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Abstract

As an attempt to understand linear isometries betweenC∗-algebras without the surjectivity assumption,
we study linear isometries between matrix algebras. Denote byMm the algebra ofm × m complex
matrices. Ifk ≥ n and� : Mn → Mk has the formX 7→ U [X ⊕ f .X/]V or X 7→ U [Xt ⊕ f .X/]V for
some unitaryU;V ∈ Mk and contractive linear mapf : Mn → Mk, then‖�.X/‖ = ‖X‖ for all X ∈ Mn.
We prove that the converse is true ifk ≤ 2n− 1, and the converse may fail ifk ≥ 2n. Related results and
questions involving positive linear maps and the numerical range are discussed.
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1. Introduction

In [6], Kadison characterizedsurjective linear isometries onC∗-algebras. The problem
without surjectivity seems very difficult even in the finite dimensional case. In this
paper, we study linear isometries fromMn to Mk, that is, linear maps� : Mn → Mk

such that‖�.A/‖ = ‖A‖ for all A ∈ Mn, whereMm is the algebra ofm × m complex
matrices and‖ · ‖ is the spectral norm. Clearly, if such a linear isometry� exists,
thenk ≥ n. If k = n, it follows from the result of Kadison [6] that � has the form
X 7→ U XV or X 7→ U Xt V, for some unitaryU;V ∈ Mn. One can modify the
above maps to norm preserving linear maps� : Mn → Mk with k > n, namely,
if U;V ∈ Mk are unitary andf : Mn → Mk−n is a contractive linear map, then
� : Mn → Mk defined by

X 7→ U [X ⊕ f .X/]V or X 7→ U [Xt ⊕ f .X/]V
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is a linear isometry. It is natural to ask whether the converse of this statement holds.
We have the following result.

THEOREM 1.1. Supposek ≤ 2n − 1, and � : Mn → Mk is linear such that
‖�.X/‖ = ‖X‖ for all X ∈ Mn. Thenk ≥ n, and there existU;V ∈ Mk and a
contractive linear mapf : Mn → Mk−n such that� has the form

X 7→ U [X ⊕ f .X/]V or X 7→ U [Xt ⊕ f .X/]V:(1.1)

Moreover, ifk ≥ 2n ≥ 4, then there exists a norm preserving linear map : Mn → Mk

that is not of the form(1.1).

Recall thatB ∈ Mn is essentially Hermitianif B = a A+ bI for some Hermitian
A anda;b ∈ C, equivalently,B is normal and its eigenvalues lie on a straight line. It
turns out that Theorem1.1can be deduced from the following result concerning unital
linear maps� : Mn → Mk that preserve the norm of essentially Hermitian matrices.

THEOREM 1.2. Supposek ≤ 2n − 2, and� : Mn → Mk is a linear map. Then
� satisfies�.In/ = Ik and ‖�.X/‖ = ‖X‖ for all essentially Hermitian matrices
X ∈ Mn if and only ifk ≥ n, and there exist a unitaryU ∈ Mk and a unital positive
linear map f : Mn → Mk−n such that� has the form

X 7→ U [X ⊕ f .X/]U∗ or X 7→ U [Xt ⊕ f .X/]U∗:(1.2)

Moreover, ifk ≥ 2n − 1 ≥ 3, then there exists a linear map : Mn → Mk which is
not of the form(1.2) but satisfies .In/ = Ik and‖ .X/‖ = ‖X‖ for all essentially
Hermitian matricesX ∈ Mn.

We prove some auxiliary results in the next section, and give the proofs of Theo-
rems1.1and1.2in Section3. Some related results and questions are discussed in the
last section.

In our discussion, we let{e1; : : : ;en} be the standard basis forCn, andEi j = ei et
j

be the standard matrix unit. Denote byHn the real linear space ofn × n Hermitian
matrices, and½1.A/ ≥ · · · ≥ ½n.A/ the eigenvalues ofA ∈ Hn; we write A > 0 if
½n.A/ > 0 andA ≥ 0 if ½n.A/ ≥ 0.

