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Abstract

Composition operatorsC− between Orlicz spacesL'.�;6;¼/ generated by measurable and nonsingular
transformations− from� into itself are considered. We characterize boundedness and compactness of
the composition operator between Orlicz spaces in terms of properties of the mapping− , the function'
and the measure space.�;6;¼/. These results generalize earlier results known forL p-spaces.
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1. Introduction

Let � = .�;6;¼/ be a¦ -finite complete measure space and let− : � → � be a
measurabletransformation, that is,−−1.A/ ∈ 6 for any A ∈ 6. If ¼.−−1.A// = 0
for all A ∈ 6 with ¼.A/ = 0, then− is said to benonsingular. This condition
means that the measure¼ ◦ −−1, defined by¼ ◦ −−1.A/ := ¼.−−1.A// for A ∈ 6, is
absolutely continuous with respect to¼ (it is usually denoted¼ ◦ −−1 � ¼). Then the
Radon-Nikod´ym theorem ensures the existence of a non-negative locally integrable
function f− on� such that¼ ◦ −−1.A/ = ∫

A f− .t/d¼.t/ for A ∈ 6.
Any measurable nonsingular transformation− induces a linear operator (composi-

tion operator) C− from L0.�/ into itself defined by

C− x.t/ = x.−.t//; t ∈ �; x ∈ L0.�/;(1.1)

whereL0.�/ denotes the linear space of all equivalence classes of6-measurable func-
tions on�, where we identify any two functions that are equal¼-almost everywhere
on�.
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Here the nonsingularity of− guarantees that the operatorC− is well defined as a
mapping of equivalence classes of functions into itself sincex = y ¼-a.e. implies
C− x = C− y ¼-a.e.

If C− maps an Orlicz spaceL'.�/ into itself, then we callC− acomposition operator
in L'.�/. Note that, in this case,C− as a positive linear operator inL'.�/ is bounded.

Boundedness of composition operators inL p.�/-spaces (1≤ p < ∞) for finite
measures appeared already in the Dunford-Schwartz book [4, Lemma 7, pages 664–
665] and for¦ -finite measures in Singh’s paper [21] (the sequence case in [23]) and
also in the book [25]. Namely, a measurable transformation− induces a bounded
composition operatorC− in L p.�/ for 1 ≤ p < ∞ if and only if ¼ ◦ −−1 � ¼ and
the Radon-Nikod´ym derivatived¼ ◦ −−1=d¼ = f− is essentially bounded on�. The
last two conditions can be written as one: there exists a constantK > 0 such that

¼.−−1.A// ≤ K¼.A/ for all A ∈ 6:(1.2)

Moreover,

‖C−‖L p→L p =
(

sup
A∈6;0<¼.A/<∞

¼.−−1.A//=¼.A/

)1=p

:

Observe that the composition operatorC− is a bounded operator inL∞.¼/with norm 1,
that is, a nonexpansive mapping for any measurable nonsingular transformation− .

In the case that' is an N-function, some results on boundedness of composition
operators in the Orlicz spaceL'.�/ were obtained in [9, Theorem 2.1] (see also [16]).

Compactness results of composition operator were proved by Singh [20] and Singh-
Kumar [24, 22] in L2.�/-space. Then Petrovi´c [15], Xu [28] and Takagi [26] extended
them to theL p.�/-spaces with 1≤ p ≤ ∞. It turns out that there is no compact
composition operator onL p.�/, when¼ is either non-atomic or purely atomic with
all atoms of equal measure. But there are some weighted sequencel p-spaces which
do have compact composition operators.

We will present some new results on boundedness and compactness of composition
operators in Orlicz spaces.

We need some notions from Orlicz spaces. Let' : [0;∞/ → [0;∞] be anOrlicz
function, that is, a convex function such that'.0/ = 0; '.u/ → ∞ as u → ∞
and which is not identically zero or infinity on.0;∞/. Assume also that' is left-
continuous atb' , whereb' = sup{u > 0 : '.u/ < ∞}. Note that if b' < ∞,
then we can have two cases'.b'/ < ∞ or '.b'/ = ∞. Another important constant
connected with the Orlicz function' is a' = inf{u > 0 : '.u/ > 0}. Of course,
0 ≤ a' ≤ b' ≤ ∞. For x ∈ L0.�/, define themodular

I'.x/ =
∫
�

'.|x.s/|/d¼.s/
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and theOrlicz space

L'.�/ = L'.�;6;¼/ = {
x ∈ L0.�/ : I'.½x/ < ∞ for some ½ = ½.x/ > 0

}
:

This space is a Banach space with two norms: theLuxemburg-Nakano norm

‖x‖' = inf{½ > 0 : I'.x=½/ ≤ 1}
and theOrlicz norm(in the Amemiya form)

‖x‖0
' = inf

k>0
.1 + I'.kx//=k:

It is well known that‖x‖' ≤ ‖x‖0
' ≤ 2‖x‖' and‖x‖' ≤ 1 if and only if I'.x/ ≤ 1

(see for example [7, page 80]). Moreover, ifA ∈ 6 and 0< ¼.A/ < ∞, then
‖�A‖' = 1='−1.1=¼.A//, where'−1.t/ = inf{s > 0 : '.s/ > t} is the right-
continuous inverse of'. Note that the equality of the Orlicz norm and the Amemiya
norm was recently proved in [5]. Before only an estimate of the Orlicz norm from
above by the Amemiya norm was known (see [13, Theorem I.2.6]) with equality when
both' and its complementary function'∗ are N-functions (see [7, Theorem III.10.4],
[11, Theorem 8.6] and [17, Theorem III.3.13]) .

