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Abstract

Let E be a Banach space whose d&élhas the approximation property, andnebe an index. We show

that E* has the Radon-Nikgan property if and only if everyn-homogeneous integral polynomial from

E into any Banach space is nuclear. We also obtain factorization and composition results for nuclear
polynomials.

2000Mathematics subject classificatioprimary 46G25; secondary 46B20, 47H60.
Keywords and phrased-dominated polynomial, integral polynomial, nuclear polynomial, factorization
of polynomials.

Many authors have studied nuclear and integral polynomials between Banach space
(see, for example,Z] 3, 4, 5, 7]). In the present paper, we continue this study
obtaining a characterization of the Radon-Nikodproperty in terms of these classes
of polynomials, as well as factorization and composition results for these and related
classes.

First, we extend to the polynomial setting the following well-known result due to
Grothendieck:

THEOREM1 ([11, Theorem VIII.4.6]).Let E be a Banach space such that has
the approximation property. Thele* has the Radon-Nikdein property if and only
if every integral operator ork is nuclear. In this case, the integral and the nuclear
norms coincide.

We also give results about the composition of integral polynomials with weakly
compact operators and of weakly compact polynomials with integral operators. We
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characterize the polynomials that factorize through a nuclear operator into a Hilbert
space.

We show that, as in the linear case, the nuclear polynomials factorize through
diagonal polynomials frond,, into ¢; and also fromc, into ¢;. Using this result,
we show that a polynomidP is nuclear if and only if it may be written in the form
P = Qo T whereT is a compact operator ar@ is a Pietsch integral polynomial.

Finally, we show that not every nuclear polynomial is 1-dominated and obtain a
sufficient condition for this to happen.

Throughout,E, F, G, X, Y and Z denote Banach spaces; is the dual ofE,
andBg stands for its closed unit ball. By we represent the set of all natural numbers
and byK the scalar field (re& or complexC). The notatiorE = F means thak and
F are isometrically isomorphic. The definition of the Radon-Niwodiroperty may
be found in L1, Definition111.1.3]. Recall thatE* has the Radon-Nikaah property
if and only if E is an Asplund space. By aperatorfrom E into F we always mean
a bounded linear mapping. We usé(E, F) for the space of all operators frof
into F.

Givenm € N, we denote by? ("E, F) the space of aln-homogeneous (continu-
ous) polynomials fronk into F endowed with the supremum norm given by

P =suf|P(X)|| : x € Bg} forall P e Z("E, F).

Recall that with eaclr € 22("E, F) we can associate a unique symmeindinear
(continuous) mappin® : Ex M. xE — F so that

P(x) =P (x,™,x) (xe€E).

For the general theory of polynomials on Banach spaces, we refeZtarid [16].
Given1<r < oo, apolynomialP € 2 (™E, F)isr-dominated 15| if there exists
a constank > 0 such that, for alh € N and(x)"_, C E, we have

n m/r n m/r
IPOOIT™) <k su OO ]
(Zl (%) sup ; (%)
Note that, form = 1, we obtain the class ofasolutely r-summing operators.
If T e Z(E, F) isr-summing, the least of the constaktshat satisfy the above
inequality form = 1 is denoted byr, (T).
An m-linear mappingTl : Ex ™ xE — F is nuclear[2] if there are bounded
sequences; )2, C E* (1 < j <m)and(y)2; C F with

o0
DI Iyl < oo
i=1
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such that
TXg,y ovn s Xm) = ixi‘i(xl)---x;i(xm)yi (x;eE, 1<j<m).
i=1
Thenuclear normof T is
TN == infi X3l XTI
i=1

where the infimum is taken over all sequences satisfying the definition.
A polynomial P € Z("E, F) is nuclear[2] if it can be written in the form

(1) PO =) x(0" (xeE),

i=1

where(x*) c E* and(y,) C F are bounded sequences such that
2 DIy < o
i=1

We denote byZ’\("E, F) the space of alm-homogeneous nuclear polynomials
from E into F endowed with the nuclear norm