2. Auxiliary results

THEOREM 2.1. Suppose� : Mn → Mk satisfies‖�.A/‖ ≤ ‖A‖ for all essentially
Hermitian A ∈ Mn and U ∗�.In/V = I p ⊕ D, whereU;V ∈ Mk are unitary and
D ∈ Mk−p is a diagonal matrix with diagonal entries in the interval[0;1/. Use the
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first p columns ofU (respectivelyV) to form the matrixU1 (respectivelyV1). Then
the mapping : Mn → Mp defined by .X/ = U∗

1�.X/V1 satisfies the following
conditions:

(1)  .In/ = I p.
(2) ‖ .A/‖ ≤ ‖A‖ for all essentially HermitianA ∈ Mn.
(3)  .A/ ≥ 0 for all A ≥ 0.
(4)  .A∗/ =  .A/∗ for all A ∈ Mn.

If, in addition,‖�.A/‖ = ‖A‖ for all A ∈Hn, then

(5) ‖ .B/‖ = ‖B‖ for all essentially HermitianB ∈ Mn.
(6)  .A/ ≥ 0 if and only if A ≥ 0.
(7) For everyA ∈Hn, ½1.A/ = ½1. .A// and½n.A/ = ½p. .A//.

PROOF. Conditions (1) and (2) follow from the definition.
For (3), supposeA ≥ 0 and .A/ = B + iC , B; C ∈ Hp. For any unit vector

x ∈ C
p, let b = x∗ Bx and c = x∗Cx. We are going to prove thatc = 0. It

will then follow that C = 0. To prove our claim, for each positive integerm, let
Am = A − bIn + i .mcIn/. Then

‖A − bIn‖2 + m2c2 ≥ ‖.A − bIn/
2 + m2c2In‖ = ‖Am A∗

m‖ = ‖Am‖2

≥ ‖ .Am/‖2 ≥ |x∗ .Am/x|2
= |x∗.B − bIn + i .mcIn + C//x|2
= |x∗Bx − b + i .mc+ x∗Cx/|2 = |.m + 1/c|2:

Hence,c = 0 as asserted. So, .A/ = B. If s> 0 is small, then

‖I p − s B‖ = ‖ .In − s A/‖ ≤ ‖In − s A‖ ≤ 1:

Therefore,B ≥ 0.
Condition (4) follows readily from (3).
Now, suppose that‖�.A/‖ = ‖A‖ for all A ∈ Hn. Let B ∈ Mn be essentially

Hermitian, that is,B = a A + bI for someA ∈ Hn anda;b ∈ C. We are going to
show that‖ .B/‖ = ‖B‖. The claim clearly holds ifa = 0. So, without loss of
generality, we assume thata = 1.

First, consider the case whenb = 0. Hence,B = A ∈Hn. We may further assume
that‖A‖ = ½1.A/; otherwise, replaceA by −A. Then

1 + ½1.A/ = ‖In + A‖ = ‖�.In + A/‖ = ‖U ∗�.In + A/V‖
= ‖.I p ⊕ D/+ U∗�.A/V‖:
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So there exist unit vectorsx andy in Ck such that

1+ ½1.A/ = y∗[.I p ⊕ D/+ U∗�.A/V ]x
≤ |y∗.I p ⊕ D/x| + |y∗U ∗�.A/V x| ≤ 1 + ½1.A/:

Therefore,y = x = .I p ⊕ D/x andU∗�.A/V x = ½1.A/x. Hence,x = [
x1
0

]
, where

x1 ∈ Cp and .A/x1 = ½1.A/x1. As a result,‖ .A/‖ = ‖A‖.
For the general case, supposeB = A + .a + ib/In, whereA ∈ Hn anda; b ∈ R.

Then

‖ .B/‖2 = ‖ .A + aIn/+ ibI p‖2 = ‖ .A + aIn/‖2 + |b|2
= ‖A + aIn‖2 + |b|2 = ‖.A + aIn/+ ibIn‖2 = ‖B‖2:

This proves (5).
For (6), let A ∈ Mn such that .A/ ≥ 0. Let A = B + iC whereB; C ∈ Hn.

