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Abstract

Let T be a bounded linear operator acting on a Hilbert sgdcelhe B-Weyl spectrum ofT is the set
osw(T) of all A € € such thafT — Al is not aB-Fredholm operator of index 0. L&(T) be the set

of all isolated eigenvalues af. The aim of this paper is to show thatTif is a hyponormal operator,
thenT satisfies generalized Weyl's theoremmw (T) = o (T)\E(T), and theB-Weyl spectrunvgw(T)

of T satisfies the spectral mapping theorem. We also consider commuting finite rank perturbations of
operators satisfying generalized Weyl's theorem.
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1. Introduction

Let X be a Banach space and letX) be the Banach algebra of bounded linear
operators acting on a Banach spateFor T € L(X), we denote byN(T) the null
space ofT, by «(T) the nullity of T, by R(T) the range o and byg(T) its defect. If
botha (T) andB(T) are finite, the is called aFredholm operatoand thendex of T

is defined by indT) = «(T) — B(T). In this case it is well known that the ran§&T)
of T is closed inX. Now for each nonnegative integedefineT, to be the restriction
of T to R(T") viewed as a map frorR(T") into R(T") (in particularTo = T). If for
somen the spaceR(T") is closed and, is a Fredholm operator, thehis called a
B-Fredholm operatoif 2, Definition 2.2]. In this case, by?[ Proposition 2.1]T, is a
Fredholm operator and iigd,,) = ind(T,,) for eachm > n. This remark leads to the
following definition:
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DerFINITION 1.1. Let T € L(X) be aB-Fredholm operator and laetbe any integer
such thatT, is a Fredholm operator. Then tivedexind(T) of T is defined as the
index of the Fredholm operatdy,.

In particular if T is a Fredholm operator we find the usual definition of the index.

Let BF(X) be the class of aBB-Fredholm operators. 112] the first author studied
this class of operators and provel] Theorem 2.7] that an operatdre L(X) is a
B-Fredholm operator if and only f = Q & F, whereQ is a nilpotent operator and
F is a Fredholm operator.

It is apparent from§] that the concept of Drazin invertibility plays an important
role for the class oB-Fredholm operators. i is an algebra with a unit 1, following
[16] we say that an elememntof A is Drazin invertibleif there is an elemertt of A
and a nonnegative integkisuch that

(1) xbx = x¥, bxb=b, xb=bx.

Recall that the concept of Drazin inveiitity was originally introduced by Drazin in
[9] where elements satisfying relatioh) @re called pseudo-invertible elements. The
Drazin spectrunof a € Ais defined by

op(@) = {A € C:a— Al is not Drazin invertiblg

In the case of a bounded linear operafoacting on a Banach spacg it is well
known thatT is Drazin invertible if and only if it has a finite ascent and descent
(Definition 2.1); this is also equivalent to the fact thait= U & V, whereU is an
invertible operator an¥l is nilpotent. (Seel6, Proposition 6] andl2, Corollary 2.2].)

In [6, Theorem 3.4] it is shown thal is a B-Fredholm operator if and only if its
projection in the algebré (X)/Fqo(X) is Drazin invertible, wheré,(X) is the ideal
of finite rank operators in the algebta X) of bounded linear operators acting &n
In [4], B-Weyl operators an@-Weyl spectrum were defined as follows:

DerFINITION 1.2. Let T € L(X). ThenT is called aB-Weyl operatorif it is a
B-Fredholm operator of index 0; thB-Weyl spectrunwzw(T) of T is defined by
osw(T) = {1 € C: T — Al is not aB-Weyl operatoy.

Inthe case of a normal operaibacting on a Hilbert spadd, the first author proved
in [4, Theorem 4.5] thadgw (T) = o (T)\E(T), whereE(T) is the set of all isolated
eigenvalues of , which gives a generalization of the classical Weyl's theorem. Recall
that the classical Weyl's theorerh] asserts that il is a normal operator acting on a
Hilbert spaceH, then the Weyl spectrumy (T) is the set of all points ia (T) except
the isolated eigenvalues of finite multiplicity, thatdg(T) = o (T)\Ex(T), where
Eo(T) is the set of isolated eigenvalues of finite multiplicity, ang(T) is the Weyl
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spectrum off, that s, the setof all € C such thai| — T is not a Fredholm operator
of index 0.

In his paper 1], Barnes considered version |l of Weyl's theorem (called also
Browder’s theorem ing)):

What conditions off imply thatT satisfiessw (T) = o (T) \ ITo(T), wherelly(T)
is the set of poles of the resolventlobf finite rank?

