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Abstract

Let X be a compact connected Riemann surface and¾ a square root of the holomorphic cotangent bundle
of X. Sending any line bundleL over X of order two to the image of dimH 0.X; ¾ ⊗ L/− dim H0.X; ¾/
in Z=2Z defines a quadratic form on the space of all order two line bundles. We give a topological
interpretation of this quadratic form in terms of index of vector fields onX.

2000Mathematics subject classification: primary 14F10, 57R25, 57R15.

1. The Arf function for a theta characteristic

Let X be a compact connected Riemann surface of genusg. The holomorphic
cotangent bundle ofX will be denoted byK X. Let ¾ be a holomorphic line bundle
over X such that¾⊗2 is holomorphically isomorphic toK X. A line bundle with this
property is known as atheta characteristicof X. Since the degree ofK X is even,X
has a theta characteristic.

There are exactly 22g theta characteristics ofX, whereg is the genus ofX. Indeed,
if L is a holomorphic line bundle overX of order two, that is,L⊗2 is isomorphic to the
trivial line bundle, then¾⊗ L is also a theta characteristic, provided¾ is one. It is easy
to see that this action of the order two line bundles on the theta characteristics is free
and transitive. In other words, the collection of all theta characteristics ofX, which
we will denote byS.X/, is an affine space for the collection of line bundle of order
two. Note that the collection of all line bundle of order two, which we will denote by
J2.X/, is a vector space overZ=2Z of dimension 2g.
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On J2.X/ there is a bilinear form known as theWeil pairing(see [Mu1, page 183]).
The Weil pairing

�2 : J2.X/ ⊗ J2.X/ → Z=2Z(1.1)

is antisymmetric (hence symmetric as the field isZ=2Z). Note that in [Mu1], the
image of�2 is identified with±1 by sending 1 and−1 to 0 ∈ Z=2Z and 1∈ Z=2Z
respectively. We recall a topological description of the pairing�2.

TheZ=2Z vector spaceJ2.X/ is identified withH1.X;Z=2Z/. With this identifi-
cation,�2 is simply the cup product onH 1.X;Z=2Z/. It is easy to see thatJ2.X/ is
identified with Hom.H1.X;Z/;±1/. Indeed, using the natural projection³1.X/ →
H1.X;Z/ an element in Hom.H1.X;Z/;±1/ gives a character of order two of the
fundamental group³1.X/. A character of³1.X/ gives a flat line bundle. Since the
above character is of order two, the holomorphic line bundle defined by the corre-
sponding flat line bundle is also of order two. By the above isomorphism ofJ2.X/
with Hom.H1.X;Z/;±1/ ∼= H 1.X;Z=2Z/, the cup product

H 1.X;Z=2Z/ ⊗ H1.X;Z=2Z/ → H2.X;Z=2Z/ = Z=2Z

translates to the Weil pairing�2 defined in (1.1).
Take¾ ∈ S.X/, a theta characteristic. Define

!¾ : J2.X/ → Z=2Z(1.2)

by L 7→ dim H0.X; ¾ ⊗ L/ − dim H0.X; ¾ / ∈ Z=2Z. The bilinear form associated
with the quadratic form!¾ in (1.2) coincides with the Weil pairing in (1.1). In other
words, for any pairL1; L2 ∈ J2.X/ the identity

!¾.L1 ⊗ L2/ − !¾.L1/ − !¾.L2/ = �2.L1; L2/(1.3)

is valid [Mu2, page 182, (?)]. A function on J2.X/ satisfying the identity (1.3) is
known as anArf function[Na, page 93]. In particular,!¾ is an Arf function. Any Arf
function is of the form!¾ for some¾ ∈ S.X/ [Na, page 100, Theorem 10.1].

We will give an alternative description of!¾ using the notion of index of a vector
field on X.

2. Vector fields and Arf function

We continue with the notation of the preceding section. Take¾ ∈ S.X/. Take a
meromorphic sections of the line bundle¾ which is not identically zero. Therefore,
s ⊗ s is a meromorphic section ofK X. In other words,̂s := s ⊗ s is a meromorphic
one form ofX which is not identically zero.
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Now, sincês is not identically zero, it defines a meromorphic section of the holomor-
phic tangent bundleT X. Indeed, sinceT X ∼= K ∗

X, we have a (unique) meromorphic
section− of T X defined by the condition that the evaluation−.ŝ/ is the constant
function 1 onX. In particular, the zeros (respectively, poles) ofŝ becomes poles
(respectively, zeros) of− . Let C ⊂ X be the union of all the zeros and poles of− .

