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Abstract

We prove that the conservativity of the geodesic flow is equivalent to the ergodicity of the geodesic flow
with respect to the Bowen-Margulis measure on visibility manifolds.
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1. Introduction

In this paper, we study the ergodicity of the geodesic flow on a manifold with
weak hyperbolic properties. The weak hyperbolic properties are to have a nonposi-
tive sectional curvature and a geodesic line between two distinct points in the ideal
boundary at infinity, which are the important properties in hyperbolic manifoldH

n.
These properties were introduced by Eberlein in [4, 5] and we use the term ‘visibility
manifold’ to describe a manifold with such properties.

We are interested in finding a measure on the unit tangent space that is invariant
under the geodesic flow, and in determining the ergodicity of geodesic flow with
respect to this measure. In [10], Sullivan constructed a measure on the unit tangent
bundle, which is invariant with respect to the geodesic flow on a hyperbolic manifold
with the constant curvature−1. The measure was called the Bowen-Margulis measure
and it maximized the measure entropy for geodesic flow on the compact hyperbolic
manifold. He constructed this measure using the Patterson-Sullivan measures on the
ideal boundary at infinity. He showed that the conservativity of the geodesic flow is
equivalent to the ergodicity of the geodesic flow, with respect to the measure. In [11],
Yue extended these results to a Cartan Hadamard manifold with a sectional curvature
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pinched by two negative constants, using the method that Sullivan had used in [10].
Here we show that these results are still true on visibility manifolds.

Let H be ann-dimensional, complete and simply connected Riemannian manifold
without conjugate points. We say thatH satisfiesthe visibility axiomif, for every
point p ∈ H and every numberž > 0, there existsR = R.p; ž/ > 0 such that for any
geodesic
 : R→ H with d.p; 
 / ≥ R, 6 p.
 / ≤ ž, where

6 p.
 / = sup{6 p.
 .t/; 
 .s// | t; s ∈ R}:
Approximately speaking, the visibility axiom means that geodesics with a suffi-

ciently large distance from a point look small. In [2], it has been shown that the
visibility axiom is equivalent to the property that any two distinct points in the ideal
boundary are always joined by a geodesic line inH . It should be noted that for
some two distinct points in the ideal boundary ofH , there may be more than one
geodesic line between the two points. Two geodesic lines between the same couple
of points in the ideal boundary bound a flat strip. When we say thatH satisfiesthe
uniform visibility axiom, we attain a constantR = R.ž/, independent ofp ∈ H in the
definition of visibility axiom. This axiom implies thatH can contain only a flat strip
not a half plane.

Let us define a visibility manifold in general. LetM be a Riemannian manifold
without conjugate points.M is said to be avisibility manifoldif the universal coverH
of M satisfies the uniform visibility axiom.

SupposeH satisfies the uniform visibility axiom. Let@H be the ideal boundary at
infinity. @H is then equivalent to the set of the geodesic rays from a fixed point inH .
With the cone topology,H is diffeomorphic to an open discDn, and the ideal bound-
ary@H of H at infinity is homeomorphic to a sphereSn−1 inRn. Let0 be a torsion-free
and discrete isometry group acting onH freely and properly discontinuously.

A limit point of 0 is a limit point of an orbit0x for somex ∈ H . Because0
is discrete, there is no limit point of0x in H and the limit points for0x and0y
are the same for anyx and y in H . The set of all limit points is denoted byL.0/.
According to Eberlein [3], L.0/ has a singleton, two points, or infinitely many points
on a visibility manifold. From now on, we only deal with the case thatL.0/ has
infinitely many points. Such0 is called aFuchsian group.

In [8], Knieper showed that the geodesic flow is ergodic with respect to the Bowen-
Margulis measure on a compact manifold of rank 1. It should be noted that he proved
the results without a condition on the sectional curvature except its nonpositivity. In
this paper we prove that the geodesic flow is ergodic with respect to the Bowen-
Margulis measure without the compactness ofM .

