J. Aust. Math. Soc.  76 (2004), 329-343
Some remarks on flocks

Laura Bader
  Dipartimento di Matematica e Applicazioni
  Universit\`a di Napoli `Federico II'
  Complesso di Monte S. Angelo
  Via Cintia - Edificio T
  I-80126 Napoli
  Italy
  laura.bader@dma.unina.it
Christine M. O'Keefe
  CSIRO ICT Centre
  GPO Box 664
  Canberra 2601 ACT
  Australia
  christine.okeefe@csiro.au
and
Tim Penttila
  School of Mathematics and Statistics (M019)
  The University of Western Australia
  35 Stirling Highway
  Crawley 6009 WA
  Australia
  penttila@maths.uwa.edu.au


Abstract
New proofs are given of the fundamental results of Bader, Lunardon and Thas relating flocks of the quadratic cone in PG(3, q), q odd, and BLT-sets of Q(4, q). We also show that there is a unique BLT-set of H(3, 9). The model of Penttila for Q(4, q), q odd, is extended to Q(2mq) to construct partial flocks of size  qm/2 + m/2 - 1  of the cone $\mathcal{K}$ in PG(2m - 1, q) with vertex a point and base Q(2m - 2, q), where q is congruent to 1 or 3 modulo 8 and m is even. These partial flocks are larger than the largest previously known for m > 2. Also, the example of O'Keefe and Thas of a partial flock of $\mathcal{K}$ in PG(5, 3) of size 6 is generalised to a partial flock of the cone $\mathcal{K}$ of PG(2pn - 1, p) of size 2pn, for any prime p congruent to 1 or 3 modulo 8, with the corresponding partial BLT-set of Q(2pnp) admitting the symmetric group of degree 2pn + 1.
Download the article in PDF format (size 125 Kb)

TeXAdel Scientific Publishing ©  Australian MS