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Abstract

Let B1, B2 be a pair of Banach spaces andT be a vector valued martingale transform (with respect to
general filtration) which mapsB1-valued martingales intoB2-valued martingales. Then, the following
statements are equivalent:T is bounded fromL p

B1
into L p

B2
for somep (or equivalently for everyp) in

the range 1< p < ∞; T is bounded fromL∞
B1

into BMOB2; T is bounded fromBMOB1 into BMOB2; T
is bounded fromH 1

B1
into H 1

B2
. Applications toUMD and martingale cotype properties are given. We

also prove that the Hardy spaceH 1
B defined in the case of a general filtration has nice dense sets and nice

atomic decompositions if and only ifB has the Radon-Nikod́ym property.

2000Mathematics subject classification: primary 60G42; secondary 60B11, 46B20.
Keywords and phrases: Martingale transforms, Hardy spaces,BMO.

1. Introduction and preliminaries

It is undeniable that in the last 40 years martingale theory and harmonic analysis have
been inspired and influenced by each other, and that, in particular, this has lead to
a parallel development of both fields. Of course, many examples of this parallelism
could be pointed out. But, as the closest to our aims, we would like to mention
the shared concepts of Hardy spacesH 1 and the space of bounded mean oscillation
BMO (see [11] for the probabilistic part). Mainly from the works of Burkholder
and Bourgain (see [7] and [4]), martingale transforms in probability and the Hilbert
transform in harmonic analysis clearly play similar roles. Also in connection with
the vector-valued Calder´on-Zygmund operator theory in harmonic analysis, in [14]
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this similarity was further developed for vector-valued martingale transforms. It was
shown that this theory has the added interest of providing some applications to the
geometry of Banach spaces, as well as to classical operators in probability. But the
theory developed in [14] deals only withL p-bounded martingale transforms. The
purpose of this paper is, on one hand, to complete that work with the study of their
boundedness properties in the extreme casesH 1 andBMO, and on the other hand, the
analysis of the structure ofH 1

B itself for a given Banach spaceB, and its relationship
with the geometric properties of the spaceB.

At this point, we should fix some notation. Let.�;F ; P/ be a probability space
carrying a stochastic basis{Fn}n≥1 (that is, a nondecreasing sequence of sub-¦ -fields
ofF ). Given a BanachspaceB, a sequencef = { fn}n≥1 of B-valued random variables
is aB-valued martingalerelative to{Fn}, if each functionfn isFn-measurable (that
is, it is anadapted sequence), integrable andEn. fn+1/ = E. fn+1|Fn/ = fn, for every
n ≥ 1. We assumef0 = 0 and denote byEn the operator defined as the conditional
expectation to the sub-¦ -fieldFn. In particular, fn = ∑n

k=1 dk f , wheredk f are the
‘increments’ of the martingalef , that is,dk f = fk − fk−1: The martingalef is called
L p

B-bounded if‖ f ‖L p
B

= supn ‖ fn‖L p
B

is finite. For a detailed background onB-valued
martingales the reader is referred to [9].

The scalar-valuedclassical theory of Hardy spaces of martingales is nowadays well
known, see [11, 17]. Several generalizations of these spaces have been studied, for
example Hardy spaces associated to certain martingale operators, as in [18] and the
references therein, where also their duals are characterized. Given a Banach spaceB,
H 1

B is defined as the space of martingales such that‖ f ∗‖L1 < ∞ where f ∗ stands for
Doob’s maximal operator, f ∗.!/ = supn≥1 ‖ fn.!/‖B. Note that, since the sequence
{‖ fn‖B} is a positive submartingale, the so-called Doob’s inequalities (see [10]) extend
to the vector-valued setting, and we have

½P. f ∗
n > ½/ ≤ C‖ fn‖L1

B
and ‖ f ∗

n ‖L p ≤ Cp‖ fn‖L p
B
; for everyp > 1:

As far as we know, in the vector-valued context, the theory of Hardy spaces has been
developed only in particular cases, either for martingales of the formfn = En. f /
for some functionf , see [12], or for regular stochastic basis, see [5]. Our goal is to
study the structure ofH 1

B spaces without assuming any condition on the underlying
stochastic basis. The main results in this part of our work relate the properties of this
space to the geometric properties of the spaceB: we find thatB enjoys the Radon-
Nikodým property if and only ifH 1

B has nice atomic decompositions and if and only
if the set of martingales with a finite number of non-zero differences (Definition2.4)
is dense inH 1

B (Theorem2.5). Related analytic results can be found in [2] and [3].
We recall that a Banach spaceB hasRadon-Nikod́ym propertyif for any ¦ -additive,
absolutely continuous set functionG : F → B of bounded total variation with respect
to d P, there exists a functiong ∈ L1

B such thatG.E/ = ∫
E g d P for all E ∈ F (see
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[9] for more details).
In [7], Burkholder studied the class of Banach spacesB for which there existsp,

