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Abstract

Let T be a bounded linear operator acting on a Hilbert spaceH . The B-Weyl spectrum ofT is the set
¦BW.T / of all ½ ∈ C such thatT − ½I is not aB-Fredholm operator of index 0. LetE.T/ be the set
of all isolated eigenvalues ofT . The aim of this paper is to show that ifT is a hyponormal operator,
thenT satisfies generalized Weyl’s theorem¦BW.T/ = ¦ .T/\E.T /, and theB-Weyl spectrum¦BW.T/
of T satisfies the spectral mapping theorem. We also consider commuting finite rank perturbations of
operators satisfying generalized Weyl’s theorem.
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1. Introduction

Let X be a Banach space and letL.X/ be the Banach algebra of bounded linear
operators acting on a Banach spaceX. For T ∈ L.X/, we denote byN.T/ the null
space ofT , byÞ.T/ the nullity ofT , by R.T/ the range ofT and byþ.T/ its defect. If
bothÞ.T/ andþ.T/ are finite, thenT is called aFredholm operatorand theindex ofT
is defined by ind.T/ = Þ.T/−þ.T/: In this case it is well known that the rangeR.T/
of T is closed inX. Now for each nonnegative integern defineTn to be the restriction
of T to R.Tn/ viewed as a map fromR.Tn/ into R.Tn/ (in particularT0 = T ). If for
somen the spaceR.Tn/ is closed andTn is a Fredholm operator, thenT is called a
B-Fredholm operator[2, Definition 2.2]. In this case, by [2, Proposition 2.1],Tm is a
Fredholm operator and ind.Tm/ = ind.Tn/ for eachm ≥ n. This remark leads to the
following definition:
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DEFINITION 1.1. Let T ∈ L.X/ be aB-Fredholm operator and letn be any integer
such thatTn is a Fredholm operator. Then theindex ind.T/ of T is defined as the
index of the Fredholm operatorTn.

In particular ifT is a Fredholm operator we find the usual definition of the index.
Let B F.X/ be the class of allB-Fredholm operators. In [2] the first author studied

this class of operators and proved [2, Theorem 2.7] that an operatorT ∈ L.X/ is a
B-Fredholm operator if and only ifT = Q ⊕ F , whereQ is a nilpotent operator and
F is a Fredholm operator.

It is apparent from [6] that the concept of Drazin invertibility plays an important
role for the class ofB-Fredholm operators. IfA is an algebra with a unit 1, following
[16] we say that an elementx of A is Drazin invertibleif there is an elementb of A
and a nonnegative integerk such that

xkbx = xk; bxb= b; xb = bx:(1)

Recall that the concept of Drazin invertibility was originally introduced by Drazin in
[9] where elements satisfying relation (1) are called pseudo-invertible elements. The
Drazin spectrumof a ∈ A is defined by

¦D.a/ = {½ ∈ C : a − ½1 is not Drazin invertible}:
In the case of a bounded linear operatorT acting on a Banach spaceX, it is well

known thatT is Drazin invertible if and only if it has a finite ascent and descent
(Definition 2.1); this is also equivalent to the fact thatT = U ⊕ V , whereU is an
invertible operator andV is nilpotent. (See [16, Proposition 6] and [12, Corollary 2.2].)
In [6, Theorem 3.4] it is shown thatT is a B-Fredholm operator if and only if its
projection in the algebraL.X/=F0.X/ is Drazin invertible, whereF0.X/ is the ideal
of finite rank operators in the algebraL.X/ of bounded linear operators acting onX.
In [4], B-Weyl operators andB-Weyl spectrum were defined as follows:

DEFINITION 1.2. Let T ∈ L.X/. Then T is called aB-Weyl operatorif it is a
B-Fredholm operator of index 0; theB-Weyl spectrum¦BW.T/ of T is defined by
¦BW.T/ = {½ ∈ C : T − ½I is not aB-Weyl operator}.

In the case of a normal operatorT acting on a Hilbert spaceH , the first author proved
in [4, Theorem 4.5] that¦BW.T/ = ¦.T/\E.T/, whereE.T/ is the set of all isolated
eigenvalues ofT , which gives a generalization of the classical Weyl’s theorem. Recall
that the classical Weyl’s theorem [18] asserts that ifT is a normal operator acting on a
Hilbert spaceH , then the Weyl spectrum¦W.T/ is the set of all points in¦.T/ except
the isolated eigenvalues of finite multiplicity, that is¦W.T/ = ¦.T/\E0.T/, where
E0.T/ is the set of isolated eigenvalues of finite multiplicity, and¦W.T/ is theWeyl
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spectrum ofT , that is, the set of all½ ∈ C such that½I − T is not a Fredholm operator
of index 0.

