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Abstract

We study the stability map from the rigid analytic space of semistable poifit% tim convex sets in the
building of Sp over a local field and construct a pure affinoid covering of the space of stable points.

2000Mathematics subject classificatioprimary 14M17; secondary 32P05, 20G25.

0. Introduction

Drinfeld introduced a p-adic symmetric space and used it to study the representations
of GL(2) over a function field. Schneider and Stuhler use the map from the p-adic
symmetric space to the building of GL(n) to study the cohomology of p-adic symmetric
space. Itis natural to ask for these results for any semisimple group. First we observe
that the p-adic symmetric space of Drinfeld is the variety of points in the variety of
Borel subgroups which are stable under the action of all maximal tori. The other point
is that the map from the p-adic symmetric space to the building is just the interval
of stability map. Everything make sense for any semisimple group except that in
general the linearization used in the definition of stable points may result in the variety
of stable points becomes smaller than the variety of semi-stable points. When this
happens the interval of stability map will map a point in the p-adic space to a convex
subset of the building. This phenomenon will almost always occur when the Borel
subgroup is replaced by an arbitrary parabolic subg®wbthe semisimple grou@.

As aresultitis not known how to prove in general even a result like Proposition 2.4 in
Mumford [10]. Yet p-adic spaces constructed out of the flag varieB¢® could be
interesting moduli space of periods (see Rapoddi)|[ Also Moy [9] showed that the
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displacement function in a Bruhat-Tits building is convex and that convex sets in the
Bruhat-Tits plays an important role in the representation theory of the group over the
local field. It will be interesting if there is a relation between the representations of the
group and the geometry of the variety of semi-stable points via the interval of stability
map. In p] Hsia Liang-Chung uses rigid geometry to study p-adic dynamic systems
constructed out of a tree. It would be nice to have an analogue for a building. Thus
we believe that it is worthwhile if only as experimental data to study the p-adic spaces
when the variety of stable points is not the same as the variety of semi-stable points.
The case we have chosen is the rank 2 gr8ppbeing the first case aft&L(2) and
P is the maximal parabolic subgroup such t&tP is the projective 3-space. We
point out that the calculations for other parabolics are also ‘embedded’ inside this
case. We study in this paper those properties ofGhbuilding which are related to
the properties of the stable pointsi; in particular we shall use thBL(2) x SL(2)
sub-building of theSp building to construct a pure affinoid covering of the p-adic
space associated @/ P.

Let us describe the p-adic space we are studying. The maximal torus contained
in the parabolic subgroup acts on the flag variet¢s/P and we obtain the variety
of stable points for this action as defined in Mumfold][ Let Y, denote the rigid
analytic variety (seel]]) which has the same set of closed points as the variety of
stable points above. The p-adic space we study he¥e is (), o 9 Y5, Inthe
case when the stable points and the semistable points are the same these probler
are studied by van der Put and Voskuil]. The case of quasi-split rank 1 group
is studied by Voskuil 16]. This work started from a conversation with Voskuil in a
cafe in Newtown. | would like to thank him for his generosity in sharing these ideas.
Finally a raison cétre forSp is a response to Paul Sally’s question: ‘Do we know
everything abouSp?’ (Luminy Conference orsp 1998) — | would like to thank
him for his suggestion.

1. Buildings and flag varieties

In this section we give a summary of the general results on the p-adic spaces
constructed out of the variety of stable points in flag varieties.

1.1. Let F be a p-adic field with ring of integerg. Assume thaip is odd. In
this section we leG be an absolutely simple Chevalley group scheme éeFix a
maximal split torud defined ovelF in G and choose a Borel subgroBmver F of G
containingT. This fixes an ordering of the root systebnof (G, T). Let .2 (T) (re-
spectively.Z.(T)) be the lattice of characters (respectively one parameter subgroups)
of T. Denote by(-, -) the perfect pairing betwee#d” (T) and.Z.(T). Extend this to

a pairing of 2(T) @ R and.Z.(T) ® R.
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Fix a uniformiserr of F. Normalise the additive valuationof F by v(wr) = 1.
Definethemap : T — Z.(T)®Rby (x, v(t)) = —v(x@®)) forall x € 2°(T). We
regard%.(T)®R as an affine space on whigtacts by translatiort-z = z+v(t). The
affine roots of(G, T) are the following affine functions 02, (T) ® R : (¢ +n)(2) =
(o, Z)+nfora € ®. Denote the affine root system ;. The affine root system gives
a simplicial decomposition o (T) ® R. The maximal simplices, called alcoves, are
the closures of the connected components of the complement of the fa)is= 0
for B € @4. The affine space. (T)® R endowed with this simplicial decomposition
is called the apartment’ attached to the torus. The stabiliseiG, in G(F) of a
simplexo in the apartmenty is a parabolic subgroup. All the maximBgttori of G
are conjugate. Fog € G(F), the apartment attached to the togiEg* is g« and
the stabiliser of the simpleg(o) is Gy, = 9G, g~

The Bruhat-Tits buildingZ of G is defined to be J g, 9(</)/~ where the
equivalence relatiorv is given byo; ~ o5 if and only if G,, = G,, [15, 2.1].

1.2. Fix a parabolic subgroup defined over of G containing the chosen Borel
subgroupB. Write X for G/P. Let ¥ be an ample line bundle of. Choose &-
linearization of.¥. This restricts to & -linearization and we can define the variety of
stable pointsXs(T, ) and the variety of semi-stable poilX§3(T, -£) with respect
to this T-linearization of.Z. In practice this is what we do. For a positive weight
there exists @&-moduleV, with highest weight.. In V, there is a highest weight
vectorv, on which the maximal toru$ acts with charactex. The G-orbit of the
image ofv, in the projective spacB(V,) is isomorphic to the flag varietf = G/P,.
The pullback of&' (1) along the embeddink c P(V,) gives a line bundleZ on X
which has thé&s action induced by the th@ action onV,. (See f, 7].) This gives &G-
linearization ofZ. Itinduces dr -linearization ofZ. Thus we can define the variety
X® (respectivelyX®s) of stable (respectively semi-stable) points for the action of the
torusT with respect ta?. Recall that a poink in X is said to be semi-stable with
respect ta(T, £) if for some positive integen there exists & -invariant sectionf
of £®" such thatf (x) # 0 and the set off € X such thatf (y) # 0 is affine. A
semi-stable point is said to be stable if moreover theysetX such thatf (y) £ 0 is
closed (seell, Chapter 1.4]).

