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Abstract

A left ideal of anyC*-algebra is an example of an operator algebra with a right contractive approximate
identity (r.c.a.i.). Indeed, left ideals i@*-algebras may be characterized as the class of such operator
algebras, which happen also to be triple systems. Conversely, we show here and in a sequel to this pape
that operator algebras with r.c.a.i. should be studied in terms of a certain left ide@ledlgebra. We

study left ideals from the perspective of ‘Hamana theory’ and using the multiplier algebras of an operator
space studied elsewhere by the author. More generally, we develop some general theory for operato
algebras which have a 1-sided identity or approximate identity, including a Banach-Stone theorem for
these algebras, and an analysis of the ‘multiplier operator algebra’.

2000Mathematics subject classificatioprimary 46L05, 46L07, 47L30; secondary 46H10, 47L75.

1. Introduction and notation

A norm closed left ideal of ang*-algebra is an example of an operator algebra
with a right contractive approximate identity. More is true; indeed left ideal®in
algebras may be characterized as the class of nonselfadjoint operator algebras with
right contractive approximate identity, which happen also to be ‘triple systems’ (see
Theorenm?.6). This suggests that left ideals@i-algebras may profitably be studied
using machinery that exploitsoth the ‘operator algebra’ and the ‘triple’ structure,
and indeed we take this approach here. For example, ‘morphisms’ of left id€zis in
algebras will be what we call ‘ideal homomorphisms’ below, namely homomorphisms
which are also ‘triple morphisms’.
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A (concrete) operator algebra is a closed subalgebia(éf), for some Hilbert
spaceH. More abstractly, an operator algebra will be an algebrsith a complete
norm defined on the spad#,(A) of n x n matrices with entries id\, for eachn € N,
such that there exists @mpletely isometrihomomorphismA — B(H) for some
Hilbert spaceH. (We recall that a mag : X — Y is completely isometric if
[Xi;]1 — [T(x;)]is isometric onM,(X) for all n € N.) An operator algebra ignital
if it has a two-sided contractive identity. Unital operator algebras were characterized
abstractly in L1]. However the class of nonselfadjoint operator algebras which is
perhaps of most interest 6*-algebraists or those interested in noncommutative
geometry is the class of one-sided ideals iB*aalgebra, which as we said possess
only a one-sided approximate identity. Unfortunately, there seems to be no general
results in the literature on operator algebras with a one-sided approximate identity,
and thus part of the purpose of this note is to collect together some general theory
of such algebras. Indeed, we show amongst other things that such algebras have a
abstract characterization, Banach-Stone type theorems, reasonable multiplier algebre
(which are operator algebras with two sided identity of norm 1), and they have an
operator space predual if and only if they are ‘dual operator algebras’ in the usual
strong sense of that term (see Theorkef). Also, this subject becomes a little more
interesting with a certain ‘transference principle’ in mind. This principle (which
was proved first in the sequed], allows one to deduce many general results about
operator algebras with one-sided approximate identity, from results about left ideals
in aC*-algebra. Namely, there is an important left idgglA) of aC*-algebras’(A),
which is associated to any such operator algedraWe call J.(A) the ‘left ideal
envelope’ ofA. This is analogous to what happens in the case of operator algebras
with two-sided identities, which are largely studied these days in terms of a certain
C*-algebra, namely th€*-envelope.

We now describe the layout of the paper. In Sectibowe discuss one-sided
ideals inC*-algebras. In Sectiof we study a technical condition which commonly
encountered operator algebras with a one-sided approximate identity possess. i
Section4 we assemble a collection of general results about operator algebras with
a one-sided approximate identity. The principal tools used here are the multiplier
algebra of an operator space studied@nl[0, 7, 30], the ‘left ideal envelope’ of the
last paragraph, and the facts from Sectinin Section5 we look at Banach-Stone
type theorems. The classical Banach-Stone theorem (see, for exafpléy.P])
may be stated in the following form: €(K;) = C(K,) linearly isometrically, then
they are*-isomorphic (from which it is clear that the compact spakgsand K,
are homeomorphic). Indeed, the usual proofs show that the linear isometry equals ¢
*-isomorphismC(K;) — C(K;) multiplied by a fixed unitary irC(K,). There are
numerous noncommutative versions of this, the most well known due to Kadigjon [
where theC(K) spaces are replaced B-algebras. In Sectiof we examine such
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theorems for maps between one-sided ideals ©*algebra or between operator
algebras with one-sided identities or contractive approximate identities. In Séction
we study the ‘left multiplier operator algebre’™ (A) of an operator algebraA with

a left contractive approximate identity.

We end the introduction with some more notation, and some background results
which will be useful in various places. We reserve the lettér& for Hilbert spaces,
andJ for a left ideal of aC*-algebra. We will make the blanket convention that all
ideals, left or otherwise, are assumed to be closed, that is, complete.

We shall abbreviate ‘right (respectively, left) contractive approximate identity’ to
‘r.c.a.i.’ (respectively, ‘l.c.a.i’). For additional information on one-sided contractive
approximate identities in general Banach algebras we refer the interested reader t
the works of P. G. Dixon (se&§] for references), G. A. Willis (see3f] and ref-
erences therein), and the general text3 R3]. If A is an algebra then we write
A A — Lin(A) for the canonical ‘left regular representation’ Afon itself. By a
‘representationr : A — B(H) of an operator algebr& we shall mean a completely
contractive homomorphism. W has r.c.a.i. and if we say that is nondegenerate
then at the very least we mean thatA)H is dense irH. Note that this last condition
does not imply in general that(e,)¢ — ¢ for ¢ € H, where{g,} is the r.c.a.i., as
one is used to in the two-sided case. One also cannot appeal to Cohen'’s factorizatiol
theorem in its usual form (see, howeve3[Section 5.2]).

We will use without comment several very basic facts flotralgebra theory (see,
for example, £6]), such as the basic definitions of the left multiplier algebiM (A)
of aC*-algebra, and the multiplier algebka(A).

As a general reference for operator spaces the reader might cans@b]27] or
the forthcoming 32]. We write C B(X) for the operator space of completely bounded
mapsX — X. We write”: X — X** for the canonical map, this is a complete
isometry if X is an operator space, and is a homomorphiskig an operator algebra
(giving the second dual the Arens produt8]). It follows from [13, 28.7] that if A
is an operator algebra with r.c.a.i. thé* is an operator algebra with right identity
of norm 1. If A has a right identitye, thené is the right identity ofA**. If Ais an
operator algebra with two right identitiesand f of norm 1, then since and f are
orthogonal projections, we haee= ef = e* = fe = f. Thus an operator algebra
has at most one right identity of norm 1.

