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Abstract

As an attempt to understand linear isometries betv@ealgebras without the surjectivity assumption,
we study linear isometries between matrix algebras. Denot®hythe algebra oin x m complex
matrices. Ifk > nand¢ : M, — My has the formX — U[X @ f(X)]V or X — U[X' @ f(X)]V for
some unitanJ, V € My and contractive linear map: M, — My, then||¢(X)|| = || X]| forall X € M.
We prove that the converse is trukifk 2n — 1, and the converse may failkif> 2n. Related results and
guestions involving positive linear maps and the numerical range are discussed.

2000Mathematics subject classificatioprimary 15A04, 15A60.
Keywords and phrasessometry, matrices, linear maps.

1. Introduction

In[6], Kadison characterizedsurjective linear isometrie€talgebras. The problem
without surjectivity seems very difficult even in the finite dimensional case. In this
paper, we study linear isometries fravy, to My, that is, linear maps : M,, — My
such thatj¢ (A)|| = ||A| for all A € M,,, whereM,, is the algebra ofn x m complex
matrices and| - || is the spectral norm. Clearly, if such a linear isometrgxists,
thenk > n. If k = n, it follows from the result of Kadisong] that ¢ has the form

X = UXV or X — UX'V, for some unitaryu,V € M,. One can modify the
above maps to norm preserving linear maps M, — My with k > n, namely,

if U,V € My are unitary andf : M, — M,_, is a contractive linear map, then

¢ : M, - My defined by

X U[X® f(X)I]V or X—>U[X@ f(X)V
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is a linear isometry. Itis natural to ask whether the converse of this statement holds.
We have the following result.

THEOREM1.1. Supposek < 2n — 1, and¢ : M, — My is linear such that
lp(X)|| = |IX]| for all X € M,. Thenk > n, and there existJ,V € M, and a
contractive linear mag : M, — M,_, such thatp has the form

(1.1) X UX® fOOIV or X UXt@ f(X)V.

Moreover, itk > 2n > 4, thenthere exists a norm preserving linear mapM, — M
that is not of the forng1.1).

Recall thatB € M, is essentially Hermitiainf B = aA+ bl for some Hermitian
A anda, b € C, equivalently,B is normal and its eigenvalues lie on a straight line. It
turns out that Theorerh 1 can be deduced from the following result concerning unital
linear mapsp : M,, — My that preserve the norm of essentially Hermitian matrices.

THEOREM1.2. Suppos&k < 2n — 2, and¢ : M, — My is a linear map. Then
¢ satisfiesp(l,) = I and |¢p(X)]| = || X]| for all essentially Hermitian matrices
X € M, if and only ifk > n, and there exist a unitaryy € My and a unital positive
linear mapf : M, — M,_, such thaip has the form

(1.2) X U[X® f(X)U* or X U[X'& f(X)U*.

Moreover, ifk > 2n — 1 > 3, then there exists a linear mafp : M,, — M, which is
not of the form(1.2) but satisfies) (1,) = I, and ||y (X)|| = || X]| for all essentially
Hermitian matricesX € M,.

We prove some auxiliary results in the next section, and give the proofs of Theo-
remsl.landl.2in Section3. Some related results and questions are discussed in the
last section.

In our discussion, we Ide, . .., e} be the standard basis faf, andE;; = eeﬁ
be the standard matrix unit. Denote b#, the real linear space of x n Hermitian
matrices, and.1(A) > --- > 1,(A) the eigenvalues of € 77%,; we write A > O if
An(A) > 0 andA > 0if 1,(A) > 0.

2. Auxiliary results

THEOREM 2.1. Suppose : M, — My satisfies||¢ (A)|| < || Al for all essentially
Hermitian A € M, andU*¢(1,)V = |, @ D, whereU,V e M are unitary and
D € My, is a diagonal matrix with diagonal entries in the interjal 1). Use the
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first p columns ofU (respectivelyV) to form the matrixJ; (respectivelyv;). Then
the mappingy : M, — M, defined byy (X) = Uf¢(X)V; satisfies the following
conditions

(1) l;[/(In) = Ip-

2) 1A < 1A for all essentially HermitianA € M,.

