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Abstract

Let By, B, be a pair of Banach spaces afice a vector valued martingale transform (with respect to
general filtration) which mapB;-valued martingales intB,-valued martingales. Then, the following
statements are equivalent: is bounded from_é;1 into ng for somep (or equivalently for everyp) in

the range 1< p < oo; T is bounded fronlg’ into BMOg,; T is bounded fronBMOg, into BMOg,; T

is bounded frorr1—|,§1 into Héz. Applications toUMD and martingale cotype properties are given. We
also prove that the Hardy spakg defined in the case of a general filtration has nice dense sets and nice
atomic decompositions if and only has the Radon-Nikgan property.

2000Mathematics subject classificatioprimary 60G42; secondary 60B11, 46B20.
Keywords and phrasedlartingale transforms, Hardy spac&\O.

1. Introduction and preliminaries

Itis undeniable that in the last 40 years martingale theory and harmonic analysis have
been inspired and influenced by each other, and that, in particular, this has lead tc
a parallel development of both fields. Of course, many examples of this parallelism
could be pointed out. But, as the closest to our aims, we would like to mention
the shared concepts of Hardy spatt'sand the space of bounded mean oscillation
BMO (see [L1] for the probabilistic part). Mainly from the works of Burkholder
and Bourgain (see/] and [4]), martingale transforms in probability and the Hilbert
transform in harmonic analysis clearly play similar roles. Also in connection with
the vector-valued Calden-Zygmund operator theory in harmonic analysis, 1] [
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this similarity was further developed for vector-valued martingale transforms. It was
shown that this theory has the added interest of providing some applications to the
geometry of Banach spaces, as well as to classical operators in pitgbdut the
theory developed inlf4] deals only withLP-bounded martingale transforms. The
purpose of this paper is, on one hand, to complete that work with the study of their
boundedness properties in the extreme caseandBMO, and on the other hand, the
analysis of the structure ¢ itself for a given Banach spa& and its relationship

with the geometric properties of the spde

At this point, we should fix some notation. L&®, .#, P) be a probability space
carrying a stochastic badi¢?,}.-1 (thatis, a nondecreasing sequence of stields
of #). Given a Banach spa& a sequencé = { f,},., of B-valued random variables
is aB-valued martingaleelative to{.Z,}, if each functionf, is .#,-measurable (that
is, it is anadapted sequengdntegrable ande, ( f,.1) = E(fo1] %) = f,, for every
n > 1. We assumd, = 0 and denote b¥, the operator defined as the conditional
expectation to the sub-field .Z,. In particular,f, = Y",_, d f, whered, f are the
‘increments’ of the martingalé, thatis,d, f = f, — f,_;. The martingalef is called
L 5-bounded if|) f e = sup, Il fallp is finite. For a detailed background Bavalued
martingales the reader is referred 8.

The scalar-valued classical theory of Hardy spaces of martingales is nowadays well
known, see 11, 17]. Several generalizations of these spaces have been studied, for
example Hardy spaces associated to certain martingale operators1&8sand the
references therein, where also their duals are characterized. Given a BanadB,space
H3 is defined as the space of martingales such|tiaf : < oo where f* stands for
Doob’s maximal operatorf*“(w) = sup.., |l fa(w)|ls. Note that, since the sequence
{Il f.llg} is a positive submartingale, the so-called Doob’s inequalities (sedxtend
to the vector-valued setting, and we have

AP(fr>2) <Clfull.y and [[fyllLe < Cpll fulle, foreveryp > 1.

As far as we know, in the vector-valued context, the theory of Hardy spaces has beer
developed only in particular cases, either for martingales of the fiyme E,(f)

for some functionf, see [L2], or for regular stochastic basis, sé&g.[Our goal is to
study the structure ofi} spaces without assuming any céiwh on the underlying
stochastic basis. The main results in this part of our work relate the properties of this
space to the geometric properties of the spiceve find thatB enjoys the Radon-
Nikodym property if and only ifH3 has nice atomic decompositions and if and only

if the set of martingales with a finite number of non-zero differences (Defirttién

is dense inHZ (Theorem2.5). Related analytic results can be found & &nd [3].