Recall that an isolated pointof the spectruna (T) of T is a pole of the resolvent
of T of finite rank if the spectral projection associated to the{sgts of finite rank.

In [5] it is shown that if T satisfies generalized Weyl's theoremy(T) =
o (TH\E(T), then it satisfies Weyl's theores, (T) = o (T)\Eq(T), and if it satisfies
version |l of generalized Weyl's theoreragw(T) = o (T)\II(T), then it satisfies
version |l of Weyl's theoremgy, (T) = o (T)\IIo(T), wherelly(T) is the set of the
poles of the resolvent o of finite rank.

The aim of this paper is to consider generalized Weyl's theorem for hyponormal
operators and to consider finite rank commuting perturbations for operators satisfying
generalized Weyl's theorem. In the second section we show thasif hyponormal
operator acting on a Hilbert spate, thenT satisfies generalized Weyl's theorem
osw(T) = o(T)\E(T) and theB-Weyl spectrumgy (T) of T satisfies the spectral
mapping theorem.

Moreover, if f is an analytic function defined on a neighbourhood of the spectrum
o(T) of T, then we show thaff(T) satisfies generalized Weyl's theorem, that is
osw(f(T)) = o (f(T)\E(f(T)). An analoguous result was obtained in the case of
Weyl's spectrum by Oberai inlp], W. Y. Lee and S. H. Lee in14], respectively in
the case wheré is a polynomial orf is an analytic function.

In the third section we consider an operatosatisfying Weyl's theorem, a finite
rank operatof~, and we give a necessary and sufficient conditionTfer F to satisfy
Weyl's theorem. This result gives an improvement of Oberai’s regltTheorem 4].

Moreover, if T satisfies generalized Weyl's theorem aRdcommutes withT,
we give a necessary and sufficient conditionTo# F to satisfy generalized Weyl's
theorem. Furthermore we show that generalized Weyl's theorem holdis#ér when
T is an isoloid or a quasinilpotent operator satisfying generalized Wey!'s theorem and
F is afinite rank operator commuting with

2. Generalized Weyl's theorem for hyponormal operators

First we recall the following defition:

DEFINITION 2.1. Let T € L(X), n € N and let

Co(T) = dimR(T"/R(T™), ¢ (T) =dim N(T"™™)/N(T").
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Then thedescent ofl is defined by

8(T) =inf{n: c,(T) =0} = inf{n: R(T") = R(T™)},
and theascent ofT is defined by

a(T) =inf{n: cy(T) = 0} = inf{n: N(T") = N(T")},
with inf ¥ = oo.

ForT € L(X), letoge(T) = {» € C: T — Al is not aB-Fredholm operatgrbe
the B-Fredholm spectrum of andpgr(T) = C\ ogr(T) the B-Fredholm resolvent
set ofT.

DEFINITION 2.2. Let T € L(X). We will say thatT is of stable sign indexf for
eachi, u € pge(T), ind(T — Al) and indT — wul) have the same sign.

Recall that an operatof € L(H) on a Hilbert spaceH is hyponormalif
T*T-TT*>0.

ProPOSITION2.3. Let H be a Hilbert space and Ief € L(H) be a hyponormal
operator. TherT is of stable sign index.

PROOF. Let T be a hyponormal operator. Then for a&lle H we have|| T x|? >
IT*x[12. SoN(T) c N(T*) = R(T)L. SinceN(T?2)/N(T) ~ N(T) N R(T), then
N(T2) = N(T). Moreover, ifT is also aB-Fredholm operator, then there exists an
integern such thatR(T") is closed and such thag, : R(T") — R(T") is a Fredholm
operator. We have

ind(T) = ind(T,,)) = dimN(T) N R(T") — dim R(T")/R(T™™)
= —dimR(T")/R(T").

SoindT) <O0.