Since X is a compact connected oriented smooth manifold of (real) dimension
two, using Poincar´e duality we haveH 1.X;Z=2Z/ ∼= H1.X;Z=2Z/. Using this
isomorphism, the quadratic form!¾ on J2.X/ = H1.X;Z=2Z/ defined in (1.2) would
be considered as a quadratic form onH1.X;Z=2Z/.

Take any homology classc ∈ H1.X;Z=2Z/. Let 
 be a smooth oriented loop
(that is, aC∞ immersion of the circleS1 = {.x; y/ ∈ R

2 | x2 + y2 = 1}) in X \ C
representing the homology classc. Since the setC of poles and zeros of the section
− is finite, such a loop exists. Sincec is a homology class with coefficients inZ=2Z,
if we reverse the orientation of
 then also it representsc.

Let index.−; 
 / ∈ Z be theindexof the vector field− on X \ C for the oriented
loop 
 . We recall the definition of index. If the vector field− rotatesn times
clockwise with respect to the tangent vectors of the curve
 (recall that
 is an
immersion), then index.−; 
 / = n + 1. For anyp ∈ S1, the quotient of the (real)
nonzero tangent spaceT
 .p/X−{0} by the multiplication action ofR+ can be identified
with S1 = {.x; y/ ∈ R

2 | x2 + y2 = 1} by sending.1;0/ ∈ S1 to the tangent vector

 ′.p/ along the loop
 . Using this identification,− defines a map fromS1 to S1. The
above integern is the degree of this map.

Henceforth, by index.−; 
 / we will always mean the image inZ=2Z of the above
constructed number.

Note that each pole or zero of− is of even order. Therefore, although
 is a loop
in X \ C, the dependence of index.−; 
 / on 
 factors through the image of
 in
H1.X;Z=2Z/. In other words, if a loop
 ′ represents a homology class in the kernel
of the natural homomorphismH1.X \ C;Z=2Z/ → H1.X;Z=2Z/ (induced by the
inclusion map ofX \ C in X), then index.−; 
 ′/ = 0 ∈ Z=2Z.

If s ands′ are two meromorphic sections of¾ , then we have a one-parameter family
of meromorphic sections of¾ defined by½ 7→ s½ := ½s + .1 − ½/s′, where½ ∈ C.
So, we haves1 = s ands0 = s′. Note that index of a vector field along a loop is a
topological invariant. In particular, it does not change under continuous deformations
of the vector field. Let− ′ be the meromorphic vector field constructed usings′. Now in
view of the above remark that the dependence of index.−; 
 / on
 factors through the
image of
 in H1.X;Z=2Z/ it follows immediately that index.−; 
 / = index.− ′; 
 /.

Consequently, index.−; 
 / ∈ Z=2Z depends only on¾ andc. In other words, we
are justified in using the notation index.¾; c/ in place of index.−; 
 /.

Our aim here is to prove the following theorem.
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THEOREM 2.1. The two elements inZ=2Z, namely!¾.c/ andindex.¾; c/, coincide.

PROOF. Let XT be a holomorphic family of compact connected Riemann surfaces
with a theta characteristic parameterized by a complex manifoldT . In other words,
XT is a complex manifold equipped with a holomorphic submersion³ : XT → T
and a holomorphic line bundle¾T over XT such that for any pointt ∈ T , the fiber
Xt := ³−1.t/ is a compact connected Riemann surface and the restriction of the line
bundle¾T to Xt is a theta characteristic ofXt . The restriction of¾T to Xt will be
denoted by¾t .

A basic theorem due to Atiyah and Mumford says that if the parameter spaceT
is connected then the image of dimH 0.Xt ; ¾t/ in Z=2Z is independent oft (see [At,
page 28, Theorem 1], [Mu2, page 184, Theorem]). In other words, the parity of
dim H 0.Xt ; ¾t/ remains constant overT , providedT is connected.

