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Abstract

Given a lattice formationZ of full characteristic, anZ - Fitting class is a Fitting class with stronger
closure properties involving? -subnormal subgroups. The main aim of this paper is to prove that the
associated injectors possess a good behaviour with resp&cttobnormal subgroups.

2000Mathematics subject classificatioprimary 20D10.

1. Introduction

All groups considered are finite and soluble.

In a previous paper?], .Z-Fitting classes associated to a lattice formati8n
containing 4", the class of all nilpotent groups, are introduced and studied. A lattice
formation is a class of groups whose elements are the direct product of Hall subgroups
corresponding to fixed pairwise disjoint sets of primes..AfFitting class is a class
of groups which is closed under takirg-subnormal subgroups and the join.&t-
subnormal subgroups (see Definiti@r). The classical Fitting classes appear as
A -Fitting classes.

In[2, Theorem 3.9] a large family o -Fitting classes, for every lattice formation
Z containing./", is presented. The Fitting classes in this family are also saturated
formations. Other examples of a different nature are also show, iEfamples |
and I1].

Since.#" is contained in the lattice formatiof#, the subnormal subgroups are
Z-subnormal and theZ-Fitting classes are Fitting classes. Our main aim in this
paper is to prove that the following result, for &Fitting classZ”, holds: IfWis an
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Z -injector of a groups andH is an.%Z-subnormal subgroup @&, thenH NW is an

2 -maximal subgroup dfl . In fact, this property characteriz&-Fitting classes (see
Theorem3.9 and Propositior8.3), as the existence of injectors characterizes Fitting
classes. The result obtained i) Theorem 4.5] appears now as one particular case.

2. Preliminaries

The reader is assumed to be familiar with the theories of saturated formations and
Fitting classes and their projectors and injectors subgroups, respectively. We refer to
[8] for the relevant definitions, notations and results.

For the sake of completeness we will recall some concepts and results.

A lattice formation.Z of characteristicr is a saturated formation locally defined
by a formation functionf given by: f(p) = .%,,if p € - C w, where{r;}i, is a
partition of the set of primes, and f (q) = @, the empty formation, ifj ¢ 7. .,
denotes the set of all solubtg-groups.

In this case, for a prim@ € =, the set of primes; such thatp € ;, will be also
identified by (p).

LEMMA 2.1 ([5, Remark 3.6],4, Lemma 3.2]).Let.# be a lattice formation with
characteristicr andp € 7. Then

(@) The canonical local definition off and the smallest local definition o are
given by setting
o If[7(p)| =1, thenF(p) =7, and f(p) = (D).
o If [m(p)| = 2, thenF(p) = f(p) = F. In particular, for a groupG,
GFP = Gfm — O””’)(G).
(b) A groupG belongs toZ if and only if G is a solubler-group with a normal
Hall 7;-subgroup, for every € 1.

HenceforthZ will always denote a lattice formation containing” and the above
notation will be assumed.
In this section® denotes a subgroup-closed saturated formation.

DEeFINITION 2.2 ([8, III, Definition 4.13, IV, Definition 5.12]). A maximal sub-
group M of a groupG is said to be4-normalin G if G/ Cores(M) € ¥; other-
wise, it is called4-abnormal

A subgroupH of a groupG is said to b&4-subnormalin G if eitherH = G or
there exists a chaill = H, < H,_1 < --- < Hy = G such thatH,; is a¥%-normal
maximal subgroup oH;, for everyi =0, ...,n— 1. We writeH ¢ -snG.
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DEFINITION 2.3 ([2, Definition 3.1]). A class.2 (£ ¥) of groups is called ar#-
Fitting classif the following conditions are satisfied:

(i) f Ge 2 andH .Z -snG, thenH ¢ 2.
(i) If H,KZ-snG = (H, K)with H andK in .27, thenG ¢ 2.

The Fitting classes are exactly thé¢'-Fitting classes. Moreover, aff -Fitting
class is, in particular, a Fitting class.