Further, ifA € pge(T), thenT — Al is aB-Fredholm operator, antl — A1 is also
a hyponormal operator. From the preceding argument, we havé& irdil) < 0.
ThereforeT is of stable sign index. O

THEOREM 2.4. Let X be a Banach space, l&t € L (X) be of stable sign index and
let f be a function analytic in a neighbourhood of the usual spectsuif) of T.
Then f(oaw(T)) = oaw(f(T)).
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PrOOF. If A ¢ ogw(f(T)), thenf(T) — Al is a B-Fredholm operator of index O.
So we can writef(T) — Al = (T — pql)--- (T — . 1g(T), whereuy, ..., u, are
complex scalars and is an analytic function nonvanishing on the spectra(i)
of T. In particularg(T) is invertible. Sincef(T) — Al is a B-Fredholm operator,
from [2, Theorem 3.4] it follows that for eadhl <i <r, T — ;| is aB-Fredholm
operator. Moreover, since iGd(T) — A1) = 0 andT is of stable sign index, then
from [4, Theorem 3.2] we have for eachl <i <r,ind(T — ;1) = 0. So for
eachi, 1 <i <r, ui ¢ ogw(T). If A € f(ogw(T)), there existgt € ogw(T) such
thath = f(u). Hence

0= f(w) —A=(u—p)- (- u)9(p).

This implies that € {4, ..., u}. So there exists, 1 < i < r, such thatw; €
ogw(T), and this is a contradiction. Henzez f(ogw(T)).

Conversely suppose that¢ f(ogw(T)). If A € ogw(f(T)) theni € o (f(T)) =
f(o(T)). Hence there existg € o (T) such that. = f(r). We have

f(T) = Al = (M) = fw! =T —pa) - (T = DY),

whereuy, ..., u, are complex scalars amglis an analytic function nonvanishing
on the spectruna (T) of T. Since f(T) — Al is not a B-Fredholm operator of
index 0, from R, Theorem 3.4] and4, Theorem 3.2] there exists € {u1, ..., i}
such thatT — «l is not a B-Fredholm operator of index 0. Sb = f(«) and
A € f(ogw(T)). This contradicts our assumption. Consequentky,osw( f(T)) and
f(oaw(T)) = osw(f(T)). U

Since a hyponormal operator is of stable sign index, we have immediately the
following corollary.

COROLLARY 2.5. LetH be aHilbertspace, lef € L(H) be ahyponormal operator
and let f be a function analytic in a neighbourhood of the usual specw) of T.
Then f(ogw(T)) = osw(f(T)).

Itis proved in i, Theorem 4.5] that a normal operator acting on a Hilbert spphce
satisfies generalized Weyl's theorem,(T) = o (T)\E(T). In the following theo-
rem, we extend this result to the case of a hyponormal operator.

THEOREM2.6. Let H be a Hilbert space and lef € L(H) be a hyponormal
operator. TherT satisfies generalized Weyl's theoregy (T) = o (T)\E(T).

PrROOF. If A € o(T) andi ¢ ogw(T), thenT — Al is a B-Fredholm operator of
index 0. From 4§, Lemma 4.1], there exist two closed subspadedN of H such that
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H=M@&N,andT —Al =U &V withU = (T — A1),y a Fredholm operator of
index 0 anav = (T — A1),y a nilpotent operator.

LetS= Ty andly = ly. SinceT is a hyponormal operator, thehis also a
hyponormal operator an8— Al = U is a Fredholm operator of index 0.

If A € 0(9), sinceSis a hyponormal operator, fron7,[ Theorem 3.1] we have
ow(S) = 0 (S\Eo(S). As i ¢ ow(S) we haver € Eo(S). In particular,i is isolated
ino(S). SinceT —Al =U @V = (S—1l,y) @V, andV is a nilpotent operator, we
haveo (U)\{0} = o (T —A1)\{0}. Therefore Oisisolated im(T —Al) or equivalently
Aisisolated ino (T). Asi € Eqo(S) theni € E(T).

If A ¢ 0(S), thenT — Al is Drazin invertible, and. is isolated ino (T). Since
T — Al is notinvertible, we have € E(T).

Conversely, ifh € E(T), thena is isolated ino (T). From [L1, Theorem 7.1] we
haveX = M @ N, whereM, N are closed subspaces¥f U = (T — A1)y is an
invertible operator an = (T — A1),y is a quasinilpotent operator. Sindeis a
hyponormal operator, thevi is also a hyponormal operator. Asis quasinilpotent,
from [17, Chapter XI, Theorem 5.1] we hawé = 0. ThereforeT — Al is Drazin
invertible. By (4, Lemma 4.1]T — 1| is a B-Fredholm operator of index O. O

Now we consider a Hilbert spade, an operato € L(H), and a functionf
analytic in a neighbourhood of the spectrar@il) of T. In [14] it has been proved
thatif T is a hyponormal operator, then Weyl's theorem holdsf{dr). We prove now
that generalized Weyl's theorem holds also fg). We begin with the following
lemma.

LEMMA 2.7. Let X be a Banach space and [€te L(X). Then
o (FMH\E(F(T)) C flo(THI\E(M)].