It will be helpful throughout the paper to keep in mind the basic exam@les
(respectivelyR,); namely then x n matrices ‘supported on’ the first column (respec-
tively, row). This is a left (respectively, right) ideal &fl,, and has the projection
E;; as the 1-sided identity. We writ€,(X) for the first column orM,(X), that is
M, 1(X). If X is an operator space, then sadg X).

If X andY are subsets of an operator algebra we usually w¢i¥efor the norm
closureof the set of finite sums of producksy of a term inX and a term iny. For
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example, ifJ is a left ideal of &C*-algebraA, then with this conventiod*J andJ J*

are norm close€*-algebras. This convention extends to three sets, dhlis) = J

for a left ideal of aC*-algebra as is well known (or use the proof of Lemtha
below to see this). We recall more generally that a TR®n@ry ring of operators

is a (norm closed for this paper) subspatef B(K, H) such thatX X*X c X. It

is well known (copy the proof of Lemm2.1 below) that in this casX X*X = X.
ThenX X* andX* X areC*-algebras, which we will call the left and rigBt-algebras

of X respectively, an is a(X X*) — (X*X)-bimodule. A linear mag : X — Y
between TRO's is &iple morphismif T (xy*z) = T(X)T(y)*T(2) forall x,y, z € X.
TRO'’s are operator spaces, and triple morphisms are completely contractive, anc
indeed are completely isometric if they are 1-1 (see, for examp®, this is related

to results of Harris and Kaup). A completely isometric surjection between TRO'’s
is a triple morphism. This last result might date back to around 1986, to Hamana,
Kirchberg, and Ruan’s PhD thesis independently. S6gdr [6, A.5] for a proof.

We will say that an operator spa¢eis anabstract triple systenf it is linearly
completely isometrically isomorphic to a TRD Note thatthen one may pull back the
triple product orZ to a triple product-, -, -} on X, and by the just mentioned result of
Hamana, Kirchberg and Ruan, this triple productois unique, that is, independent
of Z. That is, this triple product is completely determined by the ‘operator space
structure’ or matrix norms oix.

Often it is convenient to state only the ‘right-handed’ version of a result. For
example, Theorem.6is a result about operator algebras with r.c.a.i. Of course by
symmetry there will be a matching ‘left-handed’ version, in our example it will be
about operator algebras with l.c.a.i. If we want to invoke this ‘left-handed’ version,
we will refer to the ‘other-handed version of Theorérfi, for example.

2. One-sided ideals inC*-algebras

We begin by reviewing some background facts.

LEmMMA 2.1 (Classical) A norm closed left ideal in a C*-algebra is an operator
algebra with a positive right contractive approximate identity. Also J* = J*J C
J c JJ*, sothatd is a left ideal of theC*-algebraJ J*.

PrOOF. A leftideal J in a C*-algebraA is clearly a subalgebra oh. Also J J*
andJ*J areC*-subalgebras oA. SoJ*J has a positive c.a.{e,}; and forx € J,

[xe, — X||? = ||, X*X€, — X*X&, — ,X*X + X*X|| — O.

The remaining assertions follow immediately from this; for exampbe & J N J*
thenx* = lim x*e,, so thatx € J*J. O
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LEMMA 2.2. (1) Suppose thaa € B(H, K), and{e,} is a net of contractions in

B(H) such thatae, — a. Thenae,el — a, ag€e, — a, anda€’ — a.

(2) If Jis aleftideal of aC*-algebra, and ife,} is a r.c.a.i. forJ, then{e’e,} is a
nonnegative right contractive approximate identity fofand indeed also is a-sided
c.a.i. for theC*-subalgebral N J* = J*J).

(3) Anyr.c.a.i. foraC*-algebrais al.c.a.i. too.

PROOF. (1) We use a technique frord][ If ae, — athenaeg,ela* — aa’, so that
0 <a(l —e€e)a" — 0. Thus by theC*-identity,a,/l — e,e: — 0. Multiplying by
V! — e we seethaa(l —e,e’) — 0 as required for the first assertion. Also,

la€, —a| < ||a€, — ag,€, | + llae,€e, —all - 0
sincellag — ae,€’|| < |la —ag,|| — 0. Finally,
lage, —all < |a€e, —ag,| + |lag, —a|l < |la€, —a|| + ||lag, —a|| — 0

by what we just proved.
Items (2) and (3) are clear from (1), but in any case are well known. O

The next lemma concerns ‘principal ideals’. By a ‘principal ideal’ irCé&
algebraA, we mean by analogy with pure algebra, an ideal of the f@mfor
somex € A. We are not taking the norm closure hefe = {ax : a € A} for some
x € A; however in view of the importance of closed ideal€inalgebratheory, below
we only consider principal ideals which are already norm closed.

PrROPOSITION2.3. Let A be aC*-algebra, andx € A (respectivelyx € M(A)),
and suppose that = Axis uniformly closed. Thed = Ae, whereeis an orthogonal
projection inJ (respectively, irM (A)).

PrROOF. SincelJ is the range of an adjointable map AnJ is orthogonally comple-
mented in the sense @f*-module theory, byZ9, 15.3.9]. This implies thal = Ae
wheree is an orthogonal projection iM (A). This proves the very last assertion.
Also, if Ais unital we are done, and note that in this cédsehas a right identity of
norm 1. However in any casefe A, thenAx = M(A)x (clearly Ax € M(A)X,
butif T € M(A) thenTx = lim Te,x € Ax). Thus applying the above we see that
has a right identityf of norm 1, andf € J ¢ A. HenceJ = Af. O

If Jis aleftideal in aC*-algebra, then we define dsheal representatiomr ideal
homomorphisnof J to be a restriction of &-representatiod : JJ* — B(H) to J.
Clearly such a map is completely contractive.
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PrOPOSITION2.4. Let J be a left ideal of &C*-algebra, and letr : J — B(H) be
a function. Thenr is the restriction of &-representatiord : JJ* — B(H) if and
only if 7 is a homomorphism and a triple morphism. Moreover sudh completely
isometric if and only ifr is 1-1, and if and only i® is 1-1.

ProOOF. If 7 is the restriction of a-representation then it is evident thatis
a homomorphism and a triple morphism. Conversely, it is well known ($6e [
2.1]), that if = is a triple morphism, then there is an associatdtbmomorphism
0 : JJ* — B(H) with the property tha® (xy*) = = (X)7 (y)* forall x, y € J. Ifin
additionsr is a homomorphism, an@,} is a positive r.c.a.i. fod, then{r (e,)} is a
positive r.c.a.i. forr (J), and so forx € J we have by Lemma.2that

0(x) =limo(xe,) =limz(xX)7(e,)" = 7 (X).
If further is 1-1, then itis shown inl[9 thaté is 1-1. O

The following result is a simple consequence of the fact th#td = J:

LEMMA 2.5. Let J be a left ideal of &C*-algebra, and lep : JJ* — B(H) be a
*-homomorphism. I is the restriction of to J then6d is nondegenerate if and only
if 7(J)H is dense irH.

