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Abstract

Let X be a compact connected Riemann surfacetaadquare root of the holomorphic cotangent bundle
of X. Sending any line bundle over X of order two to the image of diH°(X, & ® L) —dim H%(X, &)

in Z/27 defines a quadratic form on the space of all order two line bundles. We give a topological
interpretation of this quadratic form in terms of index of vector fieldson

2000Mathematics subject classificatioprimary 14F10, 57R25, 57R15.

1. The Arf function for a theta characteristic

Let X be a compact connected Riemann surface of gepusThe holomorphic
cotangent bundle oK will be denoted byKy. Let& be a holomorphic line bundle
over X such that®? is holomorphically isomorphic t&x. A line bundle with this
property is known as theta characteristiof X. Since the degree dfy is even,X
has a theta characteristic.

There are exactly?2 theta characteristics of, whereg is the genus oK. Indeed,
if L is a holomorphic line bundle ovet of order two, that is|.®? is isomorphic to the
trivial line bundle, ther§ ® L is also a theta characteristic, provideis one. Itis easy
to see that this action of the order two line bundles on the theta characteristics is free
and transitive. In other words, the collection of all theta characteristi®s @fhich
we will denote byS(X), is an affine space for the collection of line bundle of order
two. Note that the collection of all line bundle of order two, which we will denote by
J,(X), is a vector space ové@/2Z of dimension 2.
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On J,(X) there is a bilinear form known as theeil pairing(see Mul, page 183]).
The Weil pairing

(1.1) 0, 1 B(X) ® H(X) — 2/27

is antisymmetric (hence symmetric as the fieldZj®27). Note that in Mul], the
image of6, is identified with+1 by sending 1 and-1to O € Z/2Z and 1€ Z/2Z
respectively. We recall a topological description of the paifing

The 7/27 vector spacel,(X) is identified withH(X, Z/2Z). With this identifi-
cation, 6, is simply the cup product okl *(X, Z/27). It is easy to see thab(X) is
identified with Hon({H, (X, Z), £1). Indeed, using the natural projectian(X) —
H:(X, Z) an element in HortH, (X, Z), 1) gives a character of order two of the
fundamental groupr;(X). A character ofr;(X) gives a flat line bundle. Since the
above character is of order two, the holomorphic line bundle defined by the corre-
sponding flat line bundle is also of order two. By the above isomorphistd f)
with Hom(H(X, Z), +£1) = H(X, Z/27), the cup product

HY(X,7/27) ® HY(X,Z/27) — H*(X,Z/27) = 7/2Z

translates to the Weil pairingy defined in (.1).
Takeé € S(X), a theta characteristic. Define

(1.2) ws 1 H(X) > Z/2Z

by L — dimH%X,& ® L) — dimH%(X, &) € Z/2Z. The bilinear form associated
with the quadratic forna; in (1.2) coincides with the Weil pairing inl(1). In other
words, for any pait;, L, € J(X) the identity

(1.3) wg(L1 ® Ly) —we(Ly) — we(Ly) = 0:(Ly1, Ly)

is valid [Mu2, page 182,4)]. A function on J,(X) satisfying the identity 1.3 is
known as arArf function[Na, page 93]. In particulaty; is an Arf function. Any Arf
function is of the formw; for some¢ € S(X) [Na, page 100, Theorem 10.1].

We will give an alternative description af; using the notion of index of a vector
field on X.

2. Vector fields and Arf function

We continue with the notation of the preceding section. Take S(X). Take a
meromorphic sectios of the line bundle which is not identically zero. Therefore,
s ® s is a meromorphic section dfx. In other words$ := s ® s is a meromorphic
one form of X which is not identically zero.
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Now, sincesis notidentically zero, it defines a meromorphic section of the holomor-
phic tangent bundl& X. Indeed, sincd X = K3, we have a (unique) meromorphic
sectiont of T X defined by the condition that the evaluatio(§) is the constant
function 1 onX. In particular, the zeros (respectively, poles)sobecomes poles
(respectively, zeros) af. LetC c X be the union of all the zeros and polesrof

Since X is a compact connected oriented smooth manifold of (real) dimension
two, using Poinca duality we haveH(X, Z/2Z) = Hy(X, Z/2Z). Using this
isomorphism, the quadratic fora. on J,(X) = H(X, Z/2Z) defined in (.2) would
be considered as a quadratic formlan( X, 7/27).

