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Abstract

In this paper, we obtain some normality criteria for families of meromorphic functions that concern the
exceptional functions of derivatives, which improve and generalize related results of Gu, Yang, Schwick,
Wang-Fang, and Pang-Zalcman. Some examples are given to show the sharpness of our results.
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1. Introduction

Let G be a domain inC, and.Z be a family of meromorphic functions defined@
Z is said to be normal i8, in the sense of Montel, if for any sequenfyec .# there
exists a subsequendg , such thatf,, converges spherically locally uniformly i@,
to a meromorphic function aro (see B, 12, 20)).

In 1979, Gu p] proved the following well-known normality criterion, which was a
conjecture of Haymarf).

THEOREMA. Let.Z be a family of meromorphic functions defineddnand letk
be a positive integer. If, for every functidne .Z, f #£ 0, f® £ 1, thenZ is normal
in G.

This result has undergone various extensidn®[4, 13, 16, 19]. Yang [18] and
Schwick [L3] generalized the above theorem and obtained:
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THEOREMB. Lety # 0 be a analytic function in a domai® andk € N. Let.#
be the family of meromorphic functions@such thatf and f ® — v have no zeros
for eachf € Z, thenZ is normal inG.

Wang and Fangl[6] generalized Theorem by allowing f to have zeros, as
follows:

THEOREMC. Let.Z be a family of meromorphic functions defineddnand letk
be a positive integer. If, for every functidne .Z, f has only zeros of order at least
k + 1 and only poles of order at leagt and f ® # 1, then.Z is normal inG.

THEOREMD. Let.Z be a family of meromorphic functions defineddnand letk
be a positive integer. If, for every functidne .Z, f has only zeros of order at least
k+2and f® =£ 1, thenZ is normal inG.

If we allow f to have zeros and replace ‘1’ by a functiain(z) # 0’in TheoremA,
does Theorem still hold? This is a natural but somewhat difficult problem proposed
by Y. X. Gu. Recently, Pang and Zalcmal{[ proved the following

THEOREME. Letv (# 0) be a function holomorphic in a domatd c C. Let.#
be a family of meromorphic functions defined3n all of whose poles are multiple
and whose zeros all have multiplicity at legt If, for every functionf e Z,
f'(2) # ¥ (2), thenZ is normal inG.

It is natural to consider the case whéhis replacedf ® in TheoremE. In this
paper, we shall prove the following results:

THEOREM 1. Lety (£ 0) be a function holomorphic in a doma@® c C, k € N.
Let Z be a family of meromorphic functions definedGn all of whose poles are
multiple and whose zeros all have multiplicity at lelst 2. If, for every function
f e Z, 02 # ¥ (2), thenZ is normal inG.

THEOREM 2. Let ¢ (£ 0) be a function holomorphic in a doma® c C, k be a
positive integer. Le# be a family of meromorphic functions define@inall of whose
zeros have multiplicity at leagt+ 3. If, for every functionf € .Z, f®(z2) £ ¥ (2),
then.Z is normal inG.

RemMARK 1. The following example shows that the numlker 3 in Theoren?® (for
k = 1) is best possible.
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ExamvPLE 1 (see Q). Letk =1,D = {z: |z| < 1}, and.Z = {f,}, where

_@-1n® , 3 8
fn(2) = z—3/n _Z+n2+n3(z—3/n)'

Clearly, all zeros off, have multiplicity 3. But.Z is not normal inD. In fact,
f#(2/n?) — oo asn — oo, and so by Marty’s criterionZ is not normal inD.

THEOREM 3. Let ¢ (v # 0) be a function holomorphic in a doma@ c C, k
be a positive integer. Le# be a family of meromorphic functions definedGn
all of whose zeros have multiplicity at ledstt- 2. If, for every functionf € .Z,
f®(2) # ¥ (2), andy has no simple zeros i@, then.Z is normal inG.

REMARK 2. The hypothesis that has no simple zeros iG cannot be omitted in
TheorenB, as is shown by Example

RemARK 3. The following example shows that the exceptional funciiaz) can-
not be extended to the meromorphic case in Theotkefds

EXAMPLE 2. Letk,| e N, D ={z:|z] < 1}, ¥ (2) = 1/Z', and
F = {f(2) =1/nZ,z e D}.
Clearly, there exists, € N such thatf ¥ (z) — y/(z) # 0 forn > ny. But.Z is not

normal inD.

2. Some lemmas

To prove our results, we need the following lemmas.

LEmMMA 1 ([16]). Let f be a non-polynomial rational function ardbe a positive
integer. If f ®(z) # 1, then

f(z)=12k+ak Zk*l_f_..._f_ao_}_L
k! - (Z+ bym’
whereay_,, ... , ay, a(# 0), b are constants anth is a positive integer.