PROOF. If A € o (F(T)\E(f(T)) thenir € o (f(T)) = f(o(T)).

(a) If & is not isolated inf(o (T)), then there exists an infinite sequenEg)n.x C
o (T) such thatf(u,) — 4. Sinceo(T) is compact, we may assume that,)nen
converges tquo in o (T). It follows thatu, is not isolated ins (T) andi = (o) .
Hencex € flo(T)\E(T)].

(b) Now suppose that is isolated inf(o (T)). Sincei ¢ E(f(T)), thenx is not
an eigenvalue of (T). We can write

f(T) =l = (T —pal) -+ (T — e DY),

wherepu,, ..., ;u, are complex scalars argiT) is an invertible operator. A& ¢
E(f(T)), thenforallu € {u4, ..., i}, wis notan eigenvalue &f. Sincef(T) — Al

is not invertible, there exista € {u4, ..., u;} such thatT — ul is not invertible.
Hencef(u) = A andx € flo(T)\E(T)]. O
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DEFINITION 2.8 (See 19]). Let X be a Banach space. An operafore L(X) is
said to be aisoloid if isoo (T) € E(T), where isar (T) is the set of isolated points
ino(T).

LEMMA 2.9. Let X be a Banach space and [&te L(X). If T is an isoloid, then
o (FMH\E(F(T)) = flo(TI\E(M)].

PrOOF. Let us prove that [o (T)\E(T)] C o (f(TH\E(f(T)). If A € o (f(T)) N
E(f(T)), thenf(T) —Al = (T —pug )™ -+ (T — pu, 1)™g(T), wheremy, ..., m, are
integersy, ..., u, are complex scalarg(T) is an invertible operator, angd # u;
fori # j. Since f(T) — Al is not invertible, there exists € {u1,..., 1} such
thatu € o(T). Sincex is isolated ino (f(T)), u is isolated ino(T). Hence
A= f(un) ¢ flo(T)\E(T)]. Thereforef [o(T)\E(T)] C o (f(T)\E(f(T)). From
Lemma2.7we know thato (f(T))\E(f(T)) C flo(T)\E(T)]. Hence

o (FM\ET™)) = flo(M\EM)]. O

THEOREM 2.10. Let X be a Banach space, 18t € L(X) be an isoloid operator
which satisfies generalized Wey!'s theorem, let f be a function analytic in a neighbour-
hood of the spectrum (T) of T. Then generalized Weyl's theorem holds foF) if
and only if f(ogw(T)) = ogw(f(T)).

PrOOF. Since T is an isoloid, o (f(T)\E(f(T)) = flo(T)\E(T)]. More-
over, as generalized Weyl's theorem holds Tarogw(T) = o(T)\E(T). Hence
f(ogw(T)) = flo(M\E(T)] = o (f(TH\E(f(T)). So generalized Weyl's theorem
holds for f(T) if and only if f(ogw(T)) = ogw(f(T)). O

CoROLLARY 2.11. Let H be a Hilbert space, lef € L(H) be a hyponormal
operator and let f be a function analytic in a neighbourhood of the spectr(f) of
T. Thenf(T) satisfies generalized Wey!'s theoregy (f(T)) = o (f(T))\E(f(T)).

PrOOF. A hyponormal operator on a Hilbert space satisfies generalized Weyl's
theorem and it is well known that a hyponormal operator is an isoloid. Moreover,
from Theoren®.4we havergw(f(T)) = f(ogw(T)). From Theorem2.1Q it follows
that f(T) satisfies generalized Weyl's theorem. O

3. Finite rank perturbation and generalized Weyl's theorem

In this part we consider an operafbrsatisfying generalized Weyl's theorem and
a finite rank operatoF commuting withT, and we give a necessary and sufficient
condition forT + F to satisfy generalized Weyl's theorem. Moreover, we obtain
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similar results as those obtained in the case of Weyl's theoretOinlB] and [15].

We begin with the case of Weyl's theorem and we give an improvement of Oberai's

Theorem [L5, Theorem 4].

THEOREM3.1. Let X be a Banach space and l&t e L(X). If T satisfies Weyl's
theorem and- is a finite rank operator irL (X), thenT + F satisfies Weyl's theorem
if and only if ITo(T + F) = Eo(T + F).

