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Abstract

Let E be a Banach space whose dualE∗ has the approximation property, and letm be an index. We show
that E∗ has the Radon-Nikod́ym property if and only if everym-homogeneous integral polynomial from
E into any Banach space is nuclear. We also obtain factorization and composition results for nuclear
polynomials.
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Many authors have studied nuclear and integral polynomials between Banach spaces
(see, for example, [2, 3, 4, 5, 7]). In the present paper, we continue this study
obtaining a characterization of the Radon-Nikod´ym property in terms of these classes
of polynomials, as well as factorization and composition results for these and related
classes.

First, we extend to the polynomial setting the following well-known result due to
Grothendieck:

THEOREM 1 ([11, Theorem VIII.4.6]).Let E be a Banach space such thatE∗ has
the approximation property. ThenE∗ has the Radon-Nikodým property if and only
if every integral operator onE is nuclear. In this case, the integral and the nuclear
norms coincide.

We also give results about the composition of integral polynomials with weakly
compact operators and of weakly compact polynomials with integral operators. We
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characterize the polynomials that factorize through a nuclear operator into a Hilbert
space.

We show that, as in the linear case, the nuclear polynomials factorize through
diagonal polynomials from̀∞ into `1 and also fromc0 into `1. Using this result,
we show that a polynomialP is nuclear if and only if it may be written in the form
P = Q ◦ T whereT is a compact operator andQ is a Pietsch integral polynomial.

Finally, we show that not every nuclear polynomial is 1-dominated and obtain a
sufficient condition for this to happen.

Throughout,E, F , G, X, Y and Z denote Banach spaces,E∗ is the dual ofE,
andBE stands for its closed unit ball. ByN we represent the set of all natural numbers
and byK the scalar field (realR or complexC). The notationE ≡ F means thatE and
F are isometrically isomorphic. The definition of the Radon-Nikod´ym property may
be found in [11, Definition III.1.3]. Recall thatE∗ has the Radon-Nikod´ym property
if and only if E is an Asplund space. By anoperatorfrom E into F we always mean
a bounded linear mapping. We useL .E; F/ for the space of all operators fromE
into F .

Givenm ∈ N, we denote byP.mE; F/ the space of allm-homogeneous (continu-
ous) polynomials fromE into F endowed with the supremum norm given by

‖P‖ = sup{‖P.x/‖ : x ∈ BE} for all P ∈P.mE; F/:

Recall that with eachP ∈ P.mE; F/ we can associate a unique symmetricm-linear
(continuous) mappinĝP : E× .m/: : : ×E → F so that

P.x/ = P̂
(
x; .m/: : :; x

)
.x ∈ E/:

For the general theory of polynomials on Banach spaces, we refer to [12] and [16].
Given 1≤ r < ∞, a polynomialP ∈P.mE; F/ is r -dominated[15] if there exists

a constantk > 0 such that, for alln ∈ N and.xi /
n
i =1 ⊂ E, we have(

n∑
i =1

‖P.xi /‖r=m

)m=r

≤ k sup
x∗∈BE∗

(
n∑

i =1

|x∗.xi /|r

)m=r

:

Note that, form = 1, we obtain the class of (absolutely) r -summing operators.
If T ∈ L .E; F/ is r -summing, the least of the constantsk that satisfy the above
inequality form = 1 is denoted by³r .T/.

An m-linear mappingT : E× .m/: : : ×E → F is nuclear [2] if there are bounded
sequences.x∗

j i /
∞
i =1 ⊂ E∗ .1 ≤ j ≤ m/ and.yi /

∞
i =1 ⊂ F with

∞∑
i =1

‖x∗
1i ‖ · · · ‖x∗

mi‖‖yi ‖ < ∞
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such that

T.x1; : : : ; xm/ =
∞∑

i =1

x∗
1i .x1/ · · · x∗

mi.xm/yi .xj ∈ E; 1 ≤ j ≤ m/:

Thenuclear normof T is

‖T‖N := inf
∞∑

i =1

‖x∗
1i ‖ · · · ‖x∗

mi‖‖yi ‖;

where the infimum is taken over all sequences satisfying the definition.
A polynomial P ∈P.mE; F/ is nuclear[2] if it can be written in the form

P.x/ =
∞∑

i =1

x∗
i .x/

myi .x ∈ E/;(1)

where.x∗
i / ⊂ E∗ and.yi / ⊂ F are bounded sequences such that

∞∑
i =1

‖x∗
i ‖m‖yi ‖ < ∞:(2)