MAIN THEOREM. Suppose thatM is a visibility manifold with nonpositive sectional
curvature. LetH be a universal cover ofM and M = 0\H, where0 is a Fuchsian
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group. If the geodesic flow is conservative with respect to the Bowen-Margulis measure
on the unit tangent space ofM, then it is ergodic with respect to the same measure.

We prove the Main Theorem as Theorem3.10in Section3. The converse of the
Main Theorem is clearly true. The Main Theorem says that the conservativity of
geodesic flow is equivalent to the ergodicity of the geodesic flow with respect to the
Bowen-Margulis measure. When Sullivan proved the same result as the main theorem
in Hyperbolic ManifoldHn with the constant sectional curvature−1 in [10], he used
the Hopf’s generalization of Birkhoff’s ergodic theorem to prove that the geodesic
flow was also ergodic under the condition that the volume ofM is infinite. At that
time, the asymptotic geodesic rays played an important role. InH

n, the distance
between two asymptotic rays converges to 0 as the rays go to the same boundary point
at infinity. This still holds in a manifold with strictly negative curvature.

If we consider the Euclidean spaceRn or a manifold with a flat strip, then the
distance of two asymptotic geodesic rays which bound a flat strip does not converge
to 0 at infinity. Our visibility manifold may contain a flat strip, and we have difficulty
in using the Hopf’s generalization of Birkhoff’s ergodic theorem. We overcome this
difficulty under the hypothesis that the geodesic flow is conservative. The conservative
set can be expressed with the radial limit set. We control the distance between
two asymptotic geodesic rays converging to the same radial limit point. In fact, in
Theorem3.10, we prove that the distance between two asymptotic rays converges to 0
as the rays go to the same radial limit point. If the geodesic flow is conservative, then
the radial limit set has full measure ofSM. Therefore, in Theorem3.10, we prove the
ergodicity of the geodesic flow using the Hopf’s generalization of Birkhoff’s ergodic
theorem.

2. Conformal density and Bowen-Margulis measure

Let H be ann-dimensional, complete and simply connected Riemannian manifold
with nonpositive sectional curvature. Let0 be a torsion-free, discrete isometry group
acting onH freely and properly discontinuously inH . Let M = 0\H be a visibility
manifold. In order to construct the Bowen-Margulis measure, we begin with the
construction of the Patterson-Sullivan measures in@H and some notations defined
in [7]. We define the family of measures¼x, for anyx ∈ H , by

¼x = lim
s→Ž.0/+

1

gs.y; y/

∑

∈0

e−sd.x;
 y/Ž
 y; s> Ž.0/;

wheregs.x; y/ = ∑

∈0 e−sd.x;
 y/ for s> 0 andx; y ∈ H , Ž.0/ is the critical exponent

of 0, andŽ
 y is the Dirac mass at
 y. The measure¼x is concentrated onL.0/. For
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any other pointx′ ∈ H , ¼x′ and¼x are absolutely continuous and moreover the
Radon-Nikod´ym derivative at¾ ∈ L.0/ is

d¼x′

d¼x
.¾/ = e−Ž.0/²x;¾ .x′/;(2.1)

where²x;¾ .x′/ is a Busemann function.
For 
 ∈ 0, we have


 ∗¼x = ¼
−1.x/:(2.2)

Generally, the family{¼x} of measures onL.0/ satisfying (2.1) and (2.2) is called a
Ž.0/-conformal density or Patterson Sullivan measures.

Let c > 0. ThenOx0.x; c/ = {� ∈ @H | cx0;� ∩ B.x; c/ 6= ∅} is a shadow of a
ball B.x; c/ from x0 into @H . We say that a point� ∈ @H is a radial limit point if,
for somec > 0 andx ∈ H , � belongs to infinitely manyOx.
 x; c/ for 
 ∈ 0. The
radial limit set is the set of all radial points and is denoted byLr .0/. We understand
that � ∈ Lr .0/ means that any geodesic ray fromx ∈ H to � intersects somec-
neighbourhood of0x infinitely many times. Obviously,Lr .0/ is non-empty. The
following theorem proves the uniqueness of theŽ.0/-conformal density onH . Its
proof can be found in [7].

