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Abstract

A left ideal of anyC∗-algebra is an example of an operator algebra with a right contractive approximate
identity (r.c.a.i.). Indeed, left ideals inC∗-algebras may be characterized as the class of such operator
algebras, which happen also to be triple systems. Conversely, we show here and in a sequel to this paper,
that operator algebras with r.c.a.i. should be studied in terms of a certain left ideal of aC∗-algebra. We
study left ideals from the perspective of ‘Hamana theory’ and using the multiplier algebras of an operator
space studied elsewhere by the author. More generally, we develop some general theory for operator
algebras which have a 1-sided identity or approximate identity, including a Banach-Stone theorem for
these algebras, and an analysis of the ‘multiplier operator algebra’.

2000Mathematics subject classification: primary 46L05, 46L07, 47L30; secondary 46H10, 47L75.

1. Introduction and notation

A norm closed left ideal of anyC∗-algebra is an example of an operator algebra
with a right contractive approximate identity. More is true; indeed left ideals inC∗-
algebras may be characterized as the class of nonselfadjoint operator algebras with a
right contractive approximate identity, which happen also to be ‘triple systems’ (see
Theorem2.6). This suggests that left ideals inC∗-algebras may profitably be studied
using machinery that exploitsboth the ‘operator algebra’ and the ‘triple’ structure,
and indeed we take this approach here. For example, ‘morphisms’ of left ideals inC∗-
algebras will be what we call ‘ideal homomorphisms’ below, namely homomorphisms
which are also ‘triple morphisms’.
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A (concrete) operator algebra is a closed subalgebra ofB.H /, for some Hilbert
spaceH . More abstractly, an operator algebra will be an algebraA with a complete
norm defined on the spaceMn.A/ of n ×n matrices with entries inA, for eachn ∈ N,
such that there exists acompletely isometrichomomorphismA → B.H / for some
Hilbert spaceH . (We recall that a mapT : X → Y is completely isometric if
[xi j ] 7→ [T.xi j /] is isometric onMn.X/ for all n ∈ N.) An operator algebra isunital
if it has a two-sided contractive identity. Unital operator algebras were characterized
abstractly in [11]. However the class of nonselfadjoint operator algebras which is
perhaps of most interest toC∗-algebraists or those interested in noncommutative
geometry is the class of one-sided ideals in aC∗-algebra, which as we said possess
only a one-sided approximate identity. Unfortunately, there seems to be no general
results in the literature on operator algebras with a one-sided approximate identity,
and thus part of the purpose of this note is to collect together some general theory
of such algebras. Indeed, we show amongst other things that such algebras have an
abstract characterization, Banach-Stone type theorems, reasonable multiplier algebras
(which are operator algebras with two sided identity of norm 1), and they have an
operator space predual if and only if they are ‘dual operator algebras’ in the usual
strong sense of that term (see Theorem4.6). Also, this subject becomes a little more
interesting with a certain ‘transference principle’ in mind. This principle (which
was proved first in the sequel [8]), allows one to deduce many general results about
operator algebras with one-sided approximate identity, from results about left ideals
in aC∗-algebra. Namely, there is an important left idealJe.A/ of aC∗-algebraE .A/,
which is associated to any such operator algebraA. We callJe.A/ the ‘left ideal
envelope’ ofA. This is analogous to what happens in the case of operator algebras
with two-sided identities, which are largely studied these days in terms of a certain
C∗-algebra, namely theC∗-envelope.

We now describe the layout of the paper. In Section2 we discuss one-sided
ideals inC∗-algebras. In Section3 we study a technical condition which commonly
encountered operator algebras with a one-sided approximate identity possess. In
Section4 we assemble a collection of general results about operator algebras with
a one-sided approximate identity. The principal tools used here are the multiplier
algebra of an operator space studied in [6, 10, 7, 30], the ‘left ideal envelope’ of the
last paragraph, and the facts from Section2. In Section5 we look at Banach-Stone
type theorems. The classical Banach-Stone theorem (see, for example, [14, IV.2])
may be stated in the following form: ifC.K1/ ∼= C.K2/ linearly isometrically, then
they are∗-isomorphic (from which it is clear that the compact spacesK1 and K2

are homeomorphic). Indeed, the usual proofs show that the linear isometry equals a
∗-isomorphismC.K1/ → C.K2/ multiplied by a fixed unitary inC.K2/. There are
numerous noncommutative versions of this, the most well known due to Kadison [20],
where theC.K / spaces are replaced byC∗-algebras. In Section5 we examine such
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theorems for maps between one-sided ideals in aC∗-algebra or between operator
algebras with one-sided identities or contractive approximate identities. In Section6
we study the ‘left multiplier operator algebra’L M.A/ of an operator algebraA with
a left contractive approximate identity.

We end the introduction with some more notation, and some background results
which will be useful in various places. We reserve the lettersH; K for Hilbert spaces,
and J for a left ideal of aC∗-algebra. We will make the blanket convention that all
ideals, left or otherwise, are assumed to be closed, that is, complete.

We shall abbreviate ‘right (respectively, left) contractive approximate identity’ to
‘r.c.a.i.’ (respectively, ‘l.c.a.i.’). For additional information on one-sided contractive
approximate identities in general Banach algebras we refer the interested reader to
the works of P. G. Dixon (see [23] for references), G. A. Willis (see [34] and ref-
erences therein), and the general texts [13, 23]. If A is an algebra then we write
½ : A → Lin.A/ for the canonical ‘left regular representation’ ofA on itself. By a
‘representation’³ : A → B.H / of an operator algebraA we shall mean a completely
contractive homomorphism. IfA has r.c.a.i. and if we say that³ is nondegenerate,
then at the very least we mean that³.A/H is dense inH . Note that this last condition
does not imply in general that³.eÞ/� → � for � ∈ H , where{eÞ} is the r.c.a.i., as
one is used to in the two-sided case. One also cannot appeal to Cohen’s factorization
theorem in its usual form (see, however, [23, Section 5.2]).

We will use without comment several very basic facts fromC∗-algebra theory (see,
for example, [26]), such as the basic definitions of the left multiplier algebraL M.A/
of aC∗-algebra, and the multiplier algebraM.A/.

As a general reference for operator spaces the reader might consult [17, 25, 27] or
the forthcoming [32]. We writeC B.X/ for the operator space of completely bounded
mapsX → X. We writeˆ : X → X∗∗ for the canonical map, this is a complete
isometry ifX is an operator space, and is a homomorphism ifX is an operator algebra
(giving the second dual the Arens product [13]). It follows from [13, 28.7] that if A
is an operator algebra with r.c.a.i. thenA∗∗ is an operator algebra with right identity
of norm 1. If A has a right identitye, thenê is the right identity ofA∗∗. If A is an
operator algebra with two right identitiese and f of norm 1, then sincee and f are
orthogonal projections, we havee = e f = e∗ = f e = f . Thus an operator algebra
has at most one right identity of norm 1.

It will be helpful throughout the paper to keep in mind the basic examplesCn

(respectively,Rn); namely then × n matrices ‘supported on’ the first column (respec-
tively, row). This is a left (respectively, right) ideal ofMn, and has the projection
E11 as the 1-sided identity. We writeCn.X/ for the first column onMn.X/, that is
Mn;1.X/. If X is an operator space, then so isCn.X/.