PrOPOSITION2.4 ([2, Proposition 3.4 (4). Let 2™ be an.Z-Fitting class andG a
group. The% -radical G4 of GhastheformG4s=(H < G: H .Z -snG, H € 27).

DerINITION 2.5 ([11, Definition], [12, Definition 5.8]). A subgroupH of a group
G is said to b&/-abnormal inG if every link in every maximal chain joiningl to G is
% -abnormal, thatisH is a¥%-abnormal subgroup @ if, whenevelH <M < L <G
andM is a maximal subgroup df, thenM is a%-abnormal subgroup df. We write
H ¢ -abnG.

In[12, Definition 3.15]% -pronormal subgroups are defined interms of complement
%-basis. They are characterized in the following way:

THEOREM 2.6 ([12, Satz 3.21]).A subgroupH of a groupG is ¢4-pronormal inG
if and only if H satisfies the following propertylf g € G, thenH% = H* for some
X € (H, H9)?’. In this case, we writé1 ¢-pr G.

THEOREM 2.7. For a subgroupH of a groupG, the following are equivalent
(1) H¥9-prG.
(2) ([12 Satz3.26])f H < K <L < G, thenL = K¥N_(H).
(3) ([6, Theorem3],9, Theorem2.10])f H < L < G, thenL = S (H, %)N_(H),
whereS (H, ¥) is the%-subnormal closure ofl in L, that is, the intersection of all
% -subnormal subgroups @ containingH .

By [12, Satz 5.14], a subgroud of a groupG is ¥-abnormal inG if and only if
H is 4-pronormal and self-normalizing iG.

THEOREM 2.8 ([12, Satz 3.18, Satz 5.17]L.et H be a¥-pronormal subgroup of a
groupG andN < G. Then
(1) HN/N is¥%-pronormal inG/N.
(2) Ng(H) contains &-normalizer ofG.

THEOREM 2.9 ([7, Lemma 5.1], 12, Satz 5.22]).Let H be a subgroup of a group
G. ThenH is a¥-projector of G if and only ifH € 4 andH is ¢%-abnormal inG.
In particular, the¥ -projectors ofG are also¥-pronormal inG.
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THEOREM2.10 ([, IV, Theorem 5.18]).Let G be a group whos& -residual G¥
is abelian. TherG? is complemented i and two complements iG of G¥ are
conjugate. The complements are figrojectors ofG.

For a groups, we write Proj, (G) to denote the set of elf-projectors ofG. Z,(G)
denotes th& -hypercentre of the grou@ ([8, IV, Definition 6.8]).

A subgroupH of a groupG is calledself<-normalizingin G, if wheneverH %-sn
T <G,thenH =T.

THEOREM 2.11 (2, Theorem 4.2]) For a subgroupH of a groupG, the following
statements are equivalent

(i) H is a¥-projector ofG.

(i) H is a self¢-normalizing¥-subgroup ofG and H satisfies the following
property. ‘if H < K < G, thenH N K¥ < (K¥)".

3. Z-Fitting classes and injectors. The main result

In order to prove our main result we proceed in the following way.

DEFINITION 3.1. Let .2 be a class of groups and Iet be a lattice formation
containing.#". An (%", Z)-injector of a groupG is a subgroupV/ of G with the
property thal N K is an.2"-maximal subgroup oK, for all Z -subnormal subgroups
K of G. We denote the (possibly empty) setdf’, #)-injectors ofG by Inj 4 »,(G).

Obviously, theZ -injectors are th€.Z", .4")-injectors.
Inj .- (G) denotes the (possibly empty) set.@f-injectors of a groufs.

REMARK 3.2. Let G be a group and?™ a class of groups.

(@ IfV elnj 4 5 (G)andK .Z -snG, thenV NK e Inj 4 & (K).
(b) 1fV elnj 4 £ /(G)anda : G — (G)a anisomorphism, then

Ve € Inj 5 5/ (Ga),

in particular, Inj,-  (G) is a union ofG-conjugacy classes.

(c) LetV beanz -maximal subgroup o, and assumethatnNM < Inj 4 z (M),
for every.Z -normal maximal subgroum of G. ThenV € Inj 4 5 (G).