THEOREM 2.1. Suppose that{¼x}x∈H is anÞ-conformal density of a Fuchsian group
0 and¼x.Lr .0// > 0. Then

(1) ¼x.Lr .0// = ¼x.@H /;
(2) Þ = Ž.0/;
(3) {¼x}x∈H is the uniqueŽ.0/-conformal density of0 and0 is ergodic onH with

respect to{¼x}x∈H ;
(4) 0 is of divergent type.

Let S H andSM be the unit tangent space ofH andM respectively. Consider the
canonical0-action on@H × @H induced by the0-action on@H , which is defined
by 
 .�; ¾/ = .
 �; 
 ¾/ for all 
 ∈ 0 and�; ¾ ∈ @H . Since0\H = M we have
0\S H = SM. If we construct a measure onS H that is invariant with respect to the
geodesic flow onS H and the0-action onS H, then it is a measure onSM that is
invariant with respect to the geodesic flow onSM.

A geodesic can be thought of as two points in the ideal boundary in a hyperbolic
manifold. Each geodesicc : R→ H determines two end points in@H such that

.c.−∞/ = c−; c.+∞/ = c+/ ∈ .@H × @H − {diag}/:
Conversely, for every two distinct points.�; ¾/ ∈ .@H × @H − {diag}/, there is an
infinite geodesicc on H satisfyingc.−∞/ = � andc.+∞/ = ¾ . However, this
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geodesicc may not be a unique one between� and¾ on the visibility manifold, even
though we think of geodesics up to the reparametrization.

Let x ∈ H be fixed. For a geodesic linec on H , x.c/ is the point inc satisfying
d.x.c/; x/ = d.x; c/. We define the following map:

F : S H → @H × @H × R
byF .v/ = .cv.−∞/; cv.+∞/; t/, wherecv : R → H is a geodesiċcv.0/ = v

andt = d.cv.0/; x.c//. This mapF is a surjective map andF .
 v/ = 
F .v/ for

 ∈ 0 andv ∈ S H. Let gt denote the geodesic flow onS H or SM ambiguously. If
we have a0-invariant measure¹ on @H × @H , we can obtain agt-invariant measure
F ∗.¹ × dt/ on SM defined byF ∗.¹ × dt/.A/ = .¹ × dt/.F .A//, for all A ⊂ SM.

THEOREM 2.2. Let ¼ be anyŽ.0/-conformal density of0. A measuredU¼
x on

@H × @H × R is defined by

dU¼
x .�; ¾; t/ = eŽ.0/þx.�;¾/d¼x.�/d¼x.¾/dt;

whereþx.�; ¾/ = ²x;�.y/ + ²x;¾ .y/ for any point y on the geodesic from� to ¾ .
The measuredU¼

x is therefore locally finite and invariant under the action of0.
Furthermore, this measuredU¼

x does not depend on the choice of the base points.

Yue proved this result on the Cartan-Hadamardmanifold. We prove Theorem2.2on
the visibility manifold with a little modification of Yue’s. SinceF ∗.dU¼/ is invariant
under the0-action, we can canonically induce a measure onSM = 0\S H, which is
also invariant under the geodesic flowgt . The correspondinggt-invariant measure on
SM is denoted byd¦¼, which is calledthe Bowen-Margulis measureon SM.

3. Ergodicity of geodesic flow

In this section, we prove the ergodic property of¦¼ under the geodesic flow. Note
that SM is not necessarily compact and the measure¦¼.SM/ might be infinite. We
cannot therefore use the Birkhoff ergodic theorem. We recall Hopf’s generalization of
this theorem without proof. Let.X;d/ be a separableand complete metric space which
is equipped with a¦ -finite measure¼ on its Borel subsets. LetTt be a continuous
flow in X.