THEOREM 2.6. Let A be an abstract operator algebra which is also an abstract
triple system(we are assuming the underlying matrix norms for both structures co-
incide). ThenA has a r.c.a.i. for the algebra product if and only if there exists a left
ideal J in a C*-algebra, and a surjective complete isomefty— J which is both a
homomorphisnthat is, multiplicativg, and a triple morphism.

PrROOF. The one direction is clear. For the other, we appeal to Thedrétmelow
to obtain a completely isometric homomorphignfrom A into a left idealJ of a
certainC*-algebra. Sincel happens to be a triple envelope Af and since there is
a surjective complete isometry from A onto a TRO, the universal property of the
triple envelope applied te forcesj to be surjective. O

ReEmMARKS. (1) Neal and Russo have a striking recent ‘matrix norm’ characteri-
zation of abstract triple system2Z7]. Putting such as a result together with our last
theorem, and together with a characterization of operator algebras with right contrac-
tive approximate identity (r.c.a.i.) (see Theorérg), will give a ‘completely abstract’
characterization of left ideals i@*-algebras.

It would be interesting if, in the spirit of22], one could give a purely linear
characterization of leftideals iD*-algebras. There is such a resultTh, but it makes
reference to the containin@*-algebra in the hypotheses.
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(2) A slight modification of Theorer.6also gives a characterization©f-algebras,

by replacing ‘r.c.a.i.’ by ‘c.a.i.’. We are grateful to Bernie Russo for pointing out a
recent paper]8] which gives such a characterization, but without needing the matrix
norms.

We end this section with a ‘1-sided version’ of Sakai’'s theorem characterizing
von Neumann algebras. This result may be known to experts (certainly most of it is
contained in a result fron8[l] (see also159])).

THEOREM2.7. LetJ be aleftideal in &C*-algebra, and suppose thdtpossesses a
Banach space predual. Théh(J J*) is aW*-algebra containing) as a weak-closed
principal left ideal.

PrOOF. By [31], the multiplier algebrav (J J*) is aW*-algebra and] is a dual
operator space. By[ Theorem 2.5],] has a right identitye. From this one sees that
J=Jeec JJec J,sothatl = JJ*eC M(JJ)He= MJJI)e C JJ'e=J.
ThusJ = M(J J%)e. O

3. Properties(#) and (%)

For a left ideald in aC*-algebra, it follows from the proof in LemmalthatJ*J
also equalgx € J : e,x — x}, where{e,} is the c.a.i. forJ mentioned above. This
is part of our motivation for the next definition.

DEFINITION 3.1. We say thatan operator algelavith r.c.a.i. (respectively,l.c.a.i.)
has property€) (respectively £)) if anr.c.a.i. (respectivelyl.c.a.i{e,} exists forA
such thae,e, — e, (respectivelyge, e, — e,) for each fixede, in the net. In this
case we defing?(A) ={x € A: e, x — X} (respectivelyZ(A) ={x € A: xe, —> X}).

REMARK. We note that a leftideal of@*-algebra has property4), and in this case
2 (A) = J*J. More generally a subalgebra ofCi-algebra with a self-adjoint right
c.a.i. has propertyZ%), since in this caség,e,)* = e, €, — €, = €.,.. An operator
algebra with two-sided c.a.i. obviously has propes)(and in this cas&?(A) = A.
Certainly every operator algebra with a right identity of norm 1 has prop&#}y (

Open question Are there any operator algebras with r.c.a.i. which do not have
property(#)?

PROPOSITION3.2. If an operator algebraA with r.c.a.i. has property#), then
Z(A) is a norm closed right ideal o (and hence is an operator algeBravith two
sided c.a.i. Moreove (A) does not depend on the particular c.d6,} considered.
Also, AZ(A) = AandZ(A)A = Z(A). Similar results hold for property.¢).
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PrROOF. The first assertion we leave as a simple exercise. Supposeéithas
property (#) with respect to one r.c.afe,}, and let{ f;} be another r.c.a.i. such that
fs fy — fgz for every fixedp'. LetB = {a € A: fza — aj}, another right ideal of
A with two sided c.a.i. Note tha?(A)B = #Z(A) andBZ(A) = B. Thus by (the
other-handed version ofp] Theorem 4.15]B = Z(A). The remaining assertions
are left to the reader. O

ExavpPLE 3.3. Let B be a unital operator algebra, a unital subalgebra @¥*a
algebraN, and defineM . (N) to be the von Neumann algebBa#¢?)@N, thought of
as infinite matricegb;; ] with entriesh;; indexed over, j € N. We letM(B) be the
subset ofM,(N) consisting of those matrices with entrigs in B. Often M (B)
is not an operator algebra, however there are several operator algebradpgiBe
which occasionally play a role. To construct one,@gt(B) be the first column’ of
M. (B), and letR,.(B) be the space of row vectofb;b, - - - ] with entriesb, € B,
such that) ", byb; converges in norm. We may then consider the closed subspace
A = C” (B)R(B) of M (B); those familiar with operator space theory will have no
trouble verifying thatA is a subalgebra d¥,,(N), that A has a nonnegative r.c.a.i.,
and indeed ifB = N then A is a left ideal ofM,(B). In fact, A contains theC*-
algebrak,, (B), namely the spatial tensor produi€{¢,) ® B (which in the language
of C*-modules equal&(C., (A))), and the usual c.a.i. for thig8*-algebra, namely
I, ® 1g, is ar.c.a.i. forA. ThusA has property#). It is easily verified thak . (B)
is aright ideal inA, and in factZ (A) = K. (B).

If Ahas leftidentitye of norm 1, thenA clearly has property#) of Definition 3.1,
and this identity is the 2-sided identity & (A) = Ae. Moreover, the maA —
Z(A) takinga — ae, is a completely contractive homomorphism, and also is a
complete quotient map and indeed is a projection dfi@). On the other hand, iA
has a l.c.a.i. and property{), then by passing to the second dd&t we can make
similar assertions: there is a completely contractive homomorp&sm> £ (A)*,
which is a complete quotient map and indeed a projection. This is theFmapF E,
whereE is a weak limit point of the c.a.i. ofZ(A). We use this in the next result.