In his paper [1], Barnes considered version II of Weyl’s theorem (called also
Browder’s theorem in [8]):

What conditions onT imply thatT satisfies¦W.T/ = ¦.T/ \50.T/, where50.T/
is the set of poles of the resolvent ofT of finite rank?

Recall that an isolated point½ of the spectrum¦.T/ of T is a pole of the resolvent
of T of finite rank if the spectral projection associated to the set{½} is of finite rank.

In [5] it is shown that if T satisfies generalized Weyl’s theorem¦BW.T/ =
¦.T/\E.T/, then it satisfies Weyl’s theorem¦W.T/ = ¦.T/\E0.T/, and if it satisfies
version II of generalized Weyl’s theorem,¦BW.T/ = ¦.T/\5.T/, then it satisfies
version II of Weyl’s theorem,¦W.T/ = ¦.T/\50.T/, where50.T/ is the set of the
poles of the resolvent ofT of finite rank.

The aim of this paper is to consider generalized Weyl’s theorem for hyponormal
operators and to consider finite rank commuting perturbations for operators satisfying
generalized Weyl’s theorem. In the second section we show that ifT is a hyponormal
operator acting on a Hilbert spaceH , thenT satisfies generalized Weyl’s theorem
¦BW.T/ = ¦.T/\E.T / and theB-Weyl spectrum¦BW.T/ of T satisfies the spectral
mapping theorem.

Moreover, if f is an analytic function defined on a neighbourhood of the spectrum
¦.T/ of T , then we show thatf.T/ satisfies generalized Weyl’s theorem, that is
¦BW. f.T// = ¦. f.T//\E. f.T//. An analoguous result was obtained in the case of
Weyl’s spectrum by Oberai in [15], W. Y. Lee and S. H. Lee in [14], respectively in
the case wheref is a polynomial orf is an analytic function.

In the third section we consider an operatorT satisfying Weyl’s theorem, a finite
rank operatorF , and we give a necessary and sufficient condition forT + F to satisfy
Weyl’s theorem. This result gives an improvement of Oberai’s result [15, Theorem 4].

Moreover, if T satisfies generalized Weyl’s theorem andF commutes withT ,
we give a necessary and sufficient condition forT + F to satisfy generalized Weyl’s
theorem. Furthermore we show that generalizedWeyl’s theorem holds forT +F when
T is an isoloid or a quasinilpotent operator satisfying generalized Weyl’s theorem and
F is a finite rank operator commuting withT .

2. Generalized Weyl’s theorem for hyponormal operators

First we recall the following definition:

DEFINITION 2.1. Let T ∈ L.X/, n ∈ N and let

cn.T/ = dim R.Tn/=R.Tn+1/; c′
n.T/ = dim N.Tn+1/=N.T n/:
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Then thedescent ofT is defined by

Ž.T/ = inf{n : cn.T/ = 0} = inf{n : R.Tn/ = R.Tn+1/};

and theascent ofT is defined by

a.T/ = inf{n : c′
n.T/ = 0} = inf{n : N.Tn/ = N.Tn+1/};

with inf ∅ = ∞.

For T ∈ L.X/, let ¦B F.T/ = {½ ∈ C : T − ½I is not aB-Fredholm operator} be
the B-Fredholm spectrum ofT and²B F.T/ = C \ ¦B F.T/ the B-Fredholm resolvent
set ofT .

DEFINITION 2.2. Let T ∈ L.X/. We will say thatT is of stable sign indexif for
each½;¼ ∈ ²B F.T/, ind.T − ½I / and ind.T − ¼I / have the same sign.

Recall that an operatorT ∈ L.H / on a Hilbert spaceH is hyponormal if
T∗T − T T∗ ≥ 0.

PROPOSITION2.3. Let H be a Hilbert space and letT ∈ L.H / be a hyponormal
operator. ThenT is of stable sign index.