In our situation we have a simple criterion for stability. We can decompose

Vi= P Vi

XeZ (T)

For x in V,, let us writex, for its componentirV, ,. Let u(x) denote the convex
hullin 2°(T) ® R of the set ofy such thatx, # 0. Then for any in X the vertices
of n(x) is a subset of th&V-orbit of A and the edges ¢f(x) are parallel to the roots
(see B]). The pointx is semi-stable (respectively stable) if and only if O lieg.itx)
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(respectively in the interior g (x)). Itis also known thaiX® = Xssif and only if A is
not contained in a hyperplane through 0 spanned by ra@stheorem 1.1].

1.3. Let C denote a fixed completion of an algebraic closuré&ofWrite & for
the ring of integers of.. Given an algebraic variety ovér we can construct a rigid
analytic variety which has the same set of closed poiht®9[3.4]. We denote the
analytification of X3(T, ) ® € and of X°%(T, £) ® C by Y, andY:. We recall
that.</ denotes the apartment attached to the tdruket

Yesi= () 9(Y)) and Y= () (Y.

geG(F) geG(F)

These are the rigid analytic flag varieties we study in this paperGFerSL(2) with
the natural action oiX = P* the spacérs is the Drinfeld upper half space.

We are interested in pure affinoid coverings of our rigid analytic spacesZ bet
a rigid analytic space. A pure coverirlg = {U;} of Z is an admissible covering by
affinoid subspaced; satisfying the following conditions:

(1) For each, U; intersects a finite number &f; .

(2) If Ui nU; # ¢ then there exists a Zariski open affine 8t c U; such
thatU, NU; = R™(V;;) whereR : U, — U is the reduction maglf 7.1] andJ; NU;

is an affinoid space having reducti®) : Ui NU; — Vj;.

To have a pure covering means that we can see that the reductions of the affinoid:
in the covering glue together nicely. There is a 1-1 correspondence between pure
covering ofZ and formal schemes ovér whose generic fibre ig and whose closed

fibre is the reduction oZ with respect to the given pure covering (s€p.[

1.4. The completion ofX3(T,.Z) ® ¢ (respectivelyXss(T,.¥) ® 0¢) along
the closed fibre will be denoted by;, , (respectivelyYs? ;). In particular, this
meansy;, ,(C) = X3(T, £)(0¢), Y 5(O) = X5(T, L) (O¢).

Consider the maps(C) x Y57 , — Y52, andT (C) x Y5, , — Y, both defined by
the action of the toru$ on X. We shall construct an affinoid coveringf by means
of these maps and a natural affinoid covering of the analytic spagd- associated
to the torusT. It is here the building ofc enters the picture. The mapextends
uniquely to a map fronT (C) to «/. This defines the action af (C) on «/. For a
simplexo of the apartment/, let T, denote the affinoid subspace Bf® F given
by the affinoid algebral] 6.1]: F(z"x) wherex € 2 (T),ne Z,andy +n >0
ono. For the standard alcovg in .« this affinoid algebra i$ (s, . .. , an, Ty h),
wherea,, ... , o, is the basis of simple roots @f(G, T, B) andy is the highest root.
We see immediately that:

1) T, =v o).
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(2) The set of T, } for all simpliceso of A is an admissible covering df ® F by
affinoids.

(3) If oy, 0, are two simplices thefl,, N T,, is empty ifoy N o, = @ and is equal
to T,,~,, Otherwise.

This leads us to introduce the analytic 3¢t, := T, - Y5, , andYy =T, -Y>,
for o € «/. We shall study the covering by these sdtd B.3 and page 84].

1.5. We need the two maps | introduced by Voskuil.

The mapr is used to compare the analytic sets coming from different apartments
and different simplices. It is the ratio of the maximum absolute values of the torus
invariants. Recall tha? is the ample line bundle oK = G/P. Write I'(X, £*™)T
forthe module off -invariant sections. Pick an integsuch that the homogeneols
invariants generat®,. oI (X, %7 as ag-algebra. Letf,, ..., f,, be generators
of I'(X, Z%NT. For two different apartments, %, we define a function?; , -

Y5, — R as follows: pickg;, g, € G(F) so as to havey; = g1 (&), &% = Qo).
Then asin {2, page 86] we put

maxlgi 5m{|g>1k fi (X) |}
rnaxlgigm“gzk fi (X)|} '

SS —
rﬂlﬂz( ) =

Hereg* f (x) is f(g~'x). The value of 3} _, (x) only depends on the apartmenis,
«/,. The functiorr has the following properties:

Q) rw1 0,(@X) =12, (X) for g € G(F) andx € Yg;.

() 12w =10 2t

(3) If.@wh, o, areapartments containing asimpéeyandx € Y37 | thenr? | (x)>1
[12, page 86 (C)].

(4) If 0o C @, 01 C A, 5 containgr,, oy andx € Y52 NYS | thenrS? |, (x) <
I3 ) (from (2) and (3) above).

Now we can introduce

mf{rw X :ge GF)} if xeYD,

0 =1, . ’
if X¢Y:.

1.6. The mapl is aG(F)-invariant map from the variety*s of semi-stable points
to the set of convex subsets of the buildigg) of G and | (x) will be bounded if
and only if x is stable. Recall the map : T(C) — ./ which defines the action
of T(C) on'. Let 0 € a4 be the vertex where the affine roets ... , «, take the
value 0. Forx € Y27, the interval of T-stabilityl ., (X) is defined as the closure of the
set{t-0 € & : x € t-Y37,}, wheret runs through points of in the algebraic closure
of F. (See [L6, 2.3]) We putly, (X) = g(l»(g7*x)). Forx € Y*5, we define the
interval of G-stabilityl (x) to be the set of alt € % such that for any apartmemnt’
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containingz we havez € |,.(x) [16, 4.7]. We recall the following properties of
Assume thak € Y5,

(1) 160 =U{la(X) i 13 5 (X) =15}

(2) 1(x)isconvex; itis bounded if and only ¥ € Ysandl (x) = {t - O} if and only
if x et-Ys, , forall apartmentsy” containingt - 0.