1< p < ∞, such that

‖"1d1 f + · · · + "ndn f ‖L p
B

≤ Cp‖d1 f + · · · + dn f ‖L p
B

for all B-valued martingale difference sequencesd1 f;d2 f; : : : , all numbers"1; "2; : : :

in {−1;1}, and alln > 1 with a constantCp only depending onp. He calledUMD
the class of Banach spaces which satisfy this property. The martingaleg = {gn} given
by gn = ∑n

k=1 "kdk f , is called the martingale transform of the martingalef = { fn}.
We shall deal with vector-valued martingale transform operators, defined by se-

quences of operator-valued random variables{vn}, instead of Burkholder’s scalar-
valued sequences{"n} (for short .T f /n = ∑n

k=1 vkdk f , see Definition3.2). We
proved in [14] that for a martingale transform operatorT as above the knowledge
of the boundedness of the martingale transform operator in some fixed level, say,
strong p with p > 1, is equivalent to the boundedness of the rest of the levels, and
in particular to the boundedeness‖.T f /∗‖L p ≤ Cp‖ f ∗‖L p for every p in the range
1 ≤ p < ∞. Our aim in this part of our work is to show that the philosophy behind
this result (the knowledge of the boundedness at a certain level is equivalent to know
the boundedness at the rest of the levels) can be extended toBMOandH 1 spaces. In
Theorem3.4it is proved that the martingale transform operatorsT which are bounded
at some levelL p, 1 < p < ∞, are exactly those bounded betweenBMO spaces,
equivalently fromL∞ into BMO or, also equivalently, those whose maximal function
takes functions fromL∞ into functions ofBMO. Also in this part of the work, no
extra conditions are imposed on the stochastic basis. We handle two different notions
of BMO type spaces:BMO−

p;B andBMOp;B are respectively the spaces of functions in
L p

B such that

‖ f ‖BMO−
p;B

= sup
n≥1

∥∥.En‖ f − fn−1‖p
B/

1=p
∥∥

∞

and

‖ f ‖BMOp;B = sup
n≥1

∥∥.En‖ f − fn‖p
B/

1=p
∥∥

∞

are finite.
It is interesting to point out that as an intermediate step in the proof of that theorem,

the boundedness of Doob’s maximal function betweenBMO spaces is proved in
Lemma3.5. This can be considered as the probabilistic version of the result for
Hardy-Littlewood maximal operator established in [1]. We give an example of a
function f whose maximal is inBMObut f is not inBMO(see Example3.6), that, in
particular, shows that theBMOnorms of f and f ∗ are not equivalent.

Finally we present some applications. A Banach spaceB is said to be of martingale
cotypeq if Sq f = (∑∞

k=1 ‖dk f ‖q
B

)1=q
satisfies‖Sq f ‖Lq ≤ C‖ f ‖Lq

B
with C a constant
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only depending onq. This property was introduced by Pisier, see [15] and [16]. In
[19] it is proved that this property can be characterized in terms of some inequalities
involving the Lusin area function. By identifyingSq with the maximal of à q-valued
martingale transformoperator, see Subsection4.1, we canapply the results in Section3
and evaluate the behaviour ofSq in the extremesp = 1 andp = ∞. The ideas in that
section yield a new characterization of the martingale cotypeq. In fact, we prove that
for a Banach spaceB, having martingale cotypeq is equivalent either to the fact that
Sq mapsL∞

B into BMO, Sq mapsBMO into BMO, or Sq mapsH 1 into L1 boundedly.
See also [13] for related results.

With a similar reasoning to the one developed forSq, in Theorem4.2 we prove a
characterization ofUMD spaces as the ones in which signs martingale transforms are
eitherL∞–BMO or BMO–BMObounded. See Section4.2for the details.

The organization of the paper is as follows: in Section2 the general theory of Hardy
spaces is developed. The results concerning boundedness of martingale transform
operators are collected in Section3, and the applications are given in Section4.

2. Hardy spaces. Radon-Nikod´ym property

Analogously to the scalar case, see [11] and [17], we define the following spaces
of B-valued martingales. Givenp, 1 ≤ p < ∞, and a Banach spaceB, TheHardy
spaceH p

B is the space of martingalesf such that‖ f ‖H p
B

= ‖ f ∗‖L p < ∞.
A B-valued martingalef is calledL p-predictable, if there is an adaptednondecreas-

ing sequence of functions{½n}n≥0 such that‖ fn‖B ≤ ½n−1, n ≥ 1, with ‖½∗‖L p < ∞.
Such a sequence is called anadmissible controlfor f . P p

B will denote the space of
L p-predictable martingales, endowed with the norm‖ f ‖P p

B
= inf ½ ‖½∗‖p, where½

runs over all admissible controls forf . In particular, if we take¼n = inf ½ ½n, then
‖ f ‖P p

B
= ‖¼∗‖L p and¼ is called the optimal control forf .

A
p

B is the space of martingales such that‖ f ‖A p
B

= ∥∥∑∞
n=1 ‖dn f ‖B

∥∥
L p is finite. For

every Banach spaceB and 1≤ p < ∞, it is clear thatP p
B andA p

B are subspaces of
H p

B ; and‖ f ‖H p
B

≤ ‖ f ‖A p
B
, ‖ f ‖H p

B
≤ ‖ f ‖P p

B
. On the other hand,H p

B = P p
B + A p

B

as a consequence of the following well known result due to Davis (see [17]) in the
scalar-valued case. The proof in the vector-valued setting is straightforward.

