J. Aust. Math. Soc76(2004), 281290

THE GENERALIZED CONDITION NUMBERS OF BOUNDED
LINEAR OPERATORS IN BANACH SPACES

GUOLIANG CHEN, YIMIN WEI and YIFENG XUE
(Received 1 May 2002; revised 3 March 2003)

Communicated by A. Pryde

Abstract

For any bounded linear operataiin a Banach space, two generalized condition numbets andx (A)

are defined in this paper. These condition numbers may be applied to the perturbation analysis for the
solution of ill-posed differential equations and bounded linear operator equations in infinite dimensional
Banach spaces. Different expressions for the two generalized condition numbers are discussed in thi
paper and applied to the perturbation analysis of the operator equation.
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1. Introduction

The condition number of a matrix or operator plays important role in solving the linear
equation and in computing the inverse of a matrix or operator. It also measures the
distance from the given matrix to the set of singular matrices.

Let X andY be Banach spaces, arg@lbe a closed subspace & Denote by
L(X,Y) the Banach space composed of all bounded linear operatorfromo Y;
R(A) the range ofA; N(A) the null space ofA; S a topological complement &
(for example X = S® S°).

If N(A)¢ and R(A)¢ are topological complements of closed subspd¢és) and
R(A) (the closure oR(A)) in X andY respectively, thetN(A)° andR(A)® are closed
and

(1.2) X = N(A) @ N(A, Y = R(A) ® R(A)°.
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A well-known result is thalN (A) (or R(A)) has a topological complemeNt(A)°
(or R(A)®) if and only if there exists a continuous projec®for Q) mappingX onto
N(A) (or R(A)) (see LO]). Nashed proved that iR(A) is closed and the following
topological direct sums exists

(1.2) X = N(A) & N(AS, Y = R(A) ® R(AS,

then there exists a unique generalized invebSe= A, € L(Y, X) of A (the
subscripts? andQ imply that At depends on the projection operatBrandQ) such
that

AATA = A, ATAAT = AT,
A+A = PN(A)C, AA+ = PR(A)’

wherePg s andPyay are the continuous operators which proj¢end X onto R(A)
alongR(A)¢ and ontoN (A)¢ alongN (A), respectively.
In the case whei\" exists, the generalized condition number is defined by

(1.3) KT(A) = [[AlITAT].

Many mathematicians discussed new definitions and properties of various condition
numbers (see, for exampld, [2, 4, 8, 9, 11]).

With recent advances in numerical analysis in infinite dimensional Banach spaces,
one needs to consider the condition number of a bounded linear operator. Butin infinite
dimensional Banach spaces, the dtind number of a bounded linear operator is not
always defined as inl(3) because not all closed subspaces of a Banach space have
topological complements (seé]]. So for some ill-posed differential equations in
Banach spaces, there is no ciiwh number (in the usual sense) associated with
them.

In this paper, we first give an equivalent description of the reduced minimum
modulus of bounded linear operators in Banach spaces. This description can be use
to define the reduced minimum modulus of any elementin a Banach algebraZee [
Then we will give two different definitions of the generalized condition numbers of
bounded linear operators in Banach spaces which are more generaland applicable the
kT(A) defined by {.3). Using our definitions, we will establish the error estimate
of the solution of the linear operator equatidx = b via small perturbatiom on
the right-hand side of the equation. We also give a comparison between two kinds of
condition numbers.

2. A generalized condition number

In this sectionA will be a bounded linear operator frofionto'Y.
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DEFINITION 2.1. Let A € L(X,Y). Thereduced minimum modulugA) of Ais
defined by

(2.1) r(A) = inf{||Ax|| : dist(x, N(A)) =1, x € X},
where distx, N(A)) = infycna X — Y.
From @.1), we get that foranyA € L(X, Y),
IAX|| > r (A) dist(x, N(A)), Vx e X.

Let X* andY* be dual spaces of andY respectively, then foA € L(X, Y), we
have A* € L(Y*, X*). Moreover,r (T) = r(T*) and R(A) is closed if and only if
r(A) > 0 (see, for exampley[ Theorem 5.13, Theorem 5.2]).

The following gives our definition of the generalized condition number.