Then by (4), we have .B − iC/ =  .A∗/ =  .A/∗ =  .A/. Hence, .C/ = 0
impliesC = 0, that is,A ∈Hn. For everyt > ‖ .A/‖, we havet ≥ ‖t Ip − .A/‖ =
‖t In − A‖. Therefore,A ≥ 0.

For (7), letA ∈Hn andt ∈ R. By (6), we have

t ≥ ½1.A/ ⇐⇒ t In − A ≥ 0 ⇐⇒ t I p −  .A/ ≥ 0 ⇐⇒ t ≥ ½1. .A//:

Therefore,½1.A/ = ½1. .A//. Similarly,½n.A/ = ½p. .A//.

REMARK 2.2. Note that one cannot weaken the hypothesis in Theorem2.1 to
‖�.A/‖ ≤ ‖A‖ for all Hermitian A ∈ Mn. For example, suppose� : M2 → M3 is
given by

�.A/ = A ⊕ [.a + d + i .a − d//=2] if A =
(

a b
c d

)
:

Then�.I2/ = I3 and‖�.A/‖ = ‖A‖ for all A ∈H2. However, if A = [1] ⊕ 0 ∈H2,
then�.A/ = A ⊕ [.1 + i /=2] =∈H3 and

‖�.2A + 2i I2/‖ = ‖.2A + 2i I2/⊕ [1+ 3i ]‖ = √
10>

√
8 = ‖2A + 2i I 2‖:

In fact, none of the conditions (2)–(7) holds.
Note also that the only place where we use the condition‖�.A/‖ ≤ ‖A‖ for

all essentially HermitianA ∈ Mn is in showing that .A/ ∈ Hk for all A ∈ Hn.
Hence, the proof of Theorem2.1also gives the equivalence of (a)–(c) in the following
theorem.
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THEOREM 2.3. Supposek ≤ 2n − 2, and� :Hn →Hk is a linear map satisfying
�.In/ = Ik. The following conditions are equivalent.

(a) ‖�.X/‖ = ‖X‖ for all X ∈Hn.
(b) A ∈Hn is positive semidefinite if and only if�.A/ is positive semidefinite.
(c) For everyA ∈Hn, ½1.A/ = ½1.�.A// and½n.A/ = ½k.�.A//.
(d) We havek ≥ n, and there exist a unitaryU ∈ Mk and a unital positive linear

map f :Hn →Hk−n such that� has the form

X 7→ U [X ⊕ f .X/]U∗ or X 7→ U [Xt ⊕ f .X/]U∗:

PROOF. By the discussion before the theorem, we see that (a), (b), (c) are equivalent.
It is clear that (d) implies all the conditions (a)–(c). In the following, we assume that
one, and hence all, of the conditions (a)–(c) holds, and prove condition (d) by induction
on n ≥ 2. By (a), we havek ≥ n.

Supposen = k. If X1 ∈ Hn is a rank one orthogonal projection, then there exist
rank one orthogonal projectionsX2; : : : ; Xn such that

∑n
j =1 Xi = In. By condition (c),

�.Xj / is positive semi-definite with largest eigenvalue equal to one forj = 1; : : : ;n.
Moreover,

∑
j =1

tr �.Xj / = tr �

(
n∑

j =1

X j

)
= tr In = n:

Thus, �.Xj / has eigenvalues 1;0; : : : ;0, that is,�.X j / is a rank one orthogonal
projection, for j = 1; : : : ;n. Hence,� maps rank one orthogonal projections to rank
one orthogonal projections. By [3, Theorem 3], we conclude that there exists a unitary
S ∈ Mn such that� has the form

X 7→ S X S∗ or X 7→ S Xt S∗:(2.1)

Thus, condition (d) holds ifn = k. Note that ifn = 2, thenn ≤ k ≤ 2n − 2 implies
thatn = k = 2. So, condition (d) holds. Now, supposen ≥ 3 andn < k ≤ 2n − 2,
and the result is true for linear maps fromHr toHs for anyr < n ands ≤ 2r − 2.
We shall establish the following.