If X andY are subsets of an operator algebra we usually writeXY for the norm
closureof the set of finite sums of productsxy of a term inX and a term inY. For
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example, ifJ is a left ideal of aC∗-algebraA, then with this conventionJ∗ J andJ J∗

are norm closedC∗-algebras. This convention extends to three sets, thusJ J∗ J = J
for a left ideal of aC∗-algebra as is well known (or use the proof of Lemma2.1
below to see this). We recall more generally that a TRO (ternary ring of operators)
is a (norm closed for this paper) subspaceX of B.K ; H / such thatX X∗ X ⊂ X. It
is well known (copy the proof of Lemma2.1 below) that in this caseX X∗ X = X.
ThenX X∗ andX∗ X areC∗-algebras, which we will call the left and rightC∗-algebras
of X respectively, andX is a .X X∗/ − .X∗ X/-bimodule. A linear mapT : X → Y
between TRO’s is atriple morphismif T.xy∗z/ = T.x/T.y/∗T.z/ for all x; y; z ∈ X.
TRO’s are operator spaces, and triple morphisms are completely contractive, and
indeed are completely isometric if they are 1-1 (see, for example, [19], this is related
to results of Harris and Kaup). A completely isometric surjection between TRO’s
is a triple morphism. This last result might date back to around 1986, to Hamana,
Kirchberg, and Ruan’s PhD thesis independently. See [19] or [6, A.5] for a proof.

We will say that an operator spaceX is anabstract triple systemif it is linearly
completely isometrically isomorphic to a TROZ. Note that then one may pull back the
triple product onZ to a triple product{·; ·; ·} on X, and by the just mentioned result of
Hamana, Kirchberg and Ruan, this triple product onX is unique, that is, independent
of Z. That is, this triple product is completely determined by the ‘operator space
structure’ or matrix norms onX.

Often it is convenient to state only the ‘right-handed’ version of a result. For
example, Theorem4.6 is a result about operator algebras with r.c.a.i. Of course by
symmetry there will be a matching ‘left-handed’ version, in our example it will be
about operator algebras with l.c.a.i. If we want to invoke this ‘left-handed’ version,
we will refer to the ‘other-handed version of Theorem4.6’, for example.

2. One-sided ideals inC∗-algebras

We begin by reviewing some background facts.

LEMMA 2.1 (Classical).A norm closed left idealJ in a C∗-algebra is an operator
algebra with a positive right contractive approximate identity. AlsoJ ∩ J∗ = J∗ J ⊂
J ⊂ J J∗, so thatJ is a left ideal of theC∗-algebraJ J∗.

PROOF. A left ideal J in a C∗-algebraA is clearly a subalgebra ofA. Also J J∗

andJ∗ J areC∗-subalgebras ofA. So J∗ J has a positive c.a.i.{eÞ}; and forx ∈ J,

‖xeÞ − x‖2 = ‖eÞx∗xeÞ − x∗xeÞ − eÞx∗x + x∗x‖ → 0:

The remaining assertions follow immediately from this; for example ifx ∈ J ∩ J∗

thenx∗ = lim x∗eÞ, so thatx ∈ J∗ J.
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LEMMA 2.2. (1) Suppose thata ∈ B.H; K /, and{eÞ} is a net of contractions in
B.H / such thataeÞ → a. ThenaeÞe∗

Þ → a, ae∗
ÞeÞ → a, andae∗

Þ → a.
(2) If J is a left ideal of aC∗-algebra, and if{eÞ} is a r.c.a.i. for J, then{e∗

ÞeÞ} is a
nonnegative right contractive approximate identity forJ (and indeed also is a2-sided
c.a.i. for theC∗-subalgebraJ ∩ J∗ = J∗ J).
(3) Any r.c.a.i. for aC∗-algebra is a l.c.a.i. too.

PROOF. (1) We use a technique from [9]. If aeÞ → a thenaeÞe∗
Þa

∗ → aa∗, so that
0 ≤ a.I − eÞe∗

Þ/a
∗ → 0. Thus by theC∗-identity,a

√
I − eÞe∗

Þ → 0. Multiplying by√
I − eÞe∗

Þ we see thata.I − eÞe∗
Þ/ → 0 as required for the first assertion. Also,

‖ae∗
Þ − a‖ ≤ ‖ae∗

Þ − aeÞe∗
Þ‖ + ‖aeÞe∗

Þ − a‖ → 0

since‖ae∗
Þ − aeÞe∗

Þ‖ ≤ ‖a − aeÞ‖ → 0. Finally,

‖ae∗
ÞeÞ − a‖ ≤ ‖ae∗

ÞeÞ − aeÞ‖ + ‖aeÞ − a‖ ≤ ‖ae∗
Þ − a‖ + ‖aeÞ − a‖ → 0

by what we just proved.
Items (2) and (3) are clear from (1), but in any case are well known.

The next lemma concerns ‘principal ideals’. By a ‘principal ideal’ in aC∗-
algebraA, we mean by analogy with pure algebra, an ideal of the formAx for
somex ∈ A. We are not taking the norm closure here,Ax = {ax : a ∈ A} for some
x ∈ A; however in view of the importance of closed ideals inC∗-algebra theory, below
we only consider principal ideals which are already norm closed.

PROPOSITION2.3. Let A be aC∗-algebra, andx ∈ A (respectively,x ∈ M.A/),
and suppose thatJ = Ax is uniformly closed. ThenJ = Ae, whereeis an orthogonal
projection inJ (respectively, inM.A/).

PROOF. SinceJ is the range of an adjointable map onA, J is orthogonally comple-
mented in the sense ofC∗-module theory, by [29, 15.3.9]. This implies thatJ = Ae
wheree is an orthogonal projection inM.A/. This proves the very last assertion.
Also, if A is unital we are done, and note that in this caseAe has a right identity of
norm 1. However in any case, ifx ∈ A, thenAx = M.A/x (clearly Ax ⊂ M.A/x,
but if T ∈ M.A/ thenT x = lim T eÞx ∈ Ax). Thus applying the above we see thatJ
has a right identityf of norm 1, andf ∈ J ⊂ A. HenceJ = A f .

If J is a left ideal in aC∗-algebra, then we define anideal representationor ideal
homomorphismof J to be a restriction of a∗-representation� : J J∗ → B.H / to J.
Clearly such a map is completely contractive.
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PROPOSITION2.4. Let J be a left ideal of aC∗-algebra, and let³ : J → B.H / be
a function. Then³ is the restriction of a∗-representation� : J J∗ → B.H / if and
only if ³ is a homomorphism and a triple morphism. Moreover such³ is completely
isometric if and only if³ is 1-1, and if and only if� is 1-1.

PROOF. If ³ is the restriction of a∗-representation then it is evident that³ is
a homomorphism and a triple morphism. Conversely, it is well known (see [19,
2.1]), that if ³ is a triple morphism, then there is an associated∗-homomorphism
� : J J∗ → B.H / with the property that�.xy∗/ = ³.x/³.y/∗ for all x; y ∈ J. If in
addition³ is a homomorphism, and{eÞ} is a positive r.c.a.i. forJ, then{³.eÞ/} is a
positive r.c.a.i. for³.J/, and so forx ∈ J we have by Lemma2.2that

�.x/ = lim �.xeÞ/ = lim ³.x/³.eÞ/
∗ = ³.x/:

If further³ is 1-1, then it is shown in [19] that� is 1-1.

The following result is a simple consequence of the fact thatJ J∗ J = J:

LEMMA 2.5. Let J be a left ideal of aC∗-algebra, and let� : J J∗ → B.H / be a
∗-homomorphism. If³ is the restriction of� to J then� is nondegenerate if and only
if ³.J/H is dense inH.