Now suppose that familyXT of Riemann surfaces are equipped with a choice of
a first homology class with coefficients inZ=2Z. In other words, for eacht ∈ T we
have
t ∈ H1.Xt ;Z=2Z/ with the property that for every contractible open subsetU
of T , the homology class


t ′ ∈ H1.Xt ′;Z=2Z/ ∼= H1.³
−1.U /;Z=2Z/;

wheret ′ ∈ U , is independent oft ′. Note that the condition thatU is contractible
ensures that the homomorphismH1.Xt ′ ;Z=2Z/ → H1.³

−1.U /;Z=2Z/ induced by the
inclusion map ofXt ′ in ³−1.U / is an isomorphism. Since the index of a vector fields
is a topological invariant, in a continuous family of smooth vector fields and loops
the index remains unchanged. Therefore, if the parameter spaceT is connected, the
index index.¾t ; 
t/ ∈ Z=2Z is independent oft ∈ T .

Consequently, both!¾.c/ and index.¾; c/ are invariant under deformations of the
Riemann surface equipped with choices of a theta characteristic and a homology class.

Now, the moduli space of compact Riemann surfaces of genusg is connected.
Therefore, in order to show the equality!¾.c/ = index.¾; c/ ∈ Z=2Z, it suffices to
show that the equality holds for just one particular Riemann surface.

We will show that the equality!¾.c/ = index.¾; c/ is valid for a hyperelliptic
Riemann surface. This, in view of the above observation, would complete the proof
of the theorem.

A hyperelliptic Riemann surfaceis a double cover of the complex projective line
CP

1 ∼= C ∪ {∞}. Fix 2g + 2 distinctpoints

{z1; z2; : : : ; z2g+1; z2g+2} ⊂ C:

This gives a hyperelliptic Riemann surfaceX defined by the polynomial equation

P.x; y/ := y2 −
2g+2∏

i =1

.x − zi / = 0(2.1)
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wherezi are as above. Therefore, we have a degree two map

f : X → CP
1(2.2)

which is ramified exactly over the points{z1; z2; : : : ; z2g+2}. The mapf sends a point
.x; y/ to x.

We will now recall an explicit description of all the theta characteristics of this
Riemann surfaceX. The details can be found in [Mu2, page 190–191].

LetOCP1.1/ be the (unique) line bundle overCP1 of degree one. Set

� := f ∗
OCP1.1/;

where f is as in (2.2). So� is a holomorphic line bundle overX of degree two. Note
that� ∼= OX.2 f −1.zi // for eachi ∈ [1;2g+2] and for eachz∈ CP1\{z1; z2; : : : ; z2g+2}
we have� ∼= OX. f −1.z//. (Here f −1 denotes the set theoretic inverse (as opposed to
the scheme theoretic inverse).)

Take an integerl ∈ {0;1; : : : ; [.g − 1/=2] − 1; [.g − 1/=2]} and a subsetS ⊂
{z1; z2; : : : ; z2g+2} of cardinalityg − 1 − 2l . For such a pair{l ; S} let

¾.l ; S/ := OX. f −1.S//⊗ �⊗l

be the holomorphic line bundle overX of degreeg − 1.
For any subsetS ⊂ {z1; z2; : : : ; z2g+2} of cardinalityg + 1 andl = −1, let

¾.l ; S/ = ¾.−1; S/ := OX. f −1.S//⊗ �∗

be the holomorphic line bundle overX of degreeg − 1.
Each line bundle¾.l ; S/, where

l ∈ {−1;0;1; : : : ; [.g − 1/=2]} and S ⊂ {z1; z2; : : : ; z2g+2}

of cardinalityg−1−2l , has the property that¾.l ; S/⊗¾.l ; S/ is isomorphic toK X. In
other words,¾.l ; S/ is a theta characteristic. If¾ ∈ S.X/ is a theta characteristic ofX,
then¾ is isomorphic to¾.l ; S/ for some pair{l ; S}. Furthermore, if¾.l ; S/ ∼= ¾.l ′; S′/,
where the pairs{l ; S} and {l ′; S′} satisfy the above numerical conditions, then the
following two conditions

(1) l = −1 = l ′ and
(2) S′ = {z1; z2; : : : ; z2g+2} \ S,

are valid (see [Mu2, page 191]).
SetŽ = f −1.∞/ ⊂ X. SoŽ consists of two distinct points ofX (the mapf in (2.2)

is unramified over the point∞ ∈ CP1), and the line bundleOX.Ž/ is isomorphic to�.
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Given{l ; S} as above, we will construct a meromorphic section ofK X with zeros
of order two at eachz ∈ Sand a zero (respectively, pole) of order 2l (respectively, 2)
for l nonnegative (respectively, forl = −1) at each point of the setŽ.

