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Abstract

It is shown that the following conditions on a finite-dimensional algebraA over a real closed field or an
algebraically closed field of characteristic zero are equivalent: (i)A admits a special involution, in the
sense of Easdown and Munn, (ii)A admits a proper involution, (iii)A is semisimple.
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1. Introduction

A field is termedformally real if −1 cannot be expressed in it as a sum of squares
andreal closedif it is a formally real field that has no formally real proper algebraic
extension. Many real closed fields exist; examples include the real fieldR and the
field of all real algebraic numbers.

It is clear that a real closed fieldF has characteristic zero. Less obvious is the fact
that F is totally ordered by the rule thata ≤ b if and only if b− a = c2 for somec
[5, Section 70, Theorem 1]. We shall make use of this total ordering without further
comment.

Recall that an involution on a ringR is a mapping∗ : R→ R such that

.∀ a;b ∈ R/ .a+ b/∗ = a∗ + b∗; .ab/∗ = b∗a∗; a∗∗ = a:

Now let A be an algebra over a real closed fieldF . An involutionon A is defined to
be an involution∗ on the ring.A;+; ·/ with the additional property that

.∀ a ∈ A/.∀ ½ ∈ F/ .½a/∗ = ½a∗:
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Two types of involution∗ on A concern us here. We say that∗ is

(i) proper if aa∗ = 0 impliesa = 0 for all a ∈ A,
(ii) specialif, for every nonempty finite subsetT of A,

.∃ t ∈ T/.∀ u; v ∈ T/ t t∗ = uv∗ ⇒ u = v:
Note that, in each case, the defining condition is on the multiplicative semigroup ofA.
The notion of a special involution was introduced in [2]. It is perhaps surprising
that many naturally occurring involutions are special: for instance, transposition on
the algebra of all realn × n matrices and conjugation on the algebra of all real
quaternions [2], the mapping ∑

x∈S

Þxx 7→
∑
x∈S

Þxx−1

on the semigroup algebraR[S] of an inverse semigroupSoverR (in particular, on the
group algebraR[S], whereS is a group) [3], and the mapping∑

w∈M

Þww 7→
∑
w∈M

Þw
←−w

onR[M], whereM is a free monoid of arbitrary rank and←−w denotes the reverse of
the wordw in M [1].

The two properties are not independent: in fact, every special involution is proper,
as we now show. Let∗ be a special involution on an algebraA over a real closed field
and leta ∈ A be such thataa∗ = 0. TakeT := {a;0}. Then there existst ∈ T such
that, for allu; v ∈ T , t t∗ = uv∗ impliesu = v. For each possibility, t t∗ = 0 = 0a∗

and soa = 0. Thus∗ is proper. However, a simple example demonstrates that not
every proper involution is special. LetA denote the group algebraR[G], whereG is
the cyclic group of order 4. SinceA is commutative, the identity mapping onA is an
involution; moreover, sinceA is semisimple then, fora ∈ A, a2 = 0 impliesa = 0.
Thus the identity mapping is proper. However, ifg denotes a generator ofG then, by
takingT := G and noting the equations.g0/2 = gg3 = .g2/2 andg2 = g0g2 = .g3/2,
we see that the identity mapping is not special.

The aim of the present paper is to show that, on a finite-dimensional algebraA
over a real closed field, the following conditions are equivalent: (i)A admits a
special involution, (ii)A admits a proper involution, (iii)A is semisimple. (In the
previous paragraph, we have an example of an involution on a real finite-dimensional
semisimple algebra that is proper but not special; however, a different involution—
namely that induced by inversion in the group—is special.) With a natural adjustment
to the definition of an involution, a similar result follows for a finite-dimensional
algebra over an algebraically closed field of characteristic zero. These results, for the
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real and complex fields, were announced in [4]. In each case, the author’s proof used
a result in representation theory. The direct proofs given here are extensions of the
argument in [2, Example 4].

2. Finite-dimensional algebras over real closed fields

We begin by considering division algebras. A classical theorem of Frobenius states
that, to within isomorphism, the only finite-dimensional division algebras overR

areR itself, the complex fieldC and the algebraH of real quaternions [5, Section 131,
pages 201–202]. The proof of this theorem applies also to the case whereR is
replaced by any real closed fieldF , for it depends only on two particular properties
[5, Section 70, Theorems 1 and 3]:

(i) F is totally ordered and contains a square root of each non-negative element,
(ii) the field obtained fromF by adjoining a root of the irreducible polynomial

x2 + 1 is algebraically closed.

All the details of the lemma below now follow routinely.

LEMMA 2.1. Every finite-dimensional division algebraD over a real closed fieldF
admits an involutionc : D→ D, d 7→ dc (‘conjugation’) such that

.∀ d ∈ D/ ddc ∈ F; ddc ≥ 0; ddc = 0 ⇒ d = 0;

according to the cases

(i) D = F : Þc = Þ .Þ ∈ F/;
(ii) D = F[i ], wherei 2 = −1 : .Þ + þi /c = Þ − þi .Þ; þ ∈ F/;

(iii) D = F[i; j; k], wherei 2 = j 2 = k2 = −1, i j = k = − j i , jk = i = −k j ;
ki = j = −ik:

.Þ + þi + 
 j + Žk/c = Þ − þi − 
 j − Žk .Þ; þ; 
; Ž ∈ F/:

Observe that the lemma states, in particular, that every finite-dimensional division
algebra over a real closed field admits a proper involution.