DerFINITION 2.2. If A € L(X, Y) andR(A) is closed, then thgeneralized condition
number(or GCN) of A is defined by

(2.2) R(A) = Al (A

ReMARK. We should notice the following special cases.
(1) If Ae L(X,Y)with R(A) closed, thert(A) = i (A").
(2) If Ac L(X, X) isinvertible, thenc(A) = ||A| A = k(A).
(3) LetA e L(X,Y) with a generalized invers&®. Then by B, Lemma 2.1],

- | ATAIIAAT
<r(A) s ——————
| A*]] | A*]]
so that
—K+(A) <K <"
TATATTAAT = A=A
This indicates that i, Y are Hilbert spaces anél" is the Moore-Penrose inverse of
A, thenik (A) = kT (A).
(4) Let A be anm-by-n matrix, which can be regarded as a linear transformation
from C" to C™. Suppose further thaE" andC™ have norms, both of which are
denoted by - ||. We denote the dual norms Hjy ||p. Then the condition number

(2.3) K(A) = | Al (A

defined in B], wherea(A) = min{||A*X||p : [|X|lo = 1, X € R(A)}, coincides with
k(A) defined by 2.2). BecauseN (A*)* = R(A) and anyx € C™ can be decomposed
asx = X; + Xy, wherex; € N(A*), X, € R(A), we havax(A) =r (A" =r(A).
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Now we present an equivalent descriptiorr 6A) as follows:
THEOREM2.3. If A€ L(X,Y) andR(A) is closed, then
r(A) =inf{|A—BJ| : R(B) C. R(A), N(B) D N(A), B € L(X,Y)}.

ProOF. We will use some concepts and theorems from Taylor's book (5d& [
while proving this theorem. The proof is divided into two parts:Ni)A) = 0, and
(i) N(A) £ 0.

(i) Suppose thalN(A) = 0, thenN(B) D N(A). From

R(B) Ccx R(A), N(A")=R(A", and N(B*)=R(B)",

whereR(A)* = {f e Y*: f(y) =0,Vy € R(A)}, we haveN(A*) C. N(B*).
Letx* € N(B*) such that digix*, N(A*)) = 1. Then, fory* € N(A*), we have
r(A) =r(A) < [AX = [I[(A" = BHX" =y
< [|A" = B[ [IX* = y*ll = A= BJl IX* = y*II,

which implies that (A) < ||A— B, that s,
r(A) <inf{||[A— BJ : R(B) C. R(A), N(B) D N(A), Be L(X,Y)}

holds. Conversely, lex, € X be such thaf/x,|| = 1 and|Ax|| — r(A). Then
by the Hahn-Banach theorem, there exisie X* such thatx*(x,) = |[x,|| = 1 and
X1 =1.

Let{B,} be a sequence of operators which are defineBly= AX — (AX,)X>(X)
(for x € X); then we can prove thaB, € L(X,Y) andR(B,) C. R(A). In fact,
IBall < 2|lAJl. SinceN(A) = 0, it follows thatR(A*) = X* and then for an arbitrary
integern there existy; € Y* such thatA*y; = x*. Since

(Brym)X = Ya(ByX) = Y7 (AX) — X (X) Y5 (AX,)
= (A"Y)X = X, () A"y, (%)
= X5 (X) — XF(X)XE (X)) = X5 (X) — X5 (X) =0,

we havey: € N(B)), yi ¢ N(A*), which implies thatN(A*) . N(B}). So we
haveR(B,) C. R(A). From

(A — B)X[l = [[A%X Ol < A% I,
for eachx € X, we obtain

inf{l|A—BIl : R(B) C. R(A)} = IIA= Byl = [A%I — I (A).
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(i) Suppose thaN(A) # 0. We define a bounded linear operafoirom X/N(A)
to Y by AX = Ax, whereX is the equivalent class of relative toN(A).

From N(A) > N(B), we defineB € L(X/N(A),Y) by BX = Bx. Since
R(B) .. R(A), we haveR(B) c.. R(A). Then by the definition oB, we obtain

N(B) D N(A), R(B) C. R(A).
In order to prove (ii), we first prove th&tA — B| = || A — B|. For eachy € N(A)
1A% — BZ|| = [Ax — BX|| < [A(X —y) — Bx = y)|| < [IA—B[llIx — yII.
Meanwhile, from||X|| = infycna X — YII < [IX]l, we have
| A% = BRIl < A= Bl inf lIx =yl = A=BIII,

which leads td|A — B|| < ||A — B|.