LEMMA 2.1 (Davis’ decomposition).For any p, 1 ≤ p < ∞ and f ∈ H p
B there

exist martingalesg andh, such thatg ∈ P p
B , h ∈ A p

B , fn = gn + hn , n ≥ 1 and
‖g‖P p

B
≤ .13+ 4p/‖ f ‖H p

B
, ‖h‖A p

B
≤ .4 + 4p/‖ f ‖H p

B
.

Let us recall that astopping timerelated to a stochastic basis{Fn} is a function¹ :
� → N∪{∞} with {¹ = n} ∈ Fn for all n ≥ 1. Given a martingalef , themartingale
stoppedat¹ will be denoted byf ¹ , and is defined by. f ¹/n = ∑n

k=1X{¹≥k}dk f .
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DEFINITION 2.2. A B-valued martingalea = {an}, is said to be ap-atom, 1 ≤
p < ∞, if there exists a stopping time¹ such thatX{¹≥n}an = 0 for anyn ≥ 1, and
‖a∗‖L∞ ≤ P.{¹ 6= ∞}/−1=p.

The following lemma is a slight generalization of the scalar-valued case, see [17].

LEMMA 2.3. Given a martingalef = . fn/ ∈ P p
B , 1 ≤ p < ∞, there exists a

sequence ofp-atoms{ak}∞
k=−∞ and a sequence of positive numbers{¼k}∞

k=−∞ ∈ `p

such that

fn =
∞∑

k=−∞
¼kak

n a.s.;
∞∑

k=−∞
¼

p
k ≤ C ‖ f ‖p

P
p
B
:

In the casep = 1, if fn = ∑∞
k=−∞¼kak

n almost surely with{¼k} ∈ `1 andak 1-atoms,
then f ∈P1

B and f = ∑∞
k=−∞¼kak in theP1

B-norm and‖ f ‖P1
B

∼ inf
∑∞

k=−∞ |¼k|,
where the infimum is taken over all possible decompositions off .

PROOF. Let f be a martingale inP p
B with optimal control{½n}. Define the non

decreasing sequence of stopping times¹k = inf{n : ½n > 2k} where inf∅ = ∞. Then,

fn =
∞∑

k=−∞

(
. f ¹k+1/n − . f ¹k/n

) = lim
m→∞

(
. f ¹m/n − . f ¹−m/n

)
a.s.

since, by using that{¹m ≥ j } = {½∗
j ≤ 2m} and½∗ ∈ L p, we have limm→∞. f ¹m/n = fn

and‖. f ¹−m/n‖B ≤ 2n2−m almost surely. Define, for eachk such thatP.{¹k 6=∞}/6=0,
¼k = 2k3P.{¹k 6= ∞}/1=p andak

n = ¼−1
k

(
. f ¹k+1/n − . f ¹k /n

)
; in other cases define

¼k = 0, ak
n = 0. The proof follows now the lines of the scalar case, see [17].

In order to get the reciprocal forp = 1, let fn = ∑∞
k=−∞ ¼kak

n with {¼k} ∈ `1,
{ak} 1-atoms, and{½k

n} being the optimal control forak. Then,
{∑∞

k=−∞ |¼k|½k
n

}
n

is
an admissible control forf . Since‖a‖P1

B
≤ 1, we have that‖ f ‖P1

B
≤ ∑∞

k=−∞ |¼k|
and that the convergence is also in the spaceP1

B, because∥∥∥∥∥ fn −
m−1∑

k=−m

¼kak
n

∥∥∥∥∥
B

≤
∑
|k|>m

|¼k|½k
n−1:

These computations were valid for any decomposition off , therefore‖ f ‖P1
B

≤
inf
∑∞

k=−∞ |¼k|. On the other hand, by the first part of this lemma,f = ∑∞
k=−∞¼kak

with
∑∞

k=−∞ |¼k| ≤ C‖ f ‖P1
B
. Then‖ f ‖P1

B
is equivalent to inf

∑∞
k=−∞ |¼k| and the

proof is finished.

Atoms are usually defined as functions and so they are in the scalar-valued case.
However, it does depend on the geometry of the underlying Banach space in the
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vector-valued case, as the next result states. To this aim, defineP1
at;B to be the

space ofB-valued martingalesf such that fn = ∑∞
k=−∞¼kak

n almost surely, where
{¼k} ∈ `1 andak are special 1-atoms such thatak

n = En.ak/ for a measurable function
ak. The norm inP1

at;B is given by‖ f ‖P1
at;B

= inf
∑∞

k=−∞ |¼k|. Also, let us consider
the following martingales.

DEFINITION 2.4. f = { fn} is afinite martingaleif fn = En. f /, and there existsn0

such thatf isFn0 -measurable.

THEOREM 2.5. Given a Banach spaceB, the following sentences are equiva-
lent:

.i/ B has the Radon-Nikodým property.
.ii/ Every1-atom{an} verifiesan = En.a/ for certain functiona ∈ L1

B.
.iii / P1

B =P1
at;B.

.iv/ H1
B =P1

at;B +A 1
B .

.v/ Finite martingales are dense inH1
B.