THEOREM 3.1. If f;h ∈ L1.X/, h > 0 and
∫ u

0 h.Ts.x//ds → ∞ asu → ∞ for
almost allx ∈ X, then the limit

�.x/ = lim
u→∞

∫ u

0 f .Ts.x//ds∫ u

0 h.Ts.x//ds

exists almost all. The function� is measurable andTt-invariant.
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The flow Tt on the spaceX is said to beergodic if, wheneverA is a measurable
andTt-invariant subset ofX; either¼.A/ = 0 or¼.X − A/ = 0.

THEOREM 3.2. If Tt is ergodic andf;h satisfy the hypotheses of Theorem3.1, then
for almost allx ∈ X

lim
u→∞

∫ u

0 f .Ts.x//ds∫ u

0 h.Ts.x//ds
=

∫
X f d¼∫
X h d¼

:

Theorem3.2 means that if the geodesic flow is ergodic then the function� given
in Theorem3.1 must be constant for almost allx ∈ X. The Remark3.3 below was
proved in [9] and [6].

REMARK 3.3. (1) The converse of Theorem3.2 is also true. In general, the
converse has been used in proving the ergodicity of a flow.
(2) Theorem3.2and (1) of Remark3.3are also true if the limit

�.x/ = lim
u→−∞

∫ u

0 f .Ts.x//ds∫ u

0 h.Ts.x//ds

exists for almost allx ∈ X.

We now define the conservative and dissipative sets associated with a flowTt . The
conservative set plays an important role when we deal with a dynamical system on a
non-compact space.

DEFINITION 3.4. Let Tt be a flow onX. A point x ∈ X is called adissipativepoint
for T t if for any compactA ⊂ X there exists at0 > 0 such thatTt x =∈ A for all t ≥ t0.
Otherwisex is calledconservative. Let CTt

andDTt
denote the set of all conservative

and dissipative points inX, respectively. The flowTt is said to be conservative with
respect to¼ if ¼.DT t

/ = 0:

We return to our notation. Let0 be a Fuchsian group acting onH and let¼ be a
Ž.0/- conformal density on@H that is invariant under0. Let gt be the geodesic flow
on S H or SM and let¦¼ be the Bowen-Margulis measure onSM.

THEOREM 3.5. If gt is a conservative geodesic flow onS H with respect tod¦¼,
then

∑

∈0 e−Ž.0/d.x;
 x/ = ∞.

PROOF. By the definition of the conservativity of thegt , the image of the conser-
vative set of the geodesic flowgt on SM underF is the0-quotient of

.@H × Lr .0/− {diag}/ ×R:
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We assume that
∑


∈0 e−Ž.0/d.x;
 x/ < ∞. In [7], it was shown that if

∑

∈0

e−Ž.0/d.x;
 x/ < ∞;

then¼x.Lr .0// = 0. Therefore, we have that¦¼.Cgt
/ = 0 and the geodesic flowgt

on SM is dissipative.

In order to prove the ergodicity of the geodesic flow, we have to show there is a
positive integrable functionh on X, satisfying that

∫ u

0 h.Ts.x//ds → ∞ asu → ∞
for almost allx ∈ X (see Remark3.3(1)). Sinceh is to be¦¼-integrable onSM;we
need some estimate to control the Bowen-Margulis measure¦¼ on SM. Recall that
the Bowen-Margulis measure is defined on@H × @H ×R by

dU¼
x .�; ¾; t/ = eŽ.0/þx.�;¾/ d¼x.�/d¼x.¾/dt

for any two points�; ¾ ∈ @H , whereþx.�; ¾/ = ²x;�.y/+ ²x;¾.y/ for any pointy on
the geodesic from� to ¾ . Since the Patterson-Sullivan measure¼x is finite on@H; it
suffices to estimate onlyþx on @H × @H .