We recall that a Banach spaBehasRadon-Niko§im propertyif for any o-additive,
absolutely continuous set functi@: .# — B of bounded total variation with respect

to d P, there exists a functiog € L such thalG(E) = [ gdPforall E € .Z (see
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[9] for more details).
In [7], Burkholder studied the class of Banach spa@dsr which there exist®,
1 < p < o0, such that

leedif + - +endnfllg < Cplldif + - +dn g

for all B-valued martingale difference sequendeg d, f, ..., allnumbers, ¢, . ..
in {—1, 1}, and alln > 1 with a constanC, only depending orp. He calledUMD
the class of Banach spaces which satisfy this property. The martiggal@,} given
by g, = Zﬂzl exdy f, is called the martingale transform of the martingéle- { f,}.

We shall deal with vector-valued martingale transform operators, defined by se-
guences of operator-valued random varialdlgs, instead of Burkholder’'s scalar-
valued sequenceig,} (for short (Tf), = Y ,_, v f, see Definition3.2). We
proved in [L4] that for a martingale transform operatdras above the knowledge
of the boundedness of the martingale transform operator in some fixed level, say,
strong p with p > 1, is equivalent to the boundedness of the rest of the levels, and
in particular to the boundedenelsSl f)*||.» < Cyll f*[l.» for every p in the range
1 < p < oo. Our aim in this part of our work is to show that the philosophy behind
this result (the knowledge of the boundedness at a certain level is equivalent to know
the boundedness at the rest of the levels) can be extendd@andH?* spaces. In
TheorenB.4it is proved that the martingale transform operafomshich are bounded
at some levelL?, 1 < p < oo, are exactly those bounded betwegMO spaces,
equivalently fromL> into BMO or, also equivalently, those whose maximal function
takes functions fromL> into functions ofBMO. Also in this part of the work, no
extra conditions are imposed on the stochastic basis. We handle two different notions
of BMOtype spacesBMO, ; andBMO, g are respectively the spaces of functions in
L& such that

It lemo;,, = SUPH(EnIIf — faallDY?)
n=

and

Il f llemo,s = SUPH(En”f — flIDYP
n=

are finite.

Itis interesting to point out that as an intermediate step in the proof of that theorem,
the boundedness of Doob’s maximal function betw®&O spaces is proved in
Lemma3.5. This can be considered as the probabilistic version of the result for
Hardy-Littlewood maximal operator established ij.[ We give an example of a
function f whose maximal is iBMObut f is not inBMO (see Exampl&.6), that, in
particular, shows that thBMO norms of f and f* are not equivalent.

Finally we present some applications. A Banach syaisesaid to be of martingale
cotypeq if §f = (3 0, ld f ||‘,_1,)1/q satisfie| S, f .« < C|| f|l.g with C a constant
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only depending om. This property was introduced by Pisier, séé|[and [16]. In

[19] it is proved that this property can be characterized in terms of some inequalities
involving the Lusin area function. By identifying, with the maximal of &9-valued
martingale transform operator, see SubsectiGynwe can apply the results in Sectidn

and evaluate the behaviour §f in the extremep = 1 andp = oco. The ideas in that
section yield a new characterization of the martingale cotypa fact, we prove that

for a Banach spadg, having martingale cotypg is equivalent either to the fact that

S mapsLy’ into BMO, §, mapsBMOinto BMO, or §, mapsH* into L* boundedly.

See also13] for related results.

With a similar reasoning to the one developed $&yin Theorem4.2 we prove a
characterization dJMD spaces as the ones in which signs martingale transforms are
eitherL>*-BMO or BMO-BMO bounded. See Sectigh2for the detalils.

The organization of the paper is as follows: in Secfidhe general theory of Hardy
spaces is developed. The results concerning boundedness of martingale transforr
operators are collected in SectiBnand the applications are given in Sectibn

2. Hardy spaces. Radon-Nikogim property

Analogously to the scalar case, séd][and [17], we define the following spaces
of B-valued martingales. Givep, 1 < p < oo, and a Banach spa& TheHardy
spaceHy is the space of martingaldssuch that| f e = Il F*llLe < oo.