The Orlicz spaceL'.�/ with each of the above two norms is a rearrangement-
invariant space, that is, a symmetric space with the Fatou property (see [1, Theo-
rem 8.9], [8, page 104]).

We say that an Orlicz function' satisfies thecondition12 for all u (respectively,
for largeu; for smallu) if there exists a positive constantK (respectively, a positiveK
andu0 > 0 with '.u0/ < ∞; a positive constantK andu0 > 0 with '.u0/ > 0) such
that'.2u/ ≤ K'.u/ for all u > 0 (respectively, for allu ≥ u0; for all 0 < u ≤ u0).

If ' satisfies the condition12 for all u, then for any¦ -finite measure space the dual
of the Orlicz spaceL'.�/ is the Orlicz spaceL'

∗
.�/ generated by the complementary

function'∗ of ', defined by'∗.u/ := supv>0.uv − '.v//. Moreover,(
L'.�/; ‖ · ‖'

)∗ = (
L'∗
.�/; ‖ · ‖0

'∗
)

and
(
L'.�/; ‖ · ‖0

'

)∗ = (
L'∗
.�/; ‖ · ‖'∗

)
:

The paper is organized as follows. In Section2 we study modular continuity and
norm continuity of composition operatorsC− in Orlicz spacesL'.�/. We were able to
completely characterize modular continuity ofC− . It is surprising that the necessary
and sufficient conditions for modular continuity do not depend on Orlicz functions
' but only on the transformation− . Our results on norm continuity ofC− are also
complete. The form of the necessary and sufficient conditions for the norm continuity
established in this paper depends on the regularity of the Orlicz function'. In the case
when' satisfies the condition12 for all u > 0, the conditions have the same form as
for the modular continuity, so they do not depend on', for any measure¼. If ¼ is
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nonatomic and finite the same is true if' satisfies the condition12 for large values
of u > 0. If the measure¼ is nonatomic and infinite, then the condition12 for large
values ofu > 0 is enough to explain the necessary and sufficient condition for the
continuity ofC− from L'.�/ into itself in terms of'. Without any regularity condition
for', and without any restriction on the measure¼ it is established that the composition
operatorC− generated by a nonsingular transformation− is continuous from an Orlicz
spacesL'.�/ into itself if and only if L'.�/ is contained in the Musielak-Orlicz
spaceL .�/, where .t;u/ = '.u/w.t/ andw is the Radon-Nikod´ym derivative
d¼ ◦ −−1=d¼. It means that in the general case we were not able to explain the
conditions directly in terms of the generating function'.

In Section3, we investigate compactness of composition operators in Orlicz spaces.
As in theL p-case, compactness of a composition operatorC− in the Orlicz spaceL'.�/

implies that the underlying measure¼ is purely atomic. Under some assumptions on
the function' and the atoms of¼, we prove necessary and sufficient conditions forC−

to be compact. In particular, we can have compactness of the composition operator in
weighted Orlicz sequence spaces.

2. Modular and norm continuity of composition operators

For the modular continuity of the composition operatorC− in an Orlicz space
L'.�/, we present necessary and sufficient conditions for any Orlicz function' and
any¦ -finite measure space.�;6;¼/. For any Orlicz function' which satisfies the
condition12 for all u, the same is done for norm continuity of the composition operator
C− in L'.�/. If ' satisfies the condition12 for large u, then the problem of continuity
of the composition operatorC− in L'.�/ is completely solved if the measure space
is nonatomic of finite or infinite measure. Without any regularity condition on', the
conditions for continuity ofC− from L'.�/ into itself are explained in terms of the
Radon-Nikod´ym derivatived¼ ◦ −−1=d¼.

THEOREM 2.1. Assume that− : � → � is a measurable nonsingular transforma-
tion.

(a) If 0< a' = b' < ∞, thenI'.C− x/ = I'.x/ wheneverI'.x/ < ∞.
(b) If 0 ≤ a' < b' ≤ ∞, then the inequality

I'.C− x/ ≤ K I'.x/(2.1)

holds for all x such thatI'.x/ < ∞ with someK > 0 independent of x if and only if

¼.−−1.A// ≤ K¼.A/(2.2)

for all A ∈ 6 with ¼.A/ < ∞.
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PROOF. (a) In this case the function' is 0 on the interval[0;a'/ and∞ on.a';∞/.
Therefore,I'.x/ < ∞ if and only if ‖x‖∞ ≤ a' and so‖C−x‖∞ ≤ a' , which finally
gives I'.C− x/ = 0 = I'.x/.

(b) Assume that 0≤ a' < b' ≤ ∞.
Sufficiency. Assume that condition (2.2) is satisfied. It gives that¼ ◦ −−1 � ¼

and by the Radon-Nikod´ym theorem,¼ ◦ −−1.A/ =
∫

A f− .t/d¼.t/ for A ∈ 6 and for
some functionf− locally integrable on�. Notice that f− ∈ L∞.�/ and‖ f−‖∞ ≤ K .
Otherwise, there isA ∈ 6 with 0 < ¼.A/ < ∞ such thatf− .t/ > K for any t ∈ A.
This yields¼ ◦ −−1.A/ =

∫
A f− .t/d¼.t/ > K¼.A/, which contradicts condition (2.2).