PROOF. (ii) ⇒ (iii) is due to Lemma2.3 and (iii) ⇒ (iv) is a consequence of
Lemma2.1. In order to prove (i)⇒ (ii), observe that ifB has the Radon-Nikod´ym
property, all atomsa are of the forman = En.a/ (a ∈ L1

B), sincea∗ ∈ L∞, see [8].
Now, assume (iv). In order to show thatB has the Radon-Nikod´ym property, we shall
see that any martingale withf ∗ ∈ L∞ converges almost surely (see [8]). If f ∗ ∈ L∞,
by using Lemma2.1 and the hypothesis we can writef = h + g with h ∈ A 1

B and
g ∈P1

B =P1
at;B. Therefore it is enough to show thath andg converge inL1

B, see [9],
namely thathn andgn are Cauchy sequences inL1

B. The fact thath ∈ A 1
B implies

that
∑∞

k=1 ‖dkh‖L1
B
< ∞ and, since‖hn − hm‖L1

B
≤ ∑n

k=m+1 ‖dkh‖L1
B
, we have that

{hn} is a Cauchy sequence inL1
B. For the predictable partg ∈P1

B =P1
at;B, we have

gn = ∑∞
k=−∞¼k En.ak/ with {En.ak/} being 1-atoms and{¼k} ∈ `1. By Lemma2.3,

the converge of that series is almost surely and inP1
B-sense. Given" > 0, we

chooseM such that ∥∥∥∥∥g −
M∑

k=−M

¼kak

∥∥∥∥∥
P

1
at;B

< "=3:

As ak ∈ L1
B we haveg̃M = ∑M

k=−M ¼kak ∈ L1
B. Thus the martingale{En.g̃M/}∞

n=1

converges inL1
B, see [9]. Let N be such that form;n > N we have

‖En.g̃M/− Em.g̃M/‖L1
B
< "=3:

Hence, by adding and subtractingEn.g̃M/ andEm.g̃M/, we get

‖gn − gm‖L1
B

≤ 2‖g − g̃M‖P1
B
+ ‖En.g̃M/− Em.g̃M/‖L1

B
≤ ":
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If B has the Radon-Nikod´ym property, anyf ∈ H 1
B converges inL1

B since it is
uniformly integrable. Convergence inL1

B implies almost sure convergence (see [8, 9]).
Then, fn is an almost surely Cauchy sequence, that is, for almost every!, given" > 0
there existsN0 = N0.!/ such that for alln;m > N0,

‖ fn.!/− fm.!/‖B < ":

In particular, supn≥m ‖ fn.!/ − fm.!/‖B < " for n;m > N0. This implies that
{supn≥m ‖ fn − fm‖B}m converges to 0 almost surely whenm → ∞. Moreover,
supn≥m ‖ fn − fm‖B ≤ 2 f ∗ ∈ L1

B. Given f ∈ H 1
B and N ≥ 1, consider the mar-

tingale stopped atN, f N = . f1; : : : ; f N; fN : : : /. Then, by Lebesgue’s dominated
convergence theorem:

‖ f − f N‖H 1
B

=
∥∥∥∥sup

n
‖ fn − f N

n ‖B

∥∥∥∥
L1

B

=
∥∥∥∥sup

n≥N
‖ fn − fN‖B

∥∥∥∥
L1

B

→ 0:

This shows (i)⇒ (v). Conversely, if finite martingales are dense inH 1
B, in order to

prove thatB has the Radon-Nikod´ym property, we will see that any martingalef with
f ∗ ∈ L∞ ⊂ L1, converges almost surely by showing it is a Cauchy sequence inL1

B

(see [8, 9]). Given" > 0 letg be a finite martingale such that‖ f −g‖H 1
B
< "=2. Since

g is finite, there existsN such thatg = .g1; : : : ; gN; gN; : : : /. Then, withn;m > N,
we havegN = gn = gm and

‖ fn − fm‖L1
B

≤ ‖ fn − gn‖L1
B
+ ‖ fm − gm‖L1

B
≤ 2‖ f − g‖H 1

B
≤ ".

The former result shows that the density of finite martingales is related with the
geometry of the underlying Banach space, and that in spaces enjoying the Radon-
Nikodým property, finite martingales are a dense subclass of Hardy spaces. The
following example shows that in general finite martingales are not dense inH 1

B.

EXAMPLE 2.6. Consider� = [0;1] with Lebesgue’s measure and forn ≥ 0, let
rn = sign.sin..2n³ t// be then-th Rademacher function. LetFn = ¦.r1; : : : ; rn/ and
f be thec0-valued martingale, defined byfn = .r1; r2; : : : ; rn;0;0; : : : /. For this
martingale, eachfn is a sequencefn = . f k

n / ∈ c0, with f k
n = rk for k ≤ n and f k

n = 0
otherwise. Moreover, supn ‖ fn‖c0 = 1 ∈ L1.