Conversely, since

IAX — BX|| = [|A% — BX|| < [|A— B[[|X] < |A— BJx].

we have|A — B|| < ||A— B|. So we obtair| A — B| = ||A— B.
SinceN(A) = 0, by the result of (i) we have

r(A) =r(A)
=inf {IIA - B| . R(B) .. R(A), N(B) 5 N(A), B ¢ LOX/NCA), )
— inf {||A— Bl : R(B) .. R(A), N(B) > N(A), B e L(X,Y)}. 0
COROLLARY 2.4. If A € C™", then
r(A) =inf{||]A— B| : rank(A) > rank B), B € C™"}.
PrOOF. By Theoren?.3,

r(A) =inf{|A— BJ : R(B) C. R(A), N(B) D N(A), B € L(X,Y)}
> inf{||A — BJ : rank'A) > rankB), B ¢ C™"}.

On the other hand, by the proof &,[Lemma 2.3] we have
r (A) sup(dist(u, R(B)) : u € R(A), |lu|l =1} < ||A—BJ.

But from [7, IV-Corollary 3.2], sugdist(u, R(B)) : u € R(A), |Ju]l = 1} = 1 when
rankA > rankB. Thus we obtain the assertion. O
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The following corollary gives another expression of the GCN of a bounded linear
operator.

COROLLARY 2.5. LetA e L(X,Y), then

A -
K (A) =Sup{ﬁ : R(B) C. R(A),N(B) D N(A),B € L(X,Y)}.

COROLLARY 2.6. Let A € C™" then

k(A = sup{”A”fA”B” :rank(A) > rank(B), B e Cm,n} '

SetAx = y be a linear system, and consider the solution of the perturbed problem

If Ais invertible or there exists a generalized invefseof A, then we know that
the upper and lower error bounds between the accurate sobutionl the perturbed
solutionX are relative to the condition numbe(¢A) = ||A|||| A7 (if Ais invertible)
orkt(A) = || A]l|| ATl (if AT exists). The following theorem is the natural extension
of the classical error analysis problem to the case with a more general assumption.

THEOREM2.7. Let A € L(X,Y), and R(A) be closed. Ley € R(A), andS =
{X: Ax=1vy,y # 0}. If Xis a solution of the perturbed problefix = y +r, then

LMl _ gsen ) < eoa) ™I
RO Iyl =T T

wherem = inf,.s || X||, € (A) is theGCN defined by2.2).

PROOF. Let{x,};* C Ssuchthat|X —x,|| — dist(X, S) asn — oo. If zZ, = X —X,,
thenAz, = AX— Ax, = y+r —y =r. From| Ax| > r (A) dist(x, N(A)), we have
Irll = r(A)dist(z,, N(A)). Thus

i > inf ||z,—w| = inf ||[X—=X,—w]| >dist(X, S),
r(A) = weN® weN(A) -
sincex, + w € S. Foreachx € S, Ax =y, we have|ly|| < [|A]lIX]| < [lyllm. Sowe
obtain
dist(X, S) 2l lIrl
m

AT — <k (A—.
=r(A) = = k( )||y||
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Now, we prove the reverse inequality.Xfe S, andz € N(A), we havex —z € S.
Thenm < ||x — z||, which leads tan < dist(x, N(A)). Thus, we have

IAX|| > r (A)dist(x, N(A)) >r(Am.

Sincer = A(X — x,) and

dist(X, S) _ im [1X — Xnll > [Ir 1l > [Ir 1l ,
m n—o00 m miAl — « (Al
So we obtain
1 R _ m|r
- il < dist(X, S) < k(A) | ”. O
K(A) Yl Iyl

3. The generalized inverse and the GCN

In this section, we introduce another form of GCN, which is related to an inner
inverse (or{1}-inverse) of A. If A € L(X,Y), an operatolB € L(Y, X) which
satisfiesABA = A is called aninner inverse(or {1}-inversg of A. We denote an
inner inverse ofA by A~.

LEmmA 3.1. If A e L(X,Y), thenA~ exists if and only iR(A) is closed and both
N(A) and R(A) have complementary subspacesiandY, respectively.

