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Abstract

We prove that the conservativity of the geodesic flow is equivalent to the ergodicity of the geodesic flow
with respect to the Bowen-Margulis measure on visibility manifolds.
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1. Introduction

In this paper, we study the ergodicity of the geodesic flow on a manifold with
weak hyperbolic properties. The weak hyperbolic properties are to have a nonposi-
tive sectional curvature and a geodesic line between two distinct points in the ideal
boundary at infinity, which are the important properties in hyperbolic manifsid
These properties were introduced by Eberleindirb] and we use the term ‘visibility
manifold’ to describe a manifold with such properties.

We are interested in finding a measure on the unit tangent space that is invariant
under the geodesic flow, and in determining the ergodicity of geodesic flow with
respect to this measure. 10, Sullivan constructed a measure on the unit tangent
bundle, which is invariant with respect to the geodesic flow on a hyperbolic manifold
with the constant curvaturel. The measure was called the Bowen-Margulis measure
and it maximized the measure entropy for geodesic flow on the compact hyperbolic
manifold. He constructed this measure using the Patterson-Sullivan measures on th
ideal boundary at infinity. He showed that the conservativity of the geodesic flow is
equivalent to the ergodicity of the geodesic flow, with respect to the measurkl]In [

Yue extended these results to a Cartan Hadamard manifold with a sectional curvature
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pinched by two negative constants, using the method that Sullivan had usgd.in [
Here we show that these results are still true on visibility manifolds.

Let H be ann-dimensional, complete and simply connected Riemannian manifold
without conjugate points. We say thhtt satisfiesthe visibility axiomif, for every
point p € H and every number > 0, there existiR = R(p, ¢€) > 0 such that for any
geodesig/ : R — H withd(p, y) > R, Zp(y) < €, where

Lp(y) = SupLp(y (D), y(9)) | t,s € R}.

Approximately speaking, the visibility axiom means that geodesics with a suffi-
ciently large distance from a point look small. 18][it has been shown that the
visibility axiom is equivalent to the property that any two distinct points in the ideal
boundary are always joined by a geodesic lineHn It should be noted that for
some two distinct points in the ideal boundarytéf there may be more than one
geodesic line between the two points. Two geodesic lines between the same coupls
of points in the ideal boundary bound a flat strip. When we saykhaatisfiesthe
uniform visibility axiomwe attain a constai® = R(¢), independent op € H in the
definition of visibility axiom. This axiom implies thatl can contain only a flat strip
not a half plane.

Let us define a visibility manifold in general. L& be a Riemannian manifold
without conjugate pointsM is said to be aisibility manifoldif the universal coveH
of M satisfies the uniform visibility axiom.

SupposeH satisfies the uniform visibility axiom. LeétH be the ideal boundary at
infinity. dH is then equivalent to the set of the geodesic rays from a fixed pokit in
With the cone topologyH is diffeomorphic to an open didd", and the ideal bound-
arydH of H atinfinity is homeomorphic to a sphe®tin R". LetI" be atorsion-free
and discrete isometry group acting bhnfreely and properly discontinuously.

A limit point of I is a limit point of an orbitl'x for somex € H. Becausd”
is discrete, there is no limit point dfx in H and the limit points fol'x andT'y
are the same for any andy in H. The set of all limit points is denoted dy(I").
According to Eberleind], L (") has a singleton, two points, or infinitely many points
on a visibility manifold. From now on, we only deal with the case théf) has
infinitely many points. Sucl is called aFuchsian group

In [8], Knieper showed that the geodesic flow is ergodic with respect to the Bowen-
Margulis measure on a compact manifold of rank 1. It should be noted that he proved
the results without a condition on the sectional curvature except its nonpositivity. In
this paper we prove that the geodesic flow is ergodic with respect to the Bowen-
Margulis measure without the compactnes#/hf

MAIN THEOREM. Suppose that! is a visibility manifold with nonpositive sectional
curvature. LetH be a universal cover ofl and M = I'\H, whereT is a Fuchsian
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group. Ifthe geodesic flow is conservative with respect to the Bowen-Margulis measure
on the unit tangent space M, then it is ergodic with respect to the same measure.