(d) Inj 4 #,(G) S Inj,(G). Thisis becausel” € .#, which implies that subnor-
mal subgroups aré& -subnormal subgroups.

Moreover, if 2" is a Fitting class, then Ipj- 5, (G) # ¢ifand only if Inj 4 - (G) =
Inj .- (G). Thisis clear by the very well known result of Fischer, Gagelahd Hartley
about the existence and conjugacy of injectogs \{lll, Theorem 2.9], [L0]).

(We recall that theZ -Fitting classes are Fitting classes.)
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Itis well known that the existence of injectors in every group characterizes Fitting
classes. The first corresponding result #fFitting classes is the following one. It
can be proven by arguing as in the classical result with obvious changes8(s$¥e [
Theorem 1.4]). Thus we omit the proof.

PrROPOSITION3.3. Let 2" be a class of groups. If every group has @&, .%)-
injector, then?" is an.Z -Fitting class.

Our aim is to prove that the converse of this proposition is also true. The proof of
our main result (Theorer®.9) is inspired by the proof of the Fischer, Gaathand
Hartley classical result] VIII, Theorem 2.9], L0]). We begin with some preparatory
lemmas. Also Theorer.11will play an important role.

REMARK 3.4. It is well known that the injectors and the projectors associated to a
Fitting class and to a Schunck class (in particular, to a saturated formation), respec-
tively, are pronormal (see3[ Ill, Corollary 3.22, 1X, Theorem 1.5]). Even more, the
¢ -projectors associated to a saturated forma#igre¥-pronormal (Theorerd.9).

This is not the case for the injectors,%f is a saturated Fitting formation. Take
for instance¥ = .%,.%,, the class of all 2-nilpotent groups, a® = Sym(4) the
symmetric group of degree 4. Th&injectors ofG are the Sylow 2-subgroups 6.
Let P € Syl,(G) and letx be a 3-element o&. ThenG? = (P, P*)? is the normal
four-subgroup of3. Itis clear thatP and P* are not conjugate iG“. ThenP is not

% -pronormal inG.

If 2" is an.Z-Fitting class, we will obtain that the2", .Z)-injectors areZ-
pronormal. This means that th& -injectors are.Z-pronormal, for this Fitting
class.Z". Afirst step is given by the following result.

LEMMA 3.5. Let 2" be an.Z-Fitting class and letG be a group. Suppose thalt
is an (2", #)-injector of G andU satisfies the following property

() ifU<T <G,thenU € Inj 4 5 (T).
ThenU is .Z-pronormal inG.

PrROOF. Letx € G. SinceU is an Z -injector of G, thenU is pronormal inG.
Consequently, there existse (U, U*) such thatU* = U'. In particular,t €
(U,UY = (U, U»).

Assume thatU, U') < G. SinceU satisfies the property], arguing by induction
on the order of5 we can assume thaltis .#-pronormal in(U, U'). Then there exists
r e (U, Ul = (U,U*)¥ suchthat)" = U' = UX.

Consider now the cage = (U, U*).
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If U(U, U*)* = G, thenx = umfor someu € U andm e (U, UX)*. Obviously,
we haveU* = U™ with m € (U, U*)7 .

Otherwise we would have that = U(U,U*)¥ < G. But in the case under
consideratiorG” = (U, U*)#, which implies thafT is an.Z-subnormal subgroup
of G. ThereforeT NU* € Inj 4 & (T). ThusU, TNU* € Inj 4 5, (T) = Inj, (T).
Consequently, there would exist= ur ¢ T = U(U,U*)¥ with u € U and
r e (U,U*)#, such thaff N U* = U! = U". In particular,U" < U*. Clearly we
would deduce also in this situation that = U* withr € (U, U*)7.

Hencel is an.Z-pronormal subgroup db. O

LEMMA 3.6. Let .2 be an.Z-Fitting class and letG be a group. Letk be a
normal subgroup o such thaiG/K € .%. Suppose that there exists &n-maximal
subgroupW of K and an .2"-maximal subgroupX of G such thatWw < G and
XNK =W. Then

(@) X/W < Zs(Ns(X)/W).