(3) ¥(A) >0forall A>0.

(4) Y(A) =y (A forall Ae M,.

If, in addition, ||¢ (A)|| = ||A| for all A € »7;, then

(5) v (B)| = |IB] for all essentially HermitiarB € M,.

(6) ¥ (A) >0ifandonlyif A > 0.

(7) ForeveryA € 7, M(A) = A (Y (A) andi,(A) = Ay (¥ (A)).

PrOOF. Conditions (1) and (2) follow from the definition.

For (3), supposé > 0 andy(A) = B+iC, B, C € 2%, For any unit vector
X € CP, letb = x*Bx andc = x*Cx. We are going to prove that = 0. It
will then follow that C = 0. To prove our claim, for each positive integer let
A, = A-Dbl,+i(mcl,). Then

[A=Dbly)I?+m?c® > [[(A—=Dbl)? + Ml = |AnALll = | Anll?
> W (AW = [X Y (An)X[?
= [x*(B — bl, +i(mch + C))x[?
= [X*BX—b+i(mc+ x*Cx)|> = |[(m+ 1)c].

Hencec = 0 as asserted. S@,(A) = B. If s > 0is small, then
My —sBl =Y, —sAIl < |ln—sAl <1

ThereforeB > 0.
Condition (4) follows readily from (3).

Now, suppose thafp (A)|| = ||A] for all A € 7. Let B € M, be essentially
Hermitian, that isB = aA+ bl for someA € % anda, b € C. We are going to
show that||y(B)|| = ||B|l. The claim clearly holds i = 0. So, without loss of

generality, we assume that= 1.
First, consider the case whbr= 0. HenceB = A € .57,. We may further assume
that|| Al = A1(A); otherwise, replacé by —A. Then

14+ a(A) = Il + Al = lloUn+ Al = U+ AV
=, ® D) +U"gp(AVI.
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So there exist unit vectossandy in C such that

1+ 11(A) =y (I, ® D)+ U*p(AV]x
<|y*(l, ® D)X| + [y'U*¢(A)VX| < 1+ 11 (A).

Thereforey = x = (I, ® D)x andU*¢(A)V x = L, (A)Xx. Hencex = [ ], where
X, € CP andy (A)x; = A (A)X. As aresult)y (A) ]| = ||A]l.

For the general case, suppd8e= A + (a +ib)l,, whereA € 27, anda, b € R.
Then

Iy (B)IIZ = [l (A+aly) +iblyl* = v (A+aly)l? + [bf?
= [|[A+al)? +bl> = |(A+aly) +ibl,|* = [|B]|*.

This proves (5).

For (6), letA € M, such thaty(A) > 0. LetA = B +iC whereB, C € s#,.
Then by (4), we have/(B —iC) = ¢ (A*) = ¥ (A* = ¥(A). Henceyy(C) =0
impliesC = 0, thatis,A € J%,. Foreveryt > [[¥(A)|l, we havet > |tl,— ¥ (A)] =
IItl, — AJl. ThereforeA > 0.

For (7), letA € 57, andt € R. By (6), we have

t> (A = thh—A>0 < tl,— Y (A >0 < t > (A).
Thereforep;(A) = 11(¥ (A)). Similarly, ,(A) = A, (¥ (A)). O

REMARK 2.2. Note that one cannot weaken the hypothesis in Thead2€irto
lo (A < IA]l for all Hermitian A € M,. For example, suppose: M, — Ms is
given by

d(A) =Ad[@@+d+i@—d)/2) if A:(i g).

Theng(l,) = lsand|¢(A)| = ||A| forall A € 27. However, ifA=[1]1® 0 € 5%,
theng(A) = A® [(1+1i)/2] ¢ 2% and

¢ RA+2i1)] = [[QA+2il,) & [14 3] = V10> v/8= [|2A+ 2il,].