Recall the polynomialP.x; y/ in (2.1) defining X. Consider the meromorphic
one-form

!.{l ; S}/ := dx

y

∏

z∈S

.x − z/(2.3)

on X. Note that ifz ∈ S, thendx has zero of order one at the pointf −1.z/ (since f
in (2.2) is ramified overz), the function.x − z/ has a zero of order two at the point
f −1.z/ (since f is ramified overz), andy has pole of order one atf −1.z/. Therefore,
!.{l ; S}/ has a zero of order two atf −1.z/ if z ∈ S. If z ∈ {z1; z2; : : : ; z2g+2} \ S, then
for the same reasons!.{l ; S}/ is regular (it has neither zero nor pole) atf −1.z/.

It is also clear that ifl ≥ 0, then!.{l ; S}/ has a zero of order 2l at both the points
of the subsetŽ of X. Indeed, for eachz ∈ S, the functionx − z has a pole of order one
at each point ofŽ. From (2.1) it follows that functiony has a pole of orderg + 1 at
each point ofŽ. Finally, sincedx has a pole of order two at each point ofŽ, it follows
that!.{l ; S}/ has a zero of order−.g −1− 2l /+ .g + 1/− 2 = 2l at each point ofŽ.

If l = −1, then!.{l ; S}/ has a pole of order 2 at each of the points ofŽ. The form
!.{l ; S}/ does not have any other pole or zero.

Therefore, ifD is the divisor onX defined by the meromorphic section!.{l ; S}/,
thenD is of the form 2D′ withOX.D′/ ∼= ¾.l ; S/. Indeed, since the line bundleOX.Ž/

is isomorphic to�, it follows immediately from the definition of¾.l ; S/ that¾.l ; S/ is
isomorphic to the line bundleOX.D′/.

Take any¾ = ¾.l ; S/ ∈ S.X/ andc ∈ H1.X;Z=2Z/. From the above observation
that the divisor of!.{l ; S}/ is twice the divisor of a section of¾ it follows immediately
that to compute index.¾; c/ we can use the meromorphic vector field defined by the
one-form!.{l ; S}/. In other words, in our earlier notation, we can take− to be the
meromorphic vector field defined by!.{l ; S}/.

The order two lines bundles overX, namelyJ2.X/, is generated by line bundles of
the formOX. f −1.zi /− f −1.zj //, where{zi ; zj } ⊂ {z1; z2; : : : ; z2g+2}. Note that

OX. f −1.zi /− f −1.zj //⊗ OX. f −1.zi /− f −1.zj //

∼= OX.2 f −1.zi // ⊗ OX.2 f −1.zj //
∗ ∼= � ⊗ �∗:

In other words, we haveOX. f −1.zi /− f −1.zj // ∈ J2.X/.
Take a pair{l ; S} as above. Take a pointz ∈ S and z′ ∈ {z1; z2; : : : ; z2g+2} \ S.

DefineS′ to beS∪ {z′} \ {z′}. From the definition of¾.l ; S/ it follows immediately
that

¾.l ; S′/ ∼= ¾.l ; S/⊗ OX. f −1.z′/ − f −1.z//:(2.4)
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If we set S1 = S∪ {z′; z′′}, where{z′; z′′} ⊂ {z1; z2; : : : ; z2g+2} \ S are two distinct
points, then

¾.l − 1; S1/ ∼= ¾.l ; S/⊗ OX. f −1.z′/ + f −1.z′′/− f −1.∞//:(2.5)

Note thatOX. f −1.z′/+ f −1.z′′/− f −1.∞// is a line bundle of order two. Similarly,
if S2 = S\ {z; z̃}, where{z; z̃} ⊂ Sare two distinct points, then

¾.l + 1; S2/ ∼= ¾.l ; S/⊗ OX. f −1.∞/− f −1.z/ − f −1.z̃//:(2.6)

Note that the isomorphism in (2.6) follows from (2.5) by interchangingSandS1. The
isomorphisms in (2.4), (2.5) and (2.6) together describe the action ofJ2.X/ on S.X/,
the theta characteristics onX.

We know that dimH 0.X; ¾.l ; S// = l +1 for any pair{l ; S} of the above type [Mu2,
page 191]. Since the action ofJ2.X/ on S.X/ is described by the isomorphisms in
(2.4), (2.5) and (2.6), we therefore have an explicit description of the quadratic form
!¾ defined in (1.2).