1Pl = inf > I 1™y,

i=1

where the infimum is taken over all sequencey C E* and(y;) C F which satisfy
(1) and @). We denote by4 (E, F) the space of all nuclear operators fr@hinto F.
The following definition of integram-linear mapping was given ir'] and extends
the one given in17] for multilinear functionals.
An m-linear mappingT : Ex ™ xE — F is (Grothendieckintegral if there
exists a constan® > 0 such that, for every € N and all families(x;)_, C E
1< j<mand(f*)', C F*, we have

n

Z(T(Xli Sy Xmi), f|*>

i=1

<C sup
x}*eBE*
1<j<m

Z XI(Xli) e X;(Xmi) fi*

i=1

E*

Form = 1, we obtain thentegral operatorg 11, Definition VII1.2.6]. The integral
norm| T, is the infimum of all constant§ that satisfy the definition.
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In [22], T is said to be integral if there exists a regukaf*-valued countably
additive, Borel measur®, of bounded variation, on the produBt. x ™ x Be.,
endowed with the weak-star topology, such that

@  Teu.. ,xm>=fB o KD X0 AT OG-

forall x; € E (1 < j <m). The integral norm of is the infimum of the variation
of ¢4, taken over all measurésas above.

From [7] and [27] it is easy to see that both notions of integnadinear mapping
are equivalent and that the two definitions of integral norm coincide.

We say that a polynomid® € 22 ("E, F) is (Grothendieckintegral if there exists
a constaniC > 0 such that, for everym € N and all families(x)", ¢ E and
(", Cc F*, we have

n

> (P, 1)

i=1

D X1

i=1

<C sup

X*€Bgx

E*

The symbol 22 ("E, F) denotes the space of ati-homogeneous integral poly-
nomials fromE into F, endowed with the integral norfiP ||, := inf C, where the
infimum is taken over all constan€ that satisfy the definition. By (E, F) we
denote the space of all integral operators frermto F.

An m-linear mappingT : Ex M xE — F is Pietsch integral2] if it can be
written in the form 8), where¥ is F-valued. The Pietsch integral norfi ||p; of T
is the infimum of the variation of the measufgés

A polynomial P € 2 ("E, F) is Pietsch integra[2] if it can be written in the form

P(x) =/ [X*x)]"d¥ (x*) (x € E)
Ber

where¥ is an F-valued regular countable additive Borel measure, of bounded vari-
ation, defined on(Bg-, weak=). The Pietsch integral norm oP is ||P|p :=

inf |¢4|(Bg:), where|¥| is the variation of¢, and the infimum is taken over all
measures satisfying the definition.

Inthe literature, the concept ‘integral polynomial’ has been used sometimes for what
we call Pietsch integral polynomials and sometimes (as we do) for the (Grothendieck)
integral polynomials.

Every nuclear polynomial is Pietsch integral, and every Pietsch integral polynomial
is integral. Moreover, iP is nuclear, we havéP|, < [Pl < IPlIn-

We use the notatio®™E := E®Q M. ®E for the m-fold tensor product of,

QTE = E®. M ®.E for them-fold injective tensor product dt, and®['E for the
m-fold projective tensor product dE (see P] for the theory of tensor products). By
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®TE := E®s (M. ®E we denote then-fold symmetric tensor product d, that is,
the set of all elements € ®™E of the form

n
U=> Ax®M®X, (MeNi ek x eE 1<j=<n).
j=1

By ®!'E we denote the closure @{'E in ®E. Analogously®T E is the closure
of ®'E in ®7E. For symmetric tensor products, we refer 1G][
If P e Z("E, F), we define its linearizatioR : 'E — F by

n n
3<inxi® m ®xi) => X P(x)
i=1 i=1
forally e K, x, € E(L<i <n).

The following lemma will be needed.

LEMMA 2 ([9, Theorem 16.6])Suppose thaE* has the Radon-Nikgan property
and the approximation property. TheE ®. F)* = E* ®, F* for every Banach
spaceF.

We can now prove the following

THEOREM 3. Suppose thaE* has the approximation property. Then the following
assertions are equivalent
(a) E* has the Radon-Nikgan property.
(b) Foreverym € N and every Banach spaég we have?\("E, F) = 2, ("E, F).
(c) There ism € N such that, for every Banach spa€e we have?\("E, F) =
2,(ME, F).
Moreover, if these conditions are satisfied, we have

m

m
IPIh < IPln =< = P
for everyP € 2, ("E, F).