In fact, none of the conditions (2)—(7) holds.

Note also that the only place where we use the condifignAd)| < | A| for
all essentially HermitiamA € M, is in showing thaty (A) € 5% for all A € 7.
Hence, the proof of Theorethlalso gives the equivalence of (a)—(c) in the following
theorem.
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THEOREM 2.3. Suppos&k < 2n — 2, and¢ : %, — 27 is a linear map satisfying
¢ (l,) = I. The following conditions are equivalent.

@ o0 = IX] for all X € 7.

(b) A e 7, is positive semidefinite if and onlygf( A) is positive semidefinite.

(c) ForeveryA € J#, A1(A) = L1(¢(A) andr, (A) = (@ (A)).

(d) We havek > n, and there exist a unitarly € M, and a unital positive linear
map f : 5%, — 5%, such thaip has the form

X U[X® f(X)JU* or X U[X'® f(X)U*.

PrOOF. By the discussion before the theorem, we seethat (a), (b), (c) are equivalent.
Itis clear that (d) implies all the conditions (a)—(c). In the following, we assume that
one, and hence all, of the conditions (a)—(c) holds, and prove condition (d) by induction
onn > 2. By (a), we havd > n.

Supposen = k. If X; € 57 is a rank one orthogonal projection, then there exist
rank one orthogonal projectiods, ..., X, suchthag?zl X; = l,. By condition (c),
¢ (X;) is positive semi-definite with largest eigenvalue equal to ong ferl, ..., n.
Moreover,

Ztrq&(xj) =tr¢ (Z Xj) =trl,=n.
i=1 i=t

Thus, ¢ (X;) has eigenvalues,D, ..., 0, that is,¢(X;) is a rank one orthogonal
projection, forj = 1, ..., n. Henceg maps rank one orthogonal projections to rank
one orthogonal projections. Bg,[Theorem 3], we conclude that there exists a unitary
S € M, such that has the form

(2.1) X+ SXS or X SXS.

Thus, condition (d) holds i = k. Note that ifn = 2, thenn < k < 2n — 2 implies
thatn = k = 2. So, condition (d) holds. Now, suppose> 3 andn < k < 2n — 2,
and the result is true for linear maps frorf to 27 for anyr < nands < 2r — 2.
We shall establish the following.

CLAaM . There exist unitary matriceg € M, andU € My such that the mapping
(2.2) A Up(VAVHU*
has the form
(2.3) X > g(xX) & f(X),

where f : 2%, — #_, is a unital positive linear map, ang : %, — 7, is unital,
linear, and maps rank one orthogonal projections to rank one orthogonal projections.
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Once the claim is proved, we can app8/ Theorem 3] tog and conclude thag
has the formZ.1) for some unitaryS € M,. Consequently, the original mapwill
satisfy condition (d). O

Note that we only need to show that there exist unitary matticeaedV such that
the mapping inZ.2) is a direct sum of two linear maps in the forh ). It will then
follow (say, from (b)) thatf is a unital positive linear map as asserted.

We establish several assertions to prove our claim.

ASSERTIONL. For eachj € {1,...,n}, ¢(Ej;) has largest and smallest eigenval-
ues equal tal and 0, respectively. Moreover, if € C* is a unit vector such that
v*¢(Ejj)v = 1, thenv ¢ (X)v = Ofor any X € 7 with (j, j) entry equal tD.

ProOOF. The first statement follows from (c). To prove the second statement, we
may assume thgt= 1. Suppose € C" is a unit vector such that'¢(Ej;)v = 1. If
Y = [0] & Y, with Y; € 2#,_4, then for anyt € [—1, 1],

Vi[9(Ew) +to(Y)]v < [[En +tY] = 1.