PrOOF. If T + F satisfies Weyl's theorem, then frori, [Corollary 5], we have
[To(T + F) = Eo(T + F). Conversely iflTo(T + F) = Eo(T + F), sinceT satisfies
Weyl's theorem, then froml, Corollary 5] we haveEy(T) = T1g(T). SinceF is
a finite rank operator, fromd] Theorem 4.3] we havey (T + F) = ow(T). If F
commutes withT, we have als@g(T + F) = og(T), whereog(T) is the Browder
spectrum ofT (see []). Since T satisfies Weyl's theorem, themy(T + F) =
ow(T) = o0g(T) = op(T + F). Aswe havdly(T + F) = Eo(T + F), then from [L,
Corollary 5], T + F satisfies Weyl's theorem. F does not commute witfi, then
we use the same argument as Oberaill) Theorem 4]. O

THEOREM 3.2. Let X be a Banach space and [€te L(X). If T satisfies general-
ized Weyl's theorem and is a finite rank operator irl. (X) commuting withT, then
T + F satisfies generalized Weyl's theorem if and onBI{T + F) = E(T + F).

PrOOF. If T 4 F satisfies generalized Weyl's theorem, then fr@&rGorollary 2.6],
we havell(T + F) = E(T + F). Conversely ifTlI(T + F) = E(T + F), sinceT
satisfies generalized Weyl's theorem, theg, (T) = op(T). SinceF is a finite rank
operator, from4, Theorem 4.3] we havegw(T) = ogw(T + F). As F commutes
with T, from [3, Theorem 2.7] we havep (T) = op(T + F). Soogw(T + F) =
op(T + F). Sincell(T + F) = E(T + F), then from B, Corollary 2.6]T + F
satisfies generalized Weyl's theorem. O

The following lemma is useful in the proof of the next two theorems.

LEMMA 3.3 ([13, Lemma2.1]).Let T € L(X). If F € L(X) is a finite rank
operator, thedim N(T) < co <= dimN(T +F) < co. Moreover, ifF commutes
with T, theni € acco (T) <= A € acco (T + F), whereacco (T) is the set of the
accumulation points of (T).

THEOREM 3.4. LetT € L(X) be anisoloid operator an& € L(X) be afinite rank
operator commuting witil. If T satisfies generalized Weyl's theorem, tien- F
satisfies generalized Wey!'s theorem.
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PrOOF. In view of TheorenB.2it is enough to show thdld(T + F) = E(T + F).
Sincell(T + F) c E(T + F) is always true, we only have to prove tha{T + F) D
E(T+F).

If A € E(T 4+ F), thena is isolated ino (T + F) and according to Lemma.3,

A is isolated ino (T). SinceT satisfies generalized Weyl's theorem, it follows that
A€ E(T) =TI(T). Finally sincellI(T) = IT(T + F) we haver € TI(T + F). O

REMARK 3.5. LetT € L(X). If T has no eigenvalues, th@nsatisfies generalized
Weyl's theorem. To prove this, assume that o (T); for simplicity assume. = O.
If 0 ¢ ogw(T), thenT is a B-Fredholm operator of index 0. Hence there is an
integern, such thatR(T") is closed and in@l') = ind(T,)) = dimN(T) N R(T") —
dimR(T")/R(T™?Y) = 0. SinceN(T) = 0, thenR(T") = R(T"?) and then
X = R(T). SoT is invertible, and this is a contradiction with our hypothesis. Hence
osw(T) = o(T) andT satisfies generalized Weyl's theorem.

PROPOSITION3.6. Let X be a Banach space and [&te L(X). If T satisfies gen-
eralized Weyl's theorem an is a finite rank nilpotent operator ih (X) commuting
with T, thenT + N satisfies generalized Wey!'s theorem.

PrROOF. Let us prove that if. is an eigenvalue of thena is also an eigenvalue of
T + N. We may assume that= 0. Then there existg # 0 andm € N such that
Tx=0andN™ = 0. We have

m
T 4+ N)™ = m)TkN"‘kx=o.
(T+N) k; (k
So there existp € N, p < m, such thatT + N)Px £ 0 and thatT + N)(T +
N)Px = 0. Hence O is an eigenvalue®H N andE(T) ¢ E(T + N). By symmetry
we haveE(T) = E(T + N). If A ¢ ogw(T), thenT — Al is B-Fredholm of index 0.
From [4, Proposition 3.3], sincd is of finite rank, it follows thafT + N — Al is
also aB-Fredholm operator of index 0. So¢ osw(T + N). By symmetry we have
osw(T + N) = ogw(T). Sinces (T + N) = o(T), thenT + N satisfies generalized
Weyl's theorem. O