WhenY** = Y* the interval of stability.# defines a map from the analytic spateo
the building# and this is the map used by Drinfeld and Schneider-Stuhler {séé,[
Section 1]).

2. Action of Sp, on P?

Let G be the symplectic group oveér defined by the form

0 0 01
g0 o 10
0 -1 0 of
-1 0 00

The groupG(F) of F rational points consists of # 4 matricesg with coefficients
in F such thatgJg= J, where'g denotes the transposed matrixgpfWe choose a
maximal torusT, over & so thatT,(F) consists of matrices

t 0 0 O
(|0 0 o0
0 0 t," 0
0 0 0 t*

for t;, t, € F*. We choose the Borel subgrolpof G to be the upper triangular
matrices inG. This fixes a basi$o,, a,} of the root system ofG, Ty) which is of
type C,. In standard notation the root syste®a is +e, + e,, +2e;, +£2e,. It has
simple rootsy; = €; — &, o, = 26,. The highest root isg = 205 + 5.

The fundamental weights atg = e, w, = €, + €. Consider positive weights of
the formi = nyw; + N,w, with positive integers,, n,. Let W be the Weyl group
of this root system antlV, be the stabilizer of the weight Associated to. is the
parabolic subgrou, = BW, B of G. Let us writeP for P,,. Then

a x k
P(F) = 0 g =x raeF*,ge SLE2,F)
0 0 att

Letv,, v,, v3, v4 be the standard basisBf. Write[u, v, ... ] forthe subspace spanned
by the vectorsl, v, .... The groupP is the stabilizer of the isotropic life;], soP is
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the intersection witle of the stabilizer irS L(4) of the flag[v,] C [v1]* = [v1, vo, v3].
We see tha6G/ P is isomorphic to the set of isotropic lines in the 4-dimensional affine
space. But every line is isotropic. &P = P3, the projective 3-space.

3. G, buildings

In the Bruhat-Tits buildingZ of the groupG = Sp associated to a maximal
torusT is an apartmenty in #. For each simplex € &/ we have defined the
affinoid subspacé, c T.

For the standard alcovg defined byw,, a,, 1 — ag, we have

T, = Sp(k{ag, oz, magh)) = Sp(k(taty !, t2, wt%) .
For each maximdr-torusT in G, we can find a subgroug of G such thaf liesinH
andH is defined oveF and is isomorphict& L, x SL, overF. Fori = 1,2, 3, 4, let
us writeU; (F) for the subgroup consisting of transformations takingo x; if j # i
andx, — X + Uixs_; with u; € F. For Ty, the subgrougH is generated by the
groupsU; (F) fori =1, 2,3, 4.

Let.# denote the building of the group (F) = SL,(F) x SL(F). Theinclusions
of groupsT (F) ¢ H(F) c G(F) gives rise to inclusions of simplicial complexes
& C ¥ C %. To make these inclusions simplicial one has to split €athx SL,
chamber in twdSp(4) chambers (see picture below). We will always assume that the
simplicial structures of th& L, x SL, buildings are arranged in this way.

In the picture the dotted lines indicate walls occurring only in&p4) building and
solid lines indicate walls in th& L, x SL, building.

We give a description of the stabiliz€,, in G(F) of the standard alcovg. LetU,
be the root subgroup @ with respect to the maximal tordg corresponding to the
roota. ThenU,(F) = F andU, ., (F) = {x € U,(F) = F : v(x) > n}. Itis known
thatG,, is generated by, ., for thosen + « > 0 onoy (see [L5, 3.1.1]). It follows
that forg € G(F) with matrix (g;), we haveg € G,, if and only if v(g;) > v(my),
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where
1 7 = =
1 1 o =
M) =11 1 1
11 1 1

ThusG,, stabilizes the following7-submodules of*: Mg = (v, v, v3, v4), My =
(rvy, 72, V3, V4), Mo = (v1, v, V3, v4) ANA M, = (vy, v, v3, T y).

4. Stable points

For ease of reading we introduce here all the analytic sets we shall use.

4.1. Stable points related to an apartment Write </ for the apartment attached
to the torusT,. We write the coordinates @ asx,, X,, X3, X4. The To-invariants are
generated by, x, andx,xs. It follows that

YZ:{er;xlxﬁéO or szgyéo}
Y;0={XGP3;Xi;éo,i =1..,4}_

For any simplex in an apartmenty of the building-# of the groupG, we can find
an elemeng € G(F) such thatr = g(o) and« = g(). We putYs, = gYg,.
This definition does not depend on the choice of the elergems in general we
putYss =M, er, 9 Yo, andY® = (g 9 Yoy

_ 1} |

We define the following analytical subspaceYgf :
The spaceY;, , is not affinoid. LetY7 , . be the set ofx € Y7, , such that
|7Tn+l| < |X1X4/X2X3| < |7Tn|

Let 0 € .« be the vertex where the affine roatsandw, take the value 0. A& (F)
acts on both the flag variety and the building we caniyt , =t - Y3, 5.

The mapT x Y5, , — Y5, given by(t, x) — t - X is surjective. So the analytic
setsYy, , =T, - Y5, 5 coverYy, foro € . We have folo = oy

<1f.

Yo = {Xe[P’3: =1

X1
X_4(X)

X2
X_3(X)

s
Y»‘Zfoﬂo

{t-x:teT,xeYs ,}

={Xe[P’3:|7r|§ <

% x)
Xy

%2 (x)
X3
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We putY$, .. :=T,-Y5 ,,. Foranyoces C#, we can find an elemege G(F)
such thar = g(0p) andg«’ = g(%). We now definexYs, , = g(Ys, ). This
definition does not depend on the choice of the elergent

We putY;,  forthe setofx € Y5, . suchthatg*x /x| = 1, |g"%Xs_i/Xs_i| = 1,
Vg € G,,, andi = 1if 1 < [XyXa/XoX3], 1| = 2 if [X1Xg/XoX3| < 1. We WriteY;Z;Mn
for the setofx € Y5, suchthatg™x /x| = 1,[g"%s_i/%s_i| = 1,Vg € G,,i =1
ifn<-—-1andi =2ifn>0.