PROOF. Let T be a hyponormal operator. Then for allx ∈ H we have‖T x‖2 ≥
‖T∗x‖2. So N.T/ ⊂ N.T∗/ = R.T/⊥. SinceN.T 2/=N.T/ ' N.T/ ∩ R.T/, then
N.T2/ = N.T/. Moreover, ifT is also aB-Fredholm operator, then there exists an
integern such thatR.Tn/ is closed and such thatTn : R.Tn/ → R.Tn/ is a Fredholm
operator. We have

ind.T/ = ind.Tn/ = dim N.T/ ∩ R.Tn/− dim R.Tn/=R.Tn+1/

= −dim R.T n/=R.Tn+1/:

So ind.T/ ≤ 0.
Further, if½ ∈ ²B F.T/, thenT − ½I is a B-Fredholm operator, andT − ½I is also

a hyponormal operator. From the preceding argument, we have ind.T − ½I / ≤ 0.
ThereforeT is of stable sign index.

THEOREM 2.4. Let X be a Banach space, letT ∈ L.X/ be of stable sign index and
let f be a function analytic in a neighbourhood of the usual spectrum¦.T/ of T.
Then f.¦BW.T// = ¦BW. f.T//.
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PROOF. If ½ =∈ ¦BW. f.T//, then f.T/ − ½I is a B-Fredholm operator of index 0.
So we can writef.T/ − ½I = .T − ¼1 I / · · · .T − ¼r I /g.T/, where¼1; : : : ; ¼r are
complex scalars andg is an analytic function nonvanishing on the spectrum¦.T/
of T . In particularg.T/ is invertible. Sincef.T/ − ½I is a B-Fredholm operator,
from [2, Theorem 3.4] it follows that for eachi , 1 ≤ i ≤ r , T −¼i I is a B-Fredholm
operator. Moreover, since ind. f.T/ − ½I / = 0 andT is of stable sign index, then
from [4, Theorem 3.2] we have for eachi , 1 ≤ i ≤ r , ind.T − ¼i I / = 0. So for
eachi , 1 ≤ i ≤ r , ¼i =∈ ¦BW.T/. If ½ ∈ f.¦BW.T//, there exists¼ ∈ ¦BW.T/ such
that½ = f.¼/. Hence

0 = f.¼/− ½ = .¼− ¼1/ · · · .¼ − ¼r /g.¼/:

This implies that¼ ∈ {¼1; : : : ; ¼r }. So there existsi , 1 ≤ i ≤ r , such that¼i ∈
¦BW.T/, and this is a contradiction. Hence½ =∈ f.¦BW.T//.

Conversely suppose that½ =∈ f.¦BW.T//. If ½ ∈ ¦BW. f.T// then½ ∈ ¦. f.T// =
f.¦ .T//. Hence there exists¼ ∈ ¦.T/ such that½ = f.¼/. We have

f.T/− ½I = f.T/− f.¼/I = .T − ¼1I / · · · .T − ¼r I /g.T/;

where¼1; : : : ; ¼r are complex scalars andg is an analytic function nonvanishing
on the spectrum¦.T/ of T . Since f.T/ − ½I is not a B-Fredholm operator of
index 0, from [2, Theorem 3.4] and [4, Theorem 3.2] there existsÞ ∈ {¼1; : : : ; ¼r }
such thatT − Þ I is not a B-Fredholm operator of index 0. So½ = f.Þ/ and
½ ∈ f.¦BW.T//. This contradicts our assumption. Consequently,½ =∈ ¦BW. f.T// and
f.¦BW.T// = ¦BW. f.T//.

Since a hyponormal operator is of stable sign index, we have immediately the
following corollary.

COROLLARY 2.5. LetH be a Hilbert space, letT ∈ L.H /be a hyponormal operator
and let f be a function analytic in a neighbourhood of the usual spectrum¦.T/ of T.
Then f.¦BW.T// = ¦BW. f.T//.

It is proved in [4, Theorem 4.5] that a normal operator acting on a Hilbert spaceH
satisfies generalized Weyl’s theorem¦BW.T/ = ¦.T/\E.T/. In the following theo-
rem, we extend this result to the case of a hyponormal operator.

THEOREM 2.6. Let H be a Hilbert space and letT ∈ L.H / be a hyponormal
operator. ThenT satisfies generalized Weyl’s theorem¦BW.T/ = ¦.T/\E.T/.

PROOF. If ½ ∈ ¦.T/ and½ =∈ ¦BW.T/, thenT − ½I is a B-Fredholm operator of
index 0. From [4, Lemma 4.1], there exist two closed subspacesM; N of H such that
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H = M ⊕ N, andT − ½I = U ⊕ V with U = .T − ½I /|M a Fredholm operator of
index 0 andV = .T − ½I /|N a nilpotent operator.

