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Abstract

It is shown that the following conditions on a finite-dimensional algebver a real closed field or an
algebraically closed field of characteristic zero are equivalentA @pmits a special involution, in the
sense of Easdown and Munn, (#)admits a proper involution, (iiiA is semisimple.
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1. Introduction

A field is termedformally real if —1 cannot be expressed in it as a sum of squares
andreal closedf it is a formally real field that has no formally real proper algebraic
extension. Many real closed fields exist; examples include the realRieldd the
field of all real algebraic numbers.

Itis clear that a real closed field has characteristic zero. Less obvious is the fact
that F is totally ordered by the rule that < b if and only if b — a = ¢? for somec
[5, Section 70, Theorem 1]. We shall make use of this total ordering without further
comment.

Recall that an involution on a ring is a mapping : R — Rsuch that

Va,be R) (a+b=a"+b*, (ab*=Db'a*, a*=a.

Now let A be an algebra over a real closed fi€ld An involutionon A is defined to
be an involution* on the ring(A, +, -) with the additional property that

VaeANMriecF) (A =ia*
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Two types of involution® on A concern us here. We say thds

(i) properif aa* = 0 impliesa = 0foralla € A,
(i) specialif, for every nonempty finite subsét of A,

@teTH)NVu,veT) tr'=uw* = u=no.

Note that, in each case, the defining citiod is on the multiplicative semigroup &.

The notion of a special involution was introduced Bj.[ It is perhaps surprising
that many naturally occurring involutions are special: for instance, transposition on
the algebra of all reah x n matrices and conjugation on the algebra of all real
guaternionsZ], the mapping

Z Ay X Z O(XX’1

XeS XxeS

on the semigroup algeb® S] of an inverse semigroupoverR (in particular, on the
group algebr&[S], whereSis a group) B], and the mapping

@
E o, W > E oy W

weM weM

on R[M], whereM is a free monoid of arbitrary rank ari@ denotes the reverse of
the wordw in M [1].

The two properties are not independent: in fact, every special involution is proper,
as we now show. Letbe a special involution on an algebfeover a real closed field
and leta € A be such thada* = 0. TakeT := {a, 0}. Then there exists € T such
that, for allu, v € T, tt* = uv* impliesu = v. For each possility, tt* = 0 = 0Oa*
and soa = 0. Thus* is proper. However, a simple example demonstrates that not
every proper involution is special. Létdenote the group algeb®{G], whereG is
the cyclic group of order 4. Sinc& is commutative, the identity mapping @is an
involution; moreover, sincé\ is semisimple then, for € A, a?> = 0 impliesa = 0.

Thus the identity mapping is proper. Howevergiflenotes a generator & then, by
takingT := G and noting the equatiorig®)? = gg* = (g®)? andg? = g°g? = (g°)?,
we see that the identity mapping is not special.

The aim of the present paper is to show that, on a finite-dimensional algebra
over a real closed field, the following conditions are equivalent: Alipdmits a
special involution, (ii)A admits a proper involution, (iii)A is semisimple. (In the
previous paragraph, we have an example of an involution on a real finite-dimensional
semisimple algebra that is proper but not special; however, a different involution—
namely that induced by inversion in the group—is special.) With a natural adjustment
to the definition of an involution, a similar result follows for a finite-dimensional
algebra over an algebraically closed field of characteristic zero. These results, for the
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real and complex fields, were announced4h |n each case, the author’s proof used
a result in representation theory. The direct proofs given here are extensions of the
argument in 2, Example 4].

2. Finite-dimensional algebras over real closed fields

We begin by considering division algebras. A classical theorem of Frobenius states
that, to within isomorphism, the only finite-dimensional division algebras @&ver
areR itself, the complex fieldC and the algebr&l of real quaternionsg, Section 131,
pages 201-202]. The proof of this theorem applies also to the case Rhisre
replaced by any real closed fiekg, for it depends only on two particular properties
[5, Section 70, Theorems 1 and 3]:

(i) F is totally ordered and contains a square root of each non-negative element,
(i) the field obtained fromF by adjoining a root of the irreducible polynomial
x2 + 1lis algebraically closed.

All the details of the lemma below now follow routinely.

LeEmmMA 2.1. Every finite-dimensional division algebEaover a real closed fielé
admits an involutiori : D — D, d — d° (‘conjugation) such that

(vdeD) dd°eF, dd°>0, dd°=0 = d=0,

according to the cases
() D=F:a°=a(ax €F);
(i) D =FJi],wherei?=—1:(ax +Bi)=a—Bi(a,B cF);
(i) D = FIi, j,k], wherei? = j? =k? = —1,ij =k = —ji, jk =i = —kj;
ki = ] = —ik:

(@+pBi +yj+8K°=a—pi —yj—o6k (a,B,y.6¢F).