Suppose that finite martingales are dense inH 1
c0

. Then, for any" > 0 there exists
g a finite martingale such that‖ f − g‖H 1

c0
< ". This means, in particular, that

‖ f k
n − gk

n‖L1 < " for anyn andk. Sinceg is a finite martingale, there existsN such
that gn = gN for all n ≥ N, and thereforegk

n = gk
N for all k whenn ≥ N. With

n = N, k = N + 1, we have‖ f N+1
N − gN+1

N ‖L1 = ‖gN+1
N ‖L1 < " and withn = N + 1,

k = N + 1, we have‖ f N+1
N+1 − gN+1

N+1‖L1 = ‖r N+1 − gN+1
N+1‖L1 = ‖r N+1 − gN+1

N ‖L1 < ".
Hence 1= ‖r N+1‖L1 ≤ ‖r N+1 − gN+1

N ‖L1 + ‖gN+1
N ‖L1 < 2" for all " > 0.



214 Teresa Martı́nez and Jośe L. Torrea [8]

3. Martingale transform operators

Given p, 1 ≤ p < ∞, andB a Banach space, analogously to the scalar case (see
[11]) we define theB-valuedBMOfunction spaces,BMO−

p;B andBMOp;B, 1 ≤ p < ∞
as the spaces of functionsf ∈ L p

B, such that, respectively

‖ f ‖BMO−
p;B

= sup
n≥1

∥∥.En‖ f − fn−1‖p
B/

1=p
∥∥

∞

and

‖ f ‖BMOp;B = sup
n≥1

∥∥.En‖ f − fn‖p
B/

1=p
∥∥

∞

are finite, see [5]. Also, defineBD∞;B as the space of martingales such that

‖ f ‖BD∞;B = sup
k≥1

‖dk f ‖L∞
B

is finite.

REMARK 3.1. In the scalar-valuedcase, the following facts are well known, see [11]
and [17]. Their proofs go straightforward over the Banach-valued case.

.i/ Any f ∈ L∞ belongs toBMOp, BMO−
p , 1 ≤ p < ∞ andBD∞, and‖ f ‖BMOp

,
‖ f ‖BMO−

p
, ‖ f ‖BD∞ are smaller or equal than 2‖ f ‖L∞.

.ii/ BMO−
p = BMOp ∩ BD∞, with ‖ f ‖BMO−

p
∼ ‖ f ‖BMOp

+ ‖ f ‖BD∞ , for every
1 ≤ p < ∞.
.iii / We have‖ f ‖BMOp

= sup¹ P.¹ 6= ∞/−1=p‖ f − f ¹‖L p, where the supremum
is taken over allFn-stopping times¹. Also, a function f ∈ L p, 1 ≤ p < ∞ is in
BMO−

p if and only if there exists an adapted process{�n}n≥0 such that�0 = 0 and
C� = supn

∥∥E.‖ f − �n−1‖p
B|Fn/

1=p
∥∥

∞ is finite. Then,‖ f ‖BMO−
p

∼ inf � C� .
.iv/ The norm in all the spacesBMO−

p is equivalent for any 1≤ p < ∞, although
BMOp spaces are not equivalent in general, even in the regular case.

DEFINITION 3.2. Let B1 andB2 be two Banach spaces,{Fn}n≥1 a stochastic basis
in a probability space.�;F ; P/, and f = { fn} a B1-valued martingale relative to
{Fn}. Let {vn} be a sequence ofL .B1;B2/-valued random variables, eachvn being
Fn−1-measurable,n ≥ 2, andv1 beingF1-measurable, with supn≥1 ‖vn‖∞ ≤ 1. Such
a sequencev = {vn} will be called amultiplying sequence. The martingale given
by .T f /n = ∑n

k=1 vk dk f is called themartingale transformof f by the multiplying
sequencev. T will denote the martingale transform operator.

A martingale transform operator isL p-boundedif for some constantC and every
martingale f , ‖T f‖L p

B2
≤ C‖ f ‖L p

B1
. A simple example ofL p-bounded martingale

transform operator, 1≤ p ≤ ∞, for any Banach spaceB is defined by.T f /n =
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. f ¹/n = ∑n
k=1X{¹≥k}dk f with ¹ a stopping time. Observe that{X{¹≥k}} is a nice

multiplying sequence and it verifies

‖. f ¹/n‖p
L p

B
=

n−1∑
k=1

∫
{¹=k}

‖Ek. fn/‖p
B d P +

∫
{¹≥n}

‖ fn‖p
B d P ≤ ‖ fn‖p

L p
B
:(1)

LEMMA 3.3. Let p, 1 ≤ p < ∞, T be an L p-bounded martingale transform
operator and a functionf ∈ L p

B1
. Then the martingaleT f is of the form.T f /n =

En.T f / for some functionT f ∈ L p
B2

.

PROOF. Given f ∈ L p
B1

, 1 ≤ p < ∞, fn = En. f /, then f = limn→∞ fn in L p
B1

(see
[9]). Given such a martingale and a pair of indexesn > m, we consider the martingale
g = {gi }i ≥1 defined asgi = fi − fm for i ≥ m+1 andgi = 0 otherwise. Its martingale
differences are.0; : : : ;0;dm+1 f;dm+2 f; : : : / and then.T g/i = .T f /i − .T f /m if
i ≥ m + 1 and it is 0 otherwise. SinceT is L p-bounded, 1≤ p < ∞,

‖.T f /n − .T f /m‖L p
B2

= ‖.T g/n‖L p
B2

≤ C‖g‖L p
B1

= C sup
n>m

‖ fn − fm‖L p
B1
;

that is,{.T f /n} is a Cauchy sequence inL p
B2

and converges to a function inL p
B2

, T f ,
verifying .T f /n = En.T f /.