A B-valued martingald is calledL P-predictable if there is an adapted nondecreas-
ing sequence of function$., },-0 such that| f,||g < An_1, N > 1, with [|A*]|.» < oo.
Such a sequence is called admissible controfor f. 22§ will denote the space of
L P-predictable martingalesendowed with the normi f || zp = inf, [|A*]|,, wherex
runs over all admissible controls fdr. In particular, if we takew,, = inf; A,,, then
I fllzp = llu*ll» andp is called the optimal control fof .

< is the space of martingales such thét] ,p = | Yo, lldh f [l , is finite. For
every Banach spadgand 1< p < oo, itis clear that#} and.</ are subspaces of
He; and || fllue < I fllop, I fllwe < Il fllzg. Onthe other handiy = ¢ + &
as a consequence of the following well known result due to Davis (8gifi the
scalar-valued case. The proof in the vector-valued setting is straightforward.

LEMMA 2.1 (Davis’ decomposition)For any p, 1 < p < oo and f € HZ there
exist martingalegy andh, such thatg € 2¢, h € &, f, =g, +h,,n > 1and
9z < (L3+4p) [ Fllug, Ihllep < 4+ 4P fllng.

Let us recall that atopping timeelated to a stochastic basi#,} is a functionv :
Q — NU{oo} with {v = n} € %, foralln > 1. Given a martingalé, themartingale
stoppedatv will be denoted byf ”, and is defined by f"),, = Zﬂzl Zisig T
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DEFINITION 2.2. A B-valued martingale = {a,}, is said to be gp-atom 1 <
p < oo, if there exists a stopping timesuch that?},.,a, = 0 for anyn > 1, and
la*lLe < P({v # oo}))~V/P.

The following lemma is a slight generalization of the scalar-valued casel gge [

LEMMA 2.3. Given a martingalef = (f,) € 2, 1 < p < oo, there exists a
sequence of-atoms{a}>® _ and a sequence of positive numbéug}X . € ¢P
such that

[ [
fn = Z ,LLka:]( a.s, Z ,ukp =< C “ f”;g
k=—o00

k=—o00

Inthe casep = 1, if f, = Y - . @k almost surely witHu} € ¢* anda® 1-atoms,
thenf € Zjand f =37 a*inthe Z3-normand|| f ||z ~inf Y7 |ul,
where the infimum is taken over all possible decompositioris of

PROOF. Let f be a martingale irZ?} with optimal control{,}. Define the non
decreasing sequence of stopping timgs= inf{n : A, > 2} where infy = co. Then,

[ee}

fo= D0 (£ = (%)) = im (£, = (F*"),) as.

k=—o00

since, by using thdvy, > j} = {A] < 2"} andr* € LP, we have lim,_. . (f"), = f,
and||(f™m),llg < 2n2 ™ almost surely. Define, for eadéhsuch thatP ({vy£oco}) #£0,
pk = 2P ({ve # ocoh¥P andal = p H((fUr), — (%),); in other cases define
e = 0,ak = 0. The proof follows now the lines of the scalar case, 46 [

In order to get the reciprocal fgo = 1, let f, = > - @k with {w} € €%,
{a¥} 1-atoms, andf} being the optimal control foa*. Then,{ > |2k} is
an admissible control fof . Since|lall#: < 1, we have thall f || 51 < Y e o 1kl
and that the convergence is also in the spate because

<) Iy

B |K|>m

m-1
fo— Z Mka:](

k=—m

These computations were valid for any decompositionf pftherefore|| f || 5 <
inf "> Iukl. On the other hand, by the first part of this lemnfia= Y wa*
with 07 il < C| fllzi. Then| f| 5 is equivalent to infy "~ lukl and the

proof is finished. U

Atoms are usually defined as functions and so they are in the scalar-valued case
However, it does depend on the geometry of the underlying Banach space in the
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vector-valued case, as the next result states. To this aim, défihg to be the
space ofB-valued martingales such thatf, = >",° _ wa¥ almost surely, where
{m} € ¢ andak are special 1-atoms such treit= E,(a*) for a measurable function
a*. The norm inZ} g is given by|| f | 51 = inf Y |w. Also, let us consider
the following martingales. ‘

DerINITION 2.4. f = {f,} is afinite martingalef f, = E,(f), and there exists,
such thatf is %, -measurable.