LEMMA 2 ([16]). Let f be a meromorphic function of finite order in the plake,
be a positive integer. If all zeros dfare of order at leask + 2 and f ¥ (z) + 1, then
f (2) is a constant.
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LEMMA 3 ([5]). Let f be a transcendental meromorphic function of finite order
and letb(z) be a polynomial which does not vanish identicallyf lfias only zeros of
order at leas®, then f' — b(2) has infinitely many zeros.

Here we shall use the standard notation of value distribution theory {s&é|],
T(r, f), m(r, f), N(r, f), N(r, f),.... Wedenote by(r, f) any function satisfying

S(r, f) =ofT(r, HH},

asr — oo, possibly outside a set with finite measure.

LEMMA 4 ([15]). If f is a transcendental meromorphic function ané N, then,
for everye > 0,

(k—2)N(r,f)+N(r, %) gzﬁ(r, %)JFN( f:(Lk))—FeT(r f)+ S(r, ).

LEMMA 5. Let f be a transcendental meromorphic functiri> 2), | be positive
integers. Iff has only zeros of order at lea8f then f ® — Z' has infinitely many
zeros.

PROOF. Suppose thaf ® — Z' has finitely many zeros. Then

1
(21) N (r, m) = S(I’, f)

By the logarithmic derivative theorem, we have

1 1
m r,? +m r,—f(k)_ZI
1 1 ¢
=m ) +m G +Sr 1
1 1
=m(r, Py + f(k+l)_|!)+8(r, f)

1
= m(r, f(k+|+1)) + S(I’ f)

1
(k+1+1)
< T(r, f&t )—N(r f(k+|+1))+8(r f).

— 1
<T@ % +d +DN@, ) =N ( f(k+|+l)) + S(r, ).
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Thus

(2.2) T, f) <+ DN, f)+N(r, 1/f)

N —l N 1 f
NN o7 ) NP fem ) TS0 D

By Lemma4 and noting thak > 2, then, for every > 0, we have

(2.3) (I + DN, f)+ N, 1/f)
<K+ —1N(, f)+N(r, 1/f)
<2N(r, 1/f) + N (r, 1/ f &) 4 eT(r, f) + S(r, ).

Combining @.2) and @.3), we obtain

— 1 1
(24) T(I', f) <2N (r, ?) + N (r, m) +8T(|’, f) + S(r, f)
Recalling that the zeros dfare of order 3 and setting = 1/6, from (2.1) and @.4),
we get

T(r, f) <6N (r )+S(r, f) = S(r, 1),

T fh — 7
which contradicts the fact thdtis a transcendental meromorphic function. Lenfina
is proved. O

LEmMmMA 6. (i) Letk be a positive integer, and l&€d(z) be a rational function
all of whose zeros are of order at ledst- 2 and all of whose poles are multiple with
the possible exception af= 0. Then, for each positive integgrQ®(z) = Z has a
solution inC.

(i) Ifall zeros ofQ(z) have multiplicity at leask + 3, then(i) is still valid without
the hypothesis on poles Qf(z).

(iiiy If 1 # 1, then(i) still holds without the hypothesis on poles@(z).

PROOF. Fix | and suppose th@™(z) —Z # Oforallz € C. If Q is a polynomial,
thenQ® (z) = 7 + «, wherea # 0, so that

I ‘ o
)= — 7 4+ Z Xy 0P+ oy,
Q2 RN tgZ Taz te k-1
wherecy, C,, ..., Cc_; are constants. Obviously,# 1. Since all zeros of) have

multiplicity at leastk + 2, thenQ**V(z) = Q¥ (z) = --- = Q'(2) = 0 whenever
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Q(2) = 0. ButQ**Y(z) = Iz'-* vanishes only foz = 0. ThenQ(0) = 0, so that
a = Q¥ (0) = 0, a contradiction. Thu® cannot be a polynomial.
Set

_ . I‘ K+ ik
f(2) = Q2 —(k+|)!z +k!Z'

Then f is a non-polynomial rational function anfd® (z) # 1. By Lemmal,

k—1

1
f 2
(2 2 tacz+ +ao+(z+b)m,
wherea,_y, ..., &, a(# 0), b are constants amu is a positive integer. Thus
2.5 Z) = zk+l+ 7zk*l+...+ + .
(2.5) Q2 K+ ! -1 2y Z+ D"

There exists a poirg, such thatQ(z) = 0, and then
yMM+1)---(m+k—-Dla

® _ .

(2.6) Q¥ () =7+ (-1 T 0,
KD oy 11 kMM 4D (m+ka

(2.7) Q¥ M (z) =lIzg* + (-1 = 0.