CLAIM . There exist unitary matricesV ∈ Mn andU ∈ Mk such that the mapping

A 7→ U�.V AV∗/U ∗(2.2)

has the form

X 7→ g.X/ ⊕ f̃ .X/;(2.3)

where f̃ : Hn → Hk−n is a unital positive linear map, andg : Hn → Hn is unital,
linear, and maps rank one orthogonal projections to rank one orthogonal projections.
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Once the claim is proved, we can apply [3, Theorem 3] tog and conclude thatg
has the form (2.1) for some unitaryS ∈ Mn. Consequently, the original map� will
satisfy condition (d).

Note that we only need to show that there exist unitary matricesU andV such that
the mapping in (2.2) is a direct sum of two linear maps in the form (2.3). It will then
follow (say, from (b)) thatf̃ is a unital positive linear map as asserted.

We establish several assertions to prove our claim.

ASSERTION1. For each j ∈ {1; : : : ;n}, �.Ej j / has largest and smallest eigenval-
ues equal to1 and 0, respectively. Moreover, ifv ∈ C

k is a unit vector such that
v∗�.Ej j /v = 1, thenv∗�.X/v = 0 for any X ∈Hn with . j; j / entry equal to0.

PROOF. The first statement follows from (c). To prove the second statement, we
may assume thatj = 1. Supposev ∈ Cn is a unit vector such thatv∗�.E11/v = 1. If
Y = [0] ⊕ Y1 with Y1 ∈Hn−1, then for anyt ∈ [−1;1],

v∗[�.E11/ + t�.Y/]v ≤ ‖E11 + tY‖ = 1:

Thus,v∗�.Y/v = 0. If Z = e1z∗ + ze∗
1 for some unit vectorz ∈ span{e2; : : : ;en},

then there exists a unitary matrixU = [1] ⊕ U1 with U1 ∈ Mk−1 such thatU ZU∗ =
E12 + E21. Therefore, for everyt ∈ [−1;1],

v∗[�.E11/+ t�.Z/]v ≤ ‖E11 + t Z‖ = ‖U .E11 + t Z/U ∗‖
= ‖E11 + t .E12 + E21/‖ ≤

√
1+ 2t2:

Again, we havev∗�.Z/v = 0. Consequently, ifX is any (real) linear combination of
two matricesY andZ of the above form, we havev∗�.X/v = 0.

ASSERTION2. There exists a rank one orthogonal projectionX such that�.X/ is
unitarily similar to [1]⊕ Oq ⊕ D1, whereq + 1< k and D1 is a diagonal matrix with
diagonal entries in the interval.0;1/.

PROOF. By Assertion1, each�.Ej j / has largest and smallest eigenvalues equal
to 1 and 0, respectively. Sincen < k ≤ 2n − 2 and

k = tr Ik = tr �.In/ =
n∑

j =1

tr�.Ej j /;(2.4)

we see that there exist at least two matrices�.Ej j / with exactly one eigenvalue equal
to 1. If one of these matrices, say,�.Ej j /, is not an orthogonal projection inHk, then
Ej j is a desired matrixX.
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Suppose each matrix�.Ej j / with one eigenvalue equal to 1 is an orthogonal
projection, and�.E11/ is one of them. Sincen < k, by (2.4) again there exists�.Epp/

with at least two eigenvalues equal to 1. Without loss of generality, we may assume
that p = 2. By Assertion1, there exists a unitaryU ∈ Mk such that

�.E11/ = U .E11 ⊕ Ok−n/U
∗ and �.E22/ = U .[0] ⊕ Ir ⊕ C2/U

∗

so thatr > 1 and‖C2‖ < 1. For simplicity, assume thatU = Ik; otherwise, replace
� by the mappingX 7→ U∗�.X/U . So,

�.E11/ = E11 ⊕ Ok−n and �.E22/ = [0] ⊕ Ir ⊕ C2:(2.5)

Let Y1 = �.E11 + E22/, Y2 = �.E12 + E21/, and

Y = .Y1 + Y2/=2 = �.E11 + E22 + E12 + E21/=2:

Since‖�.Z/‖ = ‖Z‖, we have 1= ‖Y‖ = ‖Y1‖ = ‖Y2‖. Applying Assertion1 to
the matrices�.E11/ andY2, and also to�.E22/ andY2, we see that