THEOREM2.5. Given a Banach spacB, the following sentences are equiva-
lent
(i) B has the Radon-Nikdun property.
(i) Everyl-atom{a,} verifiesa, = E,(a) for certain functiona € L%.
(i) 7§ = PLe.
(V) Hg = P3q+ 5.
(v) Finite martingales are dense if;.

PrROOF. (ii) = (iii) is due to Lemma2.3 and (iii) = (iv) is a consequence of
Lemma2.1l In order to prove (i}= (ii), observe that ifB has the Radon-Nikgan
property, all atoms are of the forma, = E,(a) (a € L}), sincea* € L™, see f].
Now, assume (iv). In order to show tHathas the Radon-Nikaa property, we shall
see that any martingale with* € L> converges almost surely (sed)[ If f* e L>,
by using Lemma2.1 and the hypothesis we can wrife= h + g with h € </ and
g € X5 = P g Thereforeitis enough to show thatndg convergein_ g, see P,
namely thath, andg, are Cauchy sequencesli. The fact thah € <7 implies
that Y lldchll.y < oo and, sincelh, — hyll < >y, lIdhllL:, we have that
{h,} is a Cauchy sequence Irf. For the predictable pag e Z} = 27} ;, we have
Oh = Y e, MkEn(@) with {E (@)} being 1-atoms anfu} € ¢*. By Lemma2.3
the converge of that series is almost surely and#g-sense. Giverr > 0, we
chooseM such that

< ¢&/3.

k=—M

M
Hg - Z e

1
yaLB

As a“ € LL we havegy = Y v _,, m@* € LL. Thus the martingal€E,(Gv)}>,
convergesirLl, see P]. Let N be such that fom,n > N we have

1En(Gm) — Em(@w) Iy < &/3.
Hence, by adding and subtractifg(gy) andE.,(Gu), we get

9n — Omlly =209 — Gullzg + 1Ea(Gm) — En(@u) Il < e

B —
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If B has the Radon-Nikgah property, anyf € H3 converges inL} since it is
uniformly integrable. Convergenceli implies almost sure convergence (se)).
Then, f,, is an almost surely Cauchy sequence, that is, for almost exayiyens > 0
there existdNg = Ng(w) such that for alh, m > Ng,

| fo(w) — fn(w)lls < &.

In particular, sup., || f,(@) — fn(@)lle < & for n,m > No. This implies that
{supim Il fo — fulle}m converges to O almost surely whem — oo. Moreover,
SURm Il fn — fmlle < 2f* € Lg. Given f € H3 andN > 1, consider the mar-
tingale stopped an, fN = (f,,..., fy, fy...). Then, by Lebesgue’s dominated
convergence theorem:
I f— fNIIHBl =

— 0.

L3

sup|l f, — fulle

n>N

Ls

sup| fo — ' lle

This shows (i)= (v). Conversely, if finite martingales are denseHg, in order to
prove thaB has the Radon-Nikgah property, we will see that any martingafevith
f* e L> c L%, converges almost surely by showing it is a Cauchy sequentg in
(seeB, 9]). Givene > 0Oletg be afinite martingale such thiat —g||: < /2. Since
g is finite, there existN such thag = (g1, ..., On, On, - .. ). Then, withn,m > N,
we havegy = g, = g, and

o= falley < 0 fa—Gnlly + 11— Omlly <20 —gllwz <& O

The former result shows that the density of finite martingales is related with the
geometry of the underlying Banach space, and that in spaces enjoying the Radon
Nikodym property, finite martingales are a dense subclass of Hardy spaces. The
following example shows that in general finite martingales are not dertdg.in

ExamMPLE 2.6. ConsiderQ2 = [0, 1] with Lebesgue’s measure and for> 0, let
r, = sign(sin((2"xt)) be then-th Rademacher function. L%, = o (r1, ..., r,) and
f be thecy-valued martingale, defined bfy, = (rq,r,,...,1,,0,0,...). For this
martingale, eacHf, is a sequencé, = (fX) € co, with f< =r,fork <nandfk =0
otherwise. Moreover, syff fall, = 1 € L.