ProOOF. Only if: Let B € L(Y, X) be suchthaABA= A. If x, € R(A) are such
thatx, — Xo, then there existg, € X such that, = Ay,. So we have

ABx, = Ay, — ABX, thatis Xxo= ABX,

which implies thatR(A) is closed. LetP = ABandQ = BA. ThenP? = P and
2 = Q. Itis easily seen tha® andQ are projections fronY and X onto R(A) and
N(A) respectively. Thus we conclude that complementary subspaddesAf and
R(A) exist.
If: Let P andQ be projections fronY and X onto R(A) andN(A), respectively.
ThenA| _qx is aninvertible operator frorfl — Q)X to PY. We defineB € L(Y, X)

by

By = (A|(I—Q)X)7ly if yePy
By=0 if yed —P)Y;

thenABA= A. O
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DErFINITION 3.2. If an inner inverseA~ € L(Y, X) of A € L(X,Y) exist, then
K(A) = ||AlInf{||B]| : ABA= A, B € L(Y, X)}
is called theantrinsic condition numbe(or ICN).
REMARK. (1) If Aisinvertible, thent(A) = ||Al|A7Y] = k(A);

(2) Let X = H; andY = H, be Hilbert spaces, then we have thatA) =
IAITAT] = k™ (A).

Now, we present the relation between the generalized condition number and the
intrinsic condition number.

THEOREM 3.3. Suppose that the inner inverde of A € L(X,Y) exists. Then
(3.1) k(A) <k(A).

ProOOF. FromABA = A, we have|| Ax|| = ||ABAX|| < ||AlllIB|||Ax]|. For each
x € X, ||X]| = dist(x, N(A)), we have

| AX]| | AX]| :
— AllIB||———— f 0).
IXI = IIAllIBI distix. N(A) (It x#0)
Then| Al < [|AlllIBIIr (A), which impliesic (A) < k(A). O

DEFINITION 3.4. Let X be a Banach space, aMlbe a complemented subspace
in X. Thenz(V, | -|) = inf{||P]|| : P isthe projection operator frol{ ontoV} is
called theprojection constant of with respect to the norr - ||.

THEOREM 3.5. If an inner inverseA~ of A € L(X, Y) exists, then
maxiic (A), T(N(A®, | - 1)} < £(A) < ik(AT(RA), | - )T (NAYS, |- 11x),
whereN(A)¢ is a complementary subspaceMd{A) in X.

PrROOF. Suppose thaB is an inner inverse ofA, that is, ABA = A. Define
Q = BA, which is the projection operator froxd onto N(A)° along N(A). Now,
QI < [IBA] < |IB|l IIAll. Hence, taking the infimum over all inner inversesfof
we get

T(N(AS - 1) < k(A).

From 3.1), we establish the lower bound.
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Now, we prove the reverse inequality. Defife= AB, which is a projection
operator fron¥ ontoR(A). Then,P Alqx is an invertible operator fror@ X ontoPY.
Define B, = (P Algx)'P, then we obtainB,P = QB;, = B;, BjA = Q, and
AB; = P. So we have

IPIIXIE = IPXI = ABX|| = r (A) dist(Byx, N(A))

1 1
= 1 (A= 1QBX|| = 1 (A)——=[IB:X],

QI QI
thatis, | Bl < [IPIIQI/r (A), or [A]l Bl < IIAIr (APl IQIl, which yields
K(A) = k(AT(RA), I - I (NCAE, [T - 11x)- [

COROLLARY 3.6. If A € C™" then
maxx (A), T(R(A"), || - lp)} < k(A) < k(A) T (R(A), || - llo) T (R(A), || - 1D,

where|| - ||p is the dual norm of - ||.

The above corollary presents a more general result than that of Propositiof].3 in [
At the end, we consider wher(A) = < (A). First, we have the following lemma

(see p)).

LEMMA 3.7. Let u, v be measures, an@l : Ly(v) — Ly(w) (p > 1andp # 2)
be an isometric embedding. Then there exists a projection opeRafoom L ()
onto R(T) such that|P| < 1.

By Lemma3.7 and Theoren3.5, we have

PROPOSITION3.8. Let u, v be measures, ané : L,(v) — L,(n) be a bounded
linear operator. Let alsdR(A) be closed, andN(A) = 0. If p> 1andp # 2, and
| AX|| = |Ix|| for eachx € L,(v), thenk,(A) = kp(A).

COROLLARY 3.9. Let A e C™"andN(A) = 0. If || Ax|| = ||x]| for eachx € C",
thenk,(A) = kp(A), wherel < p <oocandp # 2.
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