For any two points� and¾ ∈ @H , consider a geodesicc from � to ¾ and

d.x; c/ = min{d.x; c.t// | t ∈ R} < ∞:

Define a mapDx : @H × @H → R by

Dx.�; ¾/ = min{d.x; c/ | c is a geodesic between� and ¾ }:

This map is well defined because of the uniform visibility axiom. Furthermore, we
can get a geodesicc between� and¾ such thatDx.�; ¾/ = d.x; c/.

LEMMA 3.6. For all x ∈ H and¾; � ∈ @H, þx.¾; �/ ≤ 2Dx.¾; �/.

PROOF. We considerþx.¾; �/ geometrically. Note thatþx.¾; �/ is the length of the
segment on
 cut out by the horosphere which is passing throughx and centered at¾
and�, where
 is a geodesic line between¾ and�. Let c be a geodesic between¾
and�. It suffices to show thatþx.¾; �/ ≤ 2d.x; c/.

We may assume thatx is not onc. Letq be the point oncclosest tox and letH .¾;q/
andH .�;q/ be horospheres centered at¾ and� respectively that pass throughq. The
geodesic fromq to x is orthogonal toc and hence tangent to bothH .¾;q/ andH .�;q/
Since horoballs are convex,x must lie outside the interiors of those horoballs bounded
by H .¾;q/ and H .�;q/. This allows us to definep¾ as the point whereH .¾;q/
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intersects that geodesic ray fromx to ¾ and to definep� as the point whereH .�;q/
intersects the geodesic ray fromx to p�. It is not difficult to show that

d.x; p¾ /+ d.x; p�/ = þx.¾; �/:

On the other hand,

d.x; p¾ / = d.x; H .¾;q// ≤ d.x;q/ and

d.x; p�/ = d.x; H .�;q// ≤ d.x;q/:

Thusþx.¾; �/ = d.x; p¾ /+ d.x; p�/ = 2d.x; c/.

For allv ∈ Sx M , let cv : R→ M be a geodesic withc′
v.0/ = v andcv.0/ = x.

THEOREM 3.7. There is a positive function² on SM such that² is integrable with
respect to¦¼ and for allv;w ∈ SM with d.cv.0/; cw.0// ≤ 1,

.².v/− ².w//

².w/
≤ C1d.cv.0/; cw.0//;

whereC1 > 0 is a constant andd is the metric onM.

PROOF. Fix a pointx in M . Define a function− : SM → [0;∞/ by

−.v/ = d.cv.0/; x/:

Let Br = −−1[0; r ]. Let us estimate¦¼.Br /. If l is a geodesic passing throughB.x; r /,
then the length of the intersectionl ∩ B.x; r / is less than or equal to 2r . Since thed¦¼

is a pullback ofdU¼ anddU¼ = eŽ.0/þx.�;¾/ d¼x.�/d¼x.¾/dt, Lemma3.6 implies
that¦¼.Br / ≤ Cre2Ž.0/r . Let ž > 0. Define a function² : SM → R by

².v/ = e−.2Ž.0/+ž/−.v/

for any v ∈ SM. We can show that² is integrable with respect to¦¼ and for all
v;w ∈ SM with d.cv.0/; cw.0// ≤ 1, (see [9])

.².v/ − ².w//

².w/
≤ Cd.cv.0/; cw.0//;

whereC > 0 is a constant.

The conservativity of the geodesic flowgt means that

dU¼[.@H × Lr .0/− {diag}/×R]
has full measure ofSM. Therefore, it suffices to show that Remark3.3still holds on
F−1[.@H × Lr .0/− {diag}/ ×R].
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Now let v ∈ S H. Let Hv be a horosphere based atcv.∞/ ∈ @H passing
through cv.0/. Then we havew ∈ Hv implying that cv.∞/ = cw.∞/; that is,
cv.t/ andcw.t/ are asymptotic for allt ≥ 0. LetWss andWsu denote the strong stable
and strong unstable foliation, respectively. For anyv ∈ S H, the leaves throughv of
these foliations are given by

Wsu.v/ = {w ∈ Hv | cv.∞/ = cw.∞/}
Wss.v/ = {−w ∈ H−v | cv.−∞/ = cw.−∞/}:

We can consider0 as a subgroup of the isometries ofH . Considering all the isometries
of H , we can distinguish three distinct types, namely: hyperbolic isometry, parabolic
isometry and elliptic isometry. Note that our Fuchsian group0 has no elliptic isometry.