Suppose that finite martingales are denselin Then, for any > 0 there exists
g a finite martingale such thatf — glly; < . This means, in particular, that
[ fX— gkl.: < e foranyn andk. Sinceg is a finite martingale, there exiské such
thatg, = gy for all n > N, and thereforg® = g for all k whenn > N. With
n=N,k=N+1,wehavg| f)'™ — gy ™[.: = [lgN .2 < & and withn = N + 1,
k=N-+1, we havel f{} — gNTill = Irnes — ONTle = Irnss — Ve < e

Hence 1= [Irnalls < Ifnga — ONHle + IgN e < 2e forall e > 0.



214 Teresa Mamez and JasL. Torrea [8]

3. Martingale transform operators

Givenp, 1 < p < oo, andB a Banach space, analogously to the scalar case (see
[11]) we define theB-valuedBMOfunction space§MO,, ; andBMO, 5, 1 < p < 00
as the spaces of functiorfse L}, such that, respectively

I'flemo;, = SUPH(EnIIf — faallDY?).
n=

and

Il f llemo,s = SulpH(En”f — flIDYP
n=
are finite, seeq]. Also, defineBD,, s as the space of martingales such that
| fllep.s = Suplidk fll s
k>1
is finite.

ReEMARK 3.1. Inthe scalar-valued case, the following facts are well known,kHe [
and [L7]. Their proofs go straightforward over the Banach-valued case.

(i) Any f e L™ belongs tBMO,, BMO,, 1 < p < oo andBD,,, and|| f [|zmo,
[ fllemoss Il fllep, are smaller or equal than) 2| ~.

(i) BMO, = BMO, N BD,, with || fllemo, ~ Il fllemo, + Il flleo,. for every
l<p<oo.

(i) We have|| f |swo, = sup, P(v # oo) VP f — £V L, where the supremum
is taken over all%,-stopping times. Also, a functionf € L, 1 < p < oo isin
BMO; if and only if there exists an adapted procégsg,.o such thatd, = 0 and
Co = sup, |E(If — 0n_1lI§1.Z)? | is finite. Then,| f|lgwo; ~ inf, Cy.

(iv) The norm in all the spacd&MO; is equivalent for any k p < oo, although
BMO, spaces are not equivalent in general, even in the regular case.

DEFINITION 3.2. Let B; andB, be two Banach spacegZ,},-1 a stochastic basis
in a probability spac€2, Z, P), and f = {f,} a B;-valued martingale relative to
{Z#.}. Let{v,} be a sequence a¥(B,, B,)-valued random variables, eachbeing
Fn_1-measurable) > 2, andv, being.#,-measurable, with syp, [lv, [l < 1. Such
a sequence = {v,} will be called amultiplying sequence The martingale given
by (T ), = Yo, v ok f is called themartingale transformof f by the multiplying

sequence. T will denote the martingale transform operator.

A martingale transform operator Is’-boundedf for some constan€ and every
martingale f, ||Tf||L§2 < CJ f||L§1. A simple example oL P-bounded martingale
transform operator, kx p < oo, for any Banach spac® is defined by(T f), =



[9] Martingale transforms on extreme points 215

(F)n = Yy 1=k f with v a stopping time. Observe tha®,.y} is a nice
multiplying sequence and it verifies

{v=n}

n-1
(1) ||(f“>n||fg=2/ ||Ek(fn>||§dp+/ Ifall5dP < |l fall -
k=1 ¢ {v=Kk}

LEMMA 3.3. Let p, 1 < p < oo, T be anLP-bounded martingale transform
operator and a functionf € L§ . Then the martingald f is of the form(T f), =
En(T f) for some functio f € L .