(b) X = (CW)y4, for everyC € Proj; (Ng(X)).

(c) If CW/W e Proj; (Ng(X)/W), thenCW/W is a self:#-normalizing .7 -
maximal subgroup o&/W.

PROOF. Let N = Ng(X).

(a) LetLy/Lo be anN-composition factor ofX such thatWV < L, < L; < X.
Suppose that ;/L, is a p-group, for a primep. It is clear thatXK/K is N-
isomorphic toX/W is such a way that;K/K andL,K /K are N-isomorphic to
L,/W andLy/W, respectively. Consequently we have thatK /K) /(LK /K) is a
chief factor ofN K/K andCy (LK /LoK) = Cy(L1/Lg). Moreover[L;, NN K] <
L;NK =W < Lo, thatis,N N K < Cy(Ly/Lg). Then we have:

(NK)/Cnk ((L1K)/(LoK)) = (NK)/(Cy (L1 K) /(LoK))K)
= (NK)/(Cn(L1/Lo)K)
= N/(Cn(L1/Lo)(NNK)) = N/Cy(L1/Lo).

SinceG/K € Z,thenNK/K € .Z and we can conclude thilt/ Cy(L1/Lo) € F(p).
This implies thatX/W < Z & (Ng(X)/W).

(b) We have thak/W < Zz(N/W) < CW/W, for all CW/W e Proj; (N/W),
with C € Proj;(N), by (a) and g, IV, Theorem 6.14]. SincEW/W e .Z, thenX
is an.Z -subnormal subgroup @ W. But X is an.2"-maximal subgroup o, which
implies thatX = (CW) s because?” is an.Z -Fitting class.

(c) Assume thaCW is .Z-subnormal inT < G. ThenX is also.Z-subnormal
in T, becaus& is normal inCW by (b). Again theZ -maximality of X in G implies
that X = T4 . In particular,T < N. Therefore CW/W is also an.Z-projector
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of T/N (see B, lll, Corollary 3.22]) and thenCW/W is .Z-abnormal inT /N by
Theorem2.9. ConsequenthCW = T.

In particularCW/W is .Z-maximal inG/N. This is clear because every subgroup
of a group inZ is .Z-subnormal in the group. O

LEMMA 3.7. Let 2" be an.Z-Fitting class,G a group andK a normal subgroup
of G such thatG/K < .#. Suppose thatV is an .2 -maximal subgroup oK such
that W < G. Suppose also tha® has an(.2", .Z)-injector X, which satisfies the
following property

(%) if X <T <G, thenX € Inj 4 z,(T).

(Note thatX N K = W.)
ThenX = (HW) 4, for someH e Proj; (G).

PrOOF. Lemma3.6implies that

X/W <UW/W, forevery UW/W € Proj;(Ng(X)/W), and
X =(UW),, forevery U € Proj; (Ng(X)).

Note that every subgroup of G containingX satisfies the hypothesis of the Lemma
just with K N L instead ofK.
Consider the sets:

& ={L <G:X <L, Projz(N_(X)/W) € Projz(L/W)}, and
PB={L<G:X<L}

Note thate is non-empty because at leaéte «/. We claim thates = 2.

Assume that it is not true and take a subgraupf minimal order in# \ <. Take
UW/W € Projz (N_(X)/W), with U € Proj; (N_(X)).

We use the ‘bar’ notation to denote images under the natural homomorphism
G- G/W=0G.

WheneverX < U < T < L, thenU < Nc(X) N T = Ne(X) < Np(X). In
particular,U e Proj, (N(X)). The choice ol implies thatJ € Proj, (T).