Consider, for eachk ≥ 0, the sequence of¦ -algebrasF̃ k
n = Fk+n, n ≥ 1, and

the martingale transform operatorT̃k with respect to them, defined by the multiplying
sequence{ṽk

n}∞
n=1, ṽ

k
n = vk+n. In particular,T̃0 = T . These operators verify the next

result.

THEOREM 3.4. GivenB1, B2 two Banach spaces andT a martingale transform
operator as in Definition3.2andT̃k as above, the following statements are equivalent
when they hold for anyk ≥ 0 with constants independent ofk:

.i/ For everyp, 1< p < ∞, T̃k : BMOp;B1 → BMOp;B2.
.ii/ There existsp, 1 ≤ p < ∞, T̃k : BMO−

p;B1
→ BMO−

p;B2
.

.iii / There existsp, 1 ≤ p < ∞, T̃k : L∞
B1

→ BMO−
p;B2

, whereL∞
B1

is the space of
all almost surely uniformly boundedB1-valued functions.
.iv/ ‖.T̃k f /∗‖BMO−

p
≤ Cp‖ f ‖BMO−

p;B1
for somep, 1 ≤ p < ∞.

.v/ ‖.T̃k f /∗‖BMO−
p

≤ Cp‖ f ‖L∞
B1

for somep, 1 ≤ p < ∞.

.vi/ T̃k are L p-bounded for anyp, 1 < p < ∞.
.vii/ T is L p-bounded for anyp, 1< p < ∞.
.viii / T is bounded fromH1

B1
into H 1

B2
.

PROOF. In [14] we proved that statements (vii) and (viii) are equivalent. The rest
of the proof will be developed as follows: first we will prove (vii)⇒ (vi) ⇒ (i) ⇒ (ii).
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From (ii) we get (iii) and (iv) and from any of them we obtain (v). Last step will be
proving (v)⇒ (viii).

SupposeT is L p-bounded. Given añF k
n -martingalef̃ = . f̃1; f̃2; : : : /, by defining

f = .E1. f̃1/; : : : ; Ek. f̃1/; f̃1; f̃2; : : : / we obtain aFn-martingale associated tõf
with ‖ f ‖L p

B1
≤ ‖ f̃ ‖L p

B1
. Then

∥∥.T̃k f̃ /n
∥∥

L p
B2

=
∥∥∥∥∥ṽk

1 f̃1 +
n∑

j =2

ṽk
j . f̃ j − f̃ j −1/

∥∥∥∥∥
L p

B2

= ∥∥vk+1Ek. f̃1/+ .T f /n − .T f /k
∥∥

L p
B2

≤ C‖ f̃ ‖L p
B1
:

This shows (vii)⇒ (vi) and in particular that everỹTk is L p-bounded with respect
to the corresponding stochastic basis, with the same constant thanT , independent
of k. By using this, it is enough to prove all the implications (except (v)⇒ (viii))
just for a martingale transform operatorT and check that the constants in statements
(i)–(v) depend only onp and theL p-boundedness constant ofT . Next step consists
in proving that aL p-bounded martingale transform operatorT mapsBMOp;B1 into
BMOp;B2 boundedly. Considerf ∈ BMOp;B1 for somep, 1< p < ∞. By Lemma3.3
the martingale{.T f /n} is of the form.T f /n = En.T f / whereT f is a function inL p

B2
.

In order to see thatT f is in BMOp;B2, we will use the characterization in Remark3.1.
Let ¹ be a stopping time. We have

∥∥T f − .T f /¹
∥∥

L p
B2

= sup
n≥1

n−1∑
k=1

∫
{¹=k}

∥∥.T f /n − .T f /k
∥∥p

B2
d P;

and for each pairn > k,∫
{¹=k}

∥∥.T f /n − .T f /k
∥∥p

B2
d P = ∥∥.T h/n

∥∥p

L p
B2

;

where the sequence with zeros in the firstk coordinates.0; : : : ;0;dk+1 fX{¹=k};
dk+2 fX{¹=k}; : : : / is h’s martingale differences. SinceT is L p-bounded, the con-
ditional expectation properties give∥∥.T h/n

∥∥p

L p
B2

≤ C sup
n≥1

‖hn‖p
L p

B1

= C sup
n>k

∫
{¹=k}

‖En. f /− fk‖p
B1

d P

≤ C‖ f ‖p
BMOp;B1

P.{¹ = k}/:
and therefore∥∥T f − .T f /¹

∥∥p

L p
B2

≤ C‖ f ‖p
BMOp;B1

P.{¹ 6= ∞}/:

These calculations show that if a martingale transform operator isL p-bounded relative
to some stochastic basis, then it mapsBMOp;B1 into BMOp;B2 with a constant that
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depends only onp and the constant of itsL p-boundedness. Observe that martingale
transform operators are always bounded inBD∞, since‖vkdk f ‖B2 ≤ ‖dk f ‖B1 almost
surely. This, together with Remark3.1 and (i), gives us (ii). The implications
(iii) ⇒ (ii) and (iv) ⇒ (v) are consequences of Remark3.1, and (iv) ⇒ (ii) and
(iii) ⇒ (v) are due to the following lemma, whose proof will be given later.