Let S = T|M and I M = I |M . SinceT is a hyponormal operator, thenS is also a
hyponormal operator andS− ½I |M = U is a Fredholm operator of index 0.

If ½ ∈ ¦.S/, sinceS is a hyponormal operator, from [7, Theorem 3.1] we have
¦W.S/ = ¦.S/\E0.S/. As ½ =∈ ¦W.S/ we have½ ∈ E0.S/. In particular,½ is isolated
in ¦.S/. SinceT −½I = U ⊕ V = .S−½I|M/⊕ V , andV is a nilpotent operator, we
have¦.U /\{0} = ¦.T −½I /\{0}. Therefore 0 is isolated in¦.T −½I / or equivalently
½ is isolated in¦.T/. As½ ∈ E0.S/ then½ ∈ E.T/.

If ½ =∈ ¦.S/, thenT − ½I is Drazin invertible, and½ is isolated in¦.T/. Since
T − ½I is not invertible, we have½ ∈ E.T/.

Conversely, if½ ∈ E.T/, then½ is isolated in¦.T/. From [11, Theorem 7.1] we
haveX = M ⊕ N, whereM; N are closed subspaces ofX, U = .T − ½I /|M is an
invertible operator andV = .T − ½I /|N is a quasinilpotent operator. SinceT is a
hyponormal operator, thenV is also a hyponormal operator. AsV is quasinilpotent,
from [17, Chapter XI, Theorem 5.1] we haveV = 0. ThereforeT − ½I is Drazin
invertible. By [4, Lemma 4.1]T − ½I is a B-Fredholm operator of index 0.

Now we consider a Hilbert spaceH , an operatorT ∈ L.H /, and a functionf
analytic in a neighbourhood of the spectrum¦.T/ of T . In [14] it has been proved
that if T is a hyponormal operator, then Weyl’s theorem holds forf.T/. We prove now
that generalized Weyl’s theorem holds also forf.T/. We begin with the following
lemma.

LEMMA 2.7. Let X be a Banach space and letT ∈ L.X/. Then

¦. f.T//\E. f.T // ⊂ f [¦.T/\E.T/]:

PROOF. If ½ ∈ ¦. f.T//\E. f.T// then½ ∈ ¦. f.T// = f.¦ .T//.
(a) If ½ is not isolated inf.¦ .T//, then there exists an infinite sequence.¼n/n∈N ⊂

¦.T/ such that f.¼n/ → ½. Since¦.T/ is compact, we may assume that.¼n/n∈N
converges to¼0 in ¦.T/. It follows that¼0 is not isolated in¦.T/ and½ = f.¼0/ .
Hence½ ∈ f [¦.T/\E.T/].

(b) Now suppose that½ is isolated in f.¦ .T//. Since½ =∈ E. f.T//, then½ is not
an eigenvalue off.T/. We can write

f.T/− ½I = .T − ¼1I / · · · .T − ¼r I /g.T/;

where¼1; : : : ; ¼r are complex scalars andg.T/ is an invertible operator. As½ =∈
E. f.T//, then for all¼ ∈ {¼1; : : : ; ¼r },¼ is not an eigenvalue ofT . Since f.T/−½I
is not invertible, there exists¼ ∈ {¼1; : : : ; ¼r } such thatT − ¼I is not invertible.
Hence f.¼/ = ½ and½ ∈ f [¦.T/\E.T /].
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DEFINITION 2.8 (See [15]). Let X be a Banach space. An operatorT ∈ L.X/ is
said to be anisoloid if iso¦.T/ ⊆ E.T/, where iso¦.T/ is the set of isolated points
in ¦.T/.

LEMMA 2.9. Let X be a Banach space and letT ∈ L.X/. If T is an isoloid, then
¦. f.T//\E. f.T // = f [¦.T/\E.T/].