Therefore,

I'.C− x/ =
∫
�

'.|C− x.s/|/d¼.s/ =
∫
�

'.|x.−.s//|/d¼.s/

=
∫
−.�/

'.|x.t/|/d.¼ ◦ −−1/.t/ ≤
∫
�

'.|x.t/|/d.¼ ◦ −−1/.t/

=
∫
�

'.|x.t/|/ f− .t/d¼.t/ ≤ K
∫
�

'.|x.t/|/d¼.t/ = K I'.x/:

Necessity. Assume that condition (2.1) holds. If A ∈ 6 and¼.A/ = 0, then
the nonsingularity of− yields¼.−−1.A// = 0 and we have equality in (2.2). Thus
suppose thatA ∈ 6 and 0< ¼.A/ < ∞. Takea ∈ .a';b'/ and setx = a�A. Then

I'.x/ =
∫

A

'.a/d¼.s/ = '.a/¼.A/ < ∞:

As C− �A = �−−1.A/, it follows by (2.1) that

'.a/¼.−−1.A// = I'.C− x/ ≤ K I'.x/ = K'.a/¼.A/:

Since 0< '.a/ < ∞; this gives (2.2).

THEOREM 2.2. Assume that− : � → � is a measurable nonsingular transforma-
tion. Then the composition operatorC− is bounded from an Orlicz spaceL'.�/ into
itself, that is, there existsM > 0 such that

‖C− x‖' ≤ M‖x‖' for all x ∈ L'.�/(2.3)

if condition(2.2) holds. If, in addition,' satisfies the condition12 for all u > 0, then
(2.3) and (2.2) are equivalent.

PROOF. Sufficiency. By Theorem2.1we know that if (2.2) is satisfied withK ≥ 1,
then (2.1) holds and

I'

(
C− x

K ‖x‖'
)

≤ 1

K
I'

(
C−x

‖x‖'
)

≤ I'

(
x

‖x‖'
)

≤ 1;
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whence‖C− x‖' ≤ K ‖x‖' for all 0 6= x ∈ L'.�/, that is, (2.3) holds with M = K .
Note that this part of the theorem holds without the12-condition.

Necessity. Setting in inequality (2.3) x = �A, whereA ∈ 6 and 0< ¼.A/ < ∞,
we get the estimate

1

'−1.1=¼.−−1.A///
≤ M

'−1.1=¼.A//
;

or equivalently

'−1

(
1

¼.A/

)
≤ M'−1

(
1

¼.−−1.A//

)
(2.4)

for all A ∈ 6 with 0< ¼.A/ < ∞.
Since' satisfies the condition12 for all u > 0, it follows that

L := sup
u>0

'.Mu/

'.u/
< ∞;

and'.Mu/ ≤ L'.u/ for all u > 0, which gives foru = '−1.v/ that

'.M'−1.v// ≤ L'.'−1.v// ≤ Lv

and so

M'−1.v/ ≤ '−1{'.M'−1.v//} ≤ '−1.Lv/

for all v > 0. Consequently, condition (2.4) yields

'−1

(
1

¼.A/

)
≤ M'−1

(
1

¼.−−1.A//

)
≤ '−1

(
L

¼.−−1.A//

)

or equivalently¼.−−1.A// ≤ L¼.A/ for all A ∈ 6 with 0 < ¼.A/ < ∞, which
finishes the proof of the necessity withK = L.

REMARK 1. Theorem2.2 was, in fact, already formulated in [9] when ' is an
N-function but in case ofM > 1 the proof was not complete.

REMARK 2. The sufficiency of Theorem2.2 can be proved (again without the
12-condition) in two different ways, namely by using simple functions and by the
Orlicz interpolation theorem which is saying that any Orlicz spaceL'.�/ is an exact
interpolation space betweenL1.�/ and L∞.�/ (see [12]). We present below the
second alternative proof.

ALTERNATIVE PROOF. Since− is nonsingular, the operatorC− is continuous between
L∞.�/ with ‖C− x‖∞ ≤ ‖x‖∞ for all x ∈ L∞.�/. Condition (2.2) yields that
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C− is continuous onL1.�/ with ‖C− x‖1 ≤ K ‖x‖1 for all x ∈ L1.�/. By the
Orlicz interpolation theorem (see [12, Theorem 1’], [11, Theorem 13.2’]; see also [1,
Theorem 2.2.2] and [8, Theorem II.4.9], where there is even more general version of
this theorem, the so called Calder´on-Mitjagin interpolation theorem),we get‖C−x‖' ≤
max{K ;1}‖x‖' for all x ∈ L'.�/. More precisely,

‖C−‖L'→L' ≤ sup
u>0

'−1.K u/

'−1.u/

(see [12, Theorem 15.13] or [8, estimate (4.24) on page 100]).

REMARK 3. From the above proofs we obtain that if condition (2.2) holds, then we
have the estimates

sup
A∈6;0<¼.A/<∞

'−1.1=¼.A//

'−1.1=¼.−−1.A///

≤ ‖C−‖L'→L' ≤ sup
u>0

'−1
(

supA∈6;0<¼.A/<∞.¼.−
−1.A//=¼.A//u

)
'−1.u/

;

which is a generalization of theL p-case into Orlicz spaces.