PrROPOSITION3.4. Suppose thaf is an operator algebra with I.c.a.i. and property
(%) of Definition3.1 Letr : A — B(H) be a completely contractive representation
(respectively, and alsa(A)H is dense inH). Thenrn,, : £(A) — B(H)is a
completely contractive homomorphigrespectively, and also such that-Z (A))H
is dense inH). Conversely, ifd : £(A) — B(H) is a completely contractive
homomorphism, then there exists a completely contractive homomorghisfn—
B(H) extending. If further 9(A)H is dense inH thens is unique, andr (A)H is
dense inH. Finally,

(TeBMH):Ta(A) Cca(A}={T € B(H) : Tn(Z(A) C n(ZL(A))}.
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PrROOF. The first statements are simple exercises. For the converse, given such
0 : Z(A) — B(H), consider the series of completely contractive homomorphisms

A A* 5 20 25 B(H)* — B(H).

The homomorphismd* — 2 (A)** is the map described above the Proposition, and
the other maps are the canonical ones. The composition of these homomorphisms i
the desiredr. We leave it to the reader to check the details. Sin¢a)o(b): =
n(ab); = 6(@b)¢ forae A,be Z(A), ¢ € H we see thatr is unique ifr (A)H is
dense.

Finally, using the ‘other-handed version’ of the last assertion of Propositign
we see, for example, thatT (A) C 7 (A) then

Ta(Z(A) =Ta(Ar(Z(A) Crn(Ar(ZL(A) =ra(ZLA).
The other direction is similar. O

The previous result shows thatand.Z (A) have the same representation theory.
Thus the following definition which plays a role in the last section is somewhat
natural: we say that a nondegenerate representatiod — B(H) is completely
‘ Z-isometric’, if ., , is completely isometric o’ (A).

REMARK. If A has a left identity of norm 1 but no right identity, andsf :
A — B(H) is a nondegenerate isometric representation, then = Id, so that
m(ae) = w(a), so thatae= a for all a € A. This is a contradiction. Thus there is
in general little point in seeking nondegenerate isometric representations of algebras
with l.c.a.i. This is why we study? -isometric representations.

4. A collection of general results

As this title indicates, this section is somewhat of a miscellany. The major tool
needed is the left multiplier algebr#’,(X) of an operator spack¥. This is a unital
operator algebra, which is a subalgebr&d(X) containing Id;, but with a different
(bigger in general) norm. There are several equivalent definitiong @) given in
[6, 7, 10]; however the reader may take the definition.4f (X) from the following
result from [7]:

THEOREM4.1. A linear T : X — X on an operator space is iBall(.#,(X)) if
and only if T @ Id is a complete contractio@,(X) — C,(X).

The matrix norms on#,(X) may be described via the natural isomorphism
Mn (A (X)) = #,(My(X)). That is, the norm of a matrixT;;] of multipliers
may be taken to be the norm i, (M, (X)) of the mapix;] — [ >, Tic(X)]-
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LEMMA 4.2. Let A be an operator algebra with a r.c.a.i. Then the canonidetft
regular representationof A on itself yields completely contractive embeddiftbat
is, 1-1 homomorphismsA — .#,(A) — CB(A), and the first of these embeddings,
and their composition, are completely isometric.

PROOF. Let » : A — CB(A) be the left regular representation. This map is
certainly completely contractive, however sing@)(e,) = ae, — a itis clear that
A is a complete isometry. Suppose that Ball(A), and thaty = [y;] andy’ =[]

are inM,(A). Then

avi [ _Il[2a® Im 0 Yl < [|Y

yi Il 0 ld&Im] LY 1| ~ LYl
Here Id may be regarded &g for a particular representation & Thusa(a) satisfies
the criterion of Theorem.1, so that.(a) € Ball(_#,(A)). A similar argument works
at the matrix level. Thus factors through#, (A) via the two completely contractive

homomorphisms above. Sintés completely isometric, sois the firstembedding.]

We now turn to characterizations of operator algebras, which was our main original
motivation for introducing multipliers of operatorapes in §]. We pointed out in§,
Section 5] thatin order to prove the characterization of operator algebrgsafj itis
clearly only necessary to check that the ‘left regular representatiol® — C B(A),
is a complete isometry into the operator algelfa A). But this is immediate from a
theorem such aé.1above—see the simple proof of the next result, which is a variant
of [5, 1.11].

THEOREM4.3. Let A be an operator space which is an algebra with a right iden-
tity of norm1 or r.c.a.i. ThenA is completely isometrically isomorphic to a con-
crete operator algebrgvia a homomorphism of courgeif and only if we have
[(x @ ldyy| < 1foralln e Nandx e Ball(M,(A)), y € Ball(Ma, ,(A)).

To explain the notation of the theorem, we have written Id for a formal identity,
thus the expressiofx @ Id,)y above means that the uppex n-submatrix ofy is
left multiplied by x, and the lower submatrix is left alone.

PrROOF. This is identical to the proof of Lemmé&?2 above, except when proving
the analogue of the displayed equation—there one needs to use the hypothesis of ot
theorem. See the remarks above. O

The following theorem, first proved i8], is one of our main tools to deduce results
about operator algebras with r.c.a.i., from results about left ideal€inalgebra.

Let A be an operator algebra with r.c.a.i., and supposeithatA — B is a
completely isometric homomorphism int&Céd-algebra. Let) be the “TRO generated



[11] One-sided ideals and approximate identities in operator algebras 435

byi(A)": the span inB of expressions of the forima,)i (a,)*i (a3)i (ay)* - - - i (A1),
fora € A. By Lemma2.2(1) it is clear that) ¢ JJ*, so thatJ J* is aC*-algebra
which hasJ as a left ideal. In fact clearly J* is the C*-subalgebra oB generated
by i(A). We say that a paifJ, i) consisting of a left ideall in aC*-algebra, and a
completely isometric homomorphism A — J, is aleft ideal extensioof Aif J is
the ‘TRO generated biy(A)’ in the sense above. In this cagée,)} is ar.c.a.i. ford

if {&,}is ar.c.a.i. forA.

THEOREM4.4 ([8]). Let A be an operator algebra with r.c.a.i. Then there exists a
leftideal extensioJ.(A), j) of A, with J.(A) aleftideal in aC*-algebra&’(A), such
that for any other left ideal extensiqd, i) of A, there exists gnecessarily unique
and surjectivgideal homomorphisnisee Propositior2.4) t : J — Je(A) such that
Toi = j. ThusJ.(A)/(Kert) = J completely isometrically homomorphica(lhat
is, as operator algebrggoo. MoreoverJ.(A), j) is unique in the following sense
given any other(J’, j’) with this universal property, then there exists a surjective
completely isometric homomorphigm J.(A) — J suchthat o j = j'.

Finally, (J.(A), j) is atriple envelopdor A in the sense of19].

We call (Jo(A), ) theleft ideal envelop@f A, and set?’(A) = J(A)J(A)*, a
C*-algebra. The mapwill be called theShilov embedding homomorphiskrom the
last assertion of the theorem, and the first definitiooQf A) given in [6, Section 4],
we may identify.#,(A) with {R € LM(£(A)) : Rj(A) C j(A)}.