We prove the Main Theorem as Theor@m0Oin Section3. The converse of the
Main Theorem is clearly true. The Main Theorem says that the conservativity of
geodesic flow is equivalent to the ergodicity of the geodesic flow with respect to the
Bowen-Margulis measure. When Sullivan proved the same result as the main theoren
in Hyperbolic ManifoldH" with the constant sectional curvaturd in [10], he used
the Hopf's generalization of Birkhoff’s ergodic theorem to prove that the geodesic
flow was also ergodic under the condition that the volumois infinite. At that
time, the asymptotic geodesic rays played an important roleH"nthe distance
between two asymptotic rays converges to 0 as the rays go to the same boundary poir
at infinity. This still holds in a manifold with strictly negative curvature.

If we consider the Euclidean spa®® or a manifold with a flat strip, then the
distance of two asymptotic geodesic rays which bound a flat strip does not converge
to O at infinity. Our visibility manifold may contain a flat strip, and we have difficulty
in using the Hopf’s generalization of Birkhoff’s ergodic theorem. We overcome this
difficulty under the hypothesis that the geodesic flow is conservative. The conservative
set can be expressed with the radial limit set. We control the distance between
two asymptotic geodesic rays converging to the same radial limit point. In fact, in
TheorenB.10 we prove that the distance between two asymptotic rays converges to 0
as the rays go to the same radial limit point. If the geodesic flow is conservative, then
the radial limit set has full measure 8M. Therefore, in Theorerd.10 we prove the
ergodicity of the geodesic flow using the Hopf’s generalization of Birkhoff's ergodic
theorem.

2. Conformal density and Bowen-Margulis measure

Let H be ann-dimensional, complete and simply connected Riemannian manifold
with nonpositive sectional curvature. LEtbe a torsion-free, discrete isometry group
acting onH freely and properly discontinuously id. Let M = I'\H be a visibility
manifold. In order to construct the Bowen-Margulis measure, we begin with the
construction of the Patterson-Sullivan measureghkhand some notations defined
in [7]. We define the family of measuresg, for anyx € H, by

. 1
= lim
s>o* Gs(Y, Y)

Zefsd(x,yy)(;yy, s> §(IN),

yel

Hex

wheregs(X, y) = Zyer e sdxv fors > O andx, y € H, §(I') is the critical exponent
of I', and$,, is the Dirac mass aty. The measurg, is concentrated oh(I"). For
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any other pointx’ € H, u, and u, are absolutely continuous and moreover the
Radon-Nikogi derivative at € L(I") is

d:ux/
dux

wherepy ;(X) is a Busemann function.
Fory eI, we have

(2.2) () = e DPme)

(2.2) Y hx = By

Generally, the family{u,} of measures oh (") satisfying €.1) and @.2) is called a
3(I')-conformal density or Patterson Sullivan measures.

Letc > 0. ThenO,(x,c) = {n € dH | ¢4, N B(X,C) # ¥} is a shadow of a
ball B(x, c) from x, into dH. We say that a poinf € dH is aradial limit point if,
for somec > 0 andx € H, ¢ belongs to infinitely manyD,(yx, c) for y € I'. The
radial limit set is the set of all radial points and is denoted_b¢l"). We understand
that € L"(I') means that any geodesic ray frome H to ¢ intersects some-
neighbourhood of"x infinitely many times. ObviouslyL" (I") is non-empty. The
following theorem proves the uniqueness of &(&)-conformal density orH. Its
proof can be found in7].

THEOREM 2.1. Suppose thdfu, }xcH IS ana-conformal density of a Fuchsian group
I' and u, (L"(I")) > 0. Then
(1) ux(L™(I) = ux(dH);
(2) a=4s(I);
(3) {ux}xen is the uniques(I')-conformal density of and T is ergodic onH with

respect to{ /iy }xcH;
(4) T is of divergent type.