Sincea # 0, we know thatzy # 0. Solving forz, from (2.6) and @.7), we obtain
Zo= —bl/(m+k +1). Thusb # 0, and by 2.5),

1Nz bl/(m k4 )k
(28) QD = izt by

Again by (2.5, we get

bl e m, K+Dlacs m
@9 (srgy) =2t SEse

k+1)! k+hla
poony DB et
Equating coefficients o™*+-1 in (2.9), we obtainbl = mb, so thatm = | since
b # 0. Since all nonzero poles @ are multiple, we havé = m > 2. Then, by
equating coefficients a™*+-2 in (2.9, we have

(z+b)

| —1 | 2 -1
(2.10) (M+k+DHm+k+ )( b ) _ m(m )bz'
2 m+Kk+1 2
Thusl = —k, a contradiction and (i) is proved.

The assumptions in (ii) or (i) imply thah = | > 2. Asin the proof of (i), we also
have ¢.10. Then the proofs of (ii) and (iii) are almost the same as the proof of (i).
Here we omit the detalils. O
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The well-known Zalcman’s lemma is a very important tool in the study of normal
families. It has also undergone various extensions and improvements. The following
is an up-to-date version, which is due to Pang and Zalcrbh@n(ee also 2, 3, 16,

21, 22)).

LEMMA 7. Letk be a positive integer and I# be a family of functions meromor-
phic in a domainG, such that each functior € .Z has only zeros of multiplicity
at leastk, and suppose that there exists> 1 such that| f®(z)| < A whenever
f(2y =0, f € Z. If #isnotnormal atz, € G, then, for eactd < a < k, there
exist a sequence of points € G, z, — 2, a sequence of positive numbers— 0,
and a sequence of functiorfs € .Z such that

fn(Z0 + Png)

n

(&) = — g

locally uniformly with respect to the spherical metric, wheyas a nonconstant
meromorphic function oft, all of whose zeros have multiplicity at ledstsuch that
g*(¢) < g*(0) = kA+ 1. Moreoverg has order at mos2.

Here, as usual(¢) = |g'(¢)|/(1 + |g(£)|?) is the spherical derivative.

3. Proof of theorems

PROOF OFTHEOREM 1. Since normality is a local property, without loss of gener-
ality, we may assum& = D = {z: |z| < 1}, and

Y@ =72 +auzt 4+ =72¢@, (zeD),

wherel > 1, 9(0) = 1, ¢(z) # 0for 0 < |z| < 1, and it is enough to show thaf
is normal at eacla € D. By TheoremC, we only need to prove tha# is normal at
z=0.

Consider the family¢ = {g(z2) = f(2)/y(2) : f € #,ze D}. If f € Z, then
f®(0) # ¥ (0) = 0, so thatf (0) # 0 since all zeros of have multiplicity at least
k+ 2. Thus, foranyg € ¢, g(0) = f(0)/¢(0) = oo.

We first prove tha¥ is normalinD. Suppose, on the contrary, tfais not normal
atz, € D. Then by Lemma@, there exist a sequence of functiapse ¢, a sequence
of complex numberg, — 7, and a sequence of positive numbggs— 0, such that

On(Zy + pnd)
k

n

Gn(§) = - G©)
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converges spherically uniformly on compact subset€0fG(¢) is a nonconstant
meromorphic function ort, all zeros ofG(¢) have multiplicity at leask + 2, and
moreoverG(¢) is of order at most two.

We distinguish two cases:

Case 1:z,/p, — oo. By simple calculation, we have

f@2 Cigh V' (2) o V'@ v (2)
v ST @ye —Ge T @ — G@ T

Thus, using notatiog, = z, + pn¢ for brevity, we have

¥ (z) =

G¥ () =g @)

_ frfk)(in) 1 (k 1 1/’(Zn) s v ®(2,)
=G0 TN 0 ()
= frfk)(in) l (k 1)( )( (p/(21)) .
¥ (Z) 0(2)
5 I! I! ©'(2)
— O _— Cl _ -
On() ((I - K)!(Z)k A (I —Kk+ DG o(z)

§0(k)(2n))
* (2,

(@) a9 @) (lﬁ N pnw’(?n)) B

A

“yGE " % ()
_ gn(in) ( “prf 1 I!prlrl pn(p/(in)
ok W =KE@)Y T K0 =K+ DG 92

p§<p<")(2n))
+—F).
¥(Z,)

On the other hand, we have lim,.(p,/2,) = 0 and

lim pn(p(')(Zn) _
nsoo @(2,)

uniformly on compact subsets @f Therefore, on every compact subset€afhich
contains no poles d&(¢), we have
f (20)
v (Zy)

Since f®(z2)/v (2) # 1, by Hurwitz's theorem, we know that eith&® (¢) # 1 or
G®(¢) = 1 for any¢ e C that is not a pole of5(¢). Clearly, these also hold for

— GO(©).
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allz e C. If G¥(¢) # 1, then by Lemma&, G(¢) is a constant, a contradiction. If
G® () =1, then

l k k-1
G(§)=E§ + G184+ Co,

which contradicts the fact that all zeros®f¢) have multiplicity at leask + 2.
Case 2:z,/p, — «, a finite complex number. Then

Onh(ond) _ On(Z0 + Pn(& — 20/ pn))

- - = Gn(¢ — Zo/pn) = G —a) =G(2),
J on

spherically uniformly on compact subsets ©f Clearly, all zeros ofG(z) have
multiplicity at leastk + 2, and¢ = 0 is a pole ofG (¢) with multiplicity at least, and
the other poles o6 (¢) are multiple.