4.2. Stable points related to a sub-building SupposeH, is the subgroup oG
containing the torug, and is isomorphic t&SL, x SL, over F, let .#, denote the
building of the grouHo(F) and we pu¥s, = (. hYs,. Thisisthe setokin P
which is stable for each maximal F torushiy. If % = g(-%p) we putY5 = gY5..
If o € @ C & then we take:Y5 | = [oeu, NYoon = ﬂ;%’g; YS . Here

H = gHy,g~tandH, is the stabilizer of the simplex in H(F) and.# is the building
belonging toH. We have

Y5on ={XE€YS onilOX/X| =1, VgeH,, i=1..,4}.

We define the affinoid subspa¥é as follows:

0,00,N

cvs

0,00,N

. X e Y50 1O X /Xl = 17 Xa/Xal = 1,¥g € Py} N < —1;
TN X € Y5, on 10" %e/Xel = 1g7%e/Xsl = 1, Vg € P,,} n >0,

FurthermoreY’, , C Y5 is defined as being(Y ,,) whereg € G(F) is such
thatg(#y) = .# andg(op) = o. This definition does not depend on the choicgof

4.3. Remarks We have &SL, x SL,-equivariantmapy : Y3, — P* x P* given
by (X1, X2, X3, Xa) > (X1, Xa) X (X2, Xa). Itisclearthal’$, := Ny si,rxswe 9o =
YR, x Q). HereQ, C Pis Drinfeld symmetric space. Lt denote the closure
of the graph ofy in P* x P* x P*. Furthermore we tak® ,, := ® N (P x Q; x ).
The groupSL,(F) x SLy(F) acts on®d . We take ond C P* x P* the coordinates
(X1, X2, X3, Xg) X (Z1, Z3) X (2, Z3) With zX4 = Z4X; andz,Xs = z3X4. A pure affined
covering of2; x ©, is found by taking th&s L, (F) x SL,(F)-images of the following
affinoid subspaceg given as the set af € P* x P* satisfying the following conditions:
7| < |z/zl < 1, || < 12/2z3| < 1,|z/z —Cl = |z/Zzzs—C| =1, |nz/z — C| =
|rz3/2, — c| = 1 for all units c inF (see P, page 172]). The space N (P* x F) is
not affinoid, but it can be covered by the following two affinoid spaces:

X1 X,
[F+;={xe<1>m(uv3x[F): - 51},

X2X3

X1 X,
[F:={Xe<I>ﬂ([P’3x[F): o 21}.

XoX3
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The coveringF := {g(F"),g(F") : g € SL(F) x SL(F)} is pure and covers
all of & 4. Since the components of the reductions®f x Q; with respect to the
covering are all proper, the reduction @f, /" of ® 4 by a discrete co-compact
subgroug” C SLy(F) x SLy(F) is a proper analytical variety. Itis in fact algebraic.
One canembed; — @ 4. Soone canview , /I" as acompactification of;, /T
See Voskuil 16]. Note that using the embedding above one has

(Frur)NYs, =5

s
0,00, U Yﬂo

orn)-
nezZ

Here oy is the standard alcove defined by the affine raatse, and 1— «g. The
alcoveo; is determined by the affine rootsx;, 1 — a, andag. Note thato; U oy
forms anSL, x SL,-chamber in the building 08 L,(F) x SL,(F). One hasl,, =
SPF (ot wty 2, t2) andT,.00y 1= T, U T,, = SPF (12, t2, mty %, t2)).

5. Convex sets inC, buildings

To each semi-stable point we assign a convex subset of the building, namely its
interval of stability. We use the explicit torus invariants to give an explicit description
of the intervals of stability.

5.1. Letus recall that the interval of stéity is defined forx in Y5 asl,(x) =
{t71.0:t-xe Y5, o} FortheSL, x SL; sub-building.#; introduced in Sectio#.2,
we define forx € Y5,  the setl 4 (x) to be the union of , (x) over those« in %
such thate > 0. Thenl 4, (X) = Ugep, 9+ 1o (X).

5.2.  We introduce the centre of the interval of stability. Lete0.«; be the
vertex where the affine roots, anda, take the value 0. We defineTg equivalent
mapu, : Y5, — @ by

Ve (X) =0 if xeYs ,
Vap(t-X) =1-0 otherwise

Note that(t*X;/t*X,)(X) = t;72(Xy/Xa)(X) = — (21 + ) (1) - (X1/Xs)(X) and that
(1% /1" X3) (X) = t,2(Xo/X3)(X) = —aa(t) (X2 /X3)(X). Letv be the additive valuation
of F normalised such that(z) = 1, wherer is a uniformiser. Fox € Y§, ,, one
hasv((x1/Xs) (X)) = 0 = (— (201 + 2))(0) andv((X/%3)(0)) = 0 = —a(0). From
this and the description of the action of the torus on the apartment givas,id.[L],
one easily gets the following descriptionf,:

(2001 + 2) (Very (X)) = —v((X/X4) (X));
22(Vary (X)) = —0((%/X3) (X)).
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We like to remark tha¥s, . = v !(o) foro € 4.

5.3.  We describe the interval of stability in terms of the action of the torus on the
‘origin’ 0. We have

Yoo =Xe/Xal = 1, [XoXa/XaXal < 1, [Xo/Xal < 1, |Xa/Xal < 1}
U {IX2/Xsl = 1, [XgXa/XoXs| < 1, [X1/X3| < 1, [Xa/Xs| < 1}.

Takex in Y5 and lett be the diagonal matrix with entrigs t,, t;*, t;*. Sincea; =
e1—6, anda, = 26, we havex; () = tyt, *anda,(t) = t2. Note thalt*x, /t*x,)(X) =
t;2(Xe/Xa) (X) = — (201 +0a) (1) (X /Xa) (X) @Nd thatt* X, /1*Xs) (X) = t,* (X /%) (X) =
—o2(1) (X2 /X3) (X).

Suppose& andtx are in the part o¥(g$, given by

X X1 X X X
{—2=l, 1451’_1<1’_4§1},
X3 XoX3 X3 X3
Then
(tX)2 Xz 5
= — 1 = |t2| .
(tX)s £, X3

From the definition ofv: (a, v(t)) = —v(a(t)) we get from|t,|> = 1 thatv(t) =
—v(ty)e;. The action ofT on the apartment’ is thent~*v = v + v(t;)e;. Suppose,
andx, are not 0. Then fronfit,x, /t, *Xs| = [(tX)1/(tX)s] < 1 we getlt;| < |Xs/Xq
and from|t; X, /t; *Xs] = [(tX)a/(tX)s] < 1 we getiXs/Xs| < |t1|. Recall that

Ly = {t™-0:tx e Y3 ,}.
We see that in this case, x, # 0.