Let SH andSM be the unit tangent space Bf and M respectively. Consider the
canonicall'-action ondH x dH induced by the -action ondH, which is defined
by y(n,&) = (yn,y&) forally e " andn,& € dH. Sincel'\H = M we have
I'\SH = SM. If we construct a measure &H that is invariant with respect to the
geodesic flow orSH and thel'-action onSH, then it is a measure o8 M that is
invariant with respect to the geodesic flow 8.

A geodesic can be thought of as two points in the ideal boundary in a hyperbolic
manifold. Each geodesic: R — H determines two end points iH such that

(c(—o0) =c_,c(+00) =¢c;) € (AH x dH — {diag}).

Conversely, for every two distinct pointg, §) € (0H x dH — {diag}), there is an
infinite geodesic on H satisfyingc(—o0) = n andc(+o00) = &. However, this
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geodesi@ may not be a unique one betwegandé on the visibility manifold, even
though we think of geodesics up to the reparametrization.

Letx € H be fixed. For a geodesic lireon H, x(c) is the point inc satisfying
d(x(c), x) = d(x, ¢). We define the following map:

F :SH— 0H x9H x R

by Z (v) = (c,(—00), ¢, (+00), 1), wherec, : R — H is a geodesi€,(0) = v
andt = d(c,(0), x(c)). This map.Z is a surjective map ané (yv) = y.Z (v) for
y € ' andv € SH. Letg' denote the geodesic flow &H or SM ambiguously. If
we have d -invariant measure ondH x dH, we can obtain @'-invariant measure
Z*(v x dt) on SMdefined by.Z*(v x dt)(A) = (v x dt)(Z (A)), forall A c SM.

THEOREM2.2. Let u be anyd(I")-conformal density of’. A measuredU on
dH x dH x R is defined by

dUi(n, &, 1) = &P dpu, (n)dp (§)dt,

where By (n, &) = px,(y) + px(y) for any pointy on the geodesic from to &.
The measurelU! is therefore locally finite and invariant under the action Iof
Furthermore, this measu@U!* does not depend on the choice of the base points.

Yue proved this result on the Cartan-Hadamard manifold. We prove Thebfem
the visibility manifold with a little modification of Yue’s. Sinc&*(dU*) is invariant
under thel"-action, we can canonically induce a measuré&sdvi = I'\SH, which is
also invariant under the geodesic flgiv The corresponding'-invariant measure on
SMis denoted bylo*, which is calledhe Bowen-Margulis measuan S M.

3. Ergodicity of geodesic flow

In this section, we prove the ergodic propertydfunder the geodesic flow. Note
that SMis not necessarily compact and the meastit€S M) might be infinite. We
cannot therefore use the Birkhoff ergodic theorem. We recall Hopf’s generalization of
this theorem without proof. L&, d) be a separable and complete metric space which
is equipped with ar-finite measure. on its Borel subsets. LeE' be a continuous
flow in X.

THEOREM3.1. If f,h € LY(X), h > 0and [ h(T*(x))ds — oo asu — oo for
almost allx € X, then the limit

[y f(Tx0)) ds
X) = lim —f————
o) = fim fo h(Ts(x)) ds

exists almost all. The functigfis measurable and-invariant.
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The flow T' on the space is said to beergodicif, wheneverA is a measurable
andT'-invariant subset oK, eitheru(A) =0oru(X — A) = 0.

THEOREM 3.2. If T' is ergodic andf, h satisfy the hypotheses of Theor@r then
for almost allx € X

im fo f(Tec0)ds _ [y fdu
wseo [Th(Ts(x))ds — fyhdu’

Theorem3.2 means that if the geodesic flow is ergodic then the functigiven
in Theorem3.1 must be constant for almost alle X. The Remark3.3 below was
proved in P] and [6].

REMARK 3.3. (1) The converse of Theore@2 is also true. In general, the
converse has been used in proving the ergodicity of a flow.
(2) TheorenB.2and (1) of Remari8.3are also true if the limit

o fo f(T5(x))ds
¢(x) = lim ITh(T 00y ds

exists for almost alk € X.

