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Abstract

For any bounded linear operatorA in a Banach space, two generalized condition numbers�̄.A/ and�̂.A/
are defined in this paper. These condition numbers may be applied to the perturbation analysis for the
solution of ill-posed differential equations and bounded linear operator equations in infinite dimensional
Banach spaces. Different expressions for the two generalized condition numbers are discussed in this
paper and applied to the perturbation analysis of the operator equation.
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1. Introduction

The condition number of a matrix or operator plays important role in solving the linear
equation and in computing the inverse of a matrix or operator. It also measures the
distance from the given matrix to the set of singular matrices.

Let X and Y be Banach spaces, andS be a closed subspace ofX. Denote by
L.X;Y/ the Banach space composed of all bounded linear operator fromX ontoY;
R.A/ the range ofA; N.A/ the null space ofA; Sc a topological complement ofS
(for example,X = S⊕ Sc).

If N.A/c and R.A/c are topological complements of closed subspacesN.A/ and
R.A/ (the closure ofR.A/) in X andY respectively, thenN.A/c andR.A/c are closed
and

X = N.A/ ⊕ N.A/c; Y = R.A/⊕ R.A/c:(1.1)
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A well-known result is thatN.A/ (or R.A/) has a topological complementN.A/c

(or R.A/c) if and only if there exists a continuous projectorP (or Q) mappingX onto
N.A/ (or R.A/) (see [10]). Nashed proved that ifR.A/ is closed and the following
topological direct sums exists

X = N.A/ ⊕ N.A/c; Y = R.A/ ⊕ R.A/c;(1.2)

then there exists a unique generalized inverseA+ = A+
P;Q ∈ L.Y; X/ of A (the

subscriptsP andQ imply that A+ depends on the projection operatorsP andQ) such
that

AA+ A = A; A+ AA+ = A+;

A+ A = PN.A/c; AA+ = PR.A/;

wherePR.A/ andPN.A/c are the continuous operators which projectY andX ontoR.A/
alongR.A/c and ontoN.A/c alongN.A/, respectively.

In the case whenA+ exists, the generalized condition number is defined by

�+.A/ = ‖A‖ ‖A+‖:(1.3)

Many mathematicians discussed new definitions and properties of various condition
numbers (see, for example, [1, 2, 4, 8, 9, 11]).

With recent advances in numerical analysis in infinite dimensional Banach spaces,
one needs to consider the condition number of a bounded linear operator. But in infinite
dimensional Banach spaces, the condition number of a bounded linear operator is not
always defined as in (1.3) because not all closed subspaces of a Banach space have
topological complements (see [6]). So for some ill-posed differential equations in
Banach spaces, there is no condition number (in the usual sense) associated with
them.

In this paper, we first give an equivalent description of the reduced minimum
modulus of bounded linear operators in Banach spaces. This description can be used
to define the reducedminimum modulus of any element in a Banach algebra (see [12]).
Then we will give two different definitions of the generalized condition numbers of
bounded linear operators in Banach spaces which are more generaland applicable than
�+.A/ defined by (1.3). Using our definitions, we will establish the error estimate
of the solution of the linear operator equationAx = b via small perturbationr on
the right-hand side of the equation. We also give a comparison between two kinds of
condition numbers.

2. A generalized condition number

In this sectionA will be a bounded linear operator fromX ontoY.
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DEFINITION 2.1. Let A ∈ L.X;Y/. The reduced minimum modulusr .A/ of A is
defined by

r .A/ = inf{‖Ax‖ : dist.x; N.A// = 1; x ∈ X};(2.1)

where dist.x; N.A// = inf y∈N.A/ ‖x − y‖.

From (2.1), we get that for anyA ∈ L.X;Y/,

‖Ax‖ ≥ r .A/ dist.x; N.A//; ∀ x ∈ X:

Let X∗ andY∗ be dual spaces ofX andY respectively, then forA ∈ L.X;Y/, we
have A∗ ∈ L.Y∗; X∗/. Moreover,r .T/ = r .T∗/ and R.A/ is closed if and only if
r .A/ > 0 (see, for example, [7, Theorem 5.13, Theorem 5.2]).

The following gives our definition of the generalized condition number.

DEFINITION 2.2. If A ∈ L.X;Y/ andR.A/ is closed, then thegeneralizedcondition
number(or GCN) of A is defined by

�̄.A/ = ‖A‖r .A/−1:(2.2)

REMARK. We should notice the following special cases.