LEMMA 3.5. If f ∈ BMO−
p;B, 1 ≤ p < ∞, then f ∗ = supn ‖En. f /‖B ∈ BMO−

p

and‖ f ∗‖BMO−
p

≤ C ‖ f ‖BMO−
p;B

.

Finally, we shall see that if̃Tk verify (v) for anyk ≥ 0 with a constant independent
of k, thenT is bounded inH 1. Observe that it is enough to proveH 1-boundedness
for finite martingales, since

‖.T f /∗‖L1 = sup
n≥1

‖.T. f n//∗‖L1 ≤ sup
n≥1

C‖. f n/∗‖L1 = C‖ f ∗‖L1;

where f n = . f1; f2; : : : ; fn; fn; : : : /. Given a finitef = . f1; : : : ; f N; fN; : : : / in H1
B1

,
by Remark2.1 there exist martingalesg ∈ P1

B1
andh ∈ A 1

B1
such thatf = g + h.

Since‖hm − hn‖L1
B1

≤ ∑m
k=n+1 ‖dkh‖L1

B1
→ 0, there exists a functionh ∈ L1

B1
such

that hn = En.h/ for all n ≥ 1. Thengn = fn − hn = En. fN − h/ for all n ≥ 1.
Moreover,‖g‖P1

B1
+ ‖h‖A 1

B1
≤ C ‖ f ‖H 1

B1
. Now, since clearly‖.T h/∗‖1 ≤ ‖h‖A 1

B1
,

it is enough to prove‖.T g/∗‖1 ≤ C ‖g‖P1
B1

. By the proof of Lemma2.3, the 1-

atoms of the decomposition ofg are defined asak
n = ¼−1

k ..g
¹k+1/n − .g¹k /n/ where

¹k+1 and ¹k were certain stopping times. Due to theL p-boundedness of stopped
martingales (1), thatgn = En.g/ for certaing ∈ L1

B1
and Lemma3.3, we conclude that

ak
n = En.ak/ for certainak ∈ L∞

B1
, for eachk. Since the series converge almost surely,

and eachvk is a bounded lineal operator, we have.T g/n = ∑∞
k=−∞ ¼k.T ak/n and

‖.T g/∗‖L1 ≤ ∑∞
k=−∞¼k‖.T ak/∗‖L1 . It will be enough to prove then that‖.T a/∗‖L1 are

uniformly bounded whena is a 1-atom given by a function. Fora a 1-atom,.T a/∗ =
.T a/∗X{¹ 6=∞} for some stopping time¹, and

∫
{¹=k}.T a/∗ d P = ∫

{¹=k}.T̃ka/∗ d P. The

last step is using (v) (recall that the boundedness constant ofT̃∗
k is uniform ink) and

that{¹ = k} ∈ Fk ⊂ F̃ k
1 , to get the desired inequality

‖.T a/∗‖L1 =
∞∑

k=1

∫
{¹=k}

.T a/∗ d P =
∞∑

k=1

∫
{¹=k}

E..T̃ka/∗|F̃ k
1 /d P

≤
∞∑

k=1

‖.T̃ka/∗‖BMO−
1

P.{¹ = k}/ ≤ C:

A related version of this extreme point argument can be found in [18, Theorem 12].
Let us now proceed with the proof of the boundedness of Doob’s maximal function
betweenBMOspaces.
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PROOF OFLEMMA 3.5. Consider the martingale transform operatorM given by the
multiplying sequence{wk}k≥1, wherewk.x/ = .0; : : : ;0; x; x; x; : : : / is an element
of `∞

B with zeros in the firstk − 1 coordinates, for anyx ∈ B. Then for aB-valued
martingalef = { fn}n≥1 Doob’s inequality gives, forp > 1,

‖.M f /n‖L p
`∞B

= ‖. f1; : : : ; fn; fn; : : : /‖L p
`∞B

= ‖ f ∗
n ‖L p ≤ C ‖ fn‖L p

B
;

that is, M is L p-bounded with a constant only depending onp. Observe that, by
using the fist part of the proof of Theorem3.4, this implies thatM maps functions
in BMO−

p;B into functions inBMO−
p;`∞B

. The proof is finished by observing that, since
f ∗ − f ∗

n−1 ≤ supn≤k ‖ fk − fn−1‖B, and by Remark3.1with �n = f ∗
n , we have

‖ f ∗‖BMO−
p;B

≤ sup
n≥1

∥∥En.. f ∗ − f ∗
n−1/

p/
∥∥1=p

∞ ≤ ‖M f ‖BMO−
p;`∞B

.

The converse to this lemma is not true in general, as it is shown by the following.

EXAMPLE 3.6. Consider the probability space.[−1;1];F ;d P/ whereF is the
Borel ¦ -field andd P = dx=2, dx the Lebesgue measure, on[−1;1]. TakeFn

to be the¦ -field generated by the setAn = [−2−n;2−n] and the Borel¦ -field in
Ac

n = [−1;1]\An. They clearly define a stochastic basis. The function

f .x/ =


0 if |x| > 1;

| log x| if 0 < x ≤ 1;

log |x| if − 1 ≤ x < 0

does not belong toBMO−
1 , while f ∗ = | f | does indeed, as an easy calculation shows.