We denote byPN.
mE; F/ the space of allm-homogeneous nuclear polynomials

from E into F endowed with the nuclear norm

‖P‖N := inf
∞∑

i =1

‖x∗
i ‖m‖yi ‖;

where the infimum is taken over all sequences.x∗
i / ⊂ E∗ and.yi / ⊂ F which satisfy

(1) and (2). We denote byN .E; F/ the space of all nuclear operators fromE into F .
The following definition of integralm-linear mapping was given in [7] and extends

the one given in [17] for multilinear functionals.
An m-linear mappingT : E× .m/: : : ×E → F is (Grothendieck) integral if there

exists a constantC ≥ 0 such that, for everyn ∈ N and all families.xji /
n
i =1 ⊂ E

.1 ≤ j ≤ m/ and. f ∗
i /

n
i =1 ⊂ F∗, we have∣∣∣∣∣

n∑
i =1

〈
T.x1i ; : : : ; xmi/; f ∗

i

〉∣∣∣∣∣ ≤ C sup
x∗

j ∈BE∗
1≤ j ≤m

∥∥∥∥∥
n∑

i =1

x∗
1.x1i / · · · x∗

m.xmi/ f ∗
i

∥∥∥∥∥
F∗

:

For m = 1, we obtain theintegral operators[11, Definition VIII.2.6]. The integral
norm‖T‖I is the infimum of all constantsC that satisfy the definition.
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In [22], T is said to be integral if there exists a regularF ∗∗-valued countably
additive, Borel measureG , of bounded variation, on the productBE∗ × .m/· · · × BE∗ ,
endowed with the weak-star topology, such that

T.x1; : : : ; xm/ =
∫

BE∗ ×.m/···×BE∗
x∗

1.x1/ · · · x∗
m.xm/dG .x∗

1 ; : : : ; x∗
m/(3)

for all xj ∈ E .1 ≤ j ≤ m/. The integral norm ofT is the infimum of the variation
of G , taken over all measuresG as above.

From [7] and [22] it is easy to see that both notions of integralm-linear mapping
are equivalent and that the two definitions of integral norm coincide.

We say that a polynomialP ∈P.mE; F/ is (Grothendieck) integral if there exists
a constantC ≥ 0 such that, for everyn ∈ N and all families.xi /

n
i =1 ⊂ E and

. f ∗
i /

n
i =1 ⊂ F∗, we have∣∣∣∣∣

n∑
i =1

〈
P.xi /; f ∗

i

〉∣∣∣∣∣ ≤ C sup
x∗∈BE∗

∥∥∥∥∥
n∑

i =1

[x∗.xi /]m f ∗
i

∥∥∥∥∥
F∗

:

The symbolPI.
mE; F/ denotes the space of allm-homogeneous integral poly-

nomials fromE into F , endowed with the integral norm‖P‖I := inf C, where the
infimum is taken over all constantsC that satisfy the definition. ByI .E; F/ we
denote the space of all integral operators fromE into F .

An m-linear mappingT : E× .m/: : : ×E → F is Pietsch integral[2] if it can be
written in the form (3), whereG is F-valued. The Pietsch integral norm‖T‖PI of T
is the infimum of the variation of the measuresG .

A polynomial P ∈P.mE; F/ is Pietsch integral[2] if it can be written in the form

P.x/ =
∫

BE∗
[x∗.x/]m dG .x∗/ .x ∈ E/

whereG is an F-valued regular countable additive Borel measure, of bounded vari-
ation, defined on.BE∗ ;weak-∗/. The Pietsch integral norm ofP is ‖P‖PI :=
inf |G |.BE∗/, where |G | is the variation ofG , and the infimum is taken over all
measures satisfying the definition.

In the literature, the concept ‘integral polynomial’ has beenused sometimes for what
we call Pietsch integral polynomials and sometimes (as we do) for the (Grothendieck)
integral polynomials.

Every nuclear polynomial is Pietsch integral, and every Pietsch integral polynomial
is integral. Moreover, ifP is nuclear, we have‖P‖I ≤ ‖P‖PI ≤ ‖P‖N.