(1) If A ∈ L.X;Y/ with R.A/ closed, then̄�.A/ = �̄.A∗/.
(2) If A ∈ L.X; X/ is invertible, then̄�.A/ = ‖A‖‖A−1‖ = �.A/.
(3) Let A ∈ L.X;Y/ with a generalized inverseA+. Then by [3, Lemma 2.1],

1

‖A+‖ ≤ r .A/ ≤ ‖A+ A‖‖AA+‖
‖A+‖

so that
�+.A/

‖A+ A‖‖AA+‖ ≤ �̄.A/ ≤ �+.A/:

This indicates that ifX;Y are Hilbert spaces andA+ is the Moore-Penrose inverse of
A, then�̄.A/ = �+.A/.
(4) Let A be anm-by-n matrix, which can be regarded as a linear transformation

from Cn to Cm. Suppose further thatCn and Cm have norms, both of which are
denoted by‖ · ‖. We denote the dual norms by‖ · ‖D . Then the condition number

�.A/ = ‖A‖Þ.A/−1(2.3)

defined in [4], whereÞ.A/ = min{‖A∗x‖D : ‖x‖D = 1; x ∈ R.A/}, coincides with
�̄.A/ defined by (2.2). BecauseN.A∗/⊥ = R.A/ and anyx ∈ Cm can be decomposed
asx = x1 + x2, wherex1 ∈ N.A∗/, x2 ∈ R.A/, we haveÞ.A/ = r .A∗/ = r .A/.
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Now we present an equivalent description ofr .A/ as follows:

THEOREM 2.3. If A ∈ L.X;Y/ and R.A/ is closed, then

r .A/ = inf{‖A − B‖ : R.B/ ⊂6= R.A/; N.B/ ⊃ N.A/; B ∈ L.X;Y/}:

PROOF. We will use some concepts and theorems from Taylor’s book (see [10])
while proving this theorem. The proof is divided into two parts: (i)N.A/ = 0, and
(ii) N.A/ 6= 0.

(i) Suppose thatN.A/ = 0, thenN.B/ ⊃ N.A/. From

R.B/ ⊂6= R.A/; N.A∗/ = R.A/⊥; and N.B∗/ = R.B/⊥;

whereR.A/⊥ = { f ∈ Y∗ : f .y/ = 0;∀ y ∈ R.A/}, we haveN.A∗/ ⊂6= N.B∗/.
Let x∗ ∈ N.B∗/ such that dist.x∗; N.A∗// = 1. Then, fory∗ ∈ N.A∗/, we have

r .A/ = r .A∗/ ≤ ‖A∗x∗‖ = ‖.A∗ − B∗/.x∗ − y∗/‖
≤ ‖A∗ − B∗‖ ‖x∗ − y∗‖ = ‖A − B‖ ‖x∗ − y∗‖;

which implies thatr .A/ ≤ ‖A − B‖, that is,

r .A/ ≤ inf{‖A − B‖ : R.B/ ⊂6= R.A/; N.B/ ⊃ N.A/; B ∈ L.X;Y/}
holds. Conversely, letxn ∈ X be such that‖xn‖ = 1 and‖Axn‖ → r .A/. Then
by the Hahn-Banach theorem, there existxn ∈ X∗ such thatx∗

n.xn/ = ‖xn‖ = 1 and
‖x∗

n‖ = 1.
Let {Bn} be a sequence of operators which are defined byBnx = Ax− .Axn/x∗

n.x/
(for x ∈ X); then we can prove thatBn ∈ L.X;Y/ and R.Bn/ ⊂6= R.A/. In fact,
‖Bn‖ ≤ 2‖A‖. SinceN.A/ = 0, it follows thatR.A∗/ = X∗ and then for an arbitrary
integern there existsy∗

n ∈ Y∗ such thatA∗y∗
n = x∗

n . Since

.B∗
n y∗

n/x = y∗
n.Bnx/ = y∗

n.Ax/− x∗
n.x/y

∗
n.Axn/

= .A∗ y∗
n/x − x∗

n.x/A
∗ y∗

n.xn/

= x∗
n.x/− x∗

n.x/x
∗
n.xn/ = x∗

n.x/− x∗
n.x/ = 0;