We now define the conservative and dissipative sets associated with B'fldie
conservative set plays an important role when we deal with a dynamical system on a
non-compact space.

DEFINITION 3.4. Let T' be a flow onX. A pointx € X is called adissipativepoint
for T'if for any compactA C X there exists & > 0 suchthaff'x ¢ Aforallt > t,.
Otherwisex is calledconservativeLetC™ andD™' denote the set of all conservative
and dissipative points i, respectively. The floW'" is said to be conservative with
respecttqu if £(D™") = 0.

We return to our notation. Ldt be a Fuchsian group acting ¢h and letu be a
8(I")- conformal density 0@ H that is invariant under. Letg' be the geodesic flow
onSHor SMand leto* be the Bowen-Margulis measure 8.

THEOREM 3.5. If ¢! is a conservative geodesic flow &H with respect todo*,
then)" . e ?Mdr0 = oo,
Y

ProoOF. By the definition of the conservativity of thgl, the image of the conser-
vative set of the geodesic flog on SM under.Z is theI"-quotient of

(3H x L' (I") — {diag}) x R.
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We assume thgt . e *"9*79 < oo, In[7], it was shown that if

Zeﬂs(r)d(xmx) < 00,

yel

thenu, (L™ (T")) = 0. Therefore, we have that(C%) = 0 and the geodesic flog/
on SMis dissipative. O

In order to prove the ergodicity of the geodesic flow, we have to show there is a
positive integrable functioh on X, satisfying thatfou h(T5(x)) ds — oo asu — oo
for almost allx € X (see Remark.3(1)). Sinceh is to bes*-integrable orS M, we
need some estimate to control the Bowen-Margulis meastien SM. Recall that
the Bowen-Margulis measure is definedad x dH x R by

dUf(n, &, 1) = &P dpu(n) dix (6) dt

for any two points, £ € dH, wherep,(n, §) = px,(Y) + px(y) for any pointy on
the geodesic from to &. Since the Patterson-Sullivan measuggs finite ondH, it
suffices to estimate onlg, ondH x dH.

For any two points) andé € dH, consider a geodesifrom n to £ and

d(x,c) = min{d(x, c(t)) |t € R} < oo.
DefineamaD, : d0H x 0H — R by
D,(n, &) = min{d(x, ¢) | ¢ is a geodesic betweenand &}.

This map is well defined because of the uniform vilg§paxiom. Furthermore, we
can get a geodesitbetween andé such thatD,(n, £) = d(x, C).

LEMMA 3.6. Forall x € H and&, n € dH, B« (&, n) < 2Dy (&, n).

PrOOF. We considep, (&, n) geometrically. Note thas, (&, n) is the length of the
segment ory cut out by the horosphere which is passing throxgimd centered dt
andn, wherey is a geodesic line betweénandn. Letc be a geodesic betweén
andn. It suffices to show thag, (¢, n) < 2d(x, c).

We may assume thatis not onc. Letq be the point o closestto and letH (£, q)
andH (n, q) be horospheres centeredandn respectively that pass through The
geodesic frong to x is orthogonal t@ and hence tangent to bokh(¢, q) andH (n, Q)
Since horoballs are convexmust lie outside the interiors of those horoballs bounded
by H(¢,q) andH(n,q). This allows us to defing; as the point wheréd (¢, q)
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intersects that geodesic ray fronto £ and to defingp, as the point wheréd (, )
intersects the geodesic ray fromiio p,. Itis not difficult to show that

d(x, pe) +d(x, p,) = B«(&, n).
On the other hand,

d(x, p:) =d(x, H(,q) <d(x,q) and
d(x, p,) =d(x, H(»,q)) < d(x,q).
Thusp (&, n) = d(x, p:) + d(x, p,) = 2d(X, C). O
For allv e SM, letc, : R — M be a geodesic with/ (0) = v andc,(0) = x.