Thus,v*¢(Y)v = 0. If Z = e,z* + z€ for some unit vectoz € spare,, ..., €.},
then there exists a unitary matiik = [1] & U; with U; € My_; such thall ZU* =
Ei, + E»i. Therefore, for every € [—1, 1],

V[P (Ep) +to(2D)]v < |[Eps +tZ] = [JU(Epn +t2)U7||
= |[Enn+t(En+ Ex)l <+ 14 22

Again, we haver*¢ (Z)v = 0. Consequently, iX is any (real) linear combination of
two matricesy andZ of the above form, we have‘¢ (X)v = 0. O

ASSERTION2. There exists a rank one orthogonal projecti®rsuch thatp (X) is
unitarily similar to[1] @ O, @ D,, whereq + 1 < k and D, is a diagonal matrix with
diagonal entries in the intervaD, 1).

PrROOF. By Assertionl, each¢ (E;;) has largest and smallest eigenvalues equal
to 1 and O, respectively. Since< k < 2n — 2 and

(2.4) k=trle=tro(l) =Y tro(Ej).

=1

we see that there exist at least two matrig€g;; ) with exactly one eigenvalue equal
to 1. If one of these matrices, say(E;;), is not an orthogonal projection i¢#, then
Ej; is a desired matrix.
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Suppose each matrig(E;;) with one eigenvalue equal to 1 is an orthogonal
projection, and (E;,) is one of them. Since < k, by (2.4) again there exisig (Epp)
with at least two eigenvalues equal to 1. Without loss of generality, we may assume
thatp = 2. By Assertionl, there exists a unitaty € M, such that

¢(E1) =U(E1 @ O)U™ and ¢(Ep) =U (0] I, & C)U”

so thatr > 1 and||C,| < 1. For simplicity, assume th&t = |,; otherwise, replace
¢ by the mappingX — U*¢(X)U. So,

(2.5) ¢(E1) =E;n® O, and ¢(Exp) =[0I, & C,.
LetY; = ¢(Eu1 + Ez), Yo = ¢(Eo + Ez), and
Y=(1+Y2)/2=¢(Ey1+ Ex+ Epn+ Ezp) /2.

Since|l¢(Z)|| = |IZ]|, we have 1= ||Y]| = |Y1]l = [Y2|. Applying Assertionl to
the matrice (E;;) andY,, and also tap (E,») andY,, we see that

0 u u
(2.6) Yo=|u O =«
U, * k)

for someu; € C" andu, € Ck-1". If v € CK is a unit vector so that*Yv = 1, then
2=220"Yv = U*Y]_U + 'U*sz < ”Yl” + ||Y2|| = 2,

and hence*Y;v = 1 = v*Y,v. SinceY; = |, & C, with A,(C,) < 1 by (2.5, we
seethab € spane,, ..., e} € C*. Thus, ifP is obtained from, by taking its first
1+r columns, then E [|Y;]| = v*Yov < [|[P*Y,P| < |Y2||. It follows that

N 0 u
1=|[P*Y,P| = H(ul Ol)
X

thus,u; is a unit vector. Sinc¥, in the form €.6) has norm 1, we see thaf = 0 and
there exists a unitary matri = [1]® W, & Iy, such thaW Y,W* = (23) @ Z.
Hence W(Y; + Y)W* = (11) @ Z,, andZ, is nonzero positive semidefinite such

that
0 1
(1 1)6920

Thus,Y is unitarily similar to the direct sum of a rank one orthogonal projection and
a non-trivialD with 0 < A;(D) < 1. S0,X = (Ey1+ Ex+ Ejo+ Ejq) /2 is a desired
rank one orthogonal projection. O

| Zoll < = ¢ (Ex+ B+ Exll = [|[Exx+ Ero+ Exll < 2.
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ASSERTIONS. There exist unitary) € M, andV € M, such that the mapping
defined by

(2.7) X > Ug(V XVHU*

satisfies

(2.8) o)=Y f(Y) forall Y=[a]l®Y;, or
(2.9) dY)=Y'® f(Y) forall Y=[a]® Y,

wheref : 2% — J#_, is a unital positive linear map satisfyir@y< || f (E1p)| < 1.