Xy

X3

<|c| <

x3}

X1

|£¢0(X) = {0+Ce_L :

and sol 4 (x) is an interval. Ifx, # 0 andx; = 0, we see that,, (x) is a half-
line 0+ ce with [x4/%3] < |c| and if x; = 0 andx, = 0 thenl g, (X) is the full
line 0+ ce with —oo < |¢| < 0.

Similarly suppose andtx are in the part o¥g$, given by

{ﬁ =128 <1 | Bl <q |2 51}.
X4 X1 X4 X4 X4
Then in casé&xy, X, # 0)
X X
I%(x)={0+ce2: Zl<cl < —4}.
X1 2
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Itis now clear that ., (x) is the set ofj in . such that:

X2 X1
a2 (q) +v (— (X))‘ =v(e), (Comt+a)(@) =-v (— (X))
X3 Xg

if |e] < 1, and such that
X1 X2
‘(20& +a2)(q) +v (— (X))‘ <-v(e), a(q) =-v (— (X)) ,
X4 X3

if |e] > 1. Heree € F is such that(X,Xs/X:Xs) (X)| = [€].

6. Some estimates on coordinates

In order that we can use themaps to study the simplicial decomposition of the
stable points we need some estimates on the absolute values of the coordinates give
by the torus invariants of the stable points under the action of the group. This will be
done in the next few lemmas.

LEMMA 6.1. Suppose € Y, , and thatg € G,,.

(@) If |(X1Xa/%2%3)(X)| = 1, then|(g*x /x)(X)| < 1fori=1,...,4.
(b) I [(XaXa/XoX3)(X)| < 1, then [(g"%z/X2) (X)| < 1, [(g"%s/%s)(X)| < 1 and
[(@"X19"Xa/X2X3) (X)| < 1.
(c) _If (g% /x)(X)| > 1, fori = 1,...,4, and that|(X;Xs/X.X3)(X)| = |€?| with
€ € F, then

[(g"%2/g"%a) (X)| = [(X2/%3) (X)] ,

|(X/Xa) ()] €] < 1(g°X2/TXa) O] < [(Xe/X) (X)) €] if [e] <1,
(9" %1/ 9" Xa) (X)| = [(X1/Xa) (X)] ,
|(Xa/X3) Ol €7 < 1(g°%2/g"Xa) )] < [(Xe/Xa)(X)| |€]  if || = 1.

PROOF. Forg™ € G,,, write X (g7*(x)) = Y_ g X;(X). One has
g Xi ‘ Z gl] ]( )

X; (X) j

. gij X; (X) '
X (X)

It follows from the epr|C|t description 06, that max |g;; X; (X)/X (X)| = 1. From
this part (a) follows. The proofs of the rest of this lemma and the next lemma are
similar, we omit them. O

LEMMA 6.2. Letx € Y, and letH = SLy(F) x SLy(F) be determined by7,
that is the building# of H containse/. Then for allg € H, we havdg*x x (X)| < 1,
forl<i <4
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LEMMA 6.3. Suppose& € Y, andg € G,, satisfiedg*x10"Xs/g" %9 X3(X)|=1.

Thenx € Yg . . Furthermorex, /X, (X)| = 1, if [XoXz/X:Xa(X)| <1 and|Xa/Xs(X)| =

7|, if [XoXa/ X1 Xa(X)| > 1.

PROOF. Lete € F be such thate?| = |X;X/XX3(X)|. Takey = (X1, €Xp, €Xa, Xa).
Then|xix,/XX3(y)| = Landy € Y;, , . From the explicit description db,, we see
that for allg € G,,, we have max{|(g;X;/x)(y)|} = 1, whereg*x, = Zi ij Xj .-

First we look at the casg| < 1. Sincex € Y _, we have|(g*X/Xz)(X)| =
[(0*X3/X%3)(X)| = 1. Writeg*x; = > a;X; andg*xs = > b;x;. We get

max|a;X; /X1(y)| = max|b;x;/Xs(y)| = 1.
This means that the product of

max{|ae X1 (X)|, [8X2(X)1, [asXs(X) |, [aue ™ Xa(X)1}
and
max{[bye X (X)|, [b2X2(X)| . [b3Xa(X)] , [Dae ™ X4}

is equal to) xax3(X)].

Now takeg € P,, as in the assumption. Theg*x;g*Xs/XX3(X)| = 1. Just as
before we obtain maka; x; (x)|} max{|b x|} = |X>X3(X)|. Comparing these two values
of [Xo%3(X)| and usinge| < 1 we see that

max{laie % ()], laue ™ X4(X) 1} = max{|aX(x)|, [asXs(X) |}
max{[bye X (X)), |bae "% ()|} = max{|bxa(x)], |bsXs(X)|} .

The description 065, shows thata;| = 1 and|b,| = |bs| = | |. Hence
[XoX3(X)| = max{|Xz|, [Xs|} max{|mXa|, |7 X3|}.

Sincex € Y3, , we have|(X/x3)(X)| < 1. Hence|xXs| = [xs|lwXs|, that is,
[Xo/Xa| = |7r|. Furthermore

1(@"X1/9"Xa) (X)] = [(G"%2/G"X3) (X)| = [(Xa/X2) (X)| = |],
hencex € Yg . ,,- The proofs of other cases are similar. O
REMARK. The lemma and Figurd show that one ha$(x;Xs/X>X3)(X)| # 1

and [(g*X19"Xs/ 9" %20 %3) (X)| = 1 for someg € G,, only in the following cases:
(1, €a, eb, c) and(em, wa, b, ec) with |¢] < 1,]a] — |b| = |c| = 1.

LEMMA 6.4. Leto/ =g, X € gY5,, andh € G, . Then|(h*g*x /g*x)(X)| < L.
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[X2/X3| =1

0o

[X2/%3| = |7

[Xi/Xal = || [Xa/Xa| =1

FIGURE 1.