We use the notation⊗m E := E⊗ .m/: : : ⊗E for the m-fold tensor product ofE,
⊗m
ž E := E⊗ž

.m/: : : ⊗žE for them-fold injective tensor product ofE, and⊗m
³ E for the

m-fold projective tensor product ofE (see [9] for the theory of tensor products). By
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⊗m
s E := E⊗s

.m/: : : ⊗sE we denote them-fold symmetric tensor product ofE, that is,
the set of all elementsu ∈ ⊗m E of the form

u =
n∑

j =1

½ j x j ⊗ .m/: : : ⊗xj .n ∈ N; ½ j ∈ K; xj ∈ E;1 ≤ j ≤ n/:

By ⊗m
ž;sE we denote the closure of⊗m

s E in ⊗m
ž E. Analogously,⊗m

³;sE is the closure
of ⊗m

s E in ⊗m
³ E. For symmetric tensor products, we refer to [13].

If P ∈P.mE; F/, we define its linearizationP : ⊗m
s E → F by

P

(
n∑

i =1

½i xi ⊗ .m/: : : ⊗xi

)
=

n∑
i =1

½i P.xi /

for all ½i ∈ K, xi ∈ E .1 ≤ i ≤ n/.
The following lemma will be needed.

LEMMA 2 ([9, Theorem 16.6]).Suppose thatE∗ has the Radon-Nikodým property
and the approximation property. Then.E ⊗ž F/∗ ≡ E∗ ⊗³ F∗ for every Banach
spaceF .

We can now prove the following

THEOREM 3. Suppose thatE∗ has the approximation property. Then the following
assertions are equivalent:

(a) E∗ has the Radon-Nikodým property.
(b) For everym ∈ N and every Banach spaceF , we havePN.

mE; F/ =PI.
mE; F/.

(c) There ism ∈ N such that, for every Banach spaceF , we havePN.
mE; F/ =

PI.
mE; F/.

Moreover, if these conditions are satisfied, we have

‖P‖I ≤ ‖P‖N ≤ mm

m! ‖P‖I

for everyP ∈PI.
mE; F/.

PROOF. (a)⇒ (b). Let P ∈PI.
mE; F/. Then the associatedm-linear mappinĝP

is integral [7], and its linearization̂P : ⊗m
ž E → F is well defined and integral [22].

SinceE∗ has the Radon-Nikod´ym property, by [19, Theorem 1.9] and induction, the
space.⊗m

ž E/∗ has also the Radon-Nikod´ym property. By Lemma2 and induction, we
have.⊗m

ž E/∗ ≡ ⊗m
³ E∗.

SinceE∗ has the approximation property,⊗m
³ E∗ has also the approximation prop-

erty [9, Exercise 5.4]. By Theorem1, P̂ : ⊗m
ž E → F is nuclear. Clearly, the
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restriction of P̂ to ⊗m
ž;sE coincides withP, which is also nuclear and hence Pietsch

integral. By [22], P is Pietsch integral. SinceE is Asplund,P is nuclear (see [2,
Proposition 1] or [5, Theorem 1.4]).

(b) ⇒ (c) is obvious.
(c)⇒ (a). It is proved in [6] that the equalityPN.

mE; F/ =PI.
mE; F/ for somem

implies thatN .E; F/ = I .E; F/. Since this is true for allF , applying Theorem1,
we have thatE∗ has the Radon-Nikod´ym property.

Assume now that the three equivalent assertions hold. LetP ∈ PI.
mE; F/. We

know that‖P‖I ≤ ‖P‖N. By Theorem1, ‖P̂‖I = ‖P̂‖PI = ‖P̂‖N. Hence,

‖P‖N ≤ mm

m! ‖P̂‖N (by [2])

= mm

m! ‖P̂‖PI (by [1, Theorem 2.3])

= mm

m! ‖P̂‖PI (by [22])

= mm

m! ‖P̂‖I

= mm

m! ‖P̂‖I (by [22])

≤ mm

m! ‖P‖I;

and the proof is finished.

We now consider the extension to the polynomial setting of the following result
[11, Theorem VIII.4.12]:

THEOREM 4. Consider the operatorsT ∈ L .E; F/andS∈ L .F;G/. Then:

(a) If T is integral andS is weakly compact, thenS◦ T is nuclear.
(b) If T is weakly compact andS is integral thenS◦ T is nuclear intoG∗∗.