By the hypothesis, we can apply Lemr& to L and X and conclude thaX is
Z-pronormal inL. In particular,X is .Z-pronormal inL which implies thatNg(X)
contains anZ-normalizer ofL by Theoren?.8. It is clear thatN(X) < L by the
choice of L. Thus, there exist$! a maximal subgroup of such thatNg(X) <
M < L. SinceM contains anZ-normalizer ofL, M is .Z-abnormal inL by [8, V,
Lemma 3.4]. In particular. = L* M. Moreover,M = M“U, becausdJ is an
Z -projector ofM. ThenL = L# U. This implies that every maximal subgrouplof
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containingU is .Z-abnormal. Moreovel is .Z-abnormal in every proper subgroup
of L containingU, by Theoren®.9, becaus&) is an.Z-projector of a such subgroup.
Consequently is .Z-abnormalinL andU € .Z. ThenU is an.Z-projector ofL by
Theorenm2.9. This contradicts the choice &fand proves that/ = Z.

Consequently, iU e Proj,; (Ng(X)), thenU e Proj;(Ng(X)) < Proj;(G).
SinceU e Projz(UW), we have thatl € Proj; (G). ThereforeX = (UW), with
U € Proj; (Ng(X)) <€ Proj;(G) and we are done. O

LEMMA 3.8. Let 2" be an#Z-Fitting classes( a group andK a normal subgroup
of G such thatG/K € .#. Suppose thab satisfies the following property

€2)) If H <G, theninj s & (H) #?.

Suppose thatV is an .2 -maximal subgroup oK and that X is an .Z2"-maximal
subgroup ofG such thatw < Gand X N K = W.
ThenProj; (Ng(X)/W) C Proj; (G/W), and consequently it follows that

Proj; (Ng (X)) < Proj; (G).

PrROOF. As in Lemma3.7, we take into consideration the following facts.
By Lemma3.6, we have that

X/W <UW/W, foreveryUW/W e Proj; (Ng(X)/W),

whereU € Proj; (Ng(X)).

Itis clear that every subgroup of G containingX satisfies the hypothesis of the
Lemma withK N L instead ofK.

Consider the following sets

& ={L <G:X <L, Projz(N_(X)/W) € Projz(L/W)}, and
PB={L<G:X<L}

Notice thatX € & # @.

Our purpose is to prove that = 2. The result then follows easily.

Assume that this is not true and take a graugf minimal order inZ\ «/. Consider
UW/W € Projz (N_(X)/W), with U € Proj; (N_(X)).

We use the ‘bar’ notation to denote images in the factor gegw = G.

We split the proof into the following steps.
Step1.lf X <U <T < L, thenU e Proj, (T).

Itis clear by the choice df asin Lemma.7. Note thatN, (X) < L, by the choice
of L.
Step 2.Every maximal subgroup af containingU is.Z-normal inL.
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Assume that there existd an.Z-abnormal maximal subgroup &fcontainingU.
Arguing as in Lemmé3.7 we can deduce thdi is an.Z-projector of L, which
contradicts the choice df and proves Step 2.

Step 3. If M = M/W is a maximal subgroup of containingU, then X e
INj o &) (M). _ _

By Step 1, we have th&t € Proj; (M). Arguing as in Lemma.6 (b), we deduce
that X = (UW)4. Moreover,U e Proj; (M) asU € Proj; (UW). SinceM < G,
there existsy’ € Inj 4 »,(M), by the hypothesis.

Notice thatM satisfies the hypothesis of Lemr&. In particular, we claim that
wheneverY < T < M, thenY € Inj , 5 (T). The hypothesis implies that #
Nj 2 7 (M) = Inj4 (M) and? # Inj 4 5 (T) = INj,-(T). ThenY € Inj,(T) =
INj 2 #,(T), by [8, IX, Theorem 1.5 (c)].

By Lemma3.7, we have thalY = (ZW), with Z € Proj;(M). Consequently,
X =Y"elInj 4 5 (M), for somem e M.

Step 4.Let M be a maximal subgroup df containingUW. ThenL = L¥ N (X N
MF®) with p the prime dividingL:M]|.