PROOF. Itis sufficient to proof this forw’ = . We know thaiG,, «, is spanned
by Uy, for those rootsr such thatx(q) > n holds for allq € I,,(x). We only
do the casex = «,. The others are similar. We takee U,,,,. We can write
h*(X) = (Xq, X2, X3 — @X%, X4). It follows from the explicit description of, (x) that
v(@) > —v(X/X3(X)) and so|(h*Xs/X3) (X)| < 1. O

7. Applications of ther map

In this section we shall prove a number of lemmas explaining how we can use the
maps to study the partitioning of the stable points by the action of the torus. For
example we shall show thate Yssif and only if rs5(x) > 0.

7.1. Using the torus invariants x4, Xox3 we define forx € Y andg € G(F)

max{|g*(X1Xs) (X)| , [g*(XaX3) (X) |}
max{|(XyXs) (X)] , [(X2X3) (X)[}

SS —
rgﬂo,ﬂo(x) -
Recall we also have introduced

(5500 = inf {rss, () :geGF)} if xeVY;
0 if x ¢ Y.

We also introduce here another function. Takes Y*®S. Let g(«4) be an
apartment such thags, _, (X)=r%(x). Supposgg"(x;Xs_)(X)| = |g"(%Xs_) (X,
j #1,5—1. Then we definerg , (X) = |g"(%Xs_i /X;jXs_)(X)|. Forx € Y*5, we
definer(x) = inf{rs, (x) : r? ., (X) = rs(x)}.

7.2.  Let o be the root ofgTg™ associated withg*X;/g*xs_; and assume
ra(x) < 1. Forxin Y®s let L be the set off € &/ such thax(q) = a(vy (X)) =
—v((g"X;/9"%s_j)(X)). Leto € 4/ be an alcove such thaj.,(x) € o. Then we
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define: T(x)y = Ugeeq g(Ly). By definition T(X),y C £ is a sub tree of the
building. Furthermoré_, (x) C T(X).. The nextlemma shows th@ix), does not
depend on the choice @f. So we takeT (X) := T(X)..

LEMMA 7.1. Let x € Y and &, ] = 1,2 be such thavj,ﬂo(x) = r°%(x)
andr; (X) < L Letvgy (X) € 0; € «. Then eithero; No, # ¥ Or vy (X) €
TX) ey, = T(X) -

PROOF. Letg; € G(F) be such thay;(co) = 0}, 9;(#%) = /. Let« be such
thatoy, 0, € &. Let f; € G, be such thaff;g; (=) = .
Sincerj,ﬂo(x) = r*%(x) we haver3; , (x) = r*(x). For eachj leti; be such

that |g; (%, Xs—i,)) (X)| = maxX{|gi(XXs-)(X)| : i = 1,2}. Sincerj%(x) = r55(x)
andr;J (X) < 1 we have f'gi (X, Xsi,) ()| = max| f g; (X Xs)(X)| : 1 =1, 2}.

If 07 (Xi,Xs_i,)(X) = ;05(X,Xs_i,)(X) then one clearly ha8(X), = T(X),. If
fr0; (X, Xs_i,)(X) # f50;5(X,%s5_i,)(X) thenr$,(x) = 1. Now by Lemmé&5.3we have
vy (X) € 01 andv, (X) € 0,. Henceo, N oy # . O

LEMMA 7.2. There exists an apartment’ satisfyingr? , (x) = r*(x) and
r3,(x) = 0if and only ifr(x) = 0.

PROOF. Letg; be such thatgs, . (X) =r®(x) andrg , (x) — 0. Leto € g%
be an alcove such that € Yg5, . Sincergs, . (X) = r%(x), forallh € G,
we havergs . . (X) = r*(x). We will construct a sequendg € G, such that
Mg (X) — 0. The compactness &, impliesh; — h. Thenrg, . (x) = 0 and the

lemma follows. g

We know thatvg ., (X) € T(x). Find a lineL; C T(x) containingvg ., (X)
and vg, ., (X) such thatL; contains half of the interval of stabilityy ., (x). Next
choose an apartment, containinglL;. Sincel; containsvy, ., (X), one has# =
hig,.% for someh; € ¥,. The fact thatw contains half ofly ., (x) implies that
e (X) <rg.,(X)/2. Hencey, o ., (X) — O, we are done.

LEMMA 7.3. If x € Y}, | thenforalle’ containingl ., (x) one has$,, (x) < r$,(X).

PROOF. Supposd,, (X) C «/'. Thenwe have ah € G, suchthate’ = h(%).
It is sufficient to prove the lemma in the casé = . Furthermore, we only treat
the casex € Y}, , with [(X;Xs/X2X3)(X)| > 1. The other case is similar. In this case
we have|(h*x;/X1)(X)| = [(h*X4/X4)(X)| = 1 sinceh € G, «, C G,. Furthermore
we have (h*X,/X%) (X)] < 1, |(h*Xs/X3)(X)| < 1. Hence

ra(X) = [("%:h % X3/ h*™Xah* X)) ()| < [ (XeXa/XaX1) (X)| =15, (X).

This proves the lemma. O
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LEMMA 7.4.1f x € Y3, then there exists ah € G(F) such thatx € h-YS,
andrgs, ., (x) = 1.

PrROOF. If x € Y5, we can takeh = id. So let us assume that¢ Y3, . Then
eitherx;x, = 0 or x2x3 = 0, and not both sinc& € Y:°. It is sufficient to treat
only the case;x, # 0 andx,x; = 0. Takeh;(X) = (X, Xo + aX;, X3, X4 — aXs) and
hy(X) = (X3 — bXo, X2, X34+ bX4, X4). Then choosa, b € F such thah,, hy(x) € Y
By taking|al, |b| sufficiently small we can getthaf? , . .. (h2hi(x)) = 1. Therefore
h = (h,h;)~?! satisfies the lemma. O

LEMMA 7.5.Ifo C & C . andx € Y} thenforallgeG, we have 33, ., (X)=1.

PrROOF. We may assume that = o, and.# = ¢ after replacing by g=*(x). It
is sufficient to treat the ca$®; x4/x>X3(X)| < 1. Then

[ o, 7 (X) = MAX|G" (XiXa) /X2X3(X) 1, |97 (X2X3) /X2X3(X) |}

SlnceY} o0 C Y0, it follows from Lemma6.1 (b) that for allg € G,, we have
Mg, (X) = 1. Soforall;z/wnh oo € &/ we havery? = 1. O

LEMMA 7.6. If x ¢ Y32 thenforall.# C #, and forallo € . we havex ¢ Y7, .