REMARK 4. Condition (2.2) is sufficient for the continuity of any composition
operator from any symmetric spaceX into itself if X has either the Fatou property or an
absolutely continuous norm (see, for example, [1, Theorem 2.2.2] or [8, Theorem II.4.9
and 4.10]), becauseX is then an interpolation space betweenL1 andL∞.

REMARK 5. If 0 < a' ≤ b' < ∞, then the Orlicz spaceL'.�/ is equal toL∞.�/
with an equivalent norm. Hence the composition operatorC− is norm-continuous on
L'.�/ for every nonsingular transformation− . However, in order to obtain modular
continuity of C− which is stronger than norm continuity, we need the additional
assumption (2.2) on − as shown in Theorem2.1. In particular, note thata' = b' is
allowed (see [17, first paragraph on page 52]).

THEOREM 2.3. Assume that¼ is a non-atomic infinite measure,− : � → � is
a measurable nonsingular transformation and' is an Orlicz function satisfying the
condition12 for large u. Then the composition operatorC− is bounded inL'.�/ if
and only if there exists a constantK ≥ 1 such that

1

'−1.1=¼.−−1.A///
≤ K

'−1.1=¼.A//
(2.5)

for all A ∈ 6 with 0< ¼.A/ < ∞.
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PROOF. The necessity is clear by puttingx = �A into the assumption.
Sufficiency. Since' satisfies the condition12 for large u it follows that ' is

finite-valued and so limu→∞ '−1.u/ = ∞.
Note first that (2.5) guarantee that¼ ◦ −−1 � ¼. In fact, assume that¼.A/ → 0.

Then by the assumption (2.5) and from the assumption on' we obtain¼◦−−1.A/ → 0,
which shows that¼◦−−1 � ¼ because by the nonsingularity of− we may assume that
¼.A/ > 0. Letg = d¼ ◦ −−1=d¼. Theng ∈ L1 + L∞ and¼ ◦ −−1.A/ = ∫

A g.t/d¼
for any A ∈ 6.

Now we will prove thatg ∈ L∞.�/. We can prove in the same way as in the proof
of Theorem2.2 with 2K instead ofK that' ∈ 1∞

2 (that is,' satisfies the condition
12 for largeu) yields 2K'−1.v/ ≤ '−1.Lv/ for v > 0 large enough and an absolute
constantL ≥ 2K or equivalently that 2K'−1.w=L/ ≤ '−1.w/ for w ≥ a with some
a > 0. We will show that‖g‖∞ ≤ L. Assume that‖g‖∞ > L. Then, as¼ is
nonatomic there exists a setA ∈ 6 with 1=¼.A/ > a such that 0< ¼.A/ < 1=a and
g.t/ > L for ¼-almost allt ∈ A. Consequently,

¼ ◦ −−1.A/ =
∫

A

g.t/d¼ > L¼.A/;

whence'−1.1=¼.−−1.A/// ≤ '−1.1=L¼.A// and so

1

'−1.1=¼.−−1.A///
≥ 1

'−1.1=L¼.A//
≥ 2K

'−1.1=¼.A//
>

K

'−1.1=¼.A//
;

a contradiction. Thus,‖g‖∞ ≤ L and the rest of the proof is the same as the proof of
the sufficiency in Theorem2.2.

REMARK 6. Condition (2.2) implies condition (2.5). Morover, if¼.�/ < ∞ and
' satisfies the12-condition for large u, then conditions (2.5) and (2.2) are equiv-
alent. In fact, the12-condition of' on [u0;∞/ can be extended to the interval
['−1.1=¼.−−1.�///;∞/ and (2.5) is equivalent to

1=¼.A/ ≤ '
(
K'−1

(
1=¼.−−1.A//

))
;

therefore we get condition (2.2). Note that conditions (2.5) and (2.2), in the case when
¼.�/ = ∞, are different which will be shown in the next theorem.

In our next theorem, the spaceL'.�/ ∩ L∞.�/ is considered with the classical
norm‖x‖'∩∞ = max.‖x‖'; ‖x‖∞/.

THEOREM 2.4. Assume that.�;6;¼/ is a non-atomic infinite measure space and
− : � → � is a measurable nonsingular transformation. Let' be an Orlicz function
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satisfying the condition12 for all u > 0. Then the composition operatorC− is
bounded inL'.�/

⋂
L∞.�/ if and only if there exists a constantK ≥ 1 such that

max{1; ¼.−−1.A//} ≤ K max{1; ¼.A/}(2.6)

for all A ∈ 6 with 0< ¼.A/ < ∞.