THEOREM 2.6. Let A be an abstract operator algebra which is also an abstract
triple system(we are assuming the underlying matrix norms for both structures co-
incide). ThenA has a r.c.a.i. for the algebra product if and only if there exists a left
ideal J in a C∗-algebra, and a surjective complete isometryA → J which is both a
homomorphism(that is, multiplicative), and a triple morphism.

PROOF. The one direction is clear. For the other, we appeal to Theorem4.4below
to obtain a completely isometric homomorphismj from A into a left idealJ of a
certainC∗-algebra. SinceJ happens to be a triple envelope ofA, and since there is
a surjective complete isometry³ from A onto a TRO, the universal property of the
triple envelope applied to³ forces j to be surjective.

REMARKS. (1) Neal and Russo have a striking recent ‘matrix norm’ characteri-
zation of abstract triple systems [22]. Putting such as a result together with our last
theorem, and together with a characterization of operator algebras with right contrac-
tive approximate identity (r.c.a.i.) (see Theorem4.3), will give a ‘completely abstract’
characterization of left ideals inC∗-algebras.

It would be interesting if, in the spirit of [22], one could give a purely linear
characterizationof left ideals inC∗-algebras. There is such a result in [7], but it makes
reference to the containingC∗-algebra in the hypotheses.
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(2) A slight modification of Theorem2.6also gives a characterization ofC∗-algebras,
by replacing ‘r.c.a.i.’ by ‘c.a.i.’. We are grateful to Bernie Russo for pointing out a
recent paper [18] which gives such a characterization, but without needing the matrix
norms.

We end this section with a ‘1-sided version’ of Sakai’s theorem characterizing
von Neumann algebras. This result may be known to experts (certainly most of it is
contained in a result from [31] (see also [15])).

THEOREM 2.7. Let J be a left ideal in aC∗-algebra, and suppose thatJ possesses a
Banach space predual. ThenM.J J∗/ is aW∗-algebra containingJ as a weak∗-closed
principal left ideal.

PROOF. By [31], the multiplier algebraM.J J∗/ is a W∗-algebra andJ is a dual
operator space. By [5, Theorem 2.5],J has a right identitye. From this one sees that
J = Je∗e ⊂ J J∗e ⊂ J, so thatJ = J J∗e ⊂ M.J J∗/e = M.J J∗/e2 ⊂ J J∗e = J.
ThusJ = M.J J∗/e.

3. Properties(R) and (L )

For a left idealJ in aC∗-algebra, it follows from the proof in Lemma2.1that J∗ J
also equals{x ∈ J : eÞx → x}, where{eÞ} is the c.a.i. forJ mentioned above. This
is part of our motivation for the next definition.

DEFINITION 3.1. We say that an operator algebraAwith r.c.a.i. (respectively, l.c.a.i.)
has property (R) (respectively (L )) if an r.c.a.i. (respectively l.c.a.i.){eÞ} exists forA
such thateÞeÞ′ → eÞ′ (respectively,eÞ′eÞ → eÞ′) for each fixedeÞ′ in the net. In this
case we defineR.A/={x ∈ A : eÞx → x} (respectivelyL .A/={x ∈ A : xeÞ → x}).

REMARK. We note that a left ideal of aC∗-algebra has property (R), and in this case
R.A/ = J∗ J. More generally a subalgebra of aC∗-algebra with a self-adjoint right
c.a.i. has property (R), since in this case.eÞeÞ′/∗ = eÞ′eÞ → eÞ′ = e∗

Þ′ . An operator
algebra with two-sided c.a.i. obviously has property (R), and in this caseR.A/ = A.
Certainly every operator algebra with a right identity of norm 1 has property (R).

Open question. Are there any operator algebras with r.c.a.i. which do not have
property.R/?

PROPOSITION3.2. If an operator algebraA with r.c.a.i. has property.R/, then
R.A/ is a norm closed right ideal ofA (and hence is an operator algebra) with two
sided c.a.i. Moreover,R.A/ does not depend on the particular c.a.i.{eÞ} considered.
Also, AR.A/ = A andR.A/A = R.A/. Similar results hold for property.L /.
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PROOF. The first assertion we leave as a simple exercise. Suppose thatA has
property (R) with respect to one r.c.a.i.{eÞ}, and let{ fþ} be another r.c.a.i. such that
fþ fþ ′ → fþ ′ for every fixedþ ′. Let B = {a ∈ A : fþa → a}, another right ideal of
A with two sided c.a.i. Note thatR.A/B = R.A/ and BR.A/ = B. Thus by (the
other-handed version of) [9, Theorem 4.15],B = R.A/. The remaining assertions
are left to the reader.

EXAMPLE 3.3. Let B be a unital operator algebra, a unital subalgebra of aW∗-
algebraN, and defineM∞.N/ to be the von Neumann algebraB.`2/⊗̄N, thought of
as infinite matrices[bi j ] with entriesbi j indexed overi; j ∈ N. We letM∞.B/ be the
subset ofM∞.N/ consisting of those matrices with entriesbi j in B. Often M∞.B/
is not an operator algebra, however there are several operator algebras insideM∞.B/
which occasionally play a role. To construct one, letCw

∞.B/ be the ‘first column’ of
M∞.B/, and letR∞.B/ be the space of row vectors[b1b2 · · · ] with entriesbi ∈ B,
such that

∑
k bkb∗

k converges in norm. We may then consider the closed subspace
A = Cw

∞.B/R∞.B/ of M∞.B/; those familiar with operator space theory will have no
trouble verifying thatA is a subalgebra ofM∞.N/, that A has a nonnegative r.c.a.i.,
and indeed ifB = N then A is a left ideal ofM∞.B/. In fact, A contains theC∗-
algebraK∞.B/, namely the spatial tensor productK.`2/⊗ B (which in the language
of C∗-modules equalsK.C∞.A//), and the usual c.a.i. for thisC∗-algebra, namely
In ⊗ 1B, is a r.c.a.i. forA. ThusA has property (R). It is easily verified thatK∞.B/
is a right ideal inA, and in factR.A/ = K∞.B/.

If A has left identityeof norm 1, thenA clearly has property (L ) of Definition3.1,
and this identity is the 2-sided identity ofL .A/ = Ae. Moreover, the mapA →
L .A/ taking a 7→ ae, is a completely contractive homomorphism, and also is a
complete quotient map and indeed is a projection ontoL .A/. On the other hand, ifA
has a l.c.a.i. and property (L ), then by passing to the second dualA∗∗ we can make
similar assertions: there is a completely contractive homomorphismA∗∗ → L .A/∗∗,
which is a complete quotient map and indeed a projection. This is the mapF 7→ F E,
whereE is a weak∗ limit point of the c.a.i. ofL .A/. We use this in the next result.

PROPOSITION3.4. Suppose thatA is an operator algebra with l.c.a.i. and property
.L / of Definition3.1. Let³ : A → B.H / be a completely contractive representation
(respectively, and also³.A/H is dense inH ). Then³|L .A/

: L .A/ → B.H / is a
completely contractive homomorphism(respectively, and also such that³.L .A//H
is dense inH ). Conversely, if� : L .A/ → B.H / is a completely contractive
homomorphism, then there exists a completely contractive homomorphism³ : A →
B.H / extending� . If further �.A/H is dense inH then³ is unique, and³.A/H is
dense inH. Finally,

{T ∈ B.H / : T³.A/ ⊂ ³.A/} = {T ∈ B.H / : T³.L .A// ⊂ ³.L .A//}:
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PROOF. The first statements are simple exercises. For the converse, given such
� : L .A/ → B.H /, consider the series of completely contractive homomorphisms

A ,→ A∗∗ → L .A/∗∗ �∗∗−→ B.H /∗∗ → B.H /:

The homomorphismA∗∗ → L .A/∗∗ is the map described above the Proposition, and
the other maps are the canonical ones. The composition of these homomorphisms is
the desired³ . We leave it to the reader to check the details. Since³.a/�.b/� =
³.ab/� = �.ab/� for a ∈ A;b ∈ L .A/; � ∈ H we see that³ is unique if³.A/H is
dense.

