A,) > « > 0. Assume that is a measurable nonsingular
transformation front2 into itself. IfC, is a compact operator frof ({a,}) into itself,
thenlim,_ ., b, = 0.

PROOF. We may assume without loss of generality that= 1. Otherwise we may
consider the functiop,(u) = ¢(b,u), forwhichL*(®2) = L*(2) and||-||,, = b,.1I,.
There is a finite-valued Orlicz functio#r such thaty(u) = ¢(u) for0 < u < 1.
Define

0 ifO0o<u<l;
gaoo(u): .
oo if u>1.

Theny = maxXy, ¢..}. Therefore (seelll, Theorem 12.2] andl[/, page 130])
L?() = LY(Q) () L>(Q) and| x|, = max]|X|l,, [IX]l.} forall x € L(R).

Assume for the contrary th&t, /A 0 asn — oco. Then we may assume without
loss of generality that there és> 0 such thab, > ¢ andw, = w(A,) > o > 0 for
all n € N. Definex, = min{1, v *(1/wy)}xa,.Nn=1,2,.... Since

. . 1
Ly () = 1y () = ¥ (Min {1, ¥~ (1/wn)}) u(A,) < - Wn = 1,

n

it follows that||x,||, < 1 for alln € N. On the other hand, we have for # n,

Il
[, (CeXm — CXn) = 1, (Co X — Co %)
= Y (min{1, ¥ (1/wm) Dt (An))

+ Y (min{1, ¢ (1/w)Hu(rH (Ay)
> ey (min{1, ¥ (1/wm)Hwm + € (Min{1, ¥ ~(1/wn)Hw,
> emin{y (1), 1/ wmlwm + € min{y (1), 1/w,}w,
> 2¢ min{fayr (1), 1} > 0.

This means that the operat®r is not compact which is a contradiction. O
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