PrOOF. (a)= (b). LetP € 2 ("E, F). Then the associated-linear mapping®
is integral [7], and its linearizatiorP : ®TE — F is well defined and integraPp)].
SinceE* has the Radon-Nikgan property, by 19, Theorem 1.9] and induction, the
spacg®T E)* has also the Radon-Nikgdi property. By Lemma and induction, we
have(®"E)* = ®TE*.

SinceE* has the approximation propertg"E* has also the approximation prop-
erty [9, Exercise 5.4]. By Theorerh, P : ®TE — F is nuclear. Clearly, the
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restriction of P to ®™E coincides withP, which is also nuclear and hence Pietsch
integral. By 2], P is Pietsch integral. Sinck is Asplund, P is nuclear (seeZ,
Proposition 1] or p, Theorem 1.4]).

(b) = (c) is obvious.

(c)= (a). ltis proved in p] that the equality?\("E, F) = £,("E, F) for somem
implies that /" (E, F) = .#(E, F). Since this is true for alF, applying Theoreni,
we have thaE* has the Radon-Nikaah property.

Assume now that the three equivalent assertions hold.PLet 2, ("E, F). We
know that|| P, < |[P|lx. By Theorem, [Pl = [Pl = [ Plln. Hence,

mm
PN < oy IPln  (by[2])

mm

= 7 IPlle (by [1, Theorem 2.3])
m" —=

=l [Pller (by[22)
m" —=

= I Pl
mm"

= 1Pl (by[22)

m

M p
F!” Il

IA

and the proof is finished. O

We now consider the extension to the polynomial setting of the following result
[11, Theorem VIII1.4.12]:

THEOREM4. Considerthe operators € Z(E, F)andSe £ (F, G). Then

(@) If T isintegral andSis weakly compact, theGo T is nuclear.
(b) If T is weakly compact an8is integral thenSo T is nuclear intoG**.

Most of the possible extensions to polynomials fail. However, we obtain:

PROPOSITIONS. LetP € Z(™E, F), Se Z(F,Y),andT € .Z(X, E). Then
() If P isintegral andSis weakly compact, the8o P is Pietsch integral and its
linearizationSo P : ®.E — Y is nuclear.

(b) If T is weakly compact ané is integral, thenP o T is nuclear intoF**, and
PoT:®"X — F*isnuclear.

(c) If T isintegral andP is weakly compact theR o T is Pietsch integral.
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PROOF. (a) SinceP is integral, its linearizatioP : ®1.E — F is well-defined
and integral 7]. By Theoremt, So P = So P is nuclear and, hence, Pietsch integral.
By [22], So P is Pietsch integral.

In general,So P is not nuclear. For instance, the polynomial: C[0, 1] — C,
given by P(f) = fol f(t)2dt, is integral. However, ifS: C — C is the identity on
C, thenP = So P is not nuclear], Remark 2.4].

(b) There are a reflexive spaGs and operatoré, € £ (X, G) andB € £ (G, E)
such thafl = B o A[11, Corollary VIII.4.9]. Consider the operator

R"B:=B ™ QB : ®23G - ®23E'

ThenP o ("B) = P o Bis integral, soP o B is integral, hence it is Pietsch integral
as a polynomial with values if**. SinceG is Asplund,P o B is nuclear fromG
into F* [5, Theorem 1.4]. EasilyP o T = P o B o Ais nuclear with values iffr **.

The operatoP o (3™B) = P o B : ®".G — F** is Pietsch integral. Sinc&*
has the Radon-Nikaain property, so doef®™,G)" [19, Theorem 1.9]. The® o B
is nuclear intoF**. ThereforePoT = Po(®™T) = Po (®™B) o (®MA) is nuclear
into F**.

(c) SinceP is weakly compact, there are a reflexive sp&;ea polynomialQ <
2 (ME, G) and an operatoB € £ (G, F) such thatP = B o Q [20, Theorem 3.7].
SinceT is integral,Q o T is an integral polynomialq]. Asin(a),BoQoT =PoT
is Pietsch integral.

We do not know ifP o T is nuclear. O

Our next goal is to show that a polynomiBlis nuclear if and only if it may be
written in the formP = Q o T whereQ is a Pietsch integral polynomial afdis a
compact operator. To this end, we first show that every nuclear polynomial factorizes
through a diagonal polynomial froi, into £, and fromc, into ¢;. This extends the
result in the linear case, and might be well known but we have only found a mention
to apartofitin R1, page 114]. For completeness, we sketch the proof.