PrROOF. By Assertion2, we may replace by a mapping of the form2(7) and
assume that(E;y) = [1] @ Oy & Dy, whereq + 1 < k and D, is a diagonal
matrix with diagonal entries in the intervéd, 1). LetY = [0] & Y; € %, where
Y, € 4, |IYil = 1. By Assertionl, the (1,1) entry of ¢(Y) is 0. Since

l¢p(Eir + Y)|| = |IE1 + Y] = 1, the first row and column ap(Y) are all zero.
Therefore,
0 0 0
o) =0 (Y x| with y(Y) € 7.
0 * *

Since 1= ||¢(Y)]|, there exists a unit vectar such that 1= [v*¢ (Y)v| = [|[¢ (Y)]|.
Clearly, the first entry oy must be zero. Suppose = [501] with v; € €9 and
Uy € (Ckiliq. SInce¢(E11) = [1] D Oq @ D]_ and

[v;D1v £ v (Y)v| = [v'¢(Enn £ Y)v| < [[En+ Y[ =1,
we see that, = 0 and|v; ¥ (Y))vi| = 1 = ||Y1]l. Hence, the mapping frori,,_; to
M, defined byY; — v (Y1) is unital and satisfiepy (Y1)|| = [|Y1]| forall Y, € J7,_;.

Sinceq < k — 2 < 2n — 4, we can apply induction assumptionioand conclude
thaty ons#,_, has the standard form:

for some unitary}d € M,. Now, the mapping defined by
X (110U & lkq1)9(X)([1] & U & lkq-1)

satisfies 2.8) or (2.9). O
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PROOF OF THECLAIM . By Assertion3, we can modifys to ¢ that satisfiesZ.9)
or (2.9, wheref is a unital linear map satisfying @ | f (Ey1)| < 1. We may further
assume thap satisfies 2.9); otherwise, replace by the mappingA — ¢ (Al). For
simplicity, we assume that = ¢.

To prove the claim, we note that every matrixij is a linear combination of rank
one orthogonal projections. Therefore, we only need to show thatf.7#; is a rank
one orthogonal projection, then

(2.10) ¢(X) = g(X) @ f(X),

whereg(X) is a rank onex x n orthogonal projection.

If X = Ej; or X has the form[0] @ X;, then we are done becauge= ¢
satisfies 2.8). Now, supposeX is not of these forms. TheX = uu*, where
u = ae + bv € C" is a unit vector such that € e anda, b are nonzero complex
numbers satisfyinga|? + |b|?> = 1. Replacingu by &u for a suitable complex unit
&1, we may assume that> 0; then replacing by &v for a suitable complex uni,
we may assume that> 0 as well. So(a, b) = (cosp, sind) for somed € (0, 7 /2).
SupposeV € M, is a unitary matrix withe; andv as the first two columns. Thevi
has the form1] @ V; and satisfies

V*XV == CO§9E11 + COS@ Sin9(E12 + Ezj_) + Sir129E22.

Consider the mappingy defined byA — (V* @ l,_n)o(V AV)(V & I¢_,). Note
that the mappingy inherits all the properties we have established in Assertiefis
(2.8) for ¢. Moreover, if we can show thak, sends the matrix

cOS 0 E;; + €039 Sind(Eqp + Eyy) + SI0E,,

to a matrix of the formZ, @ Z, so thatZ, € M, is a rank one orthogonal projection,
theng(X) = (V & L)y VXVYV* D ) = VZ,V* & Z,, whereV Z,V* is

a rank one orthogonal projection as desired. So, we focys,orror simplicity, we
write ¢y as¢ in the rest of our proof. Foj € {1,...,n}, let¢(Ej;) = E;; @ C;.
ThenC, = f(E,,) satisfies O< ||C,|| < 1 and

(2.11) Cit - +Ch=lin

We consider two cases.