PROOF. Necessity. Puttingx = �A, whereA ∈ 6 and 0< ¼.A/ < ∞, we obtain

max

{
1;

1

'−1.1=¼.−−1.A///

}
= max{‖C− x‖∞; ‖C− x‖'}
≤ C max{‖x‖∞; ‖x‖'}
= C max

{
1;

1

'−1.1=¼.A//

}
;

with a constantC > 0 independent ofA. The functiong.u/ = 1='.1=u/ is increasing
and continuous on.0;∞/ with limu→0+ g.u/ = 0 and g.u/ → ∞ as u → ∞.
In particular, there existsa > 0 such thatg.a/ = 1. Moreover,g satisfies the
condition12 for all u since' is such. Thus

max{1; ¼.−−1.A//}
= max

{
g.a/; g

(
1

'−1.1=¼.−−1.A///

)}
= g

(
max

{
a;

1

'−1.1=¼.−−1.A///

})

≤ g

(
C max

{
a;

1

'−1.1=¼.A//

})
≤ Dg

(
max

{
a;

1

'−1.1=¼.A//

})

= D max

{
g.a/; g

(
1

'−1.1=¼.A//

)}
= D max{1; ¼.A/};

and (2.6) holds.
Sufficiency. We first show that (2.6) implies thatC− is bounded inL1.�/

⋂
L∞.�/

and next using an appropriate interpolation theorem we will extend the boundedness
of C− into L'.�/

⋂
L∞.�/.

Let x be a simple positive function, that is,x = ∑n
i =1 ai�Ai

, whereA1 ⊂ · · · ⊂ An

andai > 0, andAi ∈ 6, ¼.Ai / < ∞, i = 1;2; : : : ;n. ThenC− x = ∑n
i =1 ai�−−1.Ai /,

‖x‖1 =
∫
�

n∑
i =1

ai�Ai
.t/d¼.t/

=
n∑

i =1

ai¼.A1/+
n∑

i =2

ai¼.A2 \ A1/ + · · · + an¼.An \ An−1/ =
n∑

i =1

ai¼.Ai /;
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and applying estimate (2.6), we get

‖C− x‖1∩∞ = max.‖C− x‖1; ‖C− x‖∞/

= max

(∥∥∥∥∥
n∑

i =1

ai�−−1.Ai /

∥∥∥∥∥
1

;

∥∥∥∥∥
n∑

i =1

ai�−−1.Ai /

∥∥∥∥∥
∞

)

≤ max

(
n∑

i =1

ai ‖�−−1.Ai /‖1;

n∑
i =1

ai

)

≤
n∑

i =1

ai max.¼.−−1.Ai //;1/ ≤ K
n∑

i =1

ai max.¼.Ai /;1/

≤ K
n∑

i =1

ai .¼.Ai /+ 1/ = K .‖x‖1 + ‖x‖∞/

≤ 2K max.‖x‖1; ‖x‖∞/ = 2K ‖x‖1∩∞:

If x is a simple function inL1
⋂

L∞, then

‖C− x‖1∩∞ = ‖C− x+ − C−x−‖1∩∞ ≤ ‖C− x+‖1∩∞ + ‖C− x−‖1∩∞
≤ 2K .‖x+‖1∩∞ + ‖x−‖1∩∞/ ≤ 4K ‖x‖1∩∞:

Finally, since simple functions are dense inL1.�/
⋂

L∞.�/ (see [8, page 77]),
we have‖C− x‖1∩∞ ≤ 4K ‖x‖1∩∞ for all x ∈ L1.�/

⋂
L∞.�/ and we proved the

boundedeness of the composition operatorC− in L1.�/
⋂

L∞.�/.
The composition operatorC− is obviously bounded inL∞.�/ and we showed above

that it is also bounded inL1.�/
⋂

L∞.�/ when (2.6) holds. Now, we will show
using the interpolation theory (or precisely, the Calder´on-Lozanovski˘ı interpolation
construction) thatC− is bounded inL'.�/

⋂
L∞.�/.

Since².L∞; L1
⋂

L∞/ = L , where −1.t/ = ².1;min.1; t// (see [11, Exam-
ple 3 or Example 4 and Example 5 on pages 179–181]; see also [14, pages 459–461])
it follows that for².1; t/ = '−1.t/ we obtain .u/ = inf{t > 0 :  −1.t/ > u} =
inf{t > 0 : min{'−1.1/; '−1.t/} > u}, and so

 .u/ =
{
'.u/ if 0 ≤ u < '−1.1/;

∞ if u ≥ '−1.1/.

ThusL = L'
⋂

L∞ and the interpolation theorem for Orlicz spaces or the Calder´on-
Lozanovski˘ı construction (see [11, Theorem 14.12 or Theorem 15.14]; see also [14,
Theorem 8.2.2]) gives thatC− is bounded in².L∞; L1

⋂
L∞/ = L'

⋂
L∞.

REMARK 7. Under the same assumptions on the measure¼ and the Orlicz function
' as in Theorem2.4we can prove, similarly as in Theorem2.4, that the composition
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operatorC− is bounded inL'.�/+ L∞.�/ if and only if there exists a constantK ≥ 1
such that min{1; ¼.−−1.A//} ≤ K min{1; ¼.A/} for all A ∈ 6 with 0< ¼.A/ < ∞.

We formulate a necessary and sufficient condition for boundedness of composition
operators in Orlicz spacesL'.�/ in terms of the embedding of these Orlicz spaces
into weighted Orlicz spacesL'

w.�/ with the norm

‖x‖';w = inf

{
½ > 0 :

∫
�

'

( |x.t/|
½

)
w.t/d¼ ≤ 1

}
;

where the weightw is the Radon-Nikod´ym derivative of¼ ◦ −−1 with respect to¼.