Finally, using the ‘other-handed version’ of the last assertion of Proposition3.2,
we see, for example, that ifT³.A/ ⊂ ³.A/ then

T³.L .A// = T³.A/³.L .A// ⊂ ³.A/³.L .A// = ³.L .A//:

The other direction is similar.

The previous result shows thatA andL .A/ have the same representation theory.
Thus the following definition which plays a role in the last section is somewhat
natural: we say that a nondegenerate representation³ : A → B.H / is completely
‘L -isometric’, if³|L .A/

is completely isometric onL .A/.

REMARK. If A has a left identity of norm 1 but no right identity, and if³ :
A → B.H / is a nondegenerate isometric representation, then³.e/ = Id, so that
³.ae/ = ³.a/, so thatae = a for all a ∈ A. This is a contradiction. Thus there is
in general little point in seeking nondegenerate isometric representations of algebras
with l.c.a.i. This is why we studyL -isometric representations.

4. A collection of general results

As this title indicates, this section is somewhat of a miscellany. The major tool
needed is the left multiplier algebraM`.X/ of an operator spaceX. This is a unital
operator algebra, which is a subalgebra ofC B.X/ containing IdX, but with a different
(bigger in general) norm. There are several equivalent definitions ofM`.X/ given in
[6, 7, 10]; however the reader may take the definition ofM`.X/ from the following
result from [7]:

THEOREM 4.1. A linear T : X → X on an operator space is inBall.M`.X// if
and only ifT ⊕ Id is a complete contractionC2.X/ → C2.X/.

The matrix norms onM`.X/ may be described via the natural isomorphism
Mn.M`.X// ∼= M`.Mn.X//. That is, the norm of a matrix[Ti j ] of multipliers
may be taken to be the norm inM`.Mn.X// of the map[xi j ] 7→ [∑

k Tik.xkj /
]
.
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LEMMA 4.2. Let A be an operator algebra with a r.c.a.i. Then the canonical‘ left
regular representation’ of A on itself yields completely contractive embeddings(that
is, 1-1homomorphisms) A →M`.A/ ,→ C B.A/, and the first of these embeddings,
and their composition, are completely isometric.

PROOF. Let ½ : A → C B.A/ be the left regular representation. This map is
certainly completely contractive, however since½.a/.eÞ/ = aeÞ → a it is clear that
½ is a complete isometry. Suppose thata ∈ Ball.A/, and thaty = [yi j ] andy′ = [y′

i j ]
are inMm.A/. Then∥∥∥∥

[
ayi j

y′
i j

]∥∥∥∥ =
∥∥∥∥
[

a ⊗ Im 0
0 Id⊗Im

] [
y
y′

]∥∥∥∥ ≤
∥∥∥∥
[

y
y′

]∥∥∥∥ :
Here Id may be regarded asI H for a particular representation ofA. Thus½.a/ satisfies
the criterion of Theorem4.1, so that½.a/ ∈ Ball.M`.A//. A similar argument works
at the matrix level. Thus½ factors throughM`.A/ via the two completely contractive
homomorphisms above. Since½ is completely isometric, so is the first embedding.

We now turn to characterizations of operator algebras, which was our main original
motivation for introducing multipliers of operator spaces in [6]. We pointed out in [6,
Section 5] that in order to prove the characterizationof operator algebrasof [7] say, it is
clearly only necessary to check that the ‘left regular representation’½ : A → C B.A/,
is a complete isometry into the operator algebraM`.A/. But this is immediate from a
theorem such as4.1above—see the simple proof of the next result, which is a variant
of [5, 1.11].

THEOREM 4.3. Let A be an operator space which is an algebra with a right iden-
tity of norm1 or r.c.a.i. ThenA is completely isometrically isomorphic to a con-
crete operator algebra(via a homomorphism of course), if and only if we have
‖.x ⊕ Idn/y‖ ≤ 1 for all n ∈ N andx ∈ Ball.Mn.A//; y ∈ Ball.M2n;n.A//.

To explain the notation of the theorem, we have written Id for a formal identity,
thus the expression.x ⊕ Idn/y above means that the uppern × n-submatrix ofy is
left multiplied byx, and the lower submatrix is left alone.

PROOF. This is identical to the proof of Lemma4.2 above, except when proving
the analogue of the displayed equation—there one needs to use the hypothesis of our
theorem. See the remarks above.

The following theorem, first proved in [8], is one of our main tools to deduce results
about operator algebras with r.c.a.i., from results about left ideals in aC∗-algebra.

Let A be an operator algebra with r.c.a.i., and suppose thati : A → B is a
completely isometric homomorphism into aC∗-algebra. LetJ be the ‘TRO generated



[11] One-sided ideals and approximate identities in operator algebras 435

by i .A/’: the span inB of expressions of the formi .a1/i .a2/
∗i .a3/i .a4/

∗ · · · i .a2n+1/,
for ai ∈ A. By Lemma2.2 (1) it is clear thatJ ⊂ J J∗, so thatJ J∗ is aC∗-algebra
which hasJ as a left ideal. In fact clearlyJ J∗ is theC∗-subalgebra ofB generated
by i .A/. We say that a pair.J; i / consisting of a left idealJ in a C∗-algebra, and a
completely isometric homomorphismi : A → J, is aleft ideal extensionof A if J is
the ‘TRO generated byi .A/’ in the sense above. In this case{i .eÞ/} is a r.c.a.i. forJ
if {eÞ} is a r.c.a.i. forA.

THEOREM 4.4 ([8]). Let A be an operator algebra with r.c.a.i. Then there exists a
left ideal extension.Je.A/; j / of A, withJe.A/ a left ideal in aC∗-algebraE .A/, such
that for any other left ideal extension.J; i / of A, there exists a(necessarily unique
and surjective) ideal homomorphism(see Proposition2.4) − : J → Je.A/ such that
− ◦ i = j . ThusJe.A/=.Ker −/ ∼= J completely isometrically homomorphically(that
is, as operator algebras) too. Moreover.Je.A/; j / is unique in the following sense:
given any other.J ′; j ′/ with this universal property, then there exists a surjective
completely isometric homomorphism� : Je.A/ → J′ such that� ◦ j = j ′.

Finally, .Je.A/; j / is a triple envelopefor A in the sense of[19].

We call .Je.A/; j / the left ideal envelopeof A, and setE .A/ = Je.A/Je.A/∗, a
C∗-algebra. The mapj will be called theShilov embedding homomorphism. From the
last assertion of the theorem, and the first definition ofM`.A/ given in [6, Section 4],
we may identifyM`.A/ with {R ∈ L M.E .A// : R j.A/ ⊂ j .A/}.

COROLLARY 4.5. Let A be an operator algebra with r.c.a.i., and½ the usual left
regular representation ofA. Any T ∈ M`.A/, regarded as a map onA, satisfies
T½.A/ ⊂ ½.A/. Thus elements ofM`.A/, considered as maps onA, are right A-
module maps. That is,M`.A/ ⊂ C BA.A/ as sets. Also,Mr .A/ ⊂ AC B.A/ as
sets.