ExamvPLE 1 ([15 Example 2]).Let H = ¢, and letT and N in L(H) be defined
by
T(Xl, X2, X3, .. ) = (0, X1/2, X2/3, . ),
N(Xl, X2, X3, .. ) = (0, —X1/2, O, 0, )

SinceT has no eigenvalues, from the Remarkthe operatoil satisfies generalized
Weyl's theorem. So fromd, Theorem 3.9 satisfies also Weyl's theorem. Aldd
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is a nilpotent operator of finite rank. But frorhd, Example 2], the operatdr + N
does not satisfy Weyl's theorem and so froB Theorem 3.9] it does not satisfy
generalized Weyl's theorem either. This example shows that PropoSitionay not
hold if N does not commute witfi .

REMARK 3.7. LetT € L(X) be a quasinilpotent operator aRde L (X) be a finite
rank operator commuting witfi. If T is injective thenF is nilpotent. To see this,
and under these conditionEF is a finite rank quasinilpotent operator, therefore
is a nilpotent operator. A§ is injective, thenF is also a nilpotent operator.

THEOREM3.8. Let T € L(X) be a quasinilpotent operator arfel € L(X) a finite
rank operator commuting witi. If T satisfies generalized Weyl's theorem, then
T + F satisfies generalized Weyl's theorem.

PrOOF. If T is injective, then by RemarR.7, F is a nilpotent operator and the
result follows from PropositioB.6.

SupposeT is not injective. Sincd satisfies generalized Weyl's theorem, then by
[5, Theorem 3.9 | T also satisfies Weyl's theorem. Heneg(T) = o(T) \ Eo(T).
As T is a quasinilpotent operator, ther,(T) = {0}. It follows thatEy(T) = @
and, sinceT is not injective, difN(T) = oo. This implies by Lemma3.3 that
dimN(T + F) = oco. Itis easily seenthat (T + F) = o(F) = {0, Ay, ..., A},

wherej;,i =1, ..., k, are the non-zero scalars of the spectrurk e¥hen they exist.
We have als®&(T + F) = {0, A4, ..., Ayl
Since

ogw(T) =ogw(T + F) and ogw(T) =0 (T)\ E(T) =4,
we haveogw(T + F) = o (T + F) \ E(T + F). O

LEMMA 3.9. LetT € L(X), letX = M & N whereM, N are two closed subspaces
of X, and letU = Ty, V = Tn. If T is a B-Fredholm operator, thet, V are
B-Fredholm operators.

PROOF. Let us prove thaV is a B-Fredholm operator. Le® be the projection of
X ontoN alongM. ClearlyP is aB-Fredholm operator and commutes with Then
by [6, Corollary 3.5],T P is a B-Fredholm operator. Consequently there is an integer
n such thatR((T P)") is closed andT P), : R((T P)") — R((T P)") is Fredholm.
SinceR(T P)") = R(V™ and(T P), = V,, thenV is aB-Fredholm operator. [

ExAMPLE 2. Let Sbe aninjective quasinilpotent operator which is not nilpotent on
the Hilbert spacé,. We definel on¢,@ ¢, by T = | @ Swherel is the identity or?..
It follows easily thatr (T) = {0, 1} andE(T) = {1}. Letus prove thaigy(T) = {0}.
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We haveT — (I & 1) = 0& (S— 1) and sinceS — | is an invertible operator,
T — (I @) is aB-Fredholm operator of index 0, andtlogw(T).

Suppose that is aB-Fredholm operator. Then by Lemm&d, Sis a B-Fredholm
operator. FromZ, Theorem 2.7], there exist two clos&dnvariant subspaces @¥,
M andN such that, = M @ N andS = U & V whereU = Sy is nilpotent and
V = Sy isinvertible.

If mis a sufficiently large integer, we halld" = 0andS"=U"® V™ =0 V™.
Henceo (V™) c o(S™ = {0}. But sinceV is invertible, we haveN = 0 and then
S = U is nilpotent, which contradicts the hypothesis nSoogw(T) = {0} and
osw(T) = o(T)\E(T). HenceT satisfies generalized Weyl's theorem.

We define the operatét oné, by K (Xq, X, ...) = (=X, 0,0, ...)andF = K0
on{, @ £,. ThenF is a finite rank operator and we hawvéT + F) = {0, 1} and
E(T+F)={0,1}.

Asopw(T + F) = ogw(T) = {0}, thenT + F does not satisfy generalized Weyl's
theorem.
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