PrROPOSITIONG. LetP € Z(™E, F). The following assertions are equivalent

(@) Pisnuclear.
(b) There are operatoral € Z(E,¢,) andv € £ (¢, F) and a polynomial
M, € P (M, L) of the formM;(z2) = (AZ),, wherer = (A,) € ¢; and

z = (z,) € £, such that the following diagram commutes

E "> F

ul T

boo — L

s



276 R. Cilia and J. M. Guéirrez [8]

(c) There are compact operatotse Z(E, ¢p) andv € £ (¢4, F), and a polyno-
mial M; € 22("ty, £;) of the formM;(y) = (A,Y1)e2,, wherex = (A,) € ¢; and
Yy = (Yn) € Cp, such that the following diagram commutes

E—"> F

ul T
Co — {1
W

A

PrROOF. (a) = (b). If P is nuclear, there are bounded sequene¢s C E* and
(Yn) C F such that formulasl) and @) hold. Defineu, M, andv by

X0\
= = E
ueo (nx:n)n_l (xeB)
M@ = (IKITIlZD)>, (2= (2) € L)
v(ey) = 2,
T

where(g,) is the unit vector basis df;.

(b) = (c). Givena = (A,) € €4, we can finde = (a,) € ¢y, With o, > 0, and
T = (1) € £; such that,, = a, 1, forall n [18, 3, Exercise 12]. Define

(i) the operatob € 2 (¢, o) by b(z) = (a¥*z,)>, for z = (z,) € L.,

(il) the operatom € £ (¢4, £1) by a(w) = (o}?w,), for w = (wy,) € ¢4, and

(iii) the polynomialM € 2 (", £1) by M(y) = (t, Y1), fory = (yn) € Co.
Easily,a andb are compact, anl, =ao M ob.

(c)= (a). Since

M (y) = (AnyD). anyn = hnlen(y)I™e,
n=1
forally = (y,) € o, itfollows thatM; is nuclear. Itis easy to prove thBt= vo M) ou
is nuclear. 0

THEOREM 7. GivenP € #("E, F), we have thaP is nuclear if and only if there
are a Banach spac&, a compact operatol € Z(E, G) and a Pietsch integral
polynomialQ € (™G, F) suchthatP = Qo T.

PrOOF. If P is nuclear, consider the factorization of Propositi)(c), and take
G =0, T =u,andQ = v o M;. Conversely, ifP = Q o T as in the statement, we
can find a reflexive spacgand operatoré\ € £ (E, Z) andB € Z(Z, G) such that
T = Bo A[11, page 260]. The® o B is Pietsch integrald]. SinceZ is Asplund,
Qo Bisnuclear p, Theorem 1.4]. EasilyQ o T = Q o B o Ais nuclear. O
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We now characterize the polynomials that factorize through a nuclear operator into
a Hilbert space. This extend$(, Theorem 5.31] to the polynomial setting.

PrOPOSITIONS. Let P € 22 ("E, F). Then the following assertions are equiva-
lent

(@) There are a Banach spad8, a 2-summing operatol € Z(E, G), and a
2-dominated polynomia@; € # (™G, F) suchthatP = Q; 0 T.

(b) There are a Hilbert spacéd, an operatorS € _4'(E, H) and a polynomial
Qe Z(™,F)suchthatP = Qo S

PrROOF. (a) = (b). SinceQ; is 2-dominated, there are a Banach spdcea
2-summing operatoB € Z(G, Z), and a polynomialR € 2("Z, F) such that
Q: = Ro B[21]. SinceB o T is the composition of two 2-summing operators, there
are a Hilbert spacél, an operatolS € .47(E, H), and an operatdd € Z(H, 2)
suchthaBoT = U o S[10, Theorem 5.31]. Therefore, (b) follows with = Ro U.