As before, take a pointz ∈ S and z′ ∈ {z1; z2; : : : ; z2g+2} \ S. Let þ denote the
tautological meromorphic section ofOX. f −1.z′/ − f −1.z// given by the constant
function 1. Soþ has a pole of order one atf −1.z/ and a zero of order one atf −1.z′/.
From the definition of!.{l ; S}/ in (2.3) it follows immediately that

!.{l ; S′}/ = !.{l ; S}/⊗ þ ⊗ þ:

The tensor productþ⊗þ which is a meromorphic function onX (since the line bundle
OX. f −1.z′/ − f −1.z// ⊗ OX. f −1.z′/ − f −1.z// is trivial) can also be described as
follows. Consider the rational function onCP1 defined by .x/ = .x −z′/=.x −z/.
The functionþ ⊗ þ on X coincides with ◦ f , where f is defined in (2.2).

Now, as before, take a pair of distinct points{z′; z′′} ⊂ {z1; z2; : : : ; z2g+2} \ S.
Consider the rational function� onCP1 defined by�.x/ = .x − z′/.x − z′′/=x2. Set
S1 = S∪ {z′; z′′}. It is easy to see that the identity

!.{l − 1; S1}/ = .� ◦ f / · !.{l ; S}/

is valid, wheref is defined in (2.2).
In the previous section we saw thatJ2.X/ is naturally identified withH1.X;Z=2Z/.

We will now describe this identification explicitly for hyperelliptic Riemann surfaces.
By X we will denote the hyperelliptic Riemann surface in (2.2).

Let D2 := {.x; y/ | x2 + y2 ≤ 1} be the closed unit disk and
◦
D2 := {.x; y/ |

x2 + y2 < 1} the open disk, which is the interior ofD2. The boundaryD2 \ ◦
D2 will

be denoted byS1.
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Take a pair of distinct points{z; z′} ⊂ {z1; z2; : : : ; z2g+2}. Let 0 : D2 → C be an
C∞ embeddingof the disk such that

 0.D
2/ ∩ {z1; z2; : : : ; z2g+2} = {z; z′}

and{z; z′} ⊂  0.
◦
D2/.

The inverse imagef −1. 0.D2// is an embedded cylinder inX. To prove this first
note that the boundary 0.S1/ of the image 0.D2/ lifts to a loop in X. This lifting
property of 0.S1/ follows from the observation that an embedding


 : S1 → CP
1 \ {z1; z2; : : : ; z2g+2}

lifts to X as a map fromS1 if and only if the number of point{zi } in some (hence
each) component ofCP1 \ 
 .S1/ is even. (Any embedded loop inCP1 breaks the
complement into two connected components; if one component hasj points from the
set{zi }, then the other component has 2g + 2 − j points of{zi }.) Consequently, the
inverse imagef −1. 0.D2// is an embedded cylinder.

Let I := [0;1] be the closed interval,
◦
I := .0;1/ the open interval, andC2 := S1× I

the two dimensional cylinder with boundary. Let : C2 → X be aC∞ embeddingof
the cylinderC2 into X such that .C2/ = f −1. 0.D2//. Therefore,

 .C2/ ∩ { f −1.z1/; f −1.z2/; : : : ; f −1.z2g+2/} = { f −1.z/; f −1.z′/}
and{ f −1.z/; f −1.z′/} ⊂  .S1× ◦

I/. We saw thatOX. f −1.z/− f −1.z′// ∈ J2.X/. The
corresponding element inH1.X;Z=2Z/ is represented by the image, under the map ,
of S1 × {0}. Note that .S1 × {0}/ and .S1 × {1}/ represent the same element in
H1.X;Z=2Z/.

The element inH1.X;Z=2Z/ represented by .S1 ×{0}/ clearly coincides with the
one represented by the lift toX of the loop 0.S1/ in C. So both these loops inX
representOX. f −1.z/ − f −1.z′// ∈ J2.X/ ∼= H1.X;Z=2Z/.

Using this observation and the meromorphic forms!.{l ; S}/ we immediately ob-
tain an explicit description of index.¾; c/. Comparing this with the earlier obtained
description of the quadratic form!¾ we conclude that!¾.c/ = index.¾; c/.

Therefore, the equality!¾.c/ = index.¾; c/ is valid, providedX is a hyperelliptic
Riemann surface. But we already noted that it is enough to prove the equality for just
one Riemann surface. Therefore, the proof of the theorem is complete.
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