THEOREM 3.7. There is a positive functiop on S M such thatp is integrable with
respect tar* and for allv, w € SMwith d(c,(0), c,(0) <1,

(p(v) = p(w))
p(w)
whereC,; > 0is a constant andl is the metric orM.

=< Cld(cv (O)v Cw (0))1

PrROOF. Fix a pointx in M. Define a functiorr : SM — [0, co) by

T(v) = d(c,(0), x).

LetB, = t7[0,r]. Letus estimate”(B,). If | is a geodesic passing throuBkx, r),
then the length of the intersectibn B(x, r) is less than or equal ta 2 Since thedo
is a pullback ofdU* anddU* = & ™05 dy, (1) duy (€) dt, Lemma3.6 implies
thato”(B,) < Cre®™r, Lete > 0. Define a functiom : SM — R by

p('U) — e—(26(l“)+é)t(v)

for anyv € SM. We can show thap is integrable with respect te* and for all
v, w € SMwith d(c,(0), ¢, (0)) < 1, (see)])

(p(v) — p(w))
p(w)

whereC > 0 is a constant. O

< Cd(c,(0), ¢, (0)),

The conservativity of the geodesic flggt means that
dU*[(dH x L"(I") — {diag}) x R]

has full measure o6 M. Therefore, it suffices to show that Rema&8 still holds on
FYOH x L' (I') — {diag)) x R].
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Now let v € SH. Let H, be a horosphere based @atlco) € dH passing
throughc,(0). Then we havew € H, implying thatc,(co) = c,(c0), that is,
¢, (t) andc,(t) are asymptotic for ali > 0. LetW=ssandW=" denote the strong stable
and strong unstable foliation, respectively. For any SH, the leaves through of
these foliations are given by

W2(v) = {w € H, | ¢,(00) = ¢, (00)}
WSS(U) = {_w € va | Cv(—OO) = Cw(—OO)}.

We can consider as a subgroup of the isometriestdf Considering all the isometries
of H, we can distinguish three distinct types, namely: hyperbolic isometry, parabolic
isometry and ellipticisometry. Note that our Fuchsian grbuas no elliptic isometry.

REMARK 3.8. (1) In a visibility manifold, there is a geodesje fixed by an
element ofl” without any flat strip, which is called an axis. The elemenFdfxing
a geodesic is a hyperbolic isometry if". This can be proved by modifying}|
Proposition 2.3] andl, Lemma 3.2]. For a recurrent vectore SH, the setF(v)
of geodesics parallel to, is a completely flat and totally geodesic submanifoldHof
without boundary. Assume that the dimensiomf F (v) satisfiean > 2. ThenF (v)
contains a 2-dimensional completely flat and totally geodesic submanifdtd0f
without boundary. This contradicts the uniform visibility axiom. Therefére;) has
to be a geodesic line, andc, does not contain a flat strip.
(2) Letn € aH and lety be an axis without any flat strip in (1). A geodesic from
y (00) to n does not bound a flat strip. The proofis similar to the proof of Theorem 3.1
in [1] or the proof of Lemma 3.4 in]].

Lemma3.9is a very important step in proving TheoreniQ

LEMMA 3.9. Let & € L"(I') be any point. Supposg is a geodesic line from
y(—o00) to &, wherey is an axis without a flat strip. Let. (0) = v € SH. Then for
anyw € W(v), d(g'v, g'w) — 0ast — oc.

PrROOF. Since¢ isin L'(I') ¢ L(T"), & is a nonwandering point isH. There
are sequence®,} in ', {t,} in R and{v,} in SH such thatt, — oo, v, — v and
{Dén(gv,)} goes tov asn — oo. Letw € WsS(v). Thend(g'v, g'w) is monotone
decreasing fot € R. Supposel(g'v, g'w) does not converge to 0. Then there exists
a constanb; > 0 such that

(3.1) b, < d(g'v, g'w) < d(v, w)

forallt > 0.
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Since¢ € L"(I") and{g"v,} is close toD¢, v, there is a constamt > 0 such that
d(z (g™ vs), c:) < d forall n, wherer : SH — H is a canonical projection and we
use the same notatidig*v,} as a subsequence ff"v,} in the definition ofL" (I")
ambiguously. We consider the triangte(v), g v, g"v,). By the visibility axiom
there is a constar@ > 0 such thatd(g™v, g=v,) < C for all n. Then for alln,

3.2) d(Dén(g"v), Den(g"vn)) < C.