PrROOF. Givenf € L, 1< p < oo, f, = E(f), thenf =lim,_ f,inLg (see
[9]). Given such a martingale and a pair ofinderes m, we consider the martingale
g ={g}i>1definedag;, = f,— f,,fori > m+1andg, = Ootherwise. Its martingale
differences ar€0,...,0,dyn 1 f, dnof,...) and then(Tg);, = (Tf); — (T ), if
i >m+ 1anditis O otherwise. SincE is LP-bounded, 1< p < oo,

1T On = (T Omlig, = 1T Dalleg, = Cliglicg, = Csupll fn — fmllep .
that is,{(T f),} is a Cauchy sequence Irf, and converges to a function Ir§ , T f,
verifying (T f), = E (T f). O

Consider, for eack > 0, the sequence o:f—algebras%‘ = % n > 1, and
the martingale transform operafbrwith respect to them, defined by the multiplying
sequencgik},, o = v,. In particular,To = T. These operators verify the next
result.

THEOREM 3.4. GivenB;, B, two Banach spaces antl a martingale transform
operator as in Definitior8.2and T, as above, the following statements are equivalent
when they hold for anlg > 0 with constants independentkaf

(i) Foreveryp,1< p < oo, Ty :BMO,5, — BMO,g,.
(i) There existp, 1 < p < o0, Ty : BMO,, — BMO,;,.

whereLg’ is the space of

(i) There existp, 1 < p < oo, Ty : L — BMO, 5,
all almost surely uniformly bounde®}-valued functions.
(iv) II(Tx f)*llemo, < Cpll f ”BMO;ABl for somep, 1 < p < oo.
V) I(TcF)*llemo; < Cpll fllig for somep, 1 < p < oo.
(vi) Ty are LP-bounded foranyp, 1 < p < oo.
(vii) T is LP-bounded forany, 1 < p < cc.
(viii) T is bounded fronHg into Hg .

PrOOF. In [14] we proved that statements (vii) and (viii) are equivalent. The rest
of the proof will be developed as follows: first we will prove (v (vi) = (i) = (ii).
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From (ii) we get (i) and (iv) and from any of them we obtain (v). Last step will be
proving (V)= (Viii).

Suppos€T is LP-bounded. Given a#k-martingalef = (f, 5, ...), by defining
f = (Eiu(fy), ..., Ex(f), f1, f5,...) we obtain aZ,-martingale associated tb
with || fllg < I flieg,. Then

IRl =

R fL+ Z o(f; = fi_o)
j=2

p
Lg,

= [veaBe(f) + (T Hn = T, < Cllflg,-

This shows (vii)=> (vi) and in particular that every, is LP-bounded with respect
to the corresponding stochastic basis, with the same constanfthewlependent

of k. By using this, it is enough to prove all the implications (except=v)viii))

just for a martingale transform operafbrand check that the constants in statements
()—(v) depend only orp and theL P-boundedness constant df Next step consists

in proving that aL P-bounded martingale transform operaformapsBMO, g, into
BMO, g, boundedly. Considef € BMO, g, forsomep, 1 < p < oo. By Lemma3.3

the martingalg(T f),} is of the form(T f),, = E,(T f) whereT f is a function inLB”Z.

In order to see thal f is in BMO, g,, we will use the characterization in RemarK.
Letv be a stopping time. We have

ITf—(Tf)”

n—-1
b = SUDZ/ | (T = (T dP,
B2 n=1\_; J{v=k

and for each pain > Kk,

/ [T 60— (T2 dP = [(Thy?,
{v=k) :

where the sequence with zeros in the fikstoordinates(O, ..., 0, dc1 f 2|y,
Ao T 2k, -..) IS h’'s martingale differences. SincE is LP-bounded, the con-
ditional expectation properties give

| (Thy,| fsz <C sulpnhnnfgl =Csup[ |Es(f)— fill5 dP

n>k J{v=k}
< Cll f llfwo,e, PUv = kD).
and therefore

|Tf—(TH

iz = Cll fllBuo,s, Py # oob).