COROLLARY 4.5. Let A be an operator algebra with r.c.a.i., andthe usual left
regular representation oA. AnyT € .#,(A), regarded as a map o\, satisfies
TA(A) C A(A). Thus elements o7, (A), considered as maps of, are right A-
module maps. That is#,(A) C CBa(A) as sets. Also,# (A) C ACB(A) as
sets.

PrOOF. The first assertion follows from the remark before the statement of the
Corollary, together with the fact thgtis a homomorphism. For & € A, then the
mapb — abon A, corresponds to the majgb) — j(@)j(b) onj(A). Thus if the
left multiplier T correspondsto aR € LM (£ (A)) with Rj(a) = j (T (a)) then

j(T(ab) = Rj(ab) = Rj(@j(b) = j(T(@)jb) = j(T(a)b)

foranyb € A. This amounts to the first assertion, and also yields the second assertion
immediately. The third is similar. O

Corollary4.5allows us to generalize the main result5f(see also21]) to algebras
with one-sided c.a.i.:
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THEOREM4.6. Let A be an operator algebra with r.c.a.i., which has a predual
operator space. TheA has a right identitye of norm1. Also A is a‘dual operator
algebrd, which means that the product dhis separately weakcontinuous, and
there exists a completely isometric homomorphism, which is also a homeomorphism
with respect to the weakopologies, ofA onto ac-weakly(that is, weak-) closed
subalgebraB of someB(H).

PROOF. The first assertion appears i, [Theorem 2.5] (indeed for this part we
only need a predual Banach space). FrénTheorem 3.2],#,(A) is a dual operator
algebra. We saw in Lemma2and Corollaryt.5thaty : A — .#,(A) isacompletely
isometric homomorphism onto a left ideal o%,(A). Hencer(A) = .#,(A)r(e).
Thus L(A) is a weak closed subalgebra of#,(A), and soB = A(A) is a dual
operator algebra. If we take a bounded hét)) — A(a) weak in L(A), then by
definition of the weaktopology on.#,(A) from [5, 3.2],ae = a — ae= aweak
in A. Thusi~!is weak continuous, so that by the Krein-Smulian theorem (&ge [
Lemma 1.5]) is weak continuous. O

Results such as Theoretmt are useful for deducing results about general operator
algebras with r.c.a.i., from results about left ideal€inalgebras. For example, here
is a sample application of this ‘transference principle’ (other examples will be given
later):

COROLLARY 4.7. Let Abe an operator algebra with a right contractive approximate
identity, and also a right identity. TheA has a right identity of nornd, which is the
limit in norm of the r.c.a.i.

PrOOF. First suppose thah = J is a left ideal of aC*-algebra, and suppose that
J has arightidentity. Thed is a principal left ideal and so by Propositiar8, J has
a right identitye of norm 1. Soe=¢e* € JN J* = J*J. If {g,}is ar.c.a.i. ford
then{e’e,} is a 2-sided c.a.i. fod*J (see Lemma.2 (ii)), thuse’e, = e'e,e — e.
Finally, e, — e||*> = | e’e, — ee — ee, + €| — O.

If Ais nonselfadjoint, and ife,} is the r.c.a.i. forA, then{j(e,)} is ar.c.a.i. for
the left ideal envelop§e(A). Similarly J.(A) and A have a common right identity.
Hence by the last paragraph, our r.c.a.i. converges in norm. O

5. The Banach-Stone theorem

We prove several stages, or cases, of this theorem, which asserts essentially the
linear surjective complete isometries between left idealS*eélgebras (respectively,
between operator algebras with r.c.a.i.), are characterized as a composition of a trans
lation by a partial isometry, and a surjective completely isometric homomorphism
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onto another rightideal (respectively, operator algebrawith r.c.a.i.) whichis a translate
of one of the original ideals (respectively, algebras)uby To see that the ‘translate

by a partial isometry’ is not artificial, consider an infinite dimensional Hilbert space
H andSthe shift operator. Sdt= B(H) andJ = B(H)S. These ideals are clearly
linearly completely isometric, but there is no homomorphism ainto J (sinceJ

has no 2-sided identity). This example shows that the following theorem (which
comprises Case (1)) is best possible:

THEOREMS5.1. Let | and J be principal left ideals inC*-algebrasA and B; thus
| = AeandJ = Bf, say, for orthogonal projections, f in |, J respectively.
Suppose also that : | — J is a linear surjective complete isometry. Then there
exists a partial isometry in B with initial projection f, and a completely isometric
surjective ideal homomorphisfeee Propositio2.4) 7 : | — J; suchthaty = 7 (-)u
andr = ¢(-)u*. HereJ, = Bu* = Ju* = Buu* C B is another left ideal oB with
right identity uu*.

Conversely, ifJ is a left ideal of aC*-algebra B, and if u is a partial isometry
in B with initial projection a right identity forJ, thenJu* = Bu* = Buu is a
left ideal J; of B with right identity uu* of norm1, and J, is linearly completely
isometrically isomorphic td via right multiplication byu*. Hence the composition
of right multiplication byu*, with any completely isometric surjective homomorphism
| — Ji, is alinear completely isometric isomorphigm- J.

Finally, if ¢ : | — J is a linear surjective complete isometry, andife) = f,
thenu = u* = f and J; = J in the aboveand¢ is a homomorphism. Conversely, if
¢ is a homomorphism, then necessagilie) = f.

ProOF. Recall fromthe introduction that a completely isometric surjection between
TRO's is a triple morphism. Henggis a triple isomorphism. Thereforeuf= ¢(e)
then it is easy to check that(-) = ¢(-)u* is a homomorphism ontdu*. Similar
considerations show that= uu* is an idempotent, which is an orthogonal projection
since it is selfadjoint. Thus is a partial isometry. We claim thatu = f. To
see this note that*u is an orthogonal projection, and that for apyx) € J we
have p(X)u*u = p(xe) = @(x), using the definition of a triple morphism. Thus
fu*u = f. On the other handj*uf = u*u sinceu € Bf. Hencef = u*u. Also,
Jur = Bfu* = Buuu* = Bu*. Defining J; to be this last space we see that it is
clearly a leftideal oB, andJ; containsuu®, which is indeed a right identity of norm 1
for J; sinceu is a partial isometry. Thug;, = Buu* too.

Sincer () = ¢(-)u* we obtainz ()u = g()u*u = ¢(-) f = ¢(-). It follows from
this too thatr is a complete isometry, and therefore also a triple morphism. Thus
is a completely isometric ideal homomorphism.

Conversely, ifJ, B, u are as stated, thed = Bu*u so thatJu* = Bu* which
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is also a left ideal oB. Clearly the last space equalsiu* sinceBuu* ¢ Bu* =
Bu*uu* C Buu*. The remainder of the converse direction is left to the reader.