(b) = (a). SinceSis nuclear, there are operatarss Z(E, ¢y), M € 47(Cg, £4),
andv € Z (¢, H) suchthalS = vo M ou (Propositior6). Then,M ouis nuclearand
therefore 2-summing. The operatoe Z(¢1, H) is 2-summing 10, Theorem 3.4],
so the polynomialQ o v is 2-dominated 41]. We have proved (a) witls = ¢4,
T=Mou,andQ; = Qow. Il

COROLLARY 9. If T € Z(E, G) is 2-summing and); € £ ("G, F) is 2-domin-
ated, thenQ; o T is nuclear.

PrOOF. By Proposition8, there are a Hilbert spad¢, an operatoS € .4 (E, H)
and a polynomialQ € #(™H, F) such thatQ; o T = Qo S. By [14, 3.1.9],
the composition of a nuclear operator with a polynomial is nucleaiQso T is
nuclear. O

RemMARK 10. Not every nuclear polynomial satisfies the assertions of Proposition
Indeed, ifP € 22\ ("E, F) satisfies Propositio8, then we may writd® = Q o Swith
S a nuclear (hence, 1-summing) operator. Bds 1-dominated21]. Theoreml11l
gives many examples of nuclear polynomials which are not 1-dominated and hence
they cannot factorize through a nuclear operator.

If P e #("E, F)is2-dominatedand € £ (F, G) is 2-summing, the composition
T o P is not necessarily nuclear. Indeed,ilet¢; — ¢, be the natural inclusion, and
let R: ¢, — K be the polynomial given bfR(x) = >, x2. Sincei is 1-summing,
it is 2-summing, and s€ := Roi is 2-dominated?1]. If T : K — K is the identity
on [, which is obviously 2-summing, we have that= T o P is not nuclear 4,
Proposition 2.3].



278 R. Cilia and J. M. Guéirrez [10]

We now investigate conditions for a nuclear polynomial to be 1-dominated. We first
obtain a characterization of the 1-dominated diagonal polynomials fromto ¢;.

THEOREM11. Let M, € (™, £;) be given byM;(x) = (Ax)2, for all
X = (X1) € Lo, Wherer = (1) € €;. ThenM,; is 1-dominated if and only ik € £/,

PROOF. Suppose that € ¢,,. If the field is complex, leT € .2 (¢, £1) be given
by T(x) = (|)~n|1/"‘e“9n/"‘xn)z°:1 forall x = (X)) € £s, Wherer, = |A,|€%. Define
Pe Z(Mm, €) by P(X) = (x")2, forall x = (x,) € £, and leti : ¢, — £, be
the natural inclusion. Sindeis 1-summingP oio T € 2 (™, £,) is 1-dominated
[21]. Now,

PoioT(X)=Poi ((Ikl"me" ™)™ )

= (Iaal€"XT) = (AaXT) ", = My (X).

So M, is 1-dominated.

If the field is real, we writeM;, = M, + M, with u© = (i) andv = (v,), where
un > 0andv, < Oforalln. Then, by the above argumeM,, andM, are 1-dominated
and so isM;.

Conversely, suppose thislt, is 1-dominated. Thenthere are aspBc¢a 1-summing
operatorT € Z({., F) and a polynomialQ € #2("F, £,) such thatM, = Qo T
[21]. Then, sinceT is 1-summing, we have

r r r
D MM = D IME@) Y™ =D Qo T(en Y™
n=1 n=1

n=1 =

<1QIM™Y T (el

n=1

< IIQII“’“m(T)SUp{ 3 X)) X" e Bz;}

n=1

= ||Q||1/"‘n1<T>sup{Z|y*<en>| Ly e Bh}

n=1

< 1QIY™7a(T)
forallr € N. Therefore) .-, [1,|"/™ is convergent. O

This theorem shows that, unlike the linear case, a nuclear polynomial is not neces-
sarily 1-dominated.
Finally, we obtain a sufficient condition for a nuclear polynomial to be 1-dominated.
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COROLLARY 12. LetP € 22\ ("E, F), so it satisfieg1) and(2). Suppose

o0
1
D IXHYallY™ < oo

n=1

ThenP is 1-dominated.

PrROOF. Since P is nuclear, by Propositiof, it admits a factorization through a
diagonal polynomiaM, € #2(™¢., £1), where

Ao = XM YRl (N e N).
By Theoreml1, M;, is 1-dominated. By15, Theorem 9],P is 1-dominated. O

The authors are grateful to the referee for carefully reading the manuscript.
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