Take any homology class € H;(X, Z/2Z). Lety be a smooth oriented loop
(that is, aC*> immersion of the circles' = {(x,y) € R? | x>+ y?> =1})in X\ C
representing the homology classSince the se€ of poles and zeros of the section
7 is finite, such a loop exists. Sincds a homology class with coefficients #y 27,
if we reverse the orientation ¢f then also it represents

Let indext, y) € Z be theindexof the vector fieldr on X \ C for the oriented
loop y. We recall the defiion of index. If the vector fieldr rotatesn times
clockwise with respect to the tangent vectors of the cuyrvéecall thaty is an
immersion), then indei, y) = n+ 1. For anyp € S, the quotient of the (real)
nonzero tangent spadeg, X — {0} by the multiplication action oR* can be identified
with St = {(x,y) € R? | x>+ y? = 1} by sending(1, 0) € S to the tangent vector
y'(p) along the loop/. Using this identificationy defines a map fror®' to S*. The
above integen is the degree of this map.

Henceforth, by indege, ) we will always mean the image /27 of the above
constructed number.

Note that each pole or zero ofis of even order. Therefore, althoughis a loop
in X\ C, the dependence of index y) on y factors through the image of in
H.(X, Z/27). In other words, if a loop’ represents a homology class in the kernel
of the natural homomorphisril, (X \ C,7Z/27Z) — H,(X, Z/2Z) (induced by the
inclusion map ofX \ C in X), then indexz, y’) =0¢€ 7/27.

If sands' are two meromorphic sections®fthen we have a one-parameter family
of meromorphic sections d&f defined byr — s, := As+ (1 — 1)s, wherei € C.

So, we haves; = sands, = s'. Note that index of a vector field along a loop is a
topological invariant. In particular, it does not change under continuous deformations
of the vector field. Let’ be the meromorphic vector field constructed usingNow in

view of the above remark that the dependence of ifdex) ony factors through the
image ofy in Hy(X, Z/27) it follows immediately that indefc, ) = index(t’, ).

Consequently, index, y) € Z/27 depends only o andc. In other words, we
are justified in using the notation ind@x c) in place of indexz, y).

Our aim here is to prove the following theorem.
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THEOREM 2.1. The two elements ii/2Z, namelyw; (c) andindex(&, c), coincide.

PrROOF. Let X; be a holomorphic family of compact connected Riemannesa$

with a theta characteristic parameterized by a complex manifolth other words,

Xt is a complex manifold equipped with a holomorphic submergionX; — T

and a holomorphic line bundlg over X; such that for any point € T, the fiber

X := 7~1(t) is a compact connected Riemann surface and the restriction of the line
bundleé&; to X, is a theta characteristic of,. The restriction of¢; to X; will be
denoted by;.

A basic theorem due to Atiyah and Mumford says that if the parameter Space
is connected then the image of d?(X, &) in Z/27 is independent of (see Jt,
page 28, Theorem 1]Mu2, page 184, Theorem]). In other words, the parity of
dim HO(X,, &) remains constant ovdr, providedT is connected.

Now suppose that familX; of Riemann surfaces are equipped with a choice of
a first homology class with coefficients #y2Z. In other words, for eache T we
havey; € H; (X, Z/27) with the property that for every contractible open suti$et
of T, the homology class

W € Hl(X[f, Z/ZZ) = Hl(ﬂil(u), Z/ZZ)’

wheret” € U, is independent of’. Note that the condition thall is contractible
ensures that the homomorphista( X, Z/2Z) — Hi(x~*(U), Z/27) induced by the
inclusion map ofX; in 7=1(U) is an isomorphism. Since the index of a vector fields
is a topological invariant, in a continuous family of smooth vector fields and loops
the index remains unchanged. Therefore, if the parameter 3paceonnected, the
index indexé&, ) € Z/27 is independentaf € T.

Consequently, both:(c) and indexé, c) are invariant under deformations of the
Riemann surface equipped with choices of a theta characteristic and a homology class

Now, the moduli space of compact Riemann surfaces of ggnigsconnected.
Therefore, in order to show the equality(c) = index(§, ¢) € Z/2Z, it suffices to
show that the equality holds for just one particular Riemanresexf

We will show that the equality; (c) = index(§, c) is valid for a hyperelliptic
Riemann surface. This, in view of the above observation, would complete the proof
of the theorem.

A hyperelliptic Riemann surfade a double cover of the complex projective line
CP! = C U {oo}. Fix 2g + 2 distinct points

(21, 25, . . ., Zog+1, Zogs2} C C.
This gives a hyperelliptic Riemann surfagedefined by the polynomial equation
29+2

(2.1) Px.y) =y - [[x=2)=0

i=1



[5] Theta characteristics of Riemann surface 419

wherez are as above. Therefore, we have a degree two map

(2.2) f:X— Cpt
which is ramified exactly over the points,, z,, . .., Zy:,}. The mapf sends a point
(X,y) to x.