THEOREM 2.5. Let.�;6;¼/be a¦ -finite nonatomic measure space and− : �→�

be a measurable nonsingular transformation with−.�/ = �. Denote byw the Radon-
Nikod́ym derivatived¼◦−−1=d¼. Then the following conditions are equivalent:

(a) The composition operatorC− is bounded fromL'.�/ into itself.
(b) For everyx ∈ L'.�/, there exists½ > 0 such that∫

�

'.½|x.t/|/w.t/d¼.t/ < ∞:

(c) The Orlicz spaceL'.�/ is embedded continuously into the weighted Orlicz
spaceL'

w.�/.
(d) There area;b > 0 and0 ≤ g ∈ L1.�/ such that'.au/w.t/ ≤ b'.u/ + g.t/

for all u > 0 andt ∈ � \ A with ¼.A/ = 0.

PROOF. Since−.�/ = � it follows that

I'.C− x/ = I8.x/;(2.7)

where8.t;u/ = '.u/w.t/ is the Musielak–Orlicz function (see, for example, [13]).
In fact,

I'.C− x/ =
∫
�

'.|C− x.t/|/d¼.t/ =
∫
�

'.|x.−.s//|/d¼.s/

=
∫
−.�/

'.|x.t/|/d.¼ ◦ −−1.t// =
∫
−.�/

'.|x.t/|/w.t/d.¼.t//

=
∫
�

'.|x.t/|/w.t/d¼.t/ = I8.x/:

From (2.7) it follows thatC− is an isometry fromL8.�/ into L'.�/. Namely, defining

‖x‖8 = inf

{
½ > 0 :

∫
�

8

(
t;

|x.t/|
½

)
d¼ ≤ 1

}
;
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we have for anyx ∈ L8.�/ \ {0}, that I'.C− x=‖x‖8/ = I8.x=‖x‖8/ ≤ 1, whence
‖C− x=‖x‖8‖' ≤ 1; or, equivalently,‖C−x‖' ≤ ‖x‖8. On the other hand, ifC− x ∈
L' \ {0}, thenI8.x=‖C− x‖'/ = I'.C− x=‖C−x‖'/ ≤ 1, whence‖x‖8 ≤ ‖C− x‖', and
the proof thatC− is an isometry fromL8.�/ into L'.�/ is finished.

The continuity of the operatorC− in L'.�/means that there exists a constantK ≥ 1
such that‖x‖8 ≤ K ‖x‖' for all x ∈ L'.�/. This gives a continuous embedding of
L'.�/ into L8.�/.

It is well known that the last embedding holds if and only if condition (d) is
satisfied (see [13, Theorem 8.5] for the finite valued functions';8 and [6, 3, 18]
in the arbitrary case). Consequently, we get implications (a)⇒ (b) ⇒ (c) ⇒ (d).
Moreover, condition (d) yields easily condition (a), so the proof is finished.

If the measure space.�;6;¼/ is¦ -finite and purely atomic, that is,� = ⋃∞
n=1 An,

whereAn are the atoms with the measures¼.An/ = an > 0 for all n ∈ N, then the
Orlicz sequence spacel '.{an}/ is defined as the space of all real sequencesx = {xn}∞

n=1

such thatI'.½x; {an}/ < ∞ for some½ > 0, whereI'.x; {an}/ = ∑∞
n=1'.|xn|/an.

This space is considered with the norm

‖x‖';{an} = inf{½ > 0 : I'.x=½; {an}/ ≤ 1}:
THEOREM 2.6. Let .�;6;¼/ be a¦ -finite and purely atomic measure space with

atoms{An} of measure¼.An/ = an > 0 for any n ∈ N. Let − : � → � be a
nonsingular transformation with−.�/ = � andbn := ¼.−−1.An//=¼.An/. Then the
following conditions are equivalent:

(a) The composition operatorC− is bounded froml '.{an}/ into itself.
(b) For everyx ∈ l '.{an}/ there exists½ > 0 such that

∑∞
n=1 '.½|xn|/bn < ∞.

(c) The Orlicz spacel '.{an}/ is embedded continuously into the Orlicz space
l '.{anbn}/.
(d) There area;b; Ž > 0 and a sequence{cn} in l 1 of nonnegative numbers such

that'.u/an < Ž ⇒ '.au/anbn ≤ b'.u/an + cn for all n ∈ N and all u > 0 .

PROOF. It is very similar to the proof of Theorem2.5, but we present it for the sake
of completeness. We have

I'.C− x; {an}/ =
∞∑

n=1

'.|C− xn|/an =
∞∑

n=1

'.|x−.n/|/an

=
∑

n∈−.�/
'.|xn|/¼.−−1.An// =

∞∑
n=1

'.|xn|/anbn = I'.x; {anbn}/:

For anyx ∈ l '.{anbn}/ \ {0},
I'

(
C− x

‖x‖';{anbn}
; {an}

)
= I'

(
x

‖x‖';{anbn}
; {anbn}

)
≤ 1;
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whence‖C− x=‖x‖';{anbn}‖';{an} ≤ 1 or, equivalently,‖C− x‖';{an} ≤ ‖x‖';{anbn}. On the
other hand, ifC− x ∈ l '.{an}/ \ {0}, then

I'

(
x

‖C−x‖';{an}
; {anbn}

)
= I'

(
C− x

‖C− x‖';{an}
; {an}

)
≤ 1;

whence‖x‖';{anbn} ≤ ‖C−x‖';{an}. Consequently, the equality‖C− x‖';{an} = ‖x‖';{anbn}
is proved and it shows thatC− is an isometry froml '.{anbn}/ into l '.{an}/. Taking into
account that conditions (c) and (d) are equivalent (see [13, Theorem 8.11, page 51]
for the finite valued functions and [19] in the arbitrary case), we can finish the proof
in the same way as the proof of Theorem2.5.