By Step 2,M is Z-normal inL. ThenLF® = MF® < |, becauseMF® =
O™ (M). Step 3 implies thaX € Inj , z (M), thenX N MF®P = X N LF® =
J € Inj 4 5 /(LFP). Takel € L. We have thatd' € Inj 4 5 (LFP)) =
INj 5 2, (L),

In particular,J and J' are 2 -injectors ofL"®, which implies that)' = Jt, for
somet € L7,

Arguing as in Step 3 we can prove that evéry ', .Z)-injector of L7 is an
(2, F)-injector of every subgroup df ", containing the(.2", Z)-injector. By
Lemma3.5we conclude thaf is an.Z-pronormal subgroup df (™.

Consequently, there existse (J, JY)¥ suchthatl! = J' = J*. Since(J, J)¥ <
L7, itis clearthat € L¥ Ng(J). ThusL = L N (XNLF®) = LZ N (XNMF®),
Step 5.There exists a unique maximal subgrddf L containing W. In particular,
Nz (X) < M.

Let M be a maximal subgroup af containingU. By Step 1 and Step 2, it is clear
thatM = M#U = L U and the conlusion is obvious.

Let p be the prime dividingL:M|.

Step 6. X N MF® g L,

Note thatUW < N_(X) < N.(X N MF®) = N_ (X N LF®). Consequently, if
N_(X N MF®) were a proper subgroup &f, then it would be contained iM, by
Step 5. Moreovet.” < M by Step 2. Then we could conclude tHat= M, by
Step 4, which is a contradiction.

Step 7.Let R be an.Z-projector ofL andT = (L% ). Let

C/T = Xqga(pCoyit# /1 (RN M)T)/T)F@).
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Then(U T)/T is conjugate toE/T = (C(RN M))/T in M/T.

SinceRis an.Z-projector ofL, L = L¥ R. By Step 2,L¥ < M which implies
thatM = L (M N R). Obviously,(U T)/T e Proj;(M/T). On the other hand,

M/T = (L7 /T) (M N R)T)/T), with L¥ /T an abelian normal subgroup bf/T
and(M N R)T/T) € .Z. Consider for a moment a subgroGgT, constructed as in

the statement, but with the primes in the direct product running all the prime numbers.
Thus the subgrouf /T constructed as in the statement is&rprojector ofM /T by

[8, IV, Theorem 5.16]. In particular, this subgro&y T is conjugate taU T)/T in

M/T.

We claim thatz (p) N 7 (C/T) = ¥, which proves Step 7.

Notice that the group./T = (L¥ /T)((RT)/T) is a semidirect product because
L¥ N R < T by Theoren?.1Q In particular,M/T = (L7 /T)((M N R)T)/T) is
also a semidirect product.

SinceM/T is .Z-normal inL /T, then(M/T)/(L¥ /T) is Z-normal in(L/T)/

(L¥ /T), which implies that(M N R)T)/T is an.Z-normal maximal subgroup of
RT /T with index ap-number. ConsequentlgRT)/T)® = (MNR)T)/T)F®,

Since(RT)/T is anZ-projector ofL/T = (L¥ /T)((RT)/T) we can deduce by
using again$, IV, Theorem 5.16] and Theorefh1(, that

Co,iz/m (MNRT)/THFP) = Co = 1) ((RT)/T)FP)

is the trivial group. Obviously, the same is true for every prime 7 (p) = = (r).
Thereforew(p) N7 (C/T) = @, which concludes this proof.
Step 8.U N HZ < (H¥Y, for every subgroufd such thaty < H < L.

If H < L, U is an.Z-projector of H by Step 1 and the result is clear for this
subgroupH by Theoren®?.1Q Thus, it is enough to prove thetN L < (L¥)'.

By Step 7 and with the same notatigb), T)/T is conjugate t&/T in M/T. Then
if we prove that(E/T) N (L¥ /T) is trivial, the result will be clearly deduced.

Thus, we are going to prove th@/T) N (L¥ /T) is the trivial group. The notation
used in Step 7 is assumed.

SinceE = (RNM)C andRNL¥ < T < C,thenENL? = (RNM)C)NL¥ =
(RNM)nL¥)C =C.

Assume tha€C /T is non-trivial.