REMARK 3.8. (1) In a visibility manifold, there is a geodesic
 fixed by an
element of0 without any flat strip, which is called an axis. The element of0 fixing
a geodesic
 is a hyperbolic isometry in0. This can be proved by modifying [4,
Proposition 2.3] and [1, Lemma 3.2]. For a recurrent vectorv ∈ S H, the setF.v/
of geodesics parallel tocv is a completely flat and totally geodesic submanifold ofH
without boundary. Assume that the dimensionm of F.v/ satisfiesm ≥ 2. ThenF.v/
contains a 2-dimensional completely flat and totally geodesic submanifold ofF.v/
without boundary. This contradicts the uniform visibility axiom. Therefore,F.v/ has
to be a geodesic linecv andcv does not contain a flat strip.
(2) Let� ∈ @H and let
 be an axis without any flat strip in (1). A geodesic from

 .∞/ to� does not bound a flat strip. The proof is similar to the proof of Theorem 3.1
in [1] or the proof of Lemma 3.4 in [1].

Lemma3.9 is a very important step in proving Theorem3.10.

LEMMA 3.9. Let ¾ ∈ Lr .0/ be any point. Supposec¾ is a geodesic line from

 .−∞/ to ¾ , where
 is an axis without a flat strip. Letc′

¾ .0/ = v ∈ S H. Then for
anyw ∈ Wss.v/, d.gtv; gtw/ → 0 ast → ∞.

PROOF. Since¾ is in Lr .0/ ⊂ L.0/, ¾ is a nonwandering point inS H. There
are sequences{�n} in 0, {tn} in R and{vn} in S H such thattn → ∞, vn → v and
{D�n.gtnvn/} goes tov asn → ∞. Letw ∈ Wss.v/. Thend.gtv; gtw/ is monotone
decreasing fort ∈ R. Supposed.gtv; gtw/ does not converge to 0. Then there exists
a constantb1 > 0 such that

b1 ≤ d.gtv; gtw/ ≤ d.v;w/(3.1)

for all t ≥ 0.
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Since¾ ∈ Lr .0/ and{gtnvn} is close toD�−1
n v, there is a constantd > 0 such that

d.³.gtnvn/; c¾ / < d for all n, where³ : S H → H is a canonical projection and we
use the same notation{gtnvn} as a subsequence of{gtnvn} in the definition ofLr .0/

ambiguously. We consider the triangle.³.v/; gtnv; gtnvn/. By the visibility axiom
there is a constantC > 0 such thatd.gtnv; gtnvn/ < C for all n. Then for alln,

d.D�n.g
tnv/; D�n.g

tnvn// < C:(3.2)

Since{D�ngtnvn} is a bounded sequence, so is{D�ngtnv} by (3.2). Therefore the
sequence{D�ngtnv} has a subsequence converging tov̄ ∈ S H which we denote by
{D�ngtnv}. By (3.1), we have that for alln and−tn ≤ s ≤ ∞

b1 ≤ d.D�n.g
tn+sv/; D�n.g

tn+sw// ≤ d.v;w/:(3.3)

Since{D�ngtnv} is converging tōv, {D�ngtnw} is a bounded sequence and it has a
subsequence converging tow̄ which we denote by{D�ngtnw}. Whenn goes to∞ in
(3.3), we have that

b1 ≤ d.gsv̄; gsw̄/ ≤ d.v;w/;(3.4)

for all s ∈ R. This means thatcw̄ has a flat strip, wherecw̄ is a geodesic with
c′
w̄.0/ = w̄.