PROOF. The first assertion follows from the remark before the statement of the
Corollary, together with the fact thatj is a homomorphism. For ifa ∈ A, then the
mapb 7→ ab on A, corresponds to the mapj .b/ 7→ j .a/ j .b/ on j .A/. Thus if the
left multiplier T corresponds to anR ∈ L M.E .A// with R j.a/ = j .T.a// then

j .T.ab/ = R j.ab/ = R j.a/ j .b/ = j .T.a// j .b/ = j .T.a/b/

for anyb ∈ A. This amounts to the first assertion, and also yields the second assertion
immediately. The third is similar.

Corollary4.5allows us to generalize the main result of [5] (see also [21]) to algebras
with one-sided c.a.i.:
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THEOREM 4.6. Let A be an operator algebra with r.c.a.i., which has a predual
operator space. ThenA has a right identitye of norm1. Also A is a ‘dual operator
algebra’ , which means that the product onA is separately weak∗ continuous, and
there exists a completely isometric homomorphism, which is also a homeomorphism
with respect to the weak∗ topologies, ofA onto a¦ -weakly(that is, weak∗-) closed
subalgebraB of someB.H /.

PROOF. The first assertion appears in [5, Theorem 2.5] (indeed for this part we
only need a predual Banach space). From [5, Theorem 3.2],M`.A/ is a dual operator
algebra. We saw in Lemma4.2and Corollary4.5that½ : A →M`.A/ is a completely
isometric homomorphism onto a left ideal ofM`.A/. Hence½.A/ = M`.A/½.e/.
Thus ½.A/ is a weak∗ closed subalgebra ofM`.A/, and soB = ½.A/ is a dual
operator algebra. If we take a bounded net½.ai / → ½.a/ weak∗ in ½.A/, then by
definition of the weak∗ topology onM`.A/ from [5, 3.2],ai e = ai → ae= a weak∗

in A. Thus½−1 is weak∗ continuous, so that by the Krein-Smulian theorem (see [5,
Lemma 1.5])½ is weak∗ continuous.

Results such as Theorem4.4are useful for deducing results about general operator
algebras with r.c.a.i., from results about left ideals inC∗-algebras. For example, here
is a sample application of this ‘transference principle’ (other examples will be given
later):

COROLLARY 4.7. Let Abe an operator algebra with a right contractive approximate
identity, and also a right identity. ThenA has a right identity of norm1, which is the
limit in norm of the r.c.a.i.

PROOF. First suppose thatA = J is a left ideal of aC∗-algebra, and suppose that
J has a right identity. ThenJ is a principal left ideal and so by Proposition2.3, J has
a right identitye of norm 1. Soe = e∗ ∈ J ∩ J∗ = J∗ J. If {eÞ} is a r.c.a.i. forJ
then{e∗

ÞeÞ} is a 2-sided c.a.i. forJ∗ J (see Lemma2.2 (ii)), thus e∗
ÞeÞ = e∗

ÞeÞe → e.
Finally, ‖eÞ − e‖2 = ‖e∗

ÞeÞ − e∗
Þe− eeÞ + e‖ → 0.

If A is nonselfadjoint, and if{eÞ} is the r.c.a.i. forA, then{ j .eÞ/} is a r.c.a.i. for
the left ideal envelopeJe.A/. Similarly Je.A/ and A have a common right identity.
Hence by the last paragraph, our r.c.a.i. converges in norm.

5. The Banach-Stone theorem

We prove several stages, or cases, of this theorem, which asserts essentially that
linear surjective complete isometries between left ideals ofC∗-algebras (respectively,
between operator algebras with r.c.a.i.), are characterized as a composition of a trans-
lation by a partial isometryu, and a surjective completely isometric homomorphism
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onto another right ideal (respectively, operator algebra with r.c.a.i.) which is a translate
of one of the original ideals (respectively, algebras) byu∗. To see that the ‘translate
by a partial isometry’ is not artificial, consider an infinite dimensional Hilbert space
H andS the shift operator. SetI = B.H / andJ = B.H /S. These ideals are clearly
linearly completely isometric, but there is no homomorphism ofI onto J (since J
has no 2-sided identity). This example shows that the following theorem (which
comprises Case (1)) is best possible:

THEOREM 5.1. Let I and J be principal left ideals inC∗-algebrasA and B; thus
I = Ae and J = B f , say, for orthogonal projectionse; f in I ; J respectively.
Suppose also that' : I → J is a linear surjective complete isometry. Then there
exists a partial isometryu in B with initial projection f , and a completely isometric
surjective ideal homomorphism(see Proposition2.4) ³ : I → J1 such that' = ³.·/u
and³ = '.·/u∗. Here J1 = Bu∗ = Ju∗ = Buu∗ ⊂ B is another left ideal ofB with
right identityuu∗.

Conversely, ifJ is a left ideal of aC∗-algebra B, and if u is a partial isometry
in B with initial projection a right identity forJ, then Ju∗ = Bu∗ = Buu∗ is a
left ideal J1 of B with right identity uu∗ of norm 1, and J1 is linearly completely
isometrically isomorphic toJ via right multiplication byu∗. Hence the composition
of right multiplication byu∗, with any completely isometric surjective homomorphism
I → J1, is a linear completely isometric isomorphismI → J.

Finally, if ' : I → J is a linear surjective complete isometry, and if'.e/ = f ,
thenu = u∗ = f and J1 = J in the above; and' is a homomorphism. Conversely, if
' is a homomorphism, then necessarily'.e/ = f .

PROOF. Recall from the introduction that a completely isometric surjection between
TRO’s is a triple morphism. Hence' is a triple isomorphism. Therefore ifu = '.e/
then it is easy to check that³.·/ = '.·/u∗ is a homomorphism ontoJu∗. Similar
considerations show thatp = uu∗ is an idempotent, which is an orthogonal projection
since it is selfadjoint. Thusu is a partial isometry. We claim thatu∗u = f . To
see this note thatu∗u is an orthogonal projection, and that for any'.x/ ∈ J we
have'.x/u∗u = '.xe/ = '.x/, using the definition of a triple morphism. Thus
f u∗u = f . On the other hand,u∗u f = u∗u sinceu ∈ B f . Hence f = u∗u. Also,
Ju∗ = B f u∗ = Bu∗uu∗ = Bu∗. Defining J1 to be this last space we see that it is
clearly a left ideal ofB, andJ1 containsuu∗, which is indeed a right identity of norm 1
for J1 sinceu is a partial isometry. ThusJ1 = Buu∗ too.

Since³.·/ = '.·/u∗ we obtain³.·/u = '.·/u∗u = '.·/ f = '.·/. It follows from
this too that³ is a complete isometry, and therefore also a triple morphism. Thus³

is a completely isometric ideal homomorphism.
Conversely, ifJ; B;u are as stated, thenJ = Bu∗u so thatJu∗ = Bu∗ which
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is also a left ideal ofB. Clearly the last space equalsBuu∗ sinceBuu∗ ⊂ Bu∗ =
Bu∗uu∗ ⊂ Buu∗. The remainder of the converse direction is left to the reader.

The very last assertion is easy to see from the uniqueness of a contractive right
identity (proved in Section1).