We observe thaE/T = (C/T)((RN M)T)/T) is a semidirect product, because
C/T is normal inE/T, and the intersection of the subgroups into consideration is
trivial.

SinceX < U, then(XT)/T < (UT)/T = (E/T)™, for somem € M. Conse-
quently,(X™'T)/T < E/T. LetY = X™",

Notice thatY NL¥ <YNG¥ <YNK =1, then((YT)/T) N (L¥/T) is the
trivial group. ThereforelC/T, (Y T)/T]1 < (Y T)/T)N(LZ /T) is trivial.

We claim thatRT < L. Otherwise,L¥ = T(RNL¥) = T, which would
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imply L = 1, thatis,L € .Z. ThenX would be.Z-subnormal inL. SinceX is
2 -maximal inL, we would conclude thaX = L »- < L, because?” is an.Z -Fitting
class. But this contradicts the choicelofind proves thaR T < L.

Assume thatY T)/T is contained in((RN M)T)/T. In particular,Y < RT.
ThenX < R™T < L. By the choice ofL, X < R™ e Proj, (R™T), for some
i e T. Arguing as above we can obtain tHaf < Nr(X). In particular,R™ would
be conjugate tdJ, because they ar€ -projectors of Nr(X). ThusU is also an
Z -projector ofL. ThenU N L¥ < (L¥) and Step 8 would be proved.

Consider now the case whév T)/T is not contained if(RN M)T)/T We take
into account that(Y T)/T) N (C/T) is trivial and (Y T)/T < E/T Consequently
there exists an elememt;é T e (Y T)/T such thatkT = (aT)(bT), with 1 #
aT e (RNM)T)/Tandl#bT e C/T.

Since[C/T, (YT)/T] = 1, we have thatxT)?T = xT = (aT)*"(bT), which
implies thataT conmutes withb T. Notice that(o(aT),o(bT)) # 1. Otherwise,
1# (XT)*@ = (bT)°@ ¢ (YT)/T) N (C/T) = 1, which is a contradiction.
Thus there exists a pringedividing o(aT) ando(b T) and certainlyg ¢ 7(p). We
write s to denote the produc(aT), ando(b T),, the greatesy’-numbers dividing
o(aT) ando(b T), respectively. The(xT)® = (AT)*(bT)® # 1.

Consequently we can suppose tRat = (AT)(bT) is ag-element of(Y T)/T
withq & 7(p), 1 #a € RN M and 1# b e C. Since.Z is a lattice formation, we
deduce thal < L¥ < LF® = MF® = O*™®(M). In particular, we obtain that
xT e (YT)/T) Nn(MF®/T) = (Y n MF®)T)/T, which is a normal subgroup in
L/T by Step 6.

We claimthab T € Co =/ ((RT)/T)"@), but this subgroup is trivial because
(RT)/T isanZ-projectorofL /T. Thus, we will obtain a contradiction which proves
Step 8.

LetyT € (RT)/T)F@. We recallthaR € .Z, which s a lattice formation. Then
XTYT = @n) BT € (YT)/T. HencebT) (b T)'™ € (Y T)/T) N (LF/T),
which is the trivial group, and this concludes the proof.

Step 9.U € Proj,(L).

By Lemma3.6, U is a self-Z-normalizing.Z -subgroup ofL. Moreover, Step 8
proves that) N H¥ < (H¥ ), for every subgrougd of L containgU. By Theo-
rem2.11we obtain that) € Proj, (L), which provides the final contradiction and
proves the lemma. O

THEOREM3.9. Let 2" be an.Z -Fitting class. For every grou, Inj 4 »,(G) =
Inj 4 (G).