we havey∗
n ∈ N.B∗

n /, y∗
n 6∈ N.A∗/, which implies thatN.A∗/ ⊂6= N.B∗

n /. So we
haveR.Bn/ ⊂6= R.A/: From

‖.A − Bn/x‖ = ‖Axnx∗
n.x/‖ ≤ ‖Axn‖‖x‖;

for eachx ∈ X, we obtain

inf{‖A − B‖ : R.B/ ⊂6= R.A/} ≤ ‖A − Bn‖ ≤ ‖Axn‖ → r .A/:
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(ii) Suppose thatN.A/ 6= 0. We define a bounded linear operatorÂ from X=N.A/
to Y by Âx̂ = Ax, wherex̂ is the equivalent class ofx relative toN.A/.

From N.A/ ⊃ N.B/, we defineB̂ ∈ L.X=N.A/;Y/ by B̂x̂ = Bx. Since

R.B/ ⊂6= R.A/, we haveR.B̂/ ⊂6= R.Â/. Then by the definition of̂B, we obtain

N.B/ ⊃ N.A/; R.B/ ⊂6= R.A/:

In order to prove (ii), we first prove that‖ Â − B̂‖ = ‖A − B‖. For eachy ∈ N.A/

‖ Âx̂ − B̂x̂‖ = ‖Ax − Bx‖ ≤ ‖A.x − y/− B.x − y/‖ ≤ ‖A − B‖‖x − y‖:
Meanwhile, from‖x̂‖ = inf y∈N.A/ ‖x − y‖ ≤ ‖x‖, we have

‖ Âx̂ − B̂x̂‖ ≤ ‖A − B‖ inf
y∈N.A/

‖x − y‖ = ‖A − B‖‖x̂‖;

which leads to‖ Â − B̂‖ ≤ ‖A − B‖.
Conversely, since

‖Ax − Bx‖ = ‖Âx̂ − B̂x̂‖ ≤ ‖ Â − B̂‖‖x̂‖ ≤ ‖ Â − B̂‖‖x‖;

we have‖A − B‖ ≤ ‖ Â − B̂‖. So we obtain‖A − B‖ = ‖ Â − B̂‖.
SinceN.Â/ = 0, by the result of (i) we have

r .A/ = r .Â/

= inf
{
‖ Â − B̂‖ : R.B̂/ ⊂6= R.Â/; N.B̂/ ⊃ N.Â/; B̂ ∈ L.X=N.A/;Y/

}
= inf

{
‖A − B‖ : R.B/ ⊂6= R.A/; N.B/ ⊃ N.A/; B ∈ L.X;Y/

}
:

COROLLARY 2.4. If A ∈ Cm;n, then

r .A/ = inf{‖A − B‖ : rank.A/ > rank.B/; B ∈ Cm;n}:

PROOF. By Theorem2.3,

r .A/ = inf{‖A − B‖ : R.B/ ⊂6= R.A/; N.B/ ⊃ N.A/; B ∈ L.X;Y/}
≥ inf{‖A − B‖ : rank.A/ > rank.B/; B ∈ Cm;n}:

On the other hand, by the proof of [3, Lemma 2.3] we have

r .A/ sup{dist.u; R.B// : u ∈ R.A/; ‖u‖ = 1} ≤ ‖A − B‖:
But from [7, IV-Corollary 3.2], sup{dist.u; R.B// : u ∈ R.A/; ‖u‖ = 1} = 1 when
rankA > rankB. Thus we obtain the assertion.
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The following corollary gives another expression of the GCN of a bounded linear
operator.

COROLLARY 2.5. Let A ∈ L.X;Y/, then

�̄.A/ = sup

{ ‖A‖
‖A − B‖ : R.B/ ⊂6= R.A/; N.B/ ⊃ N.A/; B ∈ L.X;Y/

}
:

COROLLARY 2.6. Let A ∈ Cm;n, then

�.A/ = sup
{ ‖A‖

‖A − B‖ : rank.A/ > rank.B/; B ∈ Cm;n

}
:

SetAx = y be a linear system, and consider the solution of the perturbed problem

Ax̂ = y + r:

If A is invertible or there exists a generalized inverseA+ of A, then we know that
the upper and lower error bounds between the accurate solutionx and the perturbed
solution x̂ are relative to the condition number�.A/ = ‖A‖‖A−1‖ (if A is invertible)
or �+.A/ = ‖A‖‖A+‖ (if A+ exists). The following theorem is the natural extension
of the classical error analysis problem to the case with a more general assumption.