PROOF. Letus assume& ¢ Y7 Thenx; X, = X,X3 = 0. It is sufficient to treat the
case where; = x, = 0.

First we assume thatsx, # 0. Takea,b € F* andh € G(F) given by
N(Y1, Y2, Y3, Ya) = (Y1 + @Ys, Y2 + DYs, Y3, Ya). NOWh(X) = (@x, X3, X3, Xa) € Y5,
Hencex € Y;.,. Supposex € Y  and thato lies in & C .#. By taking
|al, |b| sufficiently small we can make sure thigt, , ,(x) < 1. Now we can find a
o1 € h™aj such thax € Y3, . Nextwe can findeZ containingo anda;. Now
re ) <rsd, &) <Ll SmceA— f Afor somef € P, this contradicts the fact
thatx eYy .

Now suppose that alsgsx, = 0. It is enough to treat the casg = 0. So
X = (0,0,0,1). Now we useh = h,hih whereh (X, X, X3, X4) = (X1 + bxg,
Xo + bXq, X3, X4) @ndhy(Xq, Xo, X3, Xa) = (X1, X2, X3 + CXo, X4) With b, c € F*, Now
h,h;h(x) = (a, b, bc, 1). Again hx) e Y:,- Now apply the same proof as above to
finish this case. O

LEMMA 7.7. If o C &/ C . andx € Y}, , thenrss(x) > 0.

PROOF. We may assume that = o, and.# = ¢, after replacingk by g=1(x).
By Lemma7.5for all & with oy € &/ we havery? , = 1. Take an apartmehta,.
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If 155, (%) = 0 thenx ¢ hY3. From Lemma7.6 it follows thatx ¢ Y7 .
Therefore this cannot occur. Now we assume tiat, (x) ¢ 0. We havex ¢
h-Ys®. Using Lemmar.4 we find an apartmerg(h(%)) such thatx € gh(Ys,)
andrgw haty(X) = 1. Thusras, (X) = T35, 4 (X). Sincex € gh(Ys,) there exists
ao; € gh(«)) such thatx e Ygsh%m,. Take an apartment” containing bothog
ando;. By general properties of the function we have s}, , (X) < rgh.. . (X).
Thereforerg?, . (X) > 1. So we have proved the lemma.

LEMMA 7.8. We havex € Yssif and only ifr s(x) > 0.

PROOF. If x ¢ Y*°then there exists an elememte G(F) such thatx ¢ hY;.
HencersS(x) = 0. Conversely assume € Y% and thatr*S(x) = 0. Take a
sequencey, € G(F) such thatrglﬂ0 ,(X) — 0. Sincex e gX* we can use
Lemma7.4to find anh; € G(F) such tha1x € hiYZ, andrp’, . (X) =135, . (X).
So let us replace the sequergeby the sequench;. Sincex € h;Y7, there exist
o; € h@% such thatx ¢ Y5 w0 - WWE Can assume thag.op = Ay gndcn = 0.
Find an apartments containing botho, ando;. Then there existf; € G, and
fi € G,, such thatef = fi(ap) = fih (). Using Lemma6.1 we find that
5 (X)) =183, () <rps, ., (X). Sowe have constructed a sequerice G,,
such tharg®,, , (x) — 0. SinceG,, is compact,f; — f. Clearlyr$,  (x) = 0.
Hencex ¢ fYS? and sox ¢ Y*°. This gives the required contradiction. O

LEMMA 7.9. Y5 C U, , Y5,

PROOF. Sincex € Y®S one hags5(x) > 0. We can findg € G(F) such that
M gore.cte (X)) = I°%(X). If X € Yg - thenx € Y, , for someo c S Sincergy, ., (X) =
rsS(x) we must havex € ngw So let us assume that¢ Y, . We can assume that
g = id. There exists an/ C .#, such thak € Y7, . Again we can assume’ = .
We only treat the casex, # 0, XoXs = 0. The other case is similar. Singec Y*ss
there cannot be a relation + ax, = 0 for somea € F. From this it follows that
X € Y5, whereh is as in the proof of Lemma.4. Since we have;?, . (X) = 1, the
lemma follows. O

8. Affinoid coverings

In this section we shall give a construction of a pure affinoid covering efhich
yields a reduction consisting of proper components.

THEOREM8.1. When we take all th8 L,(F) x SL,(F) sub-buildingss of theC,
building #, all simpliceso € .# and all integersh the affinoidsY?, , , coverYss,
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This follows from Lemma/.6and Lemmar.9.

The analytic spac¥, , is not affinoid, but we can cover it by affinoids, , ..
And {Y$, ,, forn e Z}is a pure affinoid covering of?, ,. While {YS, . |0 €
Ao, n € Z} gives a pure affinoid covering off, .

PrROPOSITION8.2. The following are pure affinoid coverings

(a) Yzfgﬁ’ = Unel Yzfgﬁ’,n'
(b) YS = UaeA,neZ Y;,a,n'
(C) YS = Unel,aeﬂ Y.Sﬂ,a,n'

PROOF. We prove part(c). First we remark thét, , is the setok in Y3, ,  such
that|g* x /% (x)| = Lforallg € H, andi = 1,... , 4. Furthermore, for € Y,
one haslg* X /x(X)| < 1. SoY5 ,, C Y5, ,,is an open affinoid subspace of
the form: Y5, . = Y3, ,» — R (V0. HereR denotes the canonical reduction
map of Y5, ,, andV,, ., is a closed subvariety. To see that the covering is pure
consider the intersectioni, , | NYS ... Take an apartment’ C .# containingo
ando’. It follows from part(a) of the proposition tha¥;, , ,NY:, . . is pure. Since
Y5 on =Y on— R *Vyon) andYs . =Ys . n— R (Vy ,m), the intersection
Y5 onNY5 . mis also pure. This completes the proof. O

8.1. A construction We give the construction of the affinoids which will be used to
cover the space of stable points. Suppesés g - <. Foroy, 0, € & let A(oy, 02)
denote the convex hull dioy, 0,). Foro € & let Y (&, 0, 04, 05) be the set ok

in Y}, , such thatv, (X) € o, and thatA (o, o) containsl, (X), o1 N 15 (X) # ¥,
oy N 1y (X) # ¥, and that for allh € G, .., We havelh*g*x /g*x (X)] = 1.
We will always assume, o, chosen in such a way(«/, o, 01, 05)’ is honempty. If