SetH\(¢) = fa(pn&)/p}*'. Then

Y (ong) Talpond) _ Y (ong) On(Pnd)
P PEY(Pnd) ohopE

Ha(6) =

Note that lim,_, o, ¥ (pn&)/pl = &' uniformly on compact subsets @f thus
Ha(@) = £'G() = H(©)

uniformly on compact subsets @f Obviously, all zeros oH (¢) have multipNIicity at

leastk + 2, and all nonzero poles ¢ (¢) are multiple, andH (0) # 0 sinceG has a

pole of order at leadtats = 0. We also have

Y (ond)
|

n

HY () - - HY@) ¢

uniformly on every compact subset Gfwhich contains no pole db.

CLAM. H® () #£ ¢

Otherwise there exists, such thatH ®(z,) = ¢}. ThenH is holomorphic aty.
We consider two subcases.
Case 2.1%, # 0. Since

n frfk) n - n
Hrgk)@)—w(;:;)= (p ;)p| ¥ (ond)

# 0,
then Hurwitz’s theorem implies th&t ' (¢) = ¢'. Thus

é—k+l|!
HE) = e A e e

(I +k)
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whereay, a,, . .. , a, are constants, and
1 é—l+l
H* by = k —1Dla.
) 11 + ( )ay

Since all zeros oH (¢ ) have multiplicity atleast+2, thenH *~?(¢) must have a zero
with multiplicity at least 4. Hencea; = 0. Similarly, we can deduce that = a3 =
.. = a, = 0. It follows thatH (¢) = £%"11/(I + k). ThenG(&) = ¢M1/( + k)1,
which contradicts the fact that all zeroséf;) have multiplicity at leask + 2.

Case 2.2%, = 0. ThenH, (¢) is holomorphic anH,(¢) — H (&) uniformly on a
neighbourhood of 0. Indeeéf (¢) is holomorphic at 0, sé({) has a pole of exact
orderl at 0. On the other hand, for eanhthe pole ofg,(p,¢) at O has also exact
orderl. Theng = Oiis the zero of 1G(¢) and /g, (pa¢) is of order. Note that since
On(on)/0f — G(¢), spherically uniformly on compact subsets@fthere exist a
positive integeny andr > 0 such that

py 1 ‘ .1

O(eng) G~ 1G(Q)

foralln > ny and eaclt € {¢ : |¢] = r}. By Roucle’s theorem, 1g,(pn¢) has

no zeros inD; = {¢ : 0 < [¢] < r} for n > n,, and theng,(p,¢) has no poles in

D; for n > no. ThusH,(¢) is holomorphic inD/, andH,(¢) — H (&) uniformly

on a neighbourhood of 0. Hence, the same argument as in Case 2.1 also applies fc
Case 2.2.

Now, we haveH ¥ (¢) # ¢'. By Lemma3 (for k = 1) and Lemma& (i) (for k > 2),

H () must be a rational function. However, Lemimahows thaH® () = ¢' has a
solution inC, a contradiction. We have proved ti#tis normal onD.

It remains to show tha# is normal atz = 0. Since¥ is normal inD, then
the family ¥ is equicontinuous irD with respect to the spherical distance. On the
other handg(0) = oo for eachg € ¥, so there existd > 0 such thatg(z)| > 1
forallg € ¥ and eactz € D; = {z : |z| < §}. It follows that f(z) # O for all
f € .# andz € D;. Suppose tha# is not normal az = 0. Since.Z is normal in
0 < |z| < 1, the family ¥.Z = {1/f : f € Z} is holomorphic inDs; and normal in
D; = {z: 0 < |z] < 8}, butitis not normal az = 0. Thus there exists a sequence
{1/f.} c 1/.Z which converges locally uniformly i®;, but notinDs;. The maximum
modulus principle implies that/f, — oo in D;. Thus f, — 0 converges locally
uniformly in D;, and hence so dodg,} C ¢, whereg, = f,/v. But|g,(2)| > 1 for
z € D;, a contradiction. This completes the proof of Theorem O

PROOF OFTHEOREM 2 AND THEOREM 3. Theoren® and Theoren3 can be proved
by using the same argument as in Theorém The main difference is in using
Lemmas (i) (to prove Theoren®) or Lemmas (iii) (to prove Theoren8). We here
omit the details. O
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