3. Compactness of composition operators in Orlicz spaces

We start with the following result.

THEOREM 3.1. Let' be an Orlicz function vanishing only at zero with finite values,
that is,a' = 0 andb' = ∞. Let− be a measurable nonsingular transformation from
� into itself such that−.�/ = �. If C− is a compact operator fromL' into itself, then
the measure¼ is purely atomic.

PROOF. We can write� = �1 ∪ �2, where�1 ∩ �2 = ∅, ¼|�1 is nonatomic and
¼|�2 is purely atomic. Since¼◦ −−1 � ¼, then by the Radon-Nikod´ym theorem there
exists a function h locally integrable on�1 such that¼ ◦ −−1.A/ = ∫

A h.t/d¼ for any
A ∈ 6 ∩�1. DefineA0 = {t ∈ �1 : h.t/ > 0}. We will show that¼ ◦ −−1.A0/ = 0.
Assume for the contrary that¼ ◦ −−1.A0/ > 0. Then there isž > 0 such that the set
A1 = {t ∈ A0 : h.t/ ≥ ž} has positive measure. Take a sequence{Bn} of pairwise
disjoint subsets of6 ∩ A1 with 0< ¼.Bn/ < 1=2n for n ∈ N large enough (n > n0).
Define

xn = '−1

(
1

¼.Bn/

)
�Bn
; n > n0:

Then I'.xn/ = 1, whencexn ∈ L'.�/ and‖xn‖' = 1 for n > n0. Consequently, we
have form;n > n0 with m 6= n,

I'.C− xm − C− xn/ =
∫
�

'.|C−xm.s/ − C− xn.s/|/d¼.s/

=
∫
�

'.|xm.−.s// − xn.−.s//|/d¼.s/

=
∫
−.�/

'.|xm.t/− xn.t/|/d¼ ◦ −−1.t/
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=
∫
�

'.|xm.t/ − xn.t/|/d¼ ◦ −−1.t/

=
∫
�

'.|xm.t/ − xn.t/|/h.t/d¼.t/

=
∫

Bm

'.|xm.t/|/h.t/d¼.t / +
∫

Bn

'.|xn.t/|/h.t/d¼.t/

≥ 1

¼.Bm/
ž¼.Bm/+ 1

¼.Bn/
ž¼.Bn/ = 2ž:

Therefore,‖C− xm − C− xn‖' ≥ 2ž for m;n > n0 with m 6= n. This means that{C− xn}
contains no subsequence which is a Cauchy sequence, that is,C− .B.L'.�///, where
B.L'.�// denotes the unit ball ofL'.�/, is not relatively compact. Consequently, the
operatorC− is not compact, a contradiction. The assumption that the transformation
− is nonsingular yields that¼.A0/ = 0. The proof of the theorem is finished.

THEOREM 3.2. Let ' be a finite-valued Orlicz function and let.�;6;¼/ be a
¦ -finite and purely atomic measure space with the atomsAn of measure¼.An/ =
an > 0. For a measurable nonsingular transformation− from� into itself, denote
bn := ¼.−−1.An//=¼.An/. If C− is a compact operator froml '.{an}/ into itself, then
limn→∞ bn = 0.

PROOF. Assume for the contrary that the assumptions are satisfied andbn 6→ 0.
We may assume without loss of generality that there isž ∈ .0;1/ such thatbn ≥ ž for
all n ∈ N. Define

xn = '−1

(
1

¼.−−1.An//

)
�An

; n ∈ N:
Then

C− xn = '−1

(
1

¼.−−1.An//

)
�−−1.An/

and

I'.xn/ ≤ ¼.An/

¼.−−1.An//
= 1

bn
≤ 1

ž
< ∞;

whence‖xn‖' ≤ 1=ž for all n ∈ N.
On the other hand, we have for allm 6= n,

I'.C− xm − C− xn/ = I'.C− .xm − xn//

= 1

¼.−−1.Am//
¼.−−1.Am//+ 1

¼.−−1.An//
¼.−−1.An// = 2:

Consequently,‖C− xm − C− xn‖' > 1 for all m 6= n, which means that{C− xn} contains
no Cauchy subsequence, that is,C− is not compact. This contradiction finishes the
proof.
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THEOREM 3.3. Let ' be an Orlicz function vanishing only at zero. Let.�;6;¼/
be a purely atomic¦ -finite measure space withe the atomsAn of measure¼.An/ =
an > 0 and − be a measurable nonsingular transformation from� into itself such
that limn→∞ bn = 0. Assume that either' satisfies condition12 for all u > 0 when∑∞

n=1 bn = ∞ or condition12 for large u > 0 when
∑∞

n=1 bn < ∞. Then the
composition operatorC− acts froml '.{an}/ into itself and it is compact.