THEOREM 2.2. The following conditions on a finite-dimensional algebraA over a
real closed field are equivalent:

(i) A admits a special involution,
(ii) A admits a proper involution,

(iii) A is semisimple.

PROOF. Since, as remarked in Section1, every special involution is a proper invo-
lution, (i) implies (ii).
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A standard short argument, which we include for completeness, shows that (ii)
implies (iii). Let ∗ be a proper involution onA and letN denote the radical ofA.
Suppose thata ∈ N\0. Thenaa∗ ∈ N and so.aa∗/m = 0 for some least positive
integerm. Since∗ is proper,m ≥ 2. Write b := .aa∗/m−1. Thenb = b∗ and so
bb∗ = b2 = .aa∗/2m−2 = 0, since 2m−2 ≥ m. Thusb = 0, contrary to the minimality
of m. HenceN = 0 and soA is semisimple.

We complete the proof by showing that (iii) implies (i). Denote the ground field
of A by F . Consider first the algebraMn.D/ of all n × n matrices over a finite-
dimensional division algebraD over F . Define† : Mn.D/ → Mn.D/, a 7→ a†, by
writing a† := .ac/T , whereac denotes the matrix obtained froma by replacing each
entry ai j by ai j

c (with c as in Lemma2.1) and T denotes transposition. Sincec is
an involution onD, it follows easily that† is an involution onMn.D/. Now denote
the trace ofa ∈ Mn.D/ by −.a/. Then, for alla = [ai j ] ∈ Mn.D/, we have that
−.aa†/ =∑n

i; j=1 ai j ai j
c and so, by Lemma2.1,

.∀ a ∈ Mn.D// −.aa†/ ∈ F; − .aa†/ ≥ 0; − .aa†/ = 0 ⇒ a = 0:(1)

Let A be semisimple. By Wedderburn’s theorem, we may assume, without loss of
generality, thatA is the external direct sum of algebrasAi (i = 1; : : : ; k), where, for
eachi , Ai = Mni

.Di / for some positive integerni and some finite-dimensional division
algebraDi over F . No confusion should arise from the use of the same symbol† to
denote the involution defined on eachMni

.Di / as in the previous paragraph. For all
a ∈ A, denote theAi -component ofa by ai (i = 1; : : : ; k). Then∗ : A→ A, a 7→ a∗

defined by.a∗/i = ai
† (i = 1; : : : ; k) is readily seen to be an involution onA. We

show that it is special.
Let T be a nonempty finite subset ofA. Chooset ∈ T such that

k∑
i=1

−.ti ti
†/ = max

{
k∑

i=1

−.wiwi
†/ : w ∈ T

}
:(2)

Suppose thatt t∗ = uv∗, for someu; v ∈ T . Then, for eachi ,

ti ti
† = uivi

† = .ui vi
†/† = vi ui

†

and so

.ui − vi /.ui − vi /
† = ui ui

† + vi vi
† − 2ti ti

†:

Thus, by (1) and (2),

0 ≤
k∑

i=1

−..ui − vi /.ui − vi /
†/

=
k∑

i=1

−.ui ui
†/+

k∑
i=1

−.vi vi
†/− 2

k∑
i=1

−.ti ti
†/ ≤ 0:
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Hence
∑k

i=1 −..ui−vi /.ui−vi /
†/ = 0. Thus, by (1), ui = vi for eachi . Consequently,

u = v. This shows that∗ is special.

An analogous result (Corollary2.3) holds for algebras over algebraically closed
fields of characteristic zero. As noted earlier, if we adjoin to a real closed field a root
of x2+1 then the resulting field is algebraically closed. In fact, all algebraically closed
fields arise in this way. A statement, with a proof for the countable case, is given in
[5, Section 71]; the general case is a simple application of Zorn’s lemma. LetA be an
algebra over an algebraically closed fieldF of characteristic zero. ThenF = R[i ],
whereR is a maximal formally real subfield andi 2 = −1. Definec (‘conjugation’)
on F by taking.¾ + �i /c = ¾ − �i .¾; � ∈ R/. By aninvolution ∗ on A we now mean
a ring involution such that

.∀ a ∈ A/.∀ ½ ∈ F/ .½a/∗ = ½ca∗:(3)

Properandspecialinvolutions are defined as before. Suppose thatA is semisimple.
SinceF is algebraically closed, the only finite-dimensional division algebra overF
is F itself and soA is isomorphic to a direct sum of full matrix algebras overF . Now
regardA as an algebra overR. Then∗ : A→ A, constructed fromc as in the proof
that (iii) implies (i) in Theorem2.2, is a special involution; moreover, it satisfies (3).
Hence∗ is a special involution onA as an algebra overF . Thus we obtain the result
below:

COROLLARY 2.3. The following conditions on a finite-dimensional algebraA over
an algebraically closed field of characteristic zero are equivalent: A admits a special
involution, A admits a proper involution,A is semisimple.
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