PROOF. Let us prove thatf [¦.T/\E.T/] ⊂ ¦. f.T//\E. f.T //. If ½ ∈ ¦. f.T// ∩
E. f.T//, then f.T/−½I = .T −¼1 I /m1 · · · .T −¼r I /mr g.T/, wherem1; : : : ;mr are
integers,¼1; : : : ; ¼r are complex scalars,g.T/ is an invertible operator, and¼i 6= ¼ j

for i 6= j . Since f.T/ − ½I is not invertible, there exists¼ ∈ {¼1; : : : ; ¼r } such
that ¼ ∈ ¦.T/. Since½ is isolated in¦. f.T//, ¼ is isolated in¦.T/. Hence
½ = f.¼/ =∈ f [¦.T/\E.T/]. Thereforef [¦.T/\E.T/] ⊂ ¦. f.T//\E. f.T //. From
Lemma2.7we know that¦. f.T//\E. f.T// ⊂ f [¦.T/\E.T /]. Hence

¦. f.T//\E. f.T // = f [¦.T/\E.T/].

THEOREM 2.10. Let X be a Banach space, letT ∈ L.X/ be an isoloid operator
which satisfies generalized Weyl’s theorem, let f be a function analytic in a neighbour-
hood of the spectrum¦.T/ of T. Then generalized Weyl’s theorem holds forf.T/ if
and only if f.¦BW.T// = ¦BW. f.T//.

PROOF. Since T is an isoloid, ¦. f.T//\E. f.T // = f [¦.T/\E.T/]. More-
over, as generalized Weyl’s theorem holds forT , ¦BW.T/ = ¦.T/\E.T/. Hence
f.¦BW.T// = f [¦.T/\E.T/] = ¦. f.T//\E. f.T //. So generalized Weyl’s theorem
holds for f.T/ if and only if f.¦BW.T// = ¦BW. f.T//.

COROLLARY 2.11. Let H be a Hilbert space, letT ∈ L.H / be a hyponormal
operator and let f be a function analytic in a neighbourhood of the spectrum¦.T/ of
T. Then f.T/ satisfies generalized Weyl’s theorem¦BW. f.T// = ¦. f.T//\E. f.T //.

PROOF. A hyponormal operator on a Hilbert space satisfies generalized Weyl’s
theorem and it is well known that a hyponormal operator is an isoloid. Moreover,
from Theorem2.4we have¦BW. f.T// = f.¦BW.T//. From Theorem2.10, it follows
that f.T/ satisfies generalized Weyl’s theorem.

3. Finite rank perturbation and generalized Weyl’s theorem

In this part we consider an operatorT satisfying generalized Weyl’s theorem and
a finite rank operatorF commuting withT , and we give a necessary and sufficient
condition for T + F to satisfy generalized Weyl’s theorem. Moreover, we obtain
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similar results as those obtained in the case of Weyl’s theorem in [10, 13] and [15].
We begin with the case of Weyl’s theorem and we give an improvement of Oberai’s
Theorem [15, Theorem 4].

THEOREM 3.1. Let X be a Banach space and letT ∈ L.X/. If T satisfies Weyl’s
theorem andF is a finite rank operator inL.X/, thenT + F satisfies Weyl’s theorem
if and only if50.T + F/ = E0.T + F/.

PROOF. If T + F satisfies Weyl’s theorem, then from [1, Corollary 5], we have
50.T + F/ = E0.T + F/. Conversely if50.T + F/ = E0.T + F/, sinceT satisfies
Weyl’s theorem, then from [1, Corollary 5] we haveE0.T/ = 50.T/. SinceF is
a finite rank operator, from [4, Theorem 4.3] we have¦W.T + F/ = ¦W.T/. If F
commutes withT , we have also¦B.T + F/ = ¦B.T/, where¦B.T/ is the Browder
spectrum ofT (see [1]). Since T satisfies Weyl’s theorem, then¦W.T + F/ =
¦W.T/ = ¦B.T/ = ¦B.T + F/. As we have50.T + F/ = E0.T + F/, then from [1,
Corollary 5],T + F satisfies Weyl’s theorem. IfF does not commute withT , then
we use the same argument as Oberai in [15, Theorem 4].

THEOREM 3.2. Let X be a Banach space and letT ∈ L.X/. If T satisfies general-
ized Weyl’s theorem andF is a finite rank operator inL.X/ commuting withT, then
T + F satisfies generalized Weyl’s theorem if and only if5.T + F/ = E.T + F/.