Most of the possible extensions to polynomials fail. However, we obtain:

PROPOSITION5. Let P ∈P.mE; F/, S∈ L .F;Y/, andT ∈ L .X; E/. Then

(a) If P is integral andS is weakly compact, thenS◦ P is Pietsch integral and its
linearizationS◦ P : ⊗m

ž;sE → Y is nuclear.
(b) If T is weakly compact andP is integral, thenP ◦ T is nuclear intoF ∗∗, and

P ◦ T : ⊗m
ž;sX → F∗∗ is nuclear.

(c) If T is integral andP is weakly compact thenP ◦ T is Pietsch integral.
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PROOF. (a) SinceP is integral, its linearizationP : ⊗m
ž;sE → F is well-defined

and integral [7]. By Theorem4, S◦ P = S◦ P is nuclear and, hence, Pietsch integral.
By [22], S◦ P is Pietsch integral.

In general,S◦ P is not nuclear. For instance, the polynomialP : C[0;1] → C,
given by P. f / = ∫ 1

0 f .t/2 dt, is integral. However, ifS : C → C is the identity on
C, thenP = S◦ P is not nuclear [1, Remark 2.4].

(b) There are a reflexive spaceG, and operatorsA ∈ L .X;G/ andB ∈ L .G; E/
such thatT = B ◦ A [11, Corollary VIII.4.9]. Consider the operator

⊗mB := B⊗ .m/: : : ⊗B : ⊗m
ž;sG → ⊗m

ž;sE:

ThenP ◦ .⊗mB/ = P ◦ B is integral, soP ◦ B is integral, hence it is Pietsch integral
as a polynomial with values inF∗∗. SinceG is Asplund,P ◦ B is nuclear fromG
into F∗∗ [5, Theorem 1.4]. Easily,P ◦ T = P ◦ B ◦ A is nuclear with values inF ∗∗.

The operatorP ◦ .⊗mB/ = P ◦ B : ⊗m
ž;sG → F∗∗ is Pietsch integral. SinceG∗

has the Radon-Nikod´ym property, so does
(⊗m

ž;sG
)∗

[19, Theorem 1.9]. ThenP ◦ B
is nuclear intoF∗∗. Therefore,P ◦ T = P ◦ .⊗mT/ = P ◦ .⊗mB/ ◦ .⊗m A/ is nuclear
into F∗∗.

(c) SinceP is weakly compact, there are a reflexive spaceG, a polynomialQ ∈
P.mE;G/ and an operatorB ∈ L .G; F/ such thatP = B ◦ Q [20, Theorem 3.7].
SinceT is integral,Q ◦ T is an integral polynomial [7]. As in (a),B ◦ Q ◦ T = P ◦ T
is Pietsch integral.

We do not know ifP ◦ T is nuclear.

Our next goal is to show that a polynomialP is nuclear if and only if it may be
written in the formP = Q ◦ T whereQ is a Pietsch integral polynomial andT is a
compact operator. To this end, we first show that every nuclear polynomial factorizes
through a diagonal polynomial from̀∞ into `1, and fromc0 into `1. This extends the
result in the linear case, and might be well known but we have only found a mention
to a part of it in [21, page 114]. For completeness, we sketch the proof.

PROPOSITION6. Let P ∈P.mE; F/. The following assertions are equivalent:

(a) P is nuclear.
(b) There are operatorsu ∈ L .E; `∞/ and v ∈ L .`1; F/ and a polynomial

M½ ∈ P.m`∞; `1/ of the form M½.z/ = .½nzm
n /

∞
n=1, where½ = .½n/ ∈ `1 and

z = .zn/ ∈ `∞, such that the following diagram commutes

E
P−−−→ F

u

y xv
`∞ −−−→

M½

`1
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(c) There are compact operatorsu ∈ L .E; c0/ andv ∈ L .`1; F/, and a polyno-
mial M ′

½ ∈ P.mc0; `1/ of the formM ′
½.y/ = .½nym

n /
∞
n=1, where½ = .½n/ ∈ `1 and

y = .yn/ ∈ c0, such that the following diagram commutes

E
P−−−→ F

u

y xv
c0 −−−→

M ′
½

`1

PROOF. (a) ⇒ (b). If P is nuclear, there are bounded sequences.x∗
n/ ⊂ E∗ and

.yn/ ⊂ F such that formulas (1) and (2) hold. Defineu, M½ andv by

u.x/ =
(

x∗
n.x/

‖x∗
n‖
)∞

n=1

.x ∈ E/

M½.z/ = (‖x∗
n‖m‖yn‖zm

n

)∞
n=1

.z = .zn/ ∈ `∞/

v.en/ = yn

‖yn‖ ;

where.en/ is the unit vector basis of̀1.
(b) ⇒ (c). Given½ = .½n/ ∈ `1, we can findÞ = .Þn/ ∈ c0, with Þn > 0, and