Case 1. Supposer,(C; + C,) < 1, that is,¢(Ey; + Ex) only has two eigenvalues
equal to 1. Ifv e C* satisfiesv*(¢(Ey; + Ex))v = 1, then only the first two entries
of v can be nonzero. Now,

2=(er+&)e+ &) =lo((er+e)e +e))l
< |p(e€ + )| + [lP(ee + )| = 2.
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So, there is a unit vectar € C" such that
V(P (e1€] + €6))v = 1 = 1" (¢ (616 + &:€)))v.

Thus, the leading X 2 principal submatrix o (e;€5 + e,€]) has norm one. By
Assertionl, the (1, 1) and(2, 2) entries of¢ (e,€; + e,€}) are zero. Hence, there is a
complex unitw such thaip (e;€5 + e,€}) = (ue€; + nee) @ D. Therefore,

_ ) o cos o 1L COS sind ~
¢((cosbe + sinfe,)(coshe + sinde,)*) = (,1 cost siné Sir? 6 ) eb.

Since

n
H¢ ((cos@el + sinde,)(coshe; + sinfe,)* + Z € e}‘) H =1,

j=3

we see thab has the forn0,_,®D. Hencegp ((coshe, +sinde,)(cosbe +sinbe,)*)

has the desired forn2(10).

Case 2.Suppose.1(C; + C,) = 1. We shall prove that there exists a sequence of unit
vectors{v, } in the linear span ofe,, ..., e,} € C" such that, — e,, and for each,

¢ (E11 + v v)) has only two eigenvalues equal to 1. By the resultin Case 1,

¢((coste, + sindv,)(cosve; + sinfu,)*)
has the desired forn2(10). By continuity, we see that
$((coste, + sindey)(cosde, + sinde,)*)

has the desired forn2(10) as well.
To construct our sequenge }, note that by2.11) and the factthat & ||Cy|| < 1,
we have

(Ik—n - Cl)il/z(cz +---+ Cn)(lk—n - C1)71/2 = Ik—n~
Sincek — n < n— 2, comparing traces, we see that there exists3 such that
(Iken — C)72C (In — Cp) Y2

is a strict contraction, equivalently; (C; + C;) < 1. Without loss of generality, we
may assume thgt= 3. Let¢(Exs + E3n) = (Exz+ E3zp) @ Cos. Fort € [0, /2], let

F@t) =vt)v@) with v(t) = coste, + sinte; € C".
Then
¢(Ep1+ F(t)) = [Eyy+ F(1)] @ [Cy + cogtC, + sin* tCy + cost sintCys].
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If ¢(E11 + F(t)) has more than two eigenvalues equal 1, then

(2.12) 0=defi(l,_, — (C; + cogtC, + sin’ tC; + cost sintC,3))
= detcogt[(1+ tarft)(l,_, — C;) — C, — tarftC; — tantCys])
= cog* "t det((l,_, — C; — C,) — tantCys + tarf t (lI,_, — C; — C3)).

Since¢ (Ey; + E33) has only two eigenvalues equal to 1,dgt, — C, — C3) # 0. It
follows that .12 only has finitely many roots in the intervil, 7/2]. Thus, we can
find a sequencé,} — 0 such thafv,} = {v(t;,)} — &, and for eachr, E;; + v v
has only two eigenvalues equal to 1 as desired. O

3. Proof of the main theorems

PrROOF OFTHEOREM 1.2 The ‘if’ part of the theoremis clear. Suppdses 2n— 2,
o (1) = Ikand|l¢ (X)|| = || X] forall essentially HermitiatX. By Theoren®.1, ¢ (X)
is Hermitian wheneveX is Hermitian. Now, the result follows from Theoretr.
For the last statement, suppase 2 andk > 2n — 1. Let

1/v2 0 1YJ2 0
W=(O lho1 0 O).

0 0 0 o1
Define¢ : M,, — M, by

d(A) = W[AD ATW* @ (tr A/n)li_onys

Au  Aup/V2 A2
= A21/\/z A 0 @ (tr A/n) lonta
A,/v2 0 Ay

for any

All A12 H
A= h A Mp_1.
<A21 A22> wit o2 € WVlh_1

Since WW* = 1,,_1, by the interlacing inequalities for eigenvalues of Hermitian
matrices f}, Theorem 4.3.6], ifA € 2%, andB = W[A@® A']W*, theni,(B) = 1,(A)
andi,,_1(B) = 1,(A). Consequentlylj¢ (X)| = || X]| for all essentially Hermitian
X e M,.