PROOF. If T + F satisfies generalizedWeyl’s theorem, then from [3, Corollary 2.6],
we have5.T + F/ = E.T + F/. Conversely if5.T + F/ = E.T + F/, sinceT
satisfies generalized Weyl’s theorem, then¦BW.T/ = ¦D.T/. SinceF is a finite rank
operator, from [4, Theorem 4.3] we have¦BW.T/ = ¦BW.T + F/. As F commutes
with T , from [3, Theorem 2.7] we have¦D.T/ = ¦D.T + F/. So¦BW.T + F/ =
¦D.T + F/. Since5.T + F/ = E.T + F/, then from [3, Corollary 2.6]T + F
satisfies generalized Weyl’s theorem.

The following lemma is useful in the proof of the next two theorems.

LEMMA 3.3 ([13, Lemma 2.1]).Let T ∈ L.X/. If F ∈ L.X/ is a finite rank
operator, thendim N.T/ < ∞ ⇐⇒ dim N.T + F/ < ∞. Moreover, ifF commutes
with T, then½ ∈ acc¦.T/ ⇐⇒ ½ ∈ acc¦.T + F/, whereacc¦.T/ is the set of the
accumulation points of¦.T/.

THEOREM 3.4. LetT ∈ L.X/ be an isoloid operator andF ∈ L.X/ be a finite rank
operator commuting withT. If T satisfies generalized Weyl’s theorem, thenT + F
satisfies generalized Weyl’s theorem.
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PROOF. In view of Theorem3.2it is enough to show that5.T + F/ = E.T + F/.
Since5.T + F/ ⊂ E.T + F/ is always true, we only have to prove that5.T + F/ ⊃
E.T + F/.

If ½ ∈ E.T + F/, then½ is isolated in¦.T + F/ and according to Lemma3.3,
½ is isolated in¦.T/. SinceT satisfies generalized Weyl’s theorem, it follows that
½ ∈ E.T/ = 5.T/. Finally since5.T/ = 5.T + F/ we have½ ∈ 5.T + F/.

REMARK 3.5. Let T ∈ L.X/. If T has no eigenvalues, thenT satisfies generalized
Weyl’s theorem. To prove this, assume that½ ∈ ¦.T/; for simplicity assume½ = 0.
If 0 =∈ ¦BW.T/, then T is a B-Fredholm operator of index 0. Hence there is an
integern, such thatR.Tn/ is closed and ind.T/ = ind.Tn/ = dim N.T/ ∩ R.Tn/ −
dim R.Tn/=R.Tn+1/ = 0. Since N.T/ = 0, then R.Tn/ = R.Tn+1/ and then
X = R.T/. SoT is invertible, and this is a contradiction with our hypothesis. Hence
¦BW.T/ = ¦.T/ andT satisfies generalized Weyl’s theorem.

PROPOSITION3.6. Let X be a Banach space and letT ∈ L.X/. If T satisfies gen-
eralized Weyl’s theorem andN is a finite rank nilpotent operator inL.X/ commuting
with T, thenT + N satisfies generalized Weyl’s theorem.

PROOF. Let us prove that if½ is an eigenvalue ofT then½ is also an eigenvalue of
T + N. We may assume that½ = 0. Then there existsx 6= 0 andm ∈ N such that
T x = 0 andNm = 0. We have

.T + N/mx =
m∑

k=0

(
m

k

)
T k Nm−kx = 0:

So there existsp ∈ N, p ≤ m, such that.T + N/px 6= 0 and that.T + N/.T +
N/px = 0. Hence 0 is an eigenvalue ofT + N andE.T/ ⊂ E.T + N/. By symmetry
we haveE.T/ = E.T + N/. If ½ =∈ ¦BW.T/, thenT − ½I is B-Fredholm of index 0.
From [4, Proposition 3.3], sinceN is of finite rank, it follows thatT + N − ½I is
also aB-Fredholm operator of index 0. So½ =∈ ¦BW.T + N/. By symmetry we have
¦BW.T + N/ = ¦BW.T/. Since¦.T + N/ = ¦.T/, thenT + N satisfies generalized
Weyl’s theorem.

EXAMPLE 1 ([15, Example 2]).Let H = `2 and letT and N in L.H / be defined
by

T.x1; x2; x3; : : : / = .0; x1=2; x2=3; : : : /;

N.x1; x2; x3; : : : / = .0;−x1=2;0;0; : : : /:

SinceT has no eigenvalues, from the Remark3.5the operatorT satisfies generalized
Weyl’s theorem. So from [5, Theorem 3.9]T satisfies also Weyl’s theorem. AlsoN



300 M. Berkani and A. Arroud [10]

is a nilpotent operator of finite rank. But from [15, Example 2], the operatorT + N
does not satisfy Weyl’s theorem and so from [5, Theorem 3.9] it does not satisfy
generalized Weyl’s theorem either. This example shows that Proposition3.6may not
hold if N does not commute withT .