The very last assertion is easy to see from the uniqueness of a contractive right
identity (proved in Sectiod). O

Having thoroughly analyzed the Banach-Stone theorem in Case (1), we now move
to Case (2). Here we look at linear completely isometric isomorphism#& — B
between operator algebras with a right identity of norm 1. In the assertions in
the first paragraph of the statement of the next theorem, and in the proofs of these
assertions, we regar8l and B as having been identified with subalgebrasigfA)
andJ.(B) respectively (see Theore#d). Thus mention of the ‘canonical Shilov
embedding homomorphism$’have been suppressed, and all products and adjoints
in that paragraph are taken in the contain@igalgebrag’(B) = Je(B)Je(B)*.

THEOREM 5.2 (Banach-Stone for operator algebras with right identiti€&)ppose
thaty : A — B is a surjective linear completely isometric isomorphism between
operator algebras with a right identity of norfin Then there exists a partial isometry
u € Je(B) (indeed, inB) with initial projection the right identity oB, such that the
subspaceB’ = Bu* of £(B) is a subalgebrdand consequently an operator algebra
with a right identityuu* of norm1; and there exists a completely isometric surjective
homomorphismr : A — B/, such thaty = 7 (-)u andz = ¢(-)u*. Also,u*B C B.

Conversely, suppose we are given a partial isometon a Hilbert spaceH, such
thatu lies in a subalgebraB c B(H), such that the initial projection af is a right
identity of B, and such that*B c B. ThenB’ = Bu* is an operator algebra with
right identity uu* of norm1, and B’ is linearly completely isometrically isomorphic
to B via right multiplication byu. Thus the composition of right multiplication by
u*, with any completely isometric surjective homomorphidm- B, is a linear
completely isometric isomorphisfk— B.

PROOF. Suppose thap : A — B is a linear completely isometric isomorphism,
and extend to a linear completely isometric isomorphigin J.(A) — Je(B) (such
extension exists by Hamana theorytq[ or [6, Appendix A])). By Theoremd .4,
Je(A) is a left ideal of theC*-algebras’(A), andJ.(A) has right identitye. Similar
assertions hold fof.(B). Thus by the proof of Theoref®.1, if u = ¢(e) = @(e)
thenu is a partial isometry irB, with u* € B* ¢ Z(B)* c &(B), whose initial
projection isf, andzr = ¢(-)u* is a completely isometric surjective homomorphism
Je(A) — Jo(B)u*. The restriction ofr to A maps onto the subalgebBa* of £ (B).
Sinceu is a partial isometryuu* is indeed a right identity oBu*. Finally, since
Bu*Bu* ¢ Bu*, post multiplying byu givesBu*B c B, so that

u*B =u*uu*B = fu*B c Bu*B C B.



[15] One-sided ideals and approximate identities in operator algebras 439

Conversely, given as stated, then sinceéB C B we have thaBu* is a subalgebra of
& (B) with right identityuu*. The remainder of the converse direction is obviousl

REMARK. In Theorem5.2, u andu* are inLM (B) in the language ofg]. Also,
one can prove further thgt(B) = J.(B)u*, and that¥’(B’) = &(B). We omit the
details.

COROLLARY 5.3. Suppose that : A — B isa surjective linear completely isomet-
ric isomorphism between operator algebras with right identigend f of norm1.
Theng is a homomorphism if and onlydf(e) = f.

PrROOF. The one direction follows from from the uniqueness of a contractive right
identity (proved in Sectiott). The other direction follows by noting that if we follow
the proof of Theorenb.2, theng(e) = f, so thaty is a homomorphism by last
assertion of Theorer®. L O

COROLLARY 5.4. Suppose tha# is an operator algebra with a right identity of
norm 1, and suppose tha# has another producin : A x A — A with respect to
which A is completely isometrically isomorphic to an operator algebra with a right
identity of norm1. Then there is a partial isometny € J.(A) (and, indeed, inA)
such thatm(x, y) = xu*y for all x, y € A. Indeedu is the right identity form, and
u*u is the right identity for the first product.

We now turn to Case (3) of the Banach-Stone theorem. We only state the ‘forward
implication’; the (tidier) converse we leave as an exercise.

THEOREM 5.5 (Banach-Stone theorem for left ideal<diralgebras). Consider a
surjective linear complete isometgy: | — J between arbitrary left ideals dE*-
algebras. Le¥ = J J*, and let.# be the von Neumann algeb¢d J*)**. Then there
exists another left ideal; of &, with J; J; = &, and a surjective completely isometric
ideal homomorphisnfsee Propositior2.4) = : | — J;. Moreover there exists a
partial isometryu € .# such that the initial projection af is the right identity ofJ**
(indeed ofRM(J)—see Sectiod), and such thatl, = Ju*, J = J,u, and such that
¢ = m(-)u, andz = @(-)u*.

ProoF. Consider the second duat* : 1** — J** C .#, and now we are back in
Case (1). Forif isaleftideal of &C*-algebraA, thenl ** is a leftideal ofA**, but now
I+ has a right identitye of norm 1, which may be taken to be a wéalccumulation
point of the r.c.a.i. of (by [13, 28.7]). Thus by Case (1) we have tha& ¢**(e) is
a partial isometry inJ** C .#, and the initial projection ofl is the matching right
identity of J**. Moreoverr = ¢**(-)u* is a completely isometric homomorphism and
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so on. Restrictingr to | gives a completely isometric homomorphisrhonto the
subalgebral, = Ju* of .#, andy is the composition of” with a right translation by
u. Moreover,z’ is easily seen to be a triple morphism:

7' ()7 (V)7 (2) = " (K)UUE™ (9) 0™ (DU = p(X)@(Y) @(2)U = p(Xy'2)u,

which is simplyz’(xy*z), for X, y,z € |. Thusz’ is a completely isometric ideal
homomorphism. Therefore, by Propositidr}, ' is the restriction of a surjective
1-1*-homomorphism | * — JyJ;. ThusJJ; = Ju*uJ* = & containsJ, as a left
ideal; or to be more preciséi containsJ,. Thus we may regard’ as a completely
isometric homomorphism : | — J; onto a right ideall; of & (noteJ; = J,). The
restis clear. O

We briefly discuss Case (4) of the Banach-Stone theorem, the case of a surjective
linear complete isometry between arbitrary operator algebras with r.c.a.i. Again itis
clear that by passing to the second dual and using Case (2) in the way we tackled Cas
(3) using Case (1)or using Case (3) in the way we tackled Case (2) using Case (1),
will give a result resembling Theoremasl, 5.2, and5.5. We leave the details to the
reader.

COROLLARY 5.6. Lety : A — B be a surjective linear complete isometry between
left ideals ofC*-algebras, or between operator algebras with r.c.a.i. Thers a
homomorphism if and only if there exists a r.c.&d,} for A such that{¢(e,)} is a
r.c.a.i. for B.