Y2 =

 0 u∗

1 u∗
2

u1 Or ∗
u2 ∗ ∗


(2.6)

for someu1 ∈ Cr andu2 ∈ Ck−1−r . If v ∈ Ck is a unit vector so thatv∗Yv = 1, then

2 = 2v∗Yv = v∗Y1v + v∗Y2v ≤ ‖Y1‖ + ‖Y2‖ = 2;

and hencev∗Y1v = 1 = v∗Y2v. SinceY1 = I1+r ⊕ C2 with ½1.C2/ < 1 by (2.5), we
see thatv ∈ span{e1; : : : ;e1+r } ⊆ C

k. Thus, if P is obtained fromIk by taking its first
1 + r columns, then 1= ‖Y2‖ = v∗Y2v ≤ ‖P∗Y2P‖ ≤ ‖Y2‖. It follows that

1 = ‖P∗Y2P‖ =
∥∥∥∥
(

0 u∗
1

u1 Or

)∥∥∥∥ ;

thus,u1 is a unit vector. SinceY2 in the form (2.6) has norm 1, we see thatu2 = 0 and
there exists a unitary matrixW = [1] ⊕ W1 ⊕ Ik−1−r such thatW Y2W∗ = (

0 1
1 0

)⊕ Z2.
Hence,W.Y1 + Y2/W∗ = (

1 1
1 1

) ⊕ Z0, andZ0 is nonzero positive semidefinite such
that

‖Z0‖ ≤
∥∥∥∥
(

0 1
1 1

)
⊕ Z0

∥∥∥∥ = ‖�.E22 + E12 + E21/‖ = ‖E22 + E12 + E21‖ < 2:

Thus,Y is unitarily similar to the direct sum of a rank one orthogonal projection and
a non-trivialD with 0< ½1.D/ < 1. So,X = .E11 + E22 + E12 + E21/=2 is a desired
rank one orthogonal projection.
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ASSERTION3. There exist unitaryU ∈ Mk and V ∈ Mn such that the mapping̃�
defined by

X 7→ U�.V XV∗/U ∗(2.7)

satisfies

�̃.Y/ = Y ⊕ f̃ .Y/ for all Y = [a] ⊕ Y1; or(2.8)

�̃.Y/ = Yt ⊕ f̃ .Y/ for all Y = [a] ⊕ Y1;(2.9)

where f̃ :Hn →Hk−n is a unital positive linear map satisfying0< ‖ f̃ .E11/‖ < 1.

PROOF. By Assertion2, we may replace� by a mapping of the form (2.7) and
assume that�.E11/ = [1] ⊕ Oq ⊕ D1, whereq + 1 < k and D1 is a diagonal
matrix with diagonal entries in the interval.0;1/. Let Y = [0] ⊕ Y1 ∈ Hn, where
Y1 ∈ Hn−1, ‖Y1‖ = 1. By Assertion1, the .1;1/ entry of �.Y/ is 0. Since
‖�.E11 + Y/‖ = ‖E11 + Y‖ = 1, the first row and column of�.Y/ are all zero.
Therefore,

�.Y/ =

0 0 0

0  .Y1/ ∗
0 ∗ ∗


 with  .Y1/ ∈Hq.

Since 1= ‖�.Y/‖, there exists a unit vectorv such that 1= |v∗�.Y/v| = ‖�.Y/‖.

Clearly, the first entry ofv must be zero. Supposev =
[

0
v1
v2

]
with v1 ∈ C

q and

v2 ∈ Ck−1−q. Since�.E11/ = [1] ⊕ Oq ⊕ D1 and

|v∗
2 D1v2 ± v∗�.Y/v| = |v∗�.E11 ± Y/v| ≤ ‖E11 ± Y‖ = 1;

we see thatv2 = 0 and|v∗
1 .Y1/v1| = 1 = ‖Y1‖. Hence, the mapping fromMn−1 to

Mq defined byY1 7→  .Y1/ is unital and satisfies‖ .Y1/‖ = ‖Y1‖ for all Y1 ∈Hn−1.
Sinceq ≤ k − 2 ≤ 2n − 4, we can apply induction assumption to and conclude
that onHn−1 has the standard form:

Y1 7→ U ∗[Y1 ⊕ f .Y1/]U or Y1 7→ U ∗[Yt
1 ⊕ f .Y1/]U

for some unitaryU ∈ Mq. Now, the mapping̃� defined by

X 7→ .[1] ⊕ U ⊕ Ik−q−1/�.X/.[1] ⊕ U∗ ⊕ Ik−q−1/

satisfies (2.8) or (2.9).
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PROOF OF THECLAIM . By Assertion3, we can modify� to �̃ that satisfies (2.8)
or (2.9), where f̃ is a unital linear map satisfying 0< ‖ f̃ .E11/‖ < 1. We may further
assume that̃� satisfies (2.8); otherwise, replace� by the mappingA 7→ �.At /. For
simplicity, we assume that� = �̃.

To prove the claim, we note that every matrix inHn is a linear combination of rank
one orthogonal projections. Therefore, we only need to show that ifX ∈Hn is a rank
one orthogonal projection, then

�.X/ = g.X/ ⊕ f̃ .X/;(2.10)

whereg.X/ is a rank onen × n orthogonal projection.
If X = E11 or X has the form[0] ⊕ X1, then we are done because� = �̃

satisfies (2.8). Now, supposeX is not of these forms. ThenX = uu∗, where
u = ae1 + bv ∈ C

n is a unit vector such thatv ∈ e⊥
1 anda;b are nonzero complex

numbers satisfying|a|2 + |b|2 = 1. Replacingu by ¾1u for a suitable complex unit
¾1, we may assume thata > 0; then replacingv by ¾2v for a suitable complex unit¾2,
we may assume thatb > 0 as well. So,.a;b/ = .cos�; sin�/ for some� ∈ .0; ³=2/.
SupposeV ∈ Mn is a unitary matrix withe1 andv as the first two columns. ThenV
has the form[1] ⊕ V1 and satisfies

V ∗ XV = cos2 �E11 + cos� sin�.E12 + E21/+ sin2 �E22:

Consider the mapping�V defined byA 7→ .V ∗ ⊕ Ik−n/�.V AV∗/.V ⊕ Ik−n/. Note
that the mapping�V inherits all the properties we have established in Assertions1–3,
(2.8) for �. Moreover, if we can show that�V sends the matrix

cos2 �E11 + cos� sin�.E12 + E21/ + sin2 �E22

to a matrix of the formZ1 ⊕ Z2 so thatZ1 ∈ Mn is a rank one orthogonal projection,
then�.X/ = .V ⊕ Ik−n/�V .V∗ XV/.V∗ ⊕ Ik−n/ = V Z1V∗ ⊕ Z2, whereV Z1V ∗ is
a rank one orthogonal projection as desired. So, we focus on�V . For simplicity, we
write �V as� in the rest of our proof. Forj ∈ {1; : : : ;n}, let �.Ej j / = Ej j ⊕ Cj .
ThenC1 = f̃ .E11/ satisfies 0< ‖C1‖ < 1 and

C1 + · · · + Cn = Ik−n:(2.11)

We consider two cases.
Case 1. Suppose½1.C1 + C2/ < 1, that is,�.E11 + E22/ only has two eigenvalues
equal to 1. Ifv ∈ Ck satisfiesv∗.�.E11 + E22//v = 1, then only the first two entries
of v can be nonzero. Now,

2 = ‖.e1 + e2/.e1 + e2/
∗‖ = ‖�..e1 + e2/.e1 + e2/

∗/‖
≤ ‖�.e1e∗

1 + e2e∗
2/‖ + ‖�.e1e∗

2 + e2e∗
1/‖ = 2:
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So, there is a unit vectorv ∈ Cn such that

v∗.�.e1e∗
1 + e2e∗

2//v = 1 = v∗.�.e1e∗
2 + e2e

∗
1//v:

Thus, the leading 2× 2 principal submatrix of�.e1e∗
2 + e2e∗

1/ has norm one. By
Assertion1, the.1;1/ and.2;2/ entries of�.e1e∗

2 + e2e∗
1/ are zero. Hence, there is a

complex unit¼ such that�.e1e∗
2 + e2e∗

1/ = .¼e1e∗
2 + ¼̄e2e∗

1/⊕ D. Therefore,

�
(
.cos�e1 + sin�e2/.cos�e1 + sin�e2/

∗) =
(

cos2 � ¼ cos� sin�
¼̄ cos� sin� sin2 �

)
⊕ D̃:

Since ∥∥∥∥∥�
(
.cos�e1 + sin�e2/.cos�e1 + sin�e2/

∗ ±
n∑

j =3

ej e
∗
j

)∥∥∥∥∥ = 1;

we see that̃D has the formOn−2⊕ D̂. Hence,�..cos�e1+sin�e2/.cos�e1+sin�e2/
∗/

has the desired form (2.10).
Case 2.Suppose½1.C1 + C2/ = 1. We shall prove that there exists a sequence of unit
vectors{vr } in the linear span of{e2; : : : ;en} ⊆ C

n such thatvr → e2, and for eachr ,
�.E11 + vrv

∗
r / has only two eigenvalues equal to 1. By the result in Case 1,

�
(
.cos�e1 + sin�vr /.cos�e1 + sin�vr /

∗)
has the desired form (2.10). By continuity, we see that

�
(
.cos�e1 + sin�e2/.cos�e1 + sin�e2/

∗)
has the desired form (2.10) as well.

To construct our sequence{vr }, note that by (2.11) and the fact that 0< ‖C1‖ < 1,
we have

.Ik−n − C1/
−1=2.C2 + · · · + Cn/.Ik−n − C1/

−1=2 = Ik−n:

Sincek − n ≤ n − 2, comparing traces, we see that there existsj ≥ 3 such that

.Ik−n − C1/
−1=2Cj .Ik−n − C1/

−1=2

is a strict contraction, equivalently,½1.C1 + Cj / < 1. Without loss of generality, we
may assume thatj = 3. Let�.E23 + E32/ = .E23 + E32/⊕ C23. For t ∈ [0; ³=2], let

F.t/ = v.t/v.t/∗ with v.t/ = coste2 + sinte3 ∈ Cn:

Then

�.E11 + F.t// = [E11 + F.t/] ⊕ [C1 + cos2 tC2 + sin2 tC3 + cost sintC23]:
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If �.E11 + F.t// has more than two eigenvalues equal 1, then

0 = det.Ik−n − .C1 + cos2 tC2 + sin2 tC3 + cost sintC23//(2.12)

= det.cos2 t[.1 + tan2 t/.Ik−n − C1/ − C2 − tan2 tC3 − tantC23]/
= cos2.k−n/ t det..Ik−n − C1 − C2/− tantC23 + tan2 t .Ik−n − C1 − C3//:

Since�.E11 + E33/ has only two eigenvalues equal to 1, det.Ik−n − C1 − C3/ 6= 0. It
follows that (2.12) only has finitely many roots in the interval[0; ³=2]. Thus, we can
find a sequence{tr } → 0 such that{vr } = {v.tr /} → e2, and for eachr , E11 + vr v

∗
r

has only two eigenvalues equal to 1 as desired.

3. Proof of the main theorems

PROOF OFTHEOREM 1.2. The ‘if’ part of the theorem is clear. Supposek ≤ 2n−2,
�.In/ = Ik and‖�.X/‖ = ‖X‖ for all essentially HermitianX. By Theorem2.1,�.X/
is Hermitian wheneverX is Hermitian. Now, the result follows from Theorem2.3.

For the last statement, supposen ≥ 2 andk ≥ 2n − 1. Let

W =

1=

√
2 0 1=

√
2 0

0 In−1 0 0
0 0 0 In−1


 :

Define� : Mn → Mk by

�.A/ = W[A ⊕ At]W∗ ⊕ .tr A=n/Ik−2n+1

=

 A11 A12=

√
2 At

21=
√

2
A21=

√
2 A22 0

At
12=

√
2 0 At

22


⊕ .tr A=n/Ik−2n+1

for any

A =
(

A11 A12

A21 A22

)
with A22 ∈ Mn−1:

Since W W∗ = I2n−1, by the interlacing inequalities for eigenvalues of Hermitian
matrices [4, Theorem 4.3.6], ifA ∈Hn andB = W[A⊕ At]W∗, then½1.B/ = ½1.A/
and½2n−1.B/ = ½n.A/. Consequently,‖�.X/‖ = ‖X‖ for all essentially Hermitian
X ∈ Mn.