Having thoroughly analyzed the Banach-Stone theorem in Case (1), we now move
to Case (2). Here we look at linear completely isometric isomorphisms' : A → B
between operator algebras with a right identity of norm 1. In the assertions in
the first paragraph of the statement of the next theorem, and in the proofs of these
assertions, we regardA and B as having been identified with subalgebras ofJe.A/
andJe.B/ respectively (see Theorem4.4). Thus mention of the ‘canonical Shilov
embedding homomorphisms’j have been suppressed, and all products and adjoints
in that paragraph are taken in the containingC∗-algebraE .B/ = Je.B/Je.B/∗.

THEOREM 5.2 (Banach-Stone for operator algebras with right identities).Suppose
that ' : A → B is a surjective linear completely isometric isomorphism between
operator algebras with a right identity of norm1. Then there exists a partial isometry
u ∈ Je.B/ (indeed, inB) with initial projection the right identity ofB, such that the
subspaceB′ = Bu∗ of E .B/ is a subalgebra(and consequently an operator algebra)
with a right identityuu∗ of norm1; and there exists a completely isometric surjective
homomorphism³ : A → B′, such that' = ³.·/u and³ = '.·/u∗. Also,u∗ B ⊂ B.

Conversely, suppose we are given a partial isometryu on a Hilbert spaceH, such
that u lies in a subalgebraB ⊂ B.H /, such that the initial projection ofu is a right
identity of B, and such thatu∗ B ⊂ B. ThenB′ = Bu∗ is an operator algebra with
right identity uu∗ of norm1, and B′ is linearly completely isometrically isomorphic
to B via right multiplication byu. Thus the composition of right multiplication by
u∗, with any completely isometric surjective homomorphismA → B′, is a linear
completely isometric isomorphismA → B.

PROOF. Suppose that' : A → B is a linear completely isometric isomorphism,
and extend' to a linear completely isometric isomorphism̄' : Je.A/ → Je.B/ (such
extension exists by Hamana theory ([19] or [6, Appendix A])). By Theorem4.4,
Je.A/ is a left ideal of theC∗-algebraE .A/, andJe.A/ has right identitye. Similar
assertions hold forJe.B/. Thus by the proof of Theorem5.1, if u = '.e/ = '̄.e/
thenu is a partial isometry inB, with u∗ ∈ B∗ ⊂ T .B/∗ ⊂ E .B/, whose initial
projection is f , and³ = '̄.·/u∗ is a completely isometric surjective homomorphism
Je.A/ → Je.B/u∗. The restriction of³ to A maps onto the subalgebraBu∗ of E .B/.
Sinceu is a partial isometry,uu∗ is indeed a right identity ofBu∗. Finally, since
Bu∗ Bu∗ ⊂ Bu∗, post multiplying byu givesBu∗ B ⊂ B, so that

u∗ B = u∗uu∗ B = f u∗ B ⊂ Bu∗ B ⊂ B:
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Conversely, givenu as stated, then sinceu∗ B ⊂ B we have thatBu∗ is a subalgebra of
E .B/ with right identityuu∗. The remainder of the converse direction is obvious.

REMARK. In Theorem5.2, u andu∗ are inL M.B/ in the language of [8]. Also,
one can prove further thatJe.B′/ = Je.B/u∗, and thatE .B′/ = E .B/. We omit the
details.

COROLLARY 5.3. Suppose that' : A → B is a surjective linear completely isomet-
ric isomorphism between operator algebras with right identitiese and f of norm1.
Then' is a homomorphism if and only if'.e/ = f .

PROOF. The one direction follows from from the uniqueness of a contractive right
identity (proved in Section1). The other direction follows by noting that if we follow
the proof of Theorem5.2, then '̄.e/ = f , so that'̄ is a homomorphism by last
assertion of Theorem5.1.

COROLLARY 5.4. Suppose thatA is an operator algebra with a right identity of
norm 1, and suppose thatA has another productm : A × A → A with respect to
which A is completely isometrically isomorphic to an operator algebra with a right
identity of norm1. Then there is a partial isometryu ∈ Je.A/ (and, indeed, inA)
such thatm.x; y/ = xu∗ y for all x; y ∈ A. Indeedu is the right identity form, and
u∗u is the right identity for the first product.

We now turn to Case (3) of the Banach-Stone theorem. We only state the ‘forward
implication’; the (tidier) converse we leave as an exercise.

THEOREM 5.5 (Banach-Stone theorem for left ideals inC∗-algebras). Consider a
surjective linear complete isometry' : I → J between arbitrary left ideals ofC∗-
algebras. LetE = J J∗, and letM be the von Neumann algebra.J J∗/∗∗. Then there
exists another left idealJ1 ofE , with J1J∗

1 = E , and a surjective completely isometric
ideal homomorphism(see Proposition2.4) ³ : I → J1. Moreover there exists a
partial isometryu ∈M such that the initial projection ofu is the right identity ofJ∗∗

(indeed ofRM.J/—see Section4), and such thatJ1 = Ju∗, J = J1u, and such that
' = ³.·/u, and³ = '.·/u∗.

PROOF. Consider the second dual'∗∗ : I ∗∗ → J∗∗ ⊂M , and now we are back in
Case (1). For ifI is a left ideal of aC∗-algebraA, thenI ∗∗ is a left ideal ofA∗∗, but now
I ∗∗ has a right identitye of norm 1, which may be taken to be a weak∗-accumulation
point of the r.c.a.i. ofI (by [13, 28.7]). Thus by Case (1) we have thatu = '∗∗.e/ is
a partial isometry inJ∗∗ ⊂ M , and the initial projection ofu is the matching right
identity of J∗∗. Moreover³ = '∗∗.·/u∗ is a completely isometric homomorphism and
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so on. Restricting³ to I gives a completely isometric homomorphism³ ′ onto the
subalgebraJ0 = Ju∗ ofM , and' is the composition of³ ′ with a right translation by
u. Moreover,³ ′ is easily seen to be a triple morphism:

³ ′.x/³ ′.y/∗³ ′.z/ = '∗∗.x̂/u∗u'∗∗.ŷ/∗'∗∗.ẑ/u = '.x/'.y/∗'.z/u = '.xy∗z/u;

which is simply³ ′.xy∗z/, for x; y; z ∈ I . Thus³ ′ is a completely isometric ideal
homomorphism. Therefore, by Proposition2.4, ³ ′ is the restriction of a surjective
1-1 ∗-homomorphismI I ∗ → J0J∗

0 . ThusJ0J∗
0 = Ju∗u J∗ = E containsJ0 as a left

ideal; or to be more precise,Ê containsJ0. Thus we may regard³ ′ as a completely
isometric homomorphism³ : I → J1 onto a right idealJ1 of E (note Ĵ1 = J0). The
rest is clear.

We briefly discuss Case (4) of the Banach-Stone theorem, the case of a surjective
linear complete isometry between arbitrary operator algebras with r.c.a.i. Again it is
clear that by passing to the second dual and using Case (2) in the way we tackled Case
(3) using Case (1),or using Case (3) in the way we tackled Case (2) using Case (1),
will give a result resembling Theorems5.1, 5.2, and5.5. We leave the details to the
reader.

COROLLARY 5.6. Let' : A → B be a surjective linear complete isometry between
left ideals ofC∗-algebras, or between operator algebras with r.c.a.i. Then' is a
homomorphism if and only if there exists a r.c.a.i.{eÞ} for A such that{'.eÞ/} is a
r.c.a.i. for B.