PrOOF. If the latter condition holds thep** : A** — B** is a surjective linear
complete isometry. LeE be a weak limit point of {e,} in A*, and sincep** is
weak-continuousg**(E) is a weak limit point of {¢(e,)}. So we are in the situation
of Corollary 5.3 (with the algebras replaced by their second duals), sog¢tiaand
consequently is a homomorphism. The converse direction is easier. O

REMARK. Banach-Stone theorems for unital operator algebras or operator alge-
bras with two-sided approximate identities may be foundlin2] 3, 16] and [6,
Appendix B.1].

6. LM (A) for an algebra with left contractive approximate identity

In this section we develop the ‘left multiplier operator algebkal (A) of an
operator algebra with I.c.a.i. Since this follows closely the essentially known theory
for the case of a two-sided c.a.i. (s€8,[24, 9, 4, 6]) we will try to be brief. The left
multiplier operator algebra of an operator algebra with r.c.a.i. turns out to have a quite
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different theory, which is studied in the sequé],[and which we will not mention
again in the present paper. On the other ha|(A) for an operator algebra with
r.c.a.i. is the ‘other-handed version’ of what we do below.

If Ais an algebra, thenlaft multiplier of Ais a right A-module mapr : A — A.
The left multiplier algebrais the unital algebra of left multipliers of\, together
with the left regular representation (which mafsinto the left multiplier algebra
of A). If Ais a Banach algebra which has a one-sided approximate identity, then
it follows from the closed graph theorem and a variant on Cohen’s factorization
theorem that any left multiplier is bounde?i 5.2.6]. Thus the left multiplier algebra
equalsBA(A), the unital Banach algebra of bounded righitnodule maps. IfA is
an operator algebra with I.c.a.i., then it follows more or less immediately from the
relation T(a) = lim, T(e,)a which clearly holds for alll € Ba(A),a € A, that
BA(A) = CBA(A) isometrically. HereC B,(A) is the set of completely bounded right
A-module maps. One would wish the left multiplier algebra of an operator algebra to
be a unital operator algebra, and fortunately it turns out @BL(A) with its usual
matrix norms is an abstract operator algebra. This is seen in the next theorem. Thus
we define the left multiplier operator algebra of an operator algebra with I.c.a.i., to be
the pair(C B,(A), 1), wherex is the left regular representation Af

More generally, we consider paif®, 1) consisting of a unital operator algelba
and a completely contractive homomorphigm A — D, such thaD u(A) C w(A).
Sometimes we writgi, to indicate the dependence én We say that two such
pairs(D, n) and(D’, ") are completely isometricalbp-isomorphicif there exists a
completely isometric surjective homomorphism D — D’ such that o u = u'.
This is an equivalence relation. We will also use the term ‘left multiplier operator
algebra of A’ for any pair (D, n) as above which is completely isometrical®y+
isomorphic to(C Bo(A), 1).

THEOREMG6.1. Let A be an operator algebra with I.c.a.i. Then the following
operator algebras are all completely isometrically isomorphic

(1) {x € A" : xA C A}/Kerq whereq is the canonical homomorphism into
CB(A),

(2) #,(A) (see Sectiod),

(3) CBa(A),

and in particular,CB5(A) is an operator algebra. IfA satisfies conditior{-#) of
Definition 3.1 (for example, ifA has a left identity of norni, or a two-sided c.a.i.,
or if Ais a right ideal of aC*-algebrg, then the algebras above are completely
isometrically isomorphic to

(4) {T € B(H): Tx(A) c 7 (A}, for any completelyZ-isometric nondegenerate
representationt of A (see definition after Propositiod.4),
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(5) LM(B) whereB = .Z(A) (see Definitior8.1),
(6) {x € B*:xAcC A} c A*, whereB = Z(A).

If Ahas atwo-sided c.a.i., theéferg = (0) in (1).

PrROOF. We first observe that fcanyoperator aIgebrAthere are natural completely
contractive homomorphismi € A* : xA c A} — .#,(A) — CB(A). Let us
write o for the first homomorphism, angl for the second. From the ‘left handed
variant’ of Corollary4.5, the image off lies in CBA(A). Next note that given
S e CBa(A), then one may leF be a weakaccumulation point 05(e,) in A**, for
the l.c.a.i{e,} for A. Clearly|F| < ||S|. Fora € A, we have

S(a) = lim S(g,a) = lim S(e,)a = Fa.

Henceq(F) = S, whereq = 6 o 0. Thusq is a quotient map, and similarly it is a
complete quotient map. Thusis also a complete quotient map, and Kee Kerq
sinced is 1-1. This proves the completely isometric isomorphism between (1) and (3),
and also between (1) and (2). Thug,(A) = CBA(A) completely isometrically,
which also shows thal B,(A) is a unital operator algebra (or this fact may be proved
directly).

Now suppose tha# has property £), and seB = Z(A) as in Definition3.1
ThenB** ¢ A**. Examining the proof of (1) = (3) above, we see easily that the terms
S(e,) actually lie inB. Hence thd- there liesinx € B** : xA c A}. Thusthe map
mentioned above, restricted to the last set, is a complete quotient map too. Therefore
it is a complete isometry if we can show that it is 1-1. To see this supposé-tisat
in the setin (6) and|(F) = 0. ThenFé&, = 0. This implies that- = 0, using the
fact from [13, Section 28] that a wedHimit point of the &, is a 2-sided identity for
B**, and the fact that the multiplication in a dual operator algebra is separately weak
continuous. Thus we have that (3) = (6) completely isometrically. Note too tiat if
is an operator algebra with 2-sided c.a.i. then this shows thay Ke(0) in (1). Note
that if F is in the set in (6), thefrB C B quite clearly. Conversely iIFB c B then
fora € A we haveFa = lim Fe,a € AsinceFe,a € Ba c A. This shows that
(6) = (5).

Finally, to prove that (4) = (5), we may without loss of generality, by the definition
after PropositiorB.4 and the last assertion of that proposition, assumeBhat A is
an operator algebra with 2-sided c.a.i., and that A — B(H) is a nondegenerate
completely isometric homomorphism. This case is no doubt well known by now (but
first done in R4] perhaps); briefly, one way to see it is as follows. If we wiite! ()
for the algebra in (4), then there is a natural map LM () — CBa(A), hamely
p(T)(@) =7 XTx(a)) forae A If [T;] € M,(LM(x)), then

Lo (Tipln = sulilo (Ti;) (@) Hinm = SURIILTij 77 (@) Hlinm < [I[Tij 1lln,
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where the supremum is taken over matriggg of norm< 1. Thusp is completely
contractive. To see thatis completely isometric we take tfia, ] above to be the 1 1
matrixe,. Givene > 0, choose a vectgr € Ball(H™) such that

T e < T 1E o + €.
Then

1T Tl < fim 1T @)1E lho + € < sup|l[Tm@)]ll +e.