4. Applications

4.1. Banach spaces of martingale cotypeq A Banach spaceB is said to be of
martingale cotypeq, 2 ≤ q < ∞ (in short, M-cotypeq) if there exist a constantC
such that

∞∑
n=1

‖dn f ‖q
Lq

B
≤ C‖ f ‖q

Lq
B
:

Every Banach space is of M-cotypeq = ∞. The definition is due to Pisier [15].
Non-trivial M-cotypeq < ∞ is a geometrical property of the space, since it happens
if and only if the space admits an equivalent uniformly convex norm (and therefore,
in particular they are reflexive spaces), see [15, 16]. If we consider

Sq f =
( ∞∑

k=1

‖dk f ‖q
B

)1=q

;
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then it is clear that a BanachB is of M-cotypeq if and only if Sq mapsLq
B into Lq,

for any filtration. Pisier showed that this property is equivalent to have boundedness
of Sq either fromL p

B into L p for some or for everyp, 1 < p < ∞. We will see
what happens in the extreme pointsp = 1 andp = ∞ by applying Theorem3.4to a
particular martingale transform operator whose maximal isSq.

Define the`q
B-valued martingale transformQ f = {.Q f /n} with multiplying se-

quencevkx = xek, ek thek-th element of the canonical basis of`q
B for anyx ∈ B, in

such a way that

.Q f /n =
n∑

k=1

vkdk f = .d1 f;d2 f; : : : ;dn f;0; : : : / ∈ `q
B

for any B-valued martingalef . Then.Q f /∗ = Sq f and this gives us the key for
the proof of the following characterization of theM-cotype property (whereBMO−

stands for any of the equivalent spacesBMO−
p , 1 ≤ p < ∞).

THEOREM 4.1. For a Banach spaceB the following statements are equivalent:

.i/ B has M-cotypeq, 2 ≤ q < ∞:

.ii/ There exists a constantC such that‖Sq f ‖BMO− ≤ C‖ f ‖L∞
B

for any function
f ∈ L∞

B and any stochastic basis.
.iii / There exists a constantC such that‖Sq f ‖BMO− ≤ C‖ f ‖BMO−

B
for any function

f ∈ BMO−
B and any stochastic basis.

.iv/ There exists a constantC such that‖Sq f ‖L1 ≤ C‖ f ‖H 1
B

for any martingale
f ∈ H 1

B and any stochastic basis.

PROOF. As we observed above, ifB has M-cotypeq, then Q satisfies (vii) in
Theorem3.4and therefore it satisfies (iv), (v) and (viii) in that theorem, which means

‖Sq f ‖BMO− ≤ C‖ f ‖L∞
B
; ‖Sq f ‖BMO− ≤ C‖ f ‖BMO−

B
and ‖Sq f ‖L1 ≤ C‖ f ‖H 1

B
;

with a constant that depends only on the boundedness constant ofQ, which is inde-
pendent of the stochastic basis. Conversely, suppose either

‖Sq f ‖BMO− ≤ C‖ f ‖L∞
B
; ‖Sq f ‖BMO− ≤ C‖ f ‖BMO−

B
or ‖Sq f ‖L1 ≤ C‖ f ‖H 1

B

for any stochastic basis. Since.Q̃k f /∗ is againSq f , then we have that statements (iv),
(v) or (viii) in Theorem3.4hold with the same constant. Therefore, we have

‖Sq f ‖q
Lq ≤ C‖ f ‖q

Lq
B

with certain universal constantC.
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4.2. UMD Banach spaces Observe that the definition given above forUMD
spaces, is equivalent to requireL p-boundedness of all martingale transform operators
.T " f /n = ∑n

k=1 "kdk f whose multiplying sequences are defined by signs sequences
(vk = "k). In this contextT̃ "

k , k ≥ 0, is again a martingale transform operator of the
same type. We have the following theorem, whose proof follows the lines of the proof
of Theorem4.1.

THEOREM 4.2. For a Banach spaceB the following statements are equivalent:

.i/ B is UMD.
.ii/ There exists a constantC such that‖T" f ‖BMO−

B
≤ C‖ f ‖L∞

B
for any function

f ∈ L∞
B and any sign martingale transformT ".

.iii / There exists a constantC such that‖T" f ‖BMO−
B

≤ C‖ f ‖BMO−
B

for any function
f ∈ BMO−

B and any sign martingale transformT ".
.iv/ There exists a constantC such that‖.T" f /∗‖BMO− ≤ C‖ f ‖L∞

B
for any function

f ∈ L∞
B and any sign martingale transformT ".

.v/ There exists a constantC such that‖.T" f /∗‖BMO− ≤ C‖ f ‖BMO−
B

for any
function f ∈ BMO−

B and any sign martingale transformT ".
.vi/ There exists a constantC such that‖T" f ‖H 1

B
≤ C‖ f ‖H 1

B
for any martingale

f ∈ H 1
B and any sign martingale transformT ".
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