PrROOF. Since 2" is a Fitting class and%’, .Z)-injectors areZ -injectors, it is
enough to prove that Ipj- »,(G) # ¢, for every grougG.
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Suppose that this result is not true and take a gi@ugf minimal order such that
Inj 4+ #,(G) = @. By the choice ofG, there existaV € Inj , - (G%) # @. LetX
be an%2 -maximal subgroup o6 containingW. It is clear thatw = X N G~

Let M be anZ -normal maximal subgroup @&. The choice ofz implies that there
existsl € Inj 4 5 (M). SinceG” < M, thenl NG” € Inj 4 5 (G”) = Inj, (G7)
and|l N G¥ is conjugate tdV in G”. Without loss of generality, we can assume
thatl N G” = W. TakeJ an .2 -maximal subgroup o6 containingl. Obviously,
W=JNnG"”.

Assume first that X, J) < G. It is not difficult to prove that the groupX, J)
satisfies the hypothesis of Lemia, so that we can deduce thét= (H;W) & with
H; € Proj; (Nix 5 (X)) andJ = (H,W) & with H, € Proj,; (Nix 5(J)). Moreover,
the choice ofG and Lemma3.8 imply that Hy, H, € Proj; ((X, J)). Again by the
choice ofG, we can deduce thak, J) satisfies the hypothesis of Lemr8&. This
allow us to conclude thaX andJ are (2", .#)-injectors of(X, J).

We observe now thaX andJ are.Z-pronormal in(X, J) by Lemma3.5. Then,
there existsn e (X, J)¥ < G¥ < M, such thaix™ = J.

On the other handlN'M is.Z-subnormal in] € .27, becausd” < JNM. Since
2 is an.Z -Fitting class, we obtain that N M € .2 and consequently = J N M.
Therefore(XNM)™ = JNM = | € Inj 4 z (M) andclearlyXNM e Inj 4 z,(M).

Consider now the case whé&h= (X, J). In particularW < G and the hypothesis
of Lemma3.6 and Lemma3.8 are satisfied withX and also withJ. Therefore,
X = (HiW) & andJ = (H,W) & with H; € Proj; (Ng (X)) € Proj;(G) andH, €
Projs (Ng(J)) € Proj;(G). ThusH, = Hy, for somex € G. MoreoverH; is .Z-
pronormal inG, then it follows thatH} = H!, for somet € (H;, H})¥ < G¥ < M.
Clearly J = X'. Again we have that = JN'M = (XN M)" € Inj 4 7 (M) and
XNM elnj g z(M).

Consequently, we can conclude thats an (2", .Z)-injector of G. This provides
the final contradiction which proves the theorem. O

As a consequence of the above proof we obtain the following result:

CoROLLARY 3.10. Let 2" be an.Z -Fitting class and le(G be a group. LeK be
a normal subgroup o6 such thatG” < K, and letW € Inj - (K) = Inj 4 5 (K).
Then anZ’-maximal subgroup d& containingW is an .2"- injector of G.

CoROLLARY 3.11. Let 2" be an.Z-Fitting class and leG be a group. LeV ¢
INj 4-(G) = Inj 4 #,(G) and letK 4 G. Then
(@) Vis.Z-pronormal inG. Infact,V N K is #-pronormal inG.
(b) G =K?Ng(VNK).
(c) fV <L < G, thenL = S(V,Z)N.(V), where S.(V, Z) is the .Z-
subnormal closure 0¥ in L.
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PrOOF. (a) Since theZ -injectors are th€.2", .Z)-injectors, Lemma.5 implies
thatV is .Z-pronormal inG. For the rest, argue as in the proof &f V1lI, Proposi-
tion 2.14 (a)] taking account moreover Theor2r

Parts (b) and (c) follow from (a) and Theoreny. O

PrROPOSITION3.12. Let 2" be an.Z-Fitting class, letG be a group and lefl. =
Go < G; < --- < G, = G be a chain of subgroups such thaf’ < G;_,, for every
i=1,...,n.

For a subgroupV of G, the following statements are equivalent

(i) V elnju(G) =Inj 4 5 (G);
(i) VNG isan2-maximal subgroup d&;, fori =0, ... ,n.

PrROOF. If V € Inj, (G), then statement (ii) is clear because ev&yis .Z-
subnormal inG.

For the converse, argue as in the proof@&f\IIl, Propostion 2.12] taking Corol-
lary 3.10into account. O
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