Since{D¢,g"v,} is a bounded sequence, s B¢,gv} by (3.2). Therefore the
sequencgDg¢,g""v} has a subsequence convergingite SH which we denote by
{D¢,g"v}. By (3.1), we have that for alh and—t, < s < o0

(3:3) by < d(D¢a (9" v), Dgn(g""*w)) < d(v, w).

Since{Dg¢,g"v} is converging ta, {D¢,g"w} is a bounded sequence and it has a
subsequence convergingdowhich we denote byD¢,g"w}. Whenn goes toco in
(3.3), we have that

(3.4) b, <d(g°v, g°w) < d(v, w),

for all s € R. This means that; has a flat strip, where; is a geodesic with
¢, (0) = w.

In order to obtain a contradiction, we prove that the geodgsiwith ¢, (0) = w
cannot have any flat strip.

Sinced(g'v,, g'v) < d(g"v,, g"v) + d(v,, v) for 0 <t < t,, there is a constant
C > OsuchthatforallO<t <t,,

d(g'vn, g'w) < d(g'vn, g'v) +d(g'v, g'w) < C+d(v, w).
Therefore, for alh and for—t, <s <0,
d(g°Den (9" vn), 9°Depn(g"w)) = d(g"**vy, g"w) < C + d(v, w).

Hence we have that for altco < s < 0, d(g°v, g°w) < C + d(v, w). This means
thatc;(—o0) = ¢,(—o0) = y(—o0) in dH. Sincey is an axis fixed by a hyperbolic
isometry inI" and has no flat strig; has to have no flat strip. (See Rema&rk) [J

We now prove the Main Theorem, that is, the ergodicity of the geodesic flow
onSM.

THEOREM 3.10. If the geodesic flow is conservative with respecttq then it is
ergodic with respect to the same measure.
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PrROOF. Since the geodesic flow is conservative®M, we deduce that

Ze—Dd(x,yx) = oo0.

yel

Consider the integrable functigm on SM defined in Theoren3.7. Letw € SM
be a conservative point. Then it can be proved ﬁéip(g‘w) dt = oo. Since the
geodesic flowg' is conservative with respect tg*, the limit

T
f t
Taoo‘/;) p(gtv)dt

exists forf € L*(o*) and foro*-almost allv € SM. It is sufficient to show thaf,
is constant for almost alf € L*(do*). Without loss of generality, we assume tHat
is continuous with a compact support.

Let y be an axis orM. Letv € SM be a conservative point. Let € SM be
chosen such that' € W*S(v) andc,(—o0) = y(—o0). By Lemma3.9 we have
d(g:(v), g(v')) — 0ast — oo. Sincef is continuous with a compact support gnd
has the property as in Lemn3a6, we have

ARICROD L IARTCRCR) dt}
Jo p(@@)dt [T p(gi)dt

fo(v)

T—oo

(35 f,(v) - f,(v)=lim |:

im [foT [f@@) - fdan]dt
T Jy p(g(v))dt
Jo f@eydt i “Hge odendt]
T p(@)dt Jy p(g(v))dt } -

If v andv’ are two points inSMwith v € W3Y(v') andc, (c0) = ¢,(c0) = y (—00),
thend(g; (v), g (v')) — 0 ast — —oo. Using the arguments similar to those used in
the above case, we also have

(3.6) f,(v) = f,(v).

We lift f, to S Hand we use the same notatibn Thenf, isT-invariantondH xoH.
By (3.5 and @3.6), f, is constanto@H x & and ong x dH for almost alls € L"(T").
We can easily show thalt, is constant almost all obH x dH, because the geodesic
flow is conservative. We deduce thitis constant almost everywhere &M. [
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