However this last quantity is dominated By (Ti;)1ll,, by the third last displayed
equation. Thug is completely isometric.

To see thap is onto, suppose th& € Bo(A). We obtain a related map € B(H)
which may be defined by = (a)¢ = n(Ta)¢, fora € A,¢ € H. Another way to see
this quickly is by using the well known fact that in this cabe= A® ,H. We omit
the simple details, which as we said at the beginning of this section, are essentially
well known to experts. O

REMARKS. (1) Let A be an operator algebra with left identigyof norm 1. Then
one may show thdt M (A) = Ae, which is a unital subalgebra &. Itis also a unital
subalgebra of’(A), and& (A) is a unitalC*-algebra.

To see all this, note that in this cag®A) = Ae, whichis a unital algebra. Thus the
first assertion of the remark follows from (5) of Theorér. We saw in Theorem.4
thatJ = J.(A) is a right ideal of a&C*-algebra, and thal has a left identitye. Thus
&(A) = JJ* haseas a 2-sided identity. Finalldec JJ* = &(A).

(2) Suppose thaa is an operator algebra with I.c.a.i., and that A — B(H) is

a completely isometric representation. DefloM (r) = {T € B(H) : T#(A) C

7 (A)}, the left idealizer ofr(A) in B(H). Then it is straightforward to exhibit a
completely contractive homomorphissn: LM () — LM(A) = CBy(A). Con-
versely, givenl € CBA(A), taking a weak operator limit poirs of 7 (T (e,)) gives

Se LM(x). Thisis really saying that M (A) = LM (;r)/ Kero completely isomet-
rically isomorphically. One may view this observation as an attempt to remove the
use of property.¢) in (4).

It is interesting to note that it is the usual representation Bf, thenL M (i) is
a 3-dimensional operator algebra (this was pointed out to me by M. Kaneda). Note
that LM (r) is highly dependent omr, to see this consideR, again; the natural
representationr has LM (;r) 3-dimensional. However, i6 = 7 @ ¢, wheree
is the projection onto the 1-1 coordinate, theM (o) is strictly larger. It would
be interesting to see if there is a nonrestrictive condition under which one obtains
‘independence from the particularused'.

One may think of each of the six equivalent algebras in Theddelhas a pair
(D, a), whereus : A — D is a completely contractive homomorphism. Let us
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spell out what the map , is in each case. In (1), it is the map— &+ Kergq; in (2)
and (3) itis the left regular representationin (4) it is r; in (5) it is the natural left
representation o on its leftideal? (A); and in (6) the map, isa — &E, whereE

is as in the remark before Propositidrl. All these maps are completely contractive
homomorphisms.

COROLLARY 6.2. Each of the first threéand indeed all six, ifA has property(.Z))
operator algebras in the previous theorem, together with its associated ymap
discussed above, is a left multiplier operator algebrafof That is, they are each
completely isometricallyA-isomorphic to(C BA(A), 1).

We leave these assertions to the reader.

We now turn to the notion which in th€*-algebra literature is referred to as
‘essential homomorphisms’ or sometimes ‘nondegenerate homomorphisms'. For our
purpose we shall use the nanfs-hondegenerate morphism’. For us this shall mean
a completely contractive homomorphism: A — LM (B) satisfying the following
equivalent conditions:

THEOREM6.3. Let A and B be two operator algebras with I.c.a.i’s, and let
7 : A — LM(B) be a completely contractive homomorphism. The following are
equivalent.

() There exists a l.c.a.ie,} for Asuch thatr(e,)b — bforall b € B.
(i) Foreveryl.c.a.ife,} for A, we haver(e,)b — b.
(i) B is a nondegenerate lefi-module viar,
(iv) Anyb e B may be writterb = w(a)b’ for somea € A, b’ € B.

If these conditions hold, then there exists a completely contractive unital homomor-
phismz : LM(A) — LM (B) such thatt o ua = ug, and this homomorphism may

be defined byt (x)(r(a)b) = w(xa)b for x € LM(A),a € A,b € B. Finally, 7 is
completely isometric i is completely isometric.

ProOF. Clearly (i) implies that the span of termga)b is dense inB, which is
what we mean by nondegenerate. So (i) implies (iii). Clearly (iii) implies (i), and (ii)
implies (i), and (iv) implies (iii). That (iii) implies (iv) follows fromZ3, Section 5.2].

If these conditions hold, view M (A) andL M (B) as in Theorens.1(3). We may
follow the proof of Theorem 6.2 in4]. The main difference is that we ignore the
elemente mentioned there, which we can get away with by takintpere to be the
l.c.a.i. fromA. One also needs to use3 5.2.2], and the matrix version of it, in order
to show thatt : LM (A) — CBg(B), and thatt is a complete contraction.

It remains to prove the last assertion. Supposingshistcompletely isometric, we
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have forT € LM (A) that

172 (Ml = I (T) (@) b1l = 17w (T a;) bl

providing that|[a; ]|, [[[ba]ll < 1. Taking the supremum over all suigh ] € M (B),
gives that|7 (T)lleo > [ (T &)1l = I[Ta;]ll. Taking the supremum over all such
[a;] € My(A) gives that||7 (T)lleo > I Tllco. SO is isometric, and similarly it is

completely isometric. O
REMARK. The canonicalmap,: A — LM(A) isanA-nondegenerate morphism.

COROLLARY 6.4. Let A be a closed subalgebra of an operator algelBa and
suppose thatA contains a l.c.a.i. forB. ThenLM(A) — LM(B) completely
isometrically as a subalgebra.

REMARK. The one ‘drawback’ of our left multiplier algebtaM (A) above is that
it does not contain the algebra itself in general; but this is no surprise to anyone who
has looked at the ‘multiplier’ or ‘centralizer’ theory of nonunital Banach algebras.
Indeed if one insists that the left multiplier algebrafbe a pair(B, v) consisting
of an operator algebr8 and a completely isometric homomorphismt A — B
with Bv(A) c v(A), then unfortunately one must lose the useful ‘essential’ condition
(namely thatxv(A) = 0 impliesx = 0). This departs from the classical ‘mul-
tiplier'/‘centralizer’ framework from Banach algebra theorg§[ Section 1.2], for
example), where a multiplier which annihilatdsnust be the zero multiplier. Also it
seems that one cannot hope for conditions like (1)—(3) of Theérém

Note added in proof. Some of our motivation for the present work was to solve
some questions which arose in our work on one-sidledleals [7, 33]. In the latter
paper we give some additional results on one-sided ideals in operator algebras.
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