In order to obtain a contradiction, we prove that the geodesiccw̄ with c′
w̄.0/ = w̄

cannot have any flat strip.
Sinced.gtvn; gtv/ ≤ d.gtnvn; gtnv/ + d.vn; v/ for 0 ≤ t ≤ tn, there is a constant

C > 0 such that for all 0≤ t ≤ tn,

d.gtvn; gtw/ ≤ d.gtvn; gtv/+ d.gtv; gtw/ ≤ C + d.v;w/:

Therefore, for alln and for−tn ≤ s ≤ 0,

d.gsD�n.g
tnvn/; gsD�n.g

tnw// = d.gtn+svn; gtn+sw/ ≤ C + d.v;w/:

Hence we have that for all−∞ < s < 0, d.gsv; gsw̄/ ≤ C + d.v;w/. This means
thatcw̄.−∞/ = cv.−∞/ = 
 .−∞/ in @H . Since
 is an axis fixed by a hyperbolic
isometry in0 and has no flat strip,cw̄ has to have no flat strip. (See Remark3.8.)

We now prove the Main Theorem, that is, the ergodicity of the geodesic flow
on SM.

THEOREM 3.10. If the geodesic flow is conservative with respect to¦¼, then it is
ergodic with respect to the same measure.
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PROOF. Since the geodesic flow is conservative onSM, we deduce that∑

∈0

e−Dd.x;
 x/ = ∞:

Consider the integrable function² on SM defined in Theorem3.7. Let w ∈ SM
be a conservative point. Then it can be proved that

∫ ∞
0 ².gtw/dt = ∞. Since the

geodesic flowgt is conservative with respect to¦¼, the limit

lim
T→∞

∫ T

0 f .gtv/dt∫ T

0 ².g
tv/dt

= f².v/

exists for f ∈ L1.¦¼/ and for¦¼-almost allv ∈ SM. It is sufficient to show thatf²
is constant for almost allf ∈ L1.d¦¼/. Without loss of generality, we assume thatf
is continuous with a compact support.

Let 
 be an axis onM . Let v ∈ SM be a conservative point. Letv′ ∈ SM be
chosen such thatv′ ∈ Wss.v/ and cv′.−∞/ = 
 .−∞/. By Lemma3.9 we have
d.gt .v/; gt .v

′// → 0 ast → ∞. Since f is continuous with a compact support and²
has the property as in Lemma3.6, we have

f².v/ − f².v
′/ = lim

T→∞

[∫ T

0 f .gt.v//dt∫ T

0 ².g
t.v//dt

−
∫ T

0 f .gt.v′//dt∫ T

0 ².g
t.v′//dt

]
(3.5)

= lim
T→∞

[∫ T

0

[
f .gt.v// − f .gt.v′//

]
dt∫ T

0 ².g
t.v//dt

−
∫ T

0 f .gt .v′//dt∫ T

0 ².g
t.v′//dt

∫ T

0
².gt .v//−².gt .v′//

².gt .v//
².gt.v//dt∫ T

0 ².g
t.v//dt

]
= 0:

If v andv′ are two points inSM with v ∈ Wsu.v′/ andcv′.∞/ = cv.∞/ = 
 .−∞/,
thend.gt .v/; gt .v

′// → 0 ast → −∞. Using the arguments similar to those used in
the above case, we also have

f².v/ = f².v
′/:(3.6)

We lift f² to S Hand we use the same notationf² . Then f² is0-invariant on@H ×@H .
By (3.5) and (3.6), f² is constant on@H × ¾ and on¾ × @H for almost all¾ ∈ Lr .0/:

We can easily show thatf² is constant almost all on@H × @H , because the geodesic
flow is conservative. We deduce thatf² is constant almost everywhere onSM.
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140 Hyun Jung Kim [12]

[2] W. Ballmanna, M. Gromov and V. Schroeder,Manifolds of non positive curvature, Progress in
Mathematics 61 (Birkḧauser, Boston, 1985).
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