− = .−n/ ∈ `1 such that½n = Þn−n for all n [18, 3, Exercise 12]. Define

.i/ the operatorb ∈ L .`∞; c0/ by b.z/ = .Þ1=2m
n zn/

∞
n=1 for z = .zn/ ∈ `∞,

.ii/ the operatora ∈ L .`1; `1/ by a.w/ = .Þ1=2
n wn/

∞
n=1 for w = .wn/ ∈ `1, and

.iii / the polynomialM ∈P.mc0; `1/ by M.y/ = .−n ym
n /

∞
n=1 for y = .yn/ ∈ c0.

Easily,a andb are compact, andM½ = a ◦ M ◦ b.
(c) ⇒ (a). Since

M ′
½.y/ = (

½n ym
n

)∞
n=1

=
∞∑

n=1

½n ym
n en =

∞∑
n=1

½n[en.y/]men

for all y = .yn/ ∈ c0, it follows thatM ′
½ is nuclear. It is easy to prove thatP = v◦M ′

½◦u
is nuclear.

THEOREM 7. GivenP ∈P.mE; F/, we have thatP is nuclear if and only if there
are a Banach spaceG, a compact operatorT ∈ L .E;G/ and a Pietsch integral
polynomialQ ∈P.mG; F/ such thatP = Q ◦ T .

PROOF. If P is nuclear, consider the factorization of Proposition6,(c), and take
G = c0, T = u, andQ = v ◦ M ′

½. Conversely, ifP = Q ◦ T as in the statement, we
can find a reflexive spaceZ and operatorsA ∈ L .E; Z/ andB ∈ L .Z;G/ such that
T = B ◦ A [11, page 260]. ThenQ ◦ B is Pietsch integral [8]. SinceZ is Asplund,
Q ◦ B is nuclear [5, Theorem 1.4]. Easily,Q ◦ T = Q ◦ B ◦ A is nuclear.
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We now characterize the polynomials that factorize through a nuclear operator into
a Hilbert space. This extends [10, Theorem 5.31] to the polynomial setting.

PROPOSITION8. Let P ∈ P.mE; F/. Then the following assertions are equiva-
lent:

(a) There are a Banach spaceG, a 2-summing operatorT ∈ L .E;G/, and a
2-dominated polynomialQ1 ∈P.mG; F/ such thatP = Q1 ◦ T .
(b) There are a Hilbert spaceH , an operatorS ∈ N .E; H / and a polynomial

Q ∈P.mH; F/ such thatP = Q ◦ S.

PROOF. (a) ⇒ (b). Since Q1 is 2-dominated, there are a Banach spaceZ, a
2-summing operatorB ∈ L .G; Z/, and a polynomialR ∈ P.mZ; F/ such that
Q1 = R ◦ B [21]. SinceB ◦ T is the composition of two 2-summing operators, there
are a Hilbert spaceH , an operatorS ∈ N .E; H /, and an operatorU ∈ L .H; Z/
such thatB ◦ T = U ◦ S[10, Theorem 5.31]. Therefore, (b) follows withQ = R◦U .

(b) ⇒ (a). SinceS is nuclear, there are operatorsu ∈ L .E; c0/, M ∈ N .c0; `1/,
andv ∈ L .`1; H / such thatS= v ◦ M ◦u (Proposition6). Then,M ◦u is nuclear and
therefore 2-summing. The operatorv ∈ L .`1; H / is 2-summing [10, Theorem 3.4],
so the polynomialQ ◦ v is 2-dominated [21]. We have proved (a) withG = `1,
T = M ◦ u, andQ1 = Q ◦ v.

COROLLARY 9. If T ∈ L .E;G/ is 2-summing andQ1 ∈ P.mG; F/ is 2-domin-
ated, thenQ1 ◦ T is nuclear.

PROOF. By Proposition8, there are a Hilbert spaceH , an operatorS ∈ N .E; H /
and a polynomialQ ∈ P.mH; F/ such thatQ1 ◦ T = Q ◦ S. By [14, 3.1.9],
the composition of a nuclear operator with a polynomial is nuclear, soQ1 ◦ T is
nuclear.