PROOF. The assumption on' implies that (see [2, Theorem 1.39], [13])

for any ž > 0 there existsŽ > 0 such thatI'.x/ < Ž implies ‖x‖' < ž:(3.1)

Let {xn} be a sequence fromB.l '.{an}//. Then there exists a subsequence{xnk
} of {xn}

andx ∈ l '.{an}/ such that{xnk
} is weakly? convergent tox. We may assume without

loss of generality thatxn → 0 weakly? (if x 6= 0 we consider the sequence{xn − x}
instead of{xn}). Sincebi → 0 asi → ∞, there is j ∈ N such thatbi < Ž=2 for all
i > j . Then

∞∑
i = j +1

bi'.|xn.i /|/¼.Ai / < Ž=2
∞∑

i = j +1

'.|xn.i /|/¼.Ai / ≤ Ž=2

for all n ∈ N. Note that ifxn → 0 weakly?, thenxn → 0 pointwise. Really, the
predual ofl '.{an}/ is the subspaceh9 of order continuous elements of the Musielak-
Orlicz sequence spacel9 over the counting measure with the Musielak-Orlicz function
9 = { n}∞

n=1, where n.u/ = an'
?.u=an/ for all u > 0 andn ∈ N. Take anyk ∈ N.

Theny = ek ∈ h9. We havexn.k/ = 〈xn; y〉 → 0 by assumption, which means that
xn → 0 pointwise.

Thus, there existsm ∈ N such that
∑ j

i =1 bi'.|xn.i /|/¼.Ai / < Ž=2 for all n > m.
Combining the above two estimates we get

I'.C− xn/ =
∞∑

i =1

'.|xn.i /|/¼−−1.Ai / =
∞∑

i =1

'.|xn.i /|/bi¼.Ai / < Ž

for n > m. Applying condition (3.1), we obtain‖C− xn‖' < ž for all n > m, which
means thatC− xn → 0. The proof is complete.

The following example shows that in the last theorem the assumptions that'

vanishes only at zero and that' satisfies a suitable12-condition are important.

EXAMPLE 1. Let '.u/ = 0 if 0 ≤ u ≤ 1 and'.u/ = ∞ if u > 1. Then for any
measure space.�;6;¼/, we haveL'.�;6;¼/ = L∞.�;6;¼/ with equality of the
norms‖x‖' and‖x‖∞. Thus in the case of the counting measure space, we have
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‖x‖' = ‖x‖∞ = supi ∈N |x.i /|. It is easy to see that the only compact composition
operatorsC− : l ∞.N/ → l∞.N/ are finitely dimensional operators.

Assume for the contrary thatC− is not finite dimensional. Then we may assume
without loss of generality thatC− �An

6= 0 for any atomAn. Thus�−−1.An/ 6= 0 for
any atomAn, which means that¼.−−1.An// 6= 0, whence,−−1.An/ 6= ∅ for all
n ∈ N. Definingxn = �An

, we have‖xn‖∞ = 1 for all n ∈ N and if m 6= n, we get
‖C− xm − C− xm‖∞ = 1, which means thatC− is not compact.

THEOREM 3.4. Let' be an Orlicz function vanishing only at zero withb' < ∞ and
'′

−.b'/ < ∞, where'′
− stands for the left derivative of'. Assume that.�;6;¼/ is a

purely atomic¦ -finite measure space with the atomsAn of measure¼.An/ = an > 0
such thatlim inf n→∞¼.An/ ≥ Þ > 0. Assume that− is a measurable nonsingular
transformation from� into itself. IfC− is a compact operator froml '.{an}/ into itself,
thenlimn→∞ bn = 0.

PROOF. We may assume without loss of generality thatb' = 1. Otherwise we may
consider the function'1.u/ = '.b'u/, for whichL'1.�/ = L'.�/and‖·‖'1 = b'‖:‖'.
There is a finite-valued Orlicz function such that .u/ = '.u/ for 0 ≤ u ≤ 1.
Define

'∞.u/ =
{

0 if 0 ≤ u ≤ 1;

∞ if u > 1.

Then' = max{ ;'∞}. Therefore (see [11, Theorem 12.2] and [17, page 130])
L'.�/ = L .�/

⋂
L∞.�/ and‖x‖' = max{‖x‖ ; ‖x‖∞} for all x ∈ L'.�/.

Assume for the contrary thatbn 6→ 0 asn → ∞: Then we may assume without
loss of generality that there isž > 0 such thatbn ≥ ž andwn = ¼.An/ ≥ Þ > 0 for
all n ∈ N. Definexn = min{1;  −1.1=wn/}�An

, n = 1;2; : : : . Since

I'.xn/ = I .xn/ =  
(
min

{
1;  −1.1=wn/

})
¼.An/ ≤ 1

wn
wn = 1;

it follows that‖xn‖' ≤ 1 for all n ∈ N. On the other hand, we have form 6= n,

I'.C− xm − C− xn/ = I .C− xm − C− xn/

=  .min{1;  −1.1=wm/}/¼.−−1.Am//

+  .min{1;  −1.1=wn/}/¼.−−1.An//

≥ ž .min{1;  −1.1=wm/}/wm + ž .min{1;  −1.1=wn/}/wn

≥ žmin{ .1/;1=wm}wm + žmin{ .1/;1=wn}wn

≥ 2žmin{Þ .1/;1} > 0:

This means that the operatorC− is not compact which is a contradiction.
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