These calculations show that if a martingale transform operaldr-lsounded relative
to some stochastic basis, then it m&dO, g, into BMO, 5, with a constant that
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depends only om and the constant of itsP-boundedness. Observe that martingale
transform operators are always bounde&mDy,, since||vcdy f||g, < ||dk f ||, @lmost
surely. This, together with Remark 1 and (i), gives us (ii). The implications
(i) = (i) and (iv) = (v) are consequences of Rem&l, and (iv) = (ii) and

(iii) = (v) are due to the following lemma, whose proof will be given later. [

LEMMA 3.5.1f f € BMO, 5, 1 < p < oo, then f* = sup, [Eq(f)[s € BMO,
and| f*llgwo; = C |l fllsmoy,, -

Finally, we shall see that if, verify (v) for anyk > 0 with a constant independent
of k, thenT is bounded inH®. Observe that it is enough to pro¥&*-boundedness
for finite martingales, since

1T H e = SUJOII(T(f”))*IIL1 =< SUJOCII(f”)*IIL1 =ClI ",

wheref" = (fy, fo, ..., T, To,...). Givenafinitef = (fy, ..., fy, fn,...)IN Hll,
by Remark2.1there exist martingaleg € 27} andh € <. such thatf = g+ h.
Since|lh, — h, ||L1 <Y il ||dkh||L1 — 0, there exists afunctloh e L} . such
thath, = E,(h) for all n > 1. Thengn = f, — h, = E,(fy — h) for all n > 1.
Moreover, ||gllzg + IIhllwy < ClIfllug . Now, since clearly|(Th)*[ls < [0l ,

it is enough to prove|(Tg)*|l, < C Igllzy, - By the proof of Lemma2.3, the 1-
atoms of the decomposition gfare defined asX = wu, '((g"*), — (g),) where
ve1 @and vy, were certain stopping times. Due to thé-boundedness of stopped
martingales?), thatg, = E,(g) for certaing € L and Lemma3.3 we conclude that
af = E, (@) for certaina € Ly, for eachk. Since the series converge almost surely,
and eachy is a bounded lineal operator, we haggg), = > = _ u(Ta), and

T < Y o ikl (Ta)* 2. Itwillbe enoughto prove thenthi€T a)*||.: are
uniformly bounded whea is a 1-atom given by a function. Fara 1-atom(T a)* =
(T a)* 2|, fOor some stopping time, andf{uzk](T a)*dP = f{U:k; (Tya)*dP. The
last step is using (v) (recall that the boundedness constait isf uniform ink) and

that{v = k} € Zx C .ZX, to get the desired inequality

iTarie =Y [ Tardp=Y [ EcTariZhap
k=1 Y {v=K} k=1 v (v=k}
< > (M@ lemo; P({v = k}) < C.
k=1

A related version of this extreme point argument can be fountéi@niheorem 12].
Let us now proceed with the proof of the boundedness of Doob’s maximal function
betweerBMO spaces.
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PrOOF OFLEMMA 3.5. Consider the martingale transform operdibgiven by the
multiplying sequencéwy}y-1, wherew,(x) = (0,...,0, X, X, X, ...) is an element
of £3° with zeros in the firsk — 1 coordinates, for anyx € B. Then for aB-valued
martingalef = { f,},-1 Doob’s inequality gives, fop > 1,

II(Mf)nIIL;iEC = II(fy, ..., fo, fm---)”Lfgc = [fllee < Clifalleg,

that is, M is LP-bounded with a constant only depending pn Observe that, by
using the fist part of the proof of Theored, this implies thatM maps functions
in BMO, g into functions inBMQj, ... The proof is finished by observing that, since
f* — f, <sug_ Il f« — fo1lls, and by Remar.1with 6, = f*, we have

* * * 1/
1" llemo;, < SUPEna((* = f D™ 2" < IMfllouo .- O
ol 5
The converse to this lemma is not true in general, as it is shown by the following.