If ¢ has the standard form 2), then there exist a contractive linear map M,, —
M,_, and a unitary matrix) € M, suchthatl¢(A) = (A'® f(A))U, whereA" = A
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or Al. PartitionU into U = (U;; f;:y whereU,, € M,_4, then we have

Au  Ap/vV2 Ay/V2 0
(Ull U12> A21/\/z A 0 0
Un Uy |A/V2 0 A, 0

0 0 0 (tr A/n)ly_on41

_ (AT 0 ><U11 U12>
S \0 f(A))\Uxn Up/’
Let A = E;;and consider the firstrow on both sides. Weh@yg 0) = (U, Uy).

Hence,U,; = €? for some real numbet andU,,, U,; are both zero. Consider the
first row on both sides in the general case, we have

€ (A Ap/v2 A,/V2 0)= (A, 0)Uy,
for all A € M,, which is impossible. Hence, is not of the standard forni(2). O

PROOF OFTHEOREM 1.1 Supposk < 2n—1, and||¢ (X)|| = || X]| forall X € M.
Clearly, we havek > n. If k = n then (L.1) follows from Kadison’s resultq]. So
we may assume that< k < 2n — 1. By the resultin{], it is impossible tha (U)
is unitary for every unitaryJ € M,. Thus, there exists a unitaty € M, such that
¢ (X) is not unitary. By replacing with the mapA — ¢(XA), if necessary, we
may assume thaX = |. Thereforeg satisfies all conditions in Theorefhl with
1< p=<2n-2 LetU,V € M, andy be as given by Theorethl. Theny satisfies
the conditions for Theoreth 2 (with ¢, k replaced by/, p). So, there exists a unitary
W, € M, and a unital positive linear maf): M, — M,_, such that) has the form

A WIAT® (AW,

whereA" = Aor A'. LetW = W, @ I,_,. Then the mappingo : M,, — My defined
by A — W*U*¢ (A)V*W has the form

Af 0 *
A~ |0 fA =x
* ok g(A)

If A e M, is unitary, then|go(A)| = ||All implies that

f(A) =« )

_ T
(3.2) do(A) = A ea( N

Since this is true fon? linearly independent unitary matrices it follows that @.1)
holds for anyA € M,. Consequently, the original mgphas the formZ.1) as asserted.
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For the last statement, suppase 2 andk > 2n. Let
yv2 0 1yvy2 0
B 0 In_1 0
W= 0 0 0 In_1
1/¥2 0 -1/4/2 0

Define¢ : M,, — M, by

and P =ly_1® Oconi1-

#(A) = PW D li_on)[A® A @ O_onl(W @ ly_2n)"
Agg A/N/2 Atzl/«/z 0 0

A /N2 Ay 0 An/N2 0

= Atlz/‘/z 0 At22 _Atlz/‘/z 0
0 0 0 0 0

0 0 0 0 0

for any

All A12 :
A= h A Mp_1.
<A21 A22> wit o2 € WVlh_1

Note thatgp (A)¢ (A = B @ Or_on1, WhereB € J%4,_; is a leading principal
submatrix of W(AA* & (AA)")W*. By the interlacing inequalities for eigenvalues
of Hermitian matrices4, Theorem 4.3.6], we haves (A)|| = ||Al|. By an argument
similar to the one in the proof of Theorein2, we can show thap is not of the
form (1.1). O

4. Related results and questions

Motivated by Theoreni.1 and the example constructed in its proof, we have the
following.