X € Y(&,0,0q,0,) ande’ O A(oq, 0,) thenl . (X) = | (X). Nextwe introduce an
open subaffinoif (&, o, 01, 05) of Y (&7, 0, 01, 0,)' such that fox in this subaffinoid
and forA' o |, (x) we getl . (x) = | (X). To do this we take certain functiorfsin
the affinoid algebra of («/, o, 0, 05)’ demand thatf (x)| = 1 to get our subaffinoid.
Suppose that the end points of the interlialx) are P;, P, with P, € o, and that
the centern,, (x) of I (x) lies ino. Suppose that the wall of o; corresponds a
certain root and the line is defined byix;/x;(x)| = |7"| say. Then we know fox

inY (&, 0,01, 0,) We havelx /X;(X)| < |7"|. Now choosdal| = 1 then

(1) Pyisin the interior ofo if and only if [x; /X; (x)| < |7"[, which in turn implies
IXi + 7"ax; /X (X)| = |[7"ax;/X;(X)| = |7";

(2) Pisin oy nL if and only if |x/x;(x)| = |7~"|, which in turn implies
X + m"ax;/X;(X)| < |7"].

So we can takd as beingr "(x, + 7"ax;/x;). From the construction we now have:
If Xx € Y(&,0,01,0,) andl(x) C &' thenl,(X) = l,(x). Finally, if & isin



[19] C, building and projective space 401

theSL, x SL, building.# andH istheSL, x SL, actingons and« = g-.<, we put
Y (7, 0,01, 0,) to be the setok in Y(«/, 0, 01, 05) such thath*g*x, /g x;(X)| = 1
forallh € H,.

LEMMA 8.3. Suppose that € « C .7 andx € Y(.Z, 0, 01, 02).

(@) Ifh(l,(x)) c &« forsomeh € H thenl . (X) = h(l,(X)).
(b) If h e G, thenl,. (X) = h(l,(x)) if and only ifh(l (X)) C .#.
(c) Ifhe G, thenly,(X) # h(l,(x)) if and only ifr$, (x) <rg,(X).

This follows immediately from the definitions.

LEMMA 8.4. (a) Ifr5(x) # Othenx isin one of theY (.7, o, 01, 05).
(b) rs(x) # 0if and only ifx € Y*.

PROOF. (a) It suffices to take? such that 3, (x) = rs(x).
(b) Find an«’ such thatx € Y(«, o, 01, 0,) for someo, o, 0,. Now observe that
there exists ah € P, such that; ,(x) = 0 if and only ifx ¢ Y*. O

LEMMA 8.5. Suppose( S Y(]lv 0,01, 02) mY(jz, T, Ty, Tz). Leto € Ml C ]l
andt € @ C #. Then there exists € H;, such thath(l (X)) = 1a,(X)
andl 4 (X) = | 4 (X).

PrOOF. Take an apartmerﬁ containingo andz. Now ri(x) depends on the
intersection of& o, N A and also on the |ntersect|c$1 H, N A, If SH, # Sh, then
we can changé\ a little such thass, iy, N A changes an&, s, N A remains the same.
The change of5 4, N A means thats 2(X) changes whereas sin&g;,, N A does not
change % does not changleﬁ(x) also does not change This is absurd and one must
haveS 4, N A= S N A Since boths, 7 € A it easily follows that one must
havel » (X) = | 5 (X). O

THEOREM 8.6. The family of set¥ (.7, o, 01, 0,) obtained by taking alS L, x SL,
buildings.# C #, o, 01, 0, in all apartmentse/ in .# gives a pure covering of®.
Furthermore the reduction with respect to this covering consists of proper components.

PROOF. Let x € YS. Then we can finde’ C # such thatr3(x) = r%(x). The
proposition above shows th&t := |- (x) is uniquely determined. Her¢ is the
SL, x SL, building containing«/. This is clear, since we have a unig& for
eachx e Y®. From this one easily concludes that the covering is pure. That the
reduction consists of proper components is proved using the same method.3as in [
Theorem 3.6, part 5]. O



402 K.F. Lai [20]

References

[1] S. Bosch, U. @Ginther and R. Remmerion-archimedian analysi&Springer, New York, Basel,
1984).
[2] J. Fernel and M. van der PuBéonetrie analytique rigide et application®rogress in Math. 18
(Birkhauser, 1981).
[3] H.Flaschka and L. Haine, ‘Torus orbits @/ P’, Pacific J. Math.149(1991), 251-292.
[4] O.Goldman and N. Iwahori, ‘The space of p-adic normdgita Math.109(1963), 137-177.
[5] L.-C. Hsia, ‘A weak Neron model with applications to p-adic dynamical syster@@mpositio
Math.100(1996), 277-304.
[6] B.Iversen, ‘The geometry of algebraic group&tv. Math.20 (1976), 57—-85.
[7] G.R. Kempf, ‘Linear systems on homogeneous spaéesi, of Math.103(1976), 557-591.
[8] A.Kurihara, ‘Construction of p-adic unit balls and the Hirzebruch proportionakitgier. J. Math.
102(1980), 565-648.
[9] A. Moy, ‘Displacement functions in Bruhat-Tits building$yoc. Sympos. Pure Mat68 (2000),
483-500.
[10] D. Mumford, ‘An analytic construction of degenerating curves over complete local ri@gsn-
positio Math.24 (1972), 129-174.
[11] D. Mumford, J. Fogarty and F. Kirwageometric invariant theor{Springer, New York, 1994).
[12] M. van der Put and H. Voskuil, ‘Symmetric space associated to split algebraic groups over a local
field’, J. Reine Angew. Mat#4.33(1992), 69-100.
[13] M. Rapoport, ‘Period domains over finite and local fieldsoc. Sympos. Pure Mat62-1(1997),
361-381.
[14] P. Schneider and U. Stuhler, ‘The cohomology of p-adic symmetric spdogsht. Math.105
(1991), 47-122.
[15] J.Tits, ‘Reductive groups over local field®roc. Sympos. Pure MatB3(1979), 29-69.
[16] H. Voskuil, ‘On the action of the unitary group on the projective plane over a local fieldystral.
Math. Soc. (Series A2 (1997), 371-397.

School of Mathematics and Statistics
University of Sydney

NSW 2006

Australia