Observe that the lemma states, in particular, that every finite-dimensional division
algebra over a real closed field admits a proper involution.

THEOREM 2.2. The following conditions on a finite-dimensional algel#aver a
real closed field are equivalent

(i) A admits a special involution,
(i) A admits a proper involution,
(i)  Ais semisimple.

PrROOF. Since, as remarked in Secti@énevery special involution is a proper invo-
lution, (i) implies (ii).
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A standard short argument, which we include for completeness, shows that (ii)
implies (iii). Let* be a proper involution oM\ and letN denote the radical oA.
Suppose thad € N\O. Thenaa* € N and so(aa*)™ = 0 for some least positive
integerm. Since* is proper,m > 2. Writeb := (aa")™!. Thenb = b* and so
bb* = b? = (aa*)®2 = 0, since M—2 > m. Thusb = 0, contrary to the minimality
of m. HenceN = 0 and soA is semisimple.

We complete the proof by showing that (iii) implies (i). Denote the ground field
of A by F. Consider first the algebri&l,(D) of all n x n matrices over a finite-
dimensional division algebr® over F. Define™ : M,(D) — M,(D), a — a', by
writing a' := (a%)T, wherea® denotes the matrix obtained froaby replacing each
entry a; by a;° (with ¢ as in Lemma2.1) and " denotes transposition. Sinéds
an involution onD, it follows easily that is an involution onM, (D). Now denote
the trace ofa € M,(D) by t(a). Then, for alla = [a;] € M,(D), we have that
r(@a") =Y ,_,&;a;°and so, by Lemma.1,

(1) (VaeM,(D)) r(@a)eF, r@a)=>0 r@H=0= a=0.

Let A be semisimple. By Wedderburn’s theorem, we may assume, without loss of
generality, thatA is the external direct sum of algebrAs(i = 1, ..., k), where, for
eachi, A, = M,, (Dy) for some positive integer, and some finite-dimensional division
algebraD; over F. No confusion should arise from the use of the same syrhtml
denote the involution defined on eabft), (D;) as in the previous paragraph. For all
a € A, denote theA;-componentoibya (i =1,...,k). Then*: A— A,a— a*
defined by(a*); = a' (i = 1,...,K) is readily seen to be an involution ch We
show that it is special.

Let T be a nonempty finite subset 8f Chooséd < T such that

k k
2) ot = max{z twiw):weT

i=1 i=1
Suppose thatt* = uv*, for someu, v € T. Then, for each,
tt" =uv" = UvH =y’
and so
U =) —v)' =uu’ vy’ - 2647
Thus, by () and @),

k

0<) ol —w)u —wh
i=1

=~

— r(u u )+ZT(U|U|T)—ZZT('['[T) <0.

i= i=1 i=1
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HenceZi":lr((ui —v) (Ui —v;)") = 0. Thus, by 0), u; = v, foreach. Consequently,
u = v. This shows thatis special. O

An analogous result (Corollarg.3) holds for algebras over algebraically closed
fields of characteristic zero. As noted earlier, if we adjoin to a real closed field a root
of x2+ 1 then the resulting field is algebraically closed. In fact, all algebraically closed
fields arise in this way. A statement, with a proof for the countable case, is given in
[5, Section 71]; the general case is a simple application of Zorn’s lemmaA betan
algebra over an algebraically closed fi¢tdof characteristic zero. ThelR = RJi],
whereR is a maximal formally real subfield arid = —1. Define® (‘conjugation’)
on F by taking(& + »i)¢ = & —ni (¢, n € R). By aninvolution* on A we now mean
a ring involution such that

©) (Vae AN reF) () =i

Properandspecialinvolutions are defined as before. Suppose thé semisimple.
SinceF is algebraically closed, the only finite-dimensional division algebra é&ver
is F itself and soA is isomorphic to a direct sum of full matrix algebras oferNow
regardA as an algebra oveR. Then* : A — A, constructed froni as in the proof
that (i) implies (i) in Theoren®.2, is a special involution; moreover, it satisfie.(
Hence* is a special involution orA as an algebra ovdf. Thus we obtain the result
below:

CoROLLARY 2.3. The following conditions on a finite-dimensional algelxaver
an algebraically closed field of characteristic zero are equivaléadmits a special
involution, A admits a proper involutionA is semisimple.
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