ProOPOSITION4.1. Supposd® and Q aren(p + q) x m matrices such that
| —PP*>0, | —QQ">0,

andrank(l — P P*) +rankl — QQ*) < p+q. LetW;, W, € M, be unitary, and let
f : M, —> My_n, be a contractive linear map. # : M, — My is defined by

P(X) = Wi{P [(X® 1p) ® (X' ® 19)1Q & f(X)}W,

then|¢ (X)|| = || X|| for all X € M,.
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PrOOF. Itis clear thatj¢ (X)|| < || X]||. To prove the reverse inequality, suppdse
has singular value decompositiolDV, whereU e M,,.q, andV e M, are unitary,
and the singular values @1 lie in the (1, 1), (2, 2), ... positions ofD in descending
order. LetD be obtained fromD by setting all the entries 0, 1) to 0, and let
P = UDV. Apply a similar construction t® to getQ. Then

(4.1) rank(l — PP*) 4+ rank(l — QQ*)
=rankl — PP") +rankl — QQ") < p+aqa.

If the largest singular value of is s, = || X||, thens; is a singular value ofX ® I ,) @
(X' ® 14) with multiplicity at leastp + g. By (4.1) and a result of Thompsof]|, the
matrix P*[(X ® 1,) @ (X' ® I4)1Q has largest singular value equakialso. Thus,
we havel|X|| =, = [|[P*[(X ® 1) & (X' ® I)]QIl < ¢ (X)]. U

Using a similar argument as in the proof of Propositibfh and the interlacing
inequalities on Hermitian matrices (sek Theorem 4.3.6]), we have the following.

PROPOSITION4.2. SupposeP is an n(p 4+ q) x m matrix such thatP*P = I,
where0 <n(p+qg) —m < p+4. LetU € M, be unitary, andf : M, — M,_, be
a unital positive linear map. b : M, — M, is defined by

d(X) = U {P[(X® 1) & (X' @ 1)IP & f(X)}U,

then|l¢ (X)]| = || X|| for all essentially HermitianX € M,.

Recall that thenumerical rangeof a matrix A € M, is the set
W(A) = {x*Ax: x € C", x*x = 1},

which is a useful concept in matrix and operator theory, and has been studied exten:
sively; see b, Chapter 1]. We have the following proposition.

PrOPOSITION4.3. LetV,, = M, or #,. Suppose : V, — Vs linear. If ¢ has
the form given in Propositiod.2, then

(4.2) W(p (X)) = W(X) forall X eV,.
Whenk < 2n — 2, (4.2) holds if and only ifp has the form(1.2) in Theoreml.2

PrROOF. Supposep has the form in Proposition.2. If X € 77, thenX and¢ (X)
have the same largest and smallest eigenvalues; ¥i(¢@ is the convex hull of the
largest and smallest eigenvaluesxfit follows thatW (¢ (X)) = W(X).
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SupposeV,, = M, and X € M, is not Hermitian. TherX = H + iG for some
HermitianH andG. Now, ¢ (costH + sintG) and cogH + sintG have the same
largest and smallest eigenvalues fortaé [0, 27), we see that the two convex sets
W(X) andW(¢ (X)) have the same support lines; seelheorem 1.5.11]. Thus, the
two sets are equal.

Suppose&k < 2n — 2. If V,, = 77, the result follows readily from Theore&3.

If V,, = M,, one can use the fact th&{(X) < R if and only if X is Hermitian to
conclude tha® (7)) C s7. Then the result follows from the Hermitian case. [

There are several related problems that deserve further investigation.

Q) If ¢ : M, — My has the form in Propositiod.1, then||¢ (A)|| = || Al for all

A € M,. It would be nice to know whether the converse is true.

(2) If ¢ : M, — My has the form in Propositiod.2, then|¢ (A)|| = || A for

all essentially HermitiartA € M,. It would be nice to know whether the converse
is true. Note that by Theoreh 1 and Theoren®.3 (b), the problem is equivalent
to studying positive linear mags such thatA is positive definite whenever(A) is
positive definite.

(3) One can ask whether the converse of the first statement in Propasiisrtrue.
(4) One can study the above problems under the additional assumptiah ithat
decomposable or completely positive linear map.
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