PROOF. If the latter condition holds then'∗∗ : A∗∗ → B∗∗ is a surjective linear
complete isometry. LetE be a weak∗ limit point of {eÞ} in A∗∗, and since'∗∗ is
weak∗-continuous,'∗∗.E/ is a weak∗ limit point of {'.eÞ/}. So we are in the situation
of Corollary 5.3 (with the algebras replaced by their second duals), so that'∗∗ and
consequently' is a homomorphism. The converse direction is easier.

REMARK. Banach-Stone theorems for unital operator algebras or operator alge-
bras with two-sided approximate identities may be found in [1, 2, 3, 16] and [6,
Appendix B.1].

6. LM (A) for an algebra with left contractive approximate identity

In this section we develop the ‘left multiplier operator algebra’L M.A/ of an
operator algebra with l.c.a.i. Since this follows closely the essentially known theory
for the case of a two-sided c.a.i. (see [28, 24, 9, 4, 6]) we will try to be brief. The left
multiplier operator algebra of an operator algebra with r.c.a.i. turns out to have a quite
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different theory, which is studied in the sequel [8], and which we will not mention
again in the present paper. On the other hand,RM.A/ for an operator algebra with
r.c.a.i. is the ‘other-handed version’ of what we do below.

If A is an algebra, then aleft multiplier of A is a rightA-module mapT : A → A.
The left multiplier algebra is the unital algebra of left multipliers ofA, together
with the left regular representation (which mapsA into the left multiplier algebra
of A). If A is a Banach algebra which has a one-sided approximate identity, then
it follows from the closed graph theorem and a variant on Cohen’s factorization
theorem that any left multiplier is bounded [23, 5.2.6]. Thus the left multiplier algebra
equalsBA.A/, the unital Banach algebra of bounded rightA-module maps. IfA is
an operator algebra with l.c.a.i., then it follows more or less immediately from the
relation T.a/ = limÞ T.eÞ/a which clearly holds for allT ∈ BA.A/;a ∈ A, that
BA.A/ = C BA.A/ isometrically. HereC BA.A/ is the set of completely bounded right
A-module maps. One would wish the left multiplier algebra of an operator algebra to
be a unital operator algebra, and fortunately it turns out thatC BA.A/ with its usual
matrix norms is an abstract operator algebra. This is seen in the next theorem. Thus
we define the left multiplier operator algebra of an operator algebra with l.c.a.i., to be
the pair.C BA.A/; ½/, where½ is the left regular representation ofA.

More generally, we consider pairs.D; ¼/ consisting of a unital operator algebraD
and a completely contractive homomorphism¼ : A → D, such thatD¼.A/ ⊂ ¼.A/.
Sometimes we write¼A to indicate the dependence onA. We say that two such
pairs.D; ¼/ and.D′; ¼′/ are completely isometricallyA-isomorphicif there exists a
completely isometric surjective homomorphism� : D → D′ such that� ◦ ¼ = ¼′.
This is an equivalence relation. We will also use the term ‘left multiplier operator
algebra ofA’ for any pair .D; ¼/ as above which is completely isometricallyA-
isomorphic to.C BA.A/; ½/.

THEOREM 6.1. Let A be an operator algebra with l.c.a.i. Then the following
operator algebras are all completely isometrically isomorphic

(1) {x ∈ A∗∗ : x Â ⊂ Â}=Kerq where q is the canonical homomorphism into
C B.A/,
(2) M`.A/ (see Section4),
(3) C BA.A/,

and in particular,C BA.A/ is an operator algebra. IfA satisfies condition(L ) of
Definition 3.1 (for example, ifA has a left identity of norm1, or a two-sided c.a.i.,
or if A is a right ideal of aC∗-algebra), then the algebras above are completely
isometrically isomorphic to

(4) {T ∈ B.H / : T³.A/ ⊂ ³.A/}, for any completelyL -isometric nondegenerate
representation³ of A (see definition after Proposition3.4),
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(5) L M.B/ whereB = L .A/ (see Definition3.1),
(6) {x ∈ B∗∗ : x Â ⊂ Â} ⊂ A∗∗, whereB = L .A/.

If A has a two-sided c.a.i., thenKerq = .0/ in (1).

PROOF. We first observe that foranyoperator algebraA there are natural completely
contractive homomorphisms{x ∈ A∗∗ : x Â ⊂ Â} → M`.A/ → C B.A/. Let us
write ¦ for the first homomorphism, and� for the second. From the ‘left handed
variant’ of Corollary 4.5, the image of� lies in C BA.A/. Next note that given
S ∈ C BA.A/, then one may letF be a weak∗ accumulation point ofS.eÞ/ in A∗∗, for
the l.c.a.i.{eÞ} for A. Clearly‖F‖ ≤ ‖S‖. Fora ∈ A, we have

S.a/ = lim
Þ

S.eÞa/ = lim
Þ

S.eÞ/a = Fa:

Henceq.F/ = S, whereq = � ◦ ¦ . Thusq is a quotient map, and similarly it is a
complete quotient map. Thus¦ is also a complete quotient map, and Ker¦ = Kerq
since� is 1-1. This proves the completely isometric isomorphism between (1) and (3),
and also between (1) and (2). ThusM`.A/ ∼= C BA.A/ completely isometrically,
which also shows thatC BA.A/ is a unital operator algebra (or this fact may be proved
directly).

Now suppose thatA has property (L ), and setB = L .A/ as in Definition3.1.
ThenB∗∗ ⊂ A∗∗. Examining the proof of (1) = (3) above, we see easily that the terms
S.eÞ/ actually lie inB. Hence theF there lies in{x ∈ B∗∗ : x Â ⊂ Â}. Thus the mapq
mentioned above, restricted to the last set, is a complete quotient map too. Therefore
it is a complete isometry if we can show that it is 1-1. To see this suppose thatF is
in the set in (6) andq.F/ = 0. ThenFêÞ = 0. This implies thatF = 0, using the
fact from [13, Section 28] that a weak∗ limit point of the êÞ is a 2-sided identity for
B∗∗, and the fact that the multiplication in a dual operator algebra is separately weak∗

continuous. Thus we have that (3) = (6) completely isometrically. Note too that ifA
is an operator algebra with 2-sided c.a.i. then this shows that Kerq = .0/ in (1). Note
that if F is in the set in (6), thenFB ⊂ B quite clearly. Conversely ifFB ⊂ B then
for a ∈ A we haveFa = lim FeÞa ∈ A sinceFeÞa ∈ Ba ⊂ A. This shows that
(6) = (5).

Finally, to prove that (4) = (5), we may without loss of generality, by the definition
after Proposition3.4and the last assertion of that proposition, assume thatB = A is
an operator algebra with 2-sided c.a.i., and that³ : A → B.H / is a nondegenerate
completely isometric homomorphism. This case is no doubt well known by now (but
first done in [24] perhaps); briefly, one way to see it is as follows. If we writeL M.³/
for the algebra in (4), then there is a natural map² : L M.³/ → C BA.A/, namely
².T/.a/ = ³−1.T³.a// for a ∈ A. If [Ti j ] ∈ Mn.L M.³//, then

‖[².Ti j /]‖n = sup{‖[².Ti j /.akl/]‖nm = sup{‖[Ti j³.akl/]‖nm ≤ ‖[Ti j ]‖n;
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where the supremum is taken over matrices[akl] of norm≤ 1. Thus² is completely
contractive. To see that² is completely isometric we take the[akl] above to be the 1×1
matrix eÞ. Givenž > 0, choose a vectorE� ∈ Ball.H .n// such that

‖[Ti j ]‖n ≤ ‖[Ti j ]E�‖H .n/ + ž:

Then

‖[Ti j ]‖n ≤ lim
Þ

‖[Ti j³.eÞ/]E�‖H .n/ + ž ≤ sup
Þ

‖[Ti j³.eÞ/]‖ + ž:

However this last quantity is dominated by‖[².Ti j /]‖n, by the third last displayed
equation. Thus² is completely isometric.