We will now recall an explicit description of all the theta characteristics of this
Riemann surfac&. The details can be found ivju2, page 190-191].
Let Ocpi(1) be the (unique) line bundle ové&P* of degree one. Set

n= f*ﬁ(:[pl(l),

wheref is asin @.2). Son is a holomorphic line bundle ovet of degree two. Note
thatn = 0x(2f ~%(z)) foreach € [1, 2g+2] andforeaclz € CP*\{z, z,, ..., Zyg. 2}
we haven = 0 (f1(2)). (Here f ! denotes the set theoretic inverse (as opposed to
the scheme theoretic inverse).)

Take an integel € {0,1,...,[(g—1)/2] — 1,[(g — 1)/2]} and a subse® C
{z1, 25, ..., 2oy 2} Of cardinalityg — 1 — 2I. For such a paifl, S} let

£(1,9) := Ox(f1(9) ® n®

be the holomorphic line bundle ovét of degreeg — 1.
For any subsed C {7, z, .. ., z4,»} Of cardinalityg + 1 andl = —1, let

£1,9 =£(-1,9 :=ox(t () @n*

be the holomorphic line bundle ovét of degreeg — 1.
Each line bundlé&(, S), where

le{-1,0,1,...,[(—1)/2]} and SC{z,2,..., 242}

of cardinalityg—1—2I, has the property thgtl, Sy ®&(l, S) is isomorphic taK . In
other wordsé (I, S) is a theta characteristic. §fe S(X) is a theta characteristic of,
thené¢ is isomorphic té& (I, S) for some paitl, S}. Furthermore, (I, S) = &(', S),
where the pairgl, S} and{l’, S} satisfy the above numerical conditions, then the
following two conditions

Q) l=-1=I'and

(2) S={z,2,....2g:2} \ S,

are valid (seelflu2, page 191)).

Sets = fY(oco) € X. Soé consists of two distinct points of (the mapf in (2.2)
is unramified over the poirto € CP?), and the line bundl& (§) is isomorphic toy.
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Given{l, S} as above, we will construct a meromorphic sectiorkK@fwith zeros
of order two at eacl € Sand a zero (respectively, pole) of ordérn(Bespectively, 2)
for I nonnegative (respectively, for= —1) at each point of the sét

Recall the polynomialP(x, y) in (2.1) defining X. Consider the meromorphic
one-form

(2.3) o, S) = dx [[x-2

y zeS
on X. Note thatifz € S, thendx has zero of order one at the poifit*(z) (since f
in (2.2) is ramified overz), the function(x — z) has a zero of order two at the point
f~1(2) (sincef is ramified overz), andy has pole of order one dt-*(z). Therefore,
o({l, S} hasazeroofordertwodt*(z)if ze S. If ze {7, 2, ..., 2.2} \ S, then
for the same reasons({l, S}) is regular (it has neither zero nor pole) fat!(z).

Itis also clear that if > 0, thenw({l, S}) has a zero of ordell 2t both the points
of the subsed of X. Indeed, for each € S, the functionx — z has a pole of order one
at each point o8. From @.1) it follows that functiony has a pole of ordeg + 1 at
each point oB. Finally, sincedx has a pole of order two at each pointsoit follows
thatw({l, S}) has a zeroof order(g—1—21) + (g + 1) — 2 = 2| ateach point 08.

If | = -1, thenw({l, S}) has a pole of order 2 at each of the point$ o he form
o ({l, S}) does not have any other pole or zero.

Therefore, ifD is the divisor onX defined by the meromorphic sectiart{l, S}),
thenD is of the form D’ with &« (D) = £(1, S). Indeed, since the line bundtgy (8)
is isomorphic tay, it follows immediately from the definition df(l, S) thaté(, S) is
isomorphic to the line bundlgy (D).

Take anyt = £(1, S) € S(X) andc € H;(X, Z/2Z). From the above observation
that the divisor ofo ({I, S}) is twice the divisor of a section éfit follows immediately
that to compute indeg¥%, ¢) we can use the meromorphic vector field defined by the
one-formw({l, S}). In other words, in our earlier notation, we can tak& be the
meromorphic vector field defined ay({l, S}).

The order two lines bundles ov&, namelyJ,(X), is generated by line bundles of
the form&x (f 1(z) — f71(z)), where{z, z;} C {z, 2, ..., z4,2}. Note that

Ox(fHz)— T Hz)) @ ox(f1z)— T1(z))
= 0x2fMz) ® ﬁX(Zfil(Zj))* =nen.
In other words, we havéy (f(z) — f~%(z))) € L(X).
Take a pair{l, S} as above. Take a poiate Sandz' € {z,2, ..., Zg2} \ S

DefineS to beSU {Z} \ {Z}. From the definition oI, S) it follows immediately
that

(2.4) £1,S) = &e(,9) ® O0x(fXZ) — T 2).
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If we setS, = SU {7, 2"}, where{z,Z"} C {71, 2, ..., Zqs2} \ Sare two distinct
points, then

(2.5) E1-1,8)=¢6(0,9@0x(F71@) + @) — f (o).