THEOREM 2.7. Let A ∈ L.X;Y/, and R.A/ be closed. Lety ∈ R.A/, and S =
{x : Ax = y; y 6= 0}. If x̂ is a solution of the perturbed problemAx = y + r , then

1

�̄.A/

m‖r ‖
‖y‖ ≤ dist.x̂; S/ ≤ �̄.A/

m‖r ‖
‖y‖ ;

wherem = inf x∈S ‖x‖, �̄.A/ is theGCN defined by(2.2).

PROOF. Let {xn}∞
1 ⊂ Ssuch that‖x̂ −xn‖ → dist.x̂; S/ asn → ∞. If zn = x̂ −xn,

thenAzn = Ax̂ − Axn = y + r − y = r . From‖Ax‖ ≥ r .A/dist.x; N.A//, we have
‖r ‖ ≥ r .A/dist.zn; N.A//. Thus

‖r ‖
r .A/

≥ inf
w∈N.A/

‖zn −w‖ = inf
w∈N.A/

‖x̂ − xn −w‖ ≥ dist.x̂; S/;

sincexn +w ∈ S. For eachx ∈ S, Ax = y, we have‖y‖ ≤ ‖A‖‖x‖ ≤ ‖y‖m. So we
obtain

dist.x̂; S/

m
≤ r .A/−1‖r ‖

m
≤ �̄.A/

‖r ‖
‖y‖ :
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Now, we prove the reverse inequality. Ifx ∈ S, andz ∈ N.A/, we havex − z ∈ S.
Thenm ≤ ‖x − z‖; which leads tom ≤ dist.x; N.A//. Thus, we have

‖Ax‖ ≥ r .A/dist.x; N.A// ≥ r .A/m:

Sincer = A.x̂ − xn/ and

dist.x̂; S/

m
= lim

n→∞
‖x̂ − xn‖

m
≥ ‖r ‖

m‖A‖ ≥ ‖r ‖
�.A/‖y‖;

so we obtain
1

�̄.A/

m‖r ‖
‖y‖ ≤ dist.x̂; S/ ≤ �̄.A/

m‖r ‖
‖y‖ :

3. The generalized inverse and the GCN

In this section, we introduce another form of GCN, which is related to an inner
inverse (or{1}-inverse) of A. If A ∈ L.X;Y/, an operatorB ∈ L.Y; X/ which
satisfiesAB A = A is called aninner inverse(or {1}-inverse) of A. We denote an
inner inverse ofA by A−.

LEMMA 3.1. If A ∈ L.X;Y/, thenA− exists if and only ifR.A/ is closed and both
N.A/ and R.A/ have complementary subspaces inX andY, respectively.

PROOF. Only if: Let B ∈ L.Y; X/ be such thatAB A = A. If xn ∈ R.A/ are such
thatxn → x0, then there existsyn ∈ X such thatxn = Ayn. So we have

ABxn = Ayn → ABx0; that is; x0 = ABx0;

which implies thatR.A/ is closed. LetP = AB and Q = B A. ThenP2 = P and
Q2 = Q. It is easily seen thatP andQ are projections fromY andX onto R.A/ and
N.A/ respectively. Thus we conclude that complementary subspaces ofN.A/ and
R.A/ exist.

If: Let P andQ be projections fromY andX onto R.A/ andN.A/, respectively.
ThenA|.I −Q/X is an invertible operator from.I − Q/X to PY. We defineB ∈ L.Y; X/
by {

By = .A|.I −Q/X/
−1y if y ∈ Py

By = 0 if y ∈ .I − P/Y;

thenAB A = A.
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DEFINITION 3.2. If an inner inverseA− ∈ L.Y; X/ of A ∈ L.X;Y/ exist, then

�̂.A/ = ‖A‖ inf{‖B‖ : AB A= A; B ∈ L.Y; X/}

is called theintrinsic condition number(or ICN).

REMARK. (1) If A is invertible, then̂�.A/ = ‖A‖‖A−1‖ = �.A/;
(2) Let X = H1 and Y = H2 be Hilbert spaces, then we have that�̂.A/ =

‖A‖‖A+‖ = �+.A/.