To see that² is onto, suppose thatR ∈ BA.A/. We obtain a related mapT ∈ B.H /
which may be defined byT³.a/� = ³.T a/� , for a ∈ A; � ∈ H . Another way to see
this quickly is by using the well known fact that in this case,H ∼= A⊗̂AH . We omit
the simple details, which as we said at the beginning of this section, are essentially
well known to experts.

REMARKS. (1) Let A be an operator algebra with left identitye of norm 1. Then
one may show thatL M.A/ = Ae, which is a unital subalgebra ofA. It is also a unital
subalgebra ofE .A/, andE .A/ is a unitalC∗-algebra.

To see all this, note that in this caseL .A/ = Ae, which is a unital algebra. Thus the
first assertion of the remark follows from (5) of Theorem6.1. We saw in Theorem4.4
that J = Je.A/ is a right ideal of aC∗-algebra, and thatJ has a left identitye. Thus
E .A/ = J J∗ hase as a 2-sided identity. Finally,Ae⊂ J J∗ = E .A/.
(2) Suppose thatA is an operator algebra with l.c.a.i., and that³ : A → B.H / is
a completely isometric representation. DefineL M.³/ = {T ∈ B.H / : T³.A/ ⊂
³.A/}, the left idealizer of³.A/ in B.H /. Then it is straightforward to exhibit a
completely contractive homomorphism¦ : L M.³/ → L M.A/ = C BA.A/. Con-
versely, givenT ∈ C BA.A/, taking a weak operator limit pointS of ³.T.eÞ// gives
S ∈ L M.³/. This is really saying thatL M.A/ ∼= L M.³/=Ker¦ completely isomet-
rically isomorphically. One may view this observation as an attempt to remove the
use of property (L ) in (4).

It is interesting to note that if³ is the usual representation ofR2, thenL M.³/ is
a 3-dimensional operator algebra (this was pointed out to me by M. Kaneda). Note
that L M.³/ is highly dependent on³ , to see this considerR2 again; the natural
representation³ has L M.³/ 3-dimensional. However, if¦ = ³ ⊕ ž, wherež
is the projection onto the 1-1 coordinate, thenL M.¦ / is strictly larger. It would
be interesting to see if there is a nonrestrictive condition under which one obtains
‘independence from the particular³ used’.

One may think of each of the six equivalent algebras in Theorem6.1 as a pair
.D; ¼A/, where¼A : A → D is a completely contractive homomorphism. Let us
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spell out what the map¼A is in each case. In (1), it is the mapa 7→ â + Kerq; in (2)
and (3) it is the left regular representation½; in (4) it is ³ ; in (5) it is the natural left
representation ofA on its left idealL .A/; and in (6) the map¼A is a 7→ âE, whereE
is as in the remark before Proposition3.4. All these maps are completely contractive
homomorphisms.

COROLLARY 6.2. Each of the first three(and indeed all six, ifA has property.L /)
operator algebras in the previous theorem, together with its associated map¼A

discussed above, is a left multiplier operator algebra ofA. That is, they are each
completely isometricallyA-isomorphic to.C BA.A/; ½/.

We leave these assertions to the reader.
We now turn to the notion which in theC∗-algebra literature is referred to as

‘essential homomorphisms’ or sometimes ‘nondegenerate homomorphisms’. For our
purpose we shall use the name ‘A-nondegenerate morphism’. For us this shall mean
a completely contractive homomorphism³ : A → L M.B/ satisfying the following
equivalent conditions:

THEOREM 6.3. Let A and B be two operator algebras with l.c.a.i.’s, and let
³ : A → L M.B/ be a completely contractive homomorphism. The following are
equivalent.

(i) There exists a l.c.a.i.{eÞ} for A such that³.eÞ/b → b for all b ∈ B.
(ii) For every l.c.a.i.{eÞ} for A, we have³.eÞ/b → b.

(iii) B is a nondegenerate leftA-module via³ ,
(iv) Anyb ∈ B may be writtenb = ³.a/b′ for somea ∈ A;b′ ∈ B.

If these conditions hold, then there exists a completely contractive unital homomor-
phism³̂ : L M.A/ → L M.B/ such that³̂ ◦ ¼A = ¼B, and this homomorphism may
be defined bŷ³.x/.³.a/b/ = ³.xa/b for x ∈ L M.A/;a ∈ A;b ∈ B. Finally, ³̂ is
completely isometric if³ is completely isometric.

PROOF. Clearly (i) implies that the span of terms³.a/b is dense inB, which is
what we mean by nondegenerate. So (i) implies (iii). Clearly (iii) implies (ii), and (ii)
implies (i), and (iv) implies (iii). That (iii) implies (iv) follows from [23, Section 5.2].

If these conditions hold, viewL M.A/ andL M.B/ as in Theorem6.1(3). We may
follow the proof of Theorem 6.2 in [4]. The main difference is that we ignore the
elemente mentioned there, which we can get away with by takingd there to be the
l.c.a.i. fromA. One also needs to use [23, 5.2.2], and the matrix version of it, in order
to show that³̂ : L M.A/ → C BB.B/, and that³̂ is a complete contraction.

It remains to prove the last assertion. Supposing that³ is completely isometric, we
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have forT ∈ L M.A/ that

‖³̂ .T/‖cb ≥ ‖[³̂.T/.³.ai j /bkl/]‖ = ‖[³.T ai j /bkl]‖

providing that‖[ai j ]‖; ‖[bkl]‖ ≤ 1. Taking the supremum over all such[bkl] ∈ Mm.B/,
gives that‖³̂ .T/‖cb ≥ ‖[³.T ai j /]‖ = ‖[Tai j ]‖. Taking the supremum over all such
[ai j ] ∈ Mn.A/ gives that‖³̂ .T/‖cb ≥ ‖T‖cb. So ³̂ is isometric, and similarly it is
completely isometric.

REMARK. The canonical map¼A : A → L M.A/ is anA-nondegenerate morphism.

COROLLARY 6.4. Let A be a closed subalgebra of an operator algebraB, and
suppose thatA contains a l.c.a.i. forB. Then L M.A/ ,→ L M.B/ completely
isometrically as a subalgebra.

REMARK. The one ‘drawback’ of our left multiplier algebraL M.A/ above is that
it does not contain the algebra itself in general; but this is no surprise to anyone who
has looked at the ‘multiplier’ or ‘centralizer’ theory of nonunital Banach algebras.
Indeed if one insists that the left multiplier algebra ofA be a pair.B; ¹/ consisting
of an operator algebraB and a completely isometric homomorphism¹ : A → B
with B¹.A/ ⊂ ¹.A/, then unfortunately one must lose the useful ‘essential’ condition
(namely thatx¹.A/ = 0 implies x = 0). This departs from the classical ‘mul-
tiplier’/‘centralizer’ framework from Banach algebra theory ([23, Section 1.2], for
example), where a multiplier which annihilatesA must be the zero multiplier. Also it
seems that one cannot hope for conditions like (1)–(3) of Theorem6.1.

Note added in proof. Some of our motivation for the present work was to solve
some questions which arose in our work on one-sidedM-ideals [7, 33]. In the latter
paper we give some additional results on one-sided ideals in operator algebras.
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