Note thatox (f 1(Z) + f1(z') — f~1(c0)) is a line bundle of order two. Similarly,
if S = S\ {z 2}, where{z, z} ¢ Sare two distinct points, then

(2.6) E1+1,S=Ze(,9® 0x(foo) — X2 — T712)).

Note that the isomorphism ir2 () follows from (2.5) by interchanging andS,. The
isomorphisms inZ.4), (2.5 and @.6) together describe the action &f(X) on S(X),
the theta characteristics ot

We know that difH%(X, £(1, S)) = | +1 forany pairl, S} of the above typeNiu2,
page 191]. Since the action g§(X) on S(X) is described by the isomorphisms in
(2.4), (2.5 and @.6), we therefore have an explicit description of the quadratic form
w; defined in (.2).

As before, take a point € Sandz € {7, 2z, ..., %42} \ S. LetB denote the
tautological meromorphic section @f(f1(zZ) — f~1(2)) given by the constant
function 1. SoB has a pole of order one dt*(z) and a zero of order one 4t *(z).
From the definition ofo ({I, S}) in (2.3) it follows immediately that

o{l,Sh =0, Sh LA

The tensor produ@® B which is a meromorphic function oX (since the line bundle
Ox(f71(2) — 17X(2) ® Ox(f1(Z) — f~1(2)) is trivial) can also be described as
follows. Consider the rational functiop on CP* defined byy (x) = (x —2) /(X — 2).
The functiong ® B on X coincides withys o f, wheref is defined in 2.2).

Now, as before, take a pair of distinct point®, z'} C {z, 2, ..., Zg:2} \ S
Consider the rational functiop on CP* defined byp (x) = (x — Z)(x — Z)/x?. Set
S = SuU{z, 7Z’}. Itis easy to see that the identity

o{l =1L, Sh =(pof) ol S

is valid, wheref is defined in 2.2).

In the previous section we saw thi{ X) is naturally identified wittH; (X, Z/27).
We will now describe this identification explicitly for hyperelliptic Riemann sg#s.
By X we will denote the hyperelliptic Riemann surface ).

Let D2 := {(X,Yy) | X2+ y? < 1} be the closed unit disk anB? := {(x,y) |
x2 4+ y2 < 1} the open disk, which is the interior @?2. The boundaryp? \ D2 will
be denoted bys'.
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Take a pair of distinct point&z, z} C {z1, 2, . . ., Zygs2}. Letyp : D? — Cbe an
C> embeddingf the disk such that

wO(DZ) N {Zlv 227 ceey 22g+2} - {27 Z/}

and{z, 7} C yo(D?).

The inverse imagd ~(y,(D?)) is an embedded cylinder iX. To prove this first
note that the boundany,(S') of the imagey,(D?) lifts to a loop inX. This lifting
property ofy,(S) follows from the observation that an embedding

Y . Sl —> (C[Pl \ {Zl, Zo, ..., 22g+2}

lifts to X as a map frons' if and only if the number of pointz} in some (hence
each) component of P! \ y(S') is even. (Any embedded loop iiP* breaks the
complement into two connected components; if one componerit pagts from the
set{z}, then the other component hag 2 2 — j points of{z}.) Consequently, the
inverse imagef ~1(1,(D?)) is an embedded cylinder.

Let | := [0, 1] be the closed intervall,:= (0, 1) the open interval, an@, := St x |
the two dimensional cylinder with boundary. Lgt: C, — X be aC*™ embeddingf
the cylinderC, into X such thaty (C,) = f ~1(y,(D?)). Therefore,

Vv(C) N{F @), @), ..., Tz} = {f 1@, (@)}

and{f~1(2), f~4(2)} C ¥ (St x ). We saw thaty (f ~1(2) — f ~1(Z)) € L(X). The
corresponding element id; (X, Z/27) is represented by the image, under the nfap
of St x {0}. Note thaty/(S' x {0}) andvy(S' x {1}) represent the same element in
H.(X, Z/22).

The elementirH, (X, Z/27) represented by (S x {0}) clearly coincides with the
one represented by the lift t8§ of the loopv(Sh) in C. So both these loops iX
representy (f 1(z) — f1(Z)) € L(X) = Hy(X, Z/22).

Using this observation and the meromorphic for{$l, S}) we immediately ob-
tain an explicit description of indé€g, c). Comparing this with the earlier obtained
description of the quadratic form; we conclude thab:(c) = index, c).

Therefore, the equality; (c) = index(&, c) is valid, providedX is a hyperelliptic
Riemann surface. But we already noted that it is enough to prove thétgdogjust
one Riemann surface. Therefore, the proof of the theorem is complete. O
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