Now, we present the relation between the generalized condition number and the
intrinsic condition number.

THEOREM 3.3. Suppose that the inner inverseA− of A ∈ L.X;Y/ exists. Then

�̄.A/ ≤ �̂.A/:(3.1)

PROOF. From AB A = A, we have‖Ax‖ = ‖AB Ax‖ ≤ ‖A‖‖B‖‖Ax‖. For each
x ∈ X, ‖x‖ ≥ dist.x; N.A//, we have

‖Ax‖
‖x‖ ≤ ‖A‖‖B‖ ‖Ax‖

dist.x; N.A//
; .if x 6= 0/:

Then‖A‖ ≤ ‖A‖‖B‖r .A/; which implies�̄.A/ ≤ �̂.A/.

DEFINITION 3.4. Let X be a Banach space, andV be a complemented subspace
in X. Then³.V; ‖ · ‖/ = inf{‖P‖ : P is the projection operator fromX onto V} is
called theprojection constant ofV with respect to the norm‖ · ‖.

THEOREM 3.5. If an inner inverseA− of A ∈ L.X;Y/ exists, then

max{�̄.A/; ³.N.A/c; ‖ · ‖X/} ≤ �̂.A/ ≤ �̄.A/³.R.A/; ‖ · ‖Y/³.N.A/
c; ‖ · ‖X/;

whereN.A/c is a complementary subspace ofN.A/ in X.

PROOF. Suppose thatB is an inner inverse ofA, that is, AB A = A. Define
Q = B A, which is the projection operator fromX onto N.A/c along N.A/. Now,
‖Q‖ ≤ ‖B A‖ ≤ ‖B‖ ‖A‖. Hence, taking the infimum over all inner inverses ofA,
we get

³.N.A/c; ‖ · ‖X/ ≤ �̂.A/:

From (3.1), we establish the lower bound.
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Now, we prove the reverse inequality. DefineP = AB, which is a projection
operator fromY ontoR.A/. Then,P A|Q X is an invertible operator fromQ X ontoPY.
Define B1 = .P A|Q X/

−1 P, then we obtainB1P = Q B1 = B1, B1 A = Q, and
AB1 = P. So we have

‖P‖ ‖x‖ ≥ ‖Px‖ = ‖AB1x‖ ≥ r .A/dist.B1x; N.A//

≥ r .A/
1

‖Q‖‖Q B1x‖ ≥ r .A/
1

‖Q‖‖B1x‖;

that is,‖B‖ ≤ ‖P‖ ‖Q‖=r .A/, or ‖A‖ ‖B1‖ ≤ ‖A‖r .A/−1‖P‖ ‖Q‖, which yields
�̂.A/ ≤ �̄.A/³.R.A/; ‖ · ‖Y/³.N.A/c; ‖ · ‖X/.

COROLLARY 3.6. If A ∈ Cm;n, then

max{�̄.A/; ³.R.A∗/; ‖ · ‖D/} ≤ �̂.A/ ≤ �̄.A/ ³.R.A∗/; ‖ · ‖D/ ³.R.A/; ‖ · ‖/;

where‖ · ‖D is the dual norm of‖ · ‖.

The above corollary presents a more general result than that of Proposition 3 in [4].
At the end, we consider when̄�.A/ = �̂.A/. First, we have the following lemma

(see [5]).

LEMMA 3.7. Let¼; ¹ be measures, andT : L p.¹/ → L p.¼/ (p ≥ 1 and p 6= 2)
be an isometric embedding. Then there exists a projection operatorP from L p.¼/

onto R.T/ such that‖P‖ ≤ 1.

By Lemma3.7and Theorem3.5, we have

PROPOSITION3.8. Let¼; ¹ be measures, andA : L p.¹/ → L p.¼/ be a bounded
linear operator. Let alsoR.A/ be closed, andN.A/ = 0. If p ≥ 1 and p 6= 2, and
‖Ax‖ = ‖x‖ for eachx ∈ L p.¹/, then�̄p.A/ = �̂p.A/.

COROLLARY 3.9. Let A ∈ Cm×n and N.A/ = 0. If ‖Ax‖ = ‖x‖ for eachx ∈ Cn,
then�̄p.A/ = �̂p.A/, where1 ≤ p ≤ ∞ and p 6= 2.
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