REMARK 10. Not every nuclear polynomial satisfies the assertions of Proposition8.
Indeed, ifP ∈PN.

mE; F/ satisfies Proposition8, then we may writeP = Q ◦ Swith
S a nuclear (hence, 1-summing) operator. So,P is 1-dominated [21]. Theorem11
gives many examples of nuclear polynomials which are not 1-dominated and hence
they cannot factorize through a nuclear operator.

If P ∈P.mE; F/ is 2-dominated andT ∈ L .F;G/ is 2-summing, the composition
T ◦ P is not necessarily nuclear. Indeed, leti : `1 → `2 be the natural inclusion, and
let R : `2 → K be the polynomial given byR.x/ = ∑∞

n=1 x2
n. Sincei is 1-summing,

it is 2-summing, and soP := R◦ i is 2-dominated [21]. If T : K → K is the identity
on K, which is obviously 2-summing, we have thatP = T ◦ P is not nuclear [4,
Proposition 2.3].
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We now investigate conditions for a nuclear polynomial to be 1-dominated. We first
obtain a characterization of the 1-dominated diagonal polynomials from`∞ into `1.

THEOREM 11. Let M½ ∈ P.m`∞; `1/ be given byM½.x/ = .½nxm
n /

∞
n=1 for all

x = .xn/ ∈ `∞, where½ = .½n/ ∈ `1. ThenM½ is 1-dominated if and only if½ ∈ `1=m.

PROOF. Suppose that½ ∈ `1=m. If the field is complex, letT ∈ L .`∞; `1/ be given
by T.x/ = (|½n|1=mei �n=mxn

)∞
n=1

for all x = .xn/ ∈ `∞, where½n = |½n|ei �n. Define
P ∈ P.m`m; `1/ by P.x/ = .xm

n /
∞
n=1 for all x = .xn/ ∈ `m, and leti : `1 → `m be

the natural inclusion. Sincei is 1-summing,P ◦ i ◦ T ∈P.m`∞; `1/ is 1-dominated
[21]. Now,

P ◦ i ◦ T.x/ = P ◦ i
((|½n|1=mei �n=mxn

)∞
n=1

)
= (|½n|ei �n xm

n

)∞
n=1

= (
½nxm

n

)∞
n=1

= M½.x/:

So M½ is 1-dominated.
If the field is real, we writeM½ = M¼ + M¹ with ¼ = .¼n/ and¹ = .¹n/, where

¼n ≥ 0 and¹n ≤ 0 for alln. Then, by the above argument,M¼ andM¹ are 1-dominated
and so isM½.

Conversely, suppose thatM½ is 1-dominated. Then there are a spaceF ,a 1-summing
operatorT ∈ L .`∞; F/ and a polynomialQ ∈ P.mF; `1/ such thatM½ = Q ◦ T
[21]. Then, sinceT is 1-summing, we have

r∑
n=1

|½n|1=m =
r∑

n=1

‖M½.en/‖1=m =
r∑

n=1

‖Q ◦ T.en/‖1=m

≤ ‖Q‖1=m
r∑

n=1

‖T.en/‖

≤ ‖Q‖1=m³1.T/ sup

{
r∑

n=1

|x∗.en/| : x∗ ∈ B`∗∞

}

= ‖Q‖1=m³1.T/ sup

{
r∑

n=1

|y∗.en/| : y∗ ∈ B`1

}
≤ ‖Q‖1=m³1.T/

for all r ∈ N. Therefore,
∑∞

n=1 |½n|1=m is convergent.

This theorem shows that, unlike the linear case, a nuclear polynomial is not neces-
sarily 1-dominated.

Finally, we obtain a sufficient condition for a nuclear polynomial to be 1-dominated.
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COROLLARY 12. Let P ∈PN.
mE; F/, so it satisfies(1) and(2). Suppose

∞∑
n=1

‖x∗
n‖‖yn‖1=m < ∞:

ThenP is 1-dominated.

PROOF. Since P is nuclear, by Proposition6, it admits a factorization through a
diagonal polynomialM½ ∈P.m`∞; `1/, where

½n = ‖x∗
n‖m‖yn‖ .n ∈ N/:

By Theorem11, M½ is 1-dominated. By [15, Theorem 9],P is 1-dominated.

The authors are grateful to the referee for carefully reading the manuscript.
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