REMARK 3.7. Let T ∈ L.X/ be a quasinilpotent operator andF ∈ L.X/ be a finite
rank operator commuting withT . If T is injective thenF is nilpotent. To see this,
and under these conditions,T F is a finite rank quasinilpotent operator, thereforeT F
is a nilpotent operator. AsT is injective, thenF is also a nilpotent operator.

THEOREM 3.8. Let T ∈ L.X/ be a quasinilpotent operator andF ∈ L.X/ a finite
rank operator commuting withT. If T satisfies generalized Weyl’s theorem, then
T + F satisfies generalized Weyl’s theorem.

PROOF. If T is injective, then by Remark3.7, F is a nilpotent operator and the
result follows from Proposition3.6.

SupposeT is not injective. SinceT satisfies generalized Weyl’s theorem, then by
[5, Theorem 3.9 ],T also satisfies Weyl’s theorem. Hence¦W.T/ = ¦.T/ \ E0.T/.
As T is a quasinilpotent operator, then¦W.T/ = {0}. It follows that E0.T/ = ∅
and, sinceT is not injective, dimN.T/ = ∞. This implies by Lemma3.3 that
dim N.T + F/ = ∞. It is easily seen that¦.T + F/ = ¦.F/ = {0; ½1; : : : ; ½k},
where½i , i = 1; : : : ; k, are the non-zero scalars of the spectrum ofF when they exist.
We have alsoE.T + F/ = {0; ½1; : : : ; ½k}.

Since

¦BW.T/ = ¦BW.T + F/ and ¦BW.T/ = ¦.T/ \ E.T/ = ∅;
we have¦BW.T + F/ = ¦.T + F/ \ E.T + F/.

LEMMA 3.9. LetT ∈ L.X/, let X = M ⊕ N whereM; N are two closed subspaces
of X, and letU = T|M, V = T|N. If T is a B-Fredholm operator, thenU;V are
B-Fredholm operators.

PROOF. Let us prove thatV is a B-Fredholm operator. LetP be the projection of
X ontoN alongM . ClearlyP is aB-Fredholm operator and commutes withT . Then
by [6, Corollary 3.5],T P is a B-Fredholm operator. Consequently there is an integer
n such thatR..T P/n/ is closed and.T P/n : R..T P/n/ → R..T P/n/ is Fredholm.

SinceR..T P/n/ = R.Vn/ and.T P/n = Vn, thenV is aB-Fredholm operator.

EXAMPLE 2. Let Sbe an injective quasinilpotent operator which is not nilpotent on
the Hilbert spacè2. We defineT on`2⊕`2 by T = I ⊕SwhereI is the identity oǹ 2.
It follows easily that¦.T/ = {0;1} andE.T/ = {1}. Let us prove that¦BW.T/ = {0}.
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We haveT − .I ⊕ I / = 0 ⊕ .S− I / and sinceS− I is an invertible operator,
T − .I ⊕ I / is a B-Fredholm operator of index 0, and 1=∈ ¦BW.T/.

Suppose thatT is aB-Fredholm operator. Then by Lemma3.9, S is a B-Fredholm
operator. From [2, Theorem 2.7], there exist two closedS-invariant subspaces of`2,
M and N such that̀ 2 = M ⊕ N andS = U ⊕ V whereU = S|M is nilpotent and
V = S|N is invertible.

If m is a sufficiently large integer, we haveU m = 0 andSm = U m ⊕ Vm = 0⊕ Vm.
Hence¦.Vm/ ⊂ ¦.Sm/ = {0}. But sinceV is invertible, we haveN = 0 and then
S = U is nilpotent, which contradicts the hypothesis onS. So¦BW.T/ = {0} and
¦BW.T/ = ¦.T/\E.T/. HenceT satisfies generalized Weyl’s theorem.

We define the operatorK on`2 by K .x1; x2; : : : / = .−x1;0;0; : : : / andF = K ⊕0
on `2 ⊕ `2. Then F is a finite rank operator and we have¦.T + F/ = {0;1} and
E.T + F/ = {0;1}.

As ¦BW.T + F/ = ¦BW.T/ = {0}, thenT + F does not satisfy generalized Weyl’s
theorem.
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