ExamPLE 3.6. Consider the probability spagg—1, 1], #,dP) where.Z is the
Borel o-field anddP = dx/2, dx the Lebesgue measure, ¢rl,1]. Take .Z,
to be theo-field generated by the s&%, = [—2", 2 "] and the Boreb-field in
AS =[—1, 1]\ A,. They clearly define a stochastic basis. The function

0 if |x]>1;
f(x)=1logx| if 0<x<1;
loglx| if —1<x<0

does not belong tBMO7, while f* = | f| does indeed, as an easy calculation shows.
4. Applications

4.1. Banach spaces of martingale cotypg A Banach spac® is said to be of
martingale cotype, 2 < q < oo (in short, M-cotypeq) if there exist a constar®
such that

Yo lda ity < CIFIy.
n=1

Every Banach space is of M-cotyge= oco. The definition is due to Pisierlf].
Non-trivial M-cotypeq < oo is a geometrical property of the space, since it happens
if and only if the space admits an equivalent uniformly convex norm (and therefore,
in particular they are reflexive spaces), sé& [L6]. If we consider

0 1/q
Sf= (Z Ik f ||g> :
k=1
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then it is clear that a Banadhis of M-cotypeq if and only if S, mapsL3 into L9,
for any filtration. Pisier showed that this property is equivalent to have boundedness
of S, either fromL} into LP for some or for everyp, 1 < p < oco. We will see
what happens in the extreme poiis= 1 andp = oo by applying Theorem3.4to a
particular martingale transform operator whose maxim&, is

Define the¢i-valued martingale transfor®@f = {(Qf),} with multiplying se-
quenceyx = X§, g thek-th element of the canonical basisdffor anyx < B, in
such a way that

QP =Y vt f = (@i f.dpf.....d\f.0,...) €]

k=1

for any B-valued martingalef. Then(Qf)* = §;f and this gives us the key for
the proof of the following characterization of tié-cotype property (wherBMO~
stands for any of the equivalent spa@¥O_, 1 < p < ).

THEOREM4.1. For a Banach spacB the following statements are equivalent
(i) B has M-cotype], 2 < q < oo.
(il) There exists a constaf@ such that|§, f [|lgwo- < C|| f|l.y for any function
f € Lg and any stochastic basis.
(i) There exists a constaft such that| §; f [emo- < C|| f|lswo, for any function
f € BMO; and any stochastic basis.
(iv) There exists a consta@ such that||§, f||.. < C|| f|ly; for any martingale
f € Hg and any stochastic basis.

PrOOF. As we observed above, B has M-cotypeq, then Q satisfies (vii) in
TheorenB.4and therefore it satisfies (iv), (v) and (viii) in that theorem, which means

IS fllemo- =Clifliiy, 1S fllemo- < Clifllemo, and 1§l < Cllfllng,

with a constant that depends only on the boundedness const@ntvdiich is inde-
pendent of the stochastic basis. Conversely, suppose either

IS fllemo- =Clifliiy, 1S fllemo = Clifllemg, or 1§ fll < Cliflln;

for any stochastic basis. Sint@y f)* is againg, f, then we have that statements (iv),
(v) or (viii) in Theorem3.4 hold with the same constant. Therefore, we have

IS fite < ClIfi

with certain universal constaft. O
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4.2. UMD Banach spaces Observe that the definition given above 1dMD
spaces, is equivalent to requlté-boundedness of all martingale transform operators
(Tef), = X1, ekt f whose multiplying sequences are defined by signs sequences
(v = &¢). In this contextT;, k > 0, is again a martingale transform operator of the
same type. We have the following theorem, whose proof follows the lines of the proof
of Theoremd. 1

THEOREM4.2. For a Banach spacB the following statements are equivalent
(i) BisUMD.

(i) There exists a consta such that||T* f |[guo, < C|| f|ly for any function
f € Ly and any sign martingale transforif.

(i) There exists a consta@t such that| T* f [|guo, < C|l f |lamo, for any function
f € BMO; and any sign martingale transforify.

(iv) There exists a consta@such that|(T* f)*[lguo- < C|| f||_y for any function
f € Ly and any sign martingale transforif.

(v) There exists a constar@ such that|(T*f)*|smo- < C| fllauo, for any
function f € BMOg and any sign martingale transforif’.

(vi) There exists a consta such that|| T* f||4; < C|| f||y; for any martingale
f € Hg and any sign martingale transforif.
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