If � has the standard form (1.2), then there exist a contractive linear mapf : Mn →
Mk−n and a unitary matrixU ∈ Mk such thatU�.A/ = .A†⊕ f .A//U , whereA† = A
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or At . PartitionU into U = .Ui j /
2
i; j =1, whereU22 ∈ Mk−1, then we have

(
U11 U12

U21 U22

)
A11 A12=

√
2 At

21=
√

2 0
A21=

√
2 A22 0 0

At
12=

√
2 0 At

22 0
0 0 0 .tr A=n/Ik−2n+1




=
(

A† 0
0 f .A/

)(
U11 U12

U21 U22

)
:

Let A = E11and consider the first row on both sides. We have
(
U11 0

) = (
U11 U12

)
.

Hence,U11 = ei � for some real number� andU12;U21 are both zero. Consider the
first row on both sides in the general case, we have

ei �
(

A11 A12=
√

2 At
21=

√
2 0

) = (
A†

12 0
)

U22 ;

for all A ∈ Mn, which is impossible. Hence,� is not of the standard form (1.2).

PROOF OFTHEOREM 1.1. Supposek ≤ 2n−1, and‖�.X/‖ = ‖X‖ for all X ∈ Mn.
Clearly, we havek ≥ n. If k = n then (1.1) follows from Kadison’s result [6]. So
we may assume thatn < k ≤ 2n − 1. By the result in [1], it is impossible that�.U /
is unitary for every unitaryU ∈ Mn. Thus, there exists a unitaryX ∈ Mn such that
�.X/ is not unitary. By replacing� with the mapA 7→ �.X A/, if necessary, we
may assume thatX = I . Therefore,� satisfies all conditions in Theorem2.1 with
1 ≤ p ≤ 2n−2. LetU;V ∈ Mk, and be as given by Theorem2.1. Then satisfies
the conditions for Theorem1.2(with �; k replaced by ; p). So, there exists a unitary
W1 ∈ Mp and a unital positive linear map̃f : Mn → Mp−n such that has the form

A 7→ W1[A† ⊕ f̃ .A/]W∗
1 ;

whereA† = A or At . Let W = W1 ⊕ Ik−p. Then the mapping�0 : Mn → Mk defined
by A 7→ W∗U ∗�.A/V∗W has the form

A 7→

A† 0 ∗

0 f̃ .A/ ∗
∗ ∗ g.A/


 :

If A ∈ Mn is unitary, then‖�0.A/‖ = ‖A‖ implies that

�0.A/ = A† ⊕
(

f̃ .A/ ∗
∗ g.A/

)
:(3.1)

Since this is true forn2 linearly independent unitary matricesA, it follows that (3.1)
holds for anyA ∈ Mn. Consequently, the original map� has the form (1.1) as asserted.
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For the last statement, supposen ≥ 2 andk ≥ 2n. Let

W =




1=
√

2 0 1=
√

2 0
0 In−1 0 0
0 0 0 In−1

1=
√

2 0 −1=
√

2 0


 and P = I2n−1 ⊕ Ok−2n+1 :

Define� : Mn → Mk by

�.A/ = P.W ⊕ Ik−2n/[A ⊕ At ⊕ Ok−2n].W ⊕ Ik−2n/
∗

=




A11 A12=
√

2 At
21=

√
2 0 0

A21=
√

2 A22 0 A21=
√

2 0
At

12=
√

2 0 At
22 −At

12=
√

2 0
0 0 0 0 0
0 0 0 0 0




for any

A =
(

A11 A12

A21 A22

)
with A22 ∈ Mn−1:

Note that�.A/�.A/∗ = B ⊕ Ok−2n+1, where B ∈ H2n−1 is a leading principal
submatrix ofW.AA∗ ⊕ .AA∗/t /W∗. By the interlacing inequalities for eigenvalues
of Hermitian matrices [4, Theorem 4.3.6], we have‖�.A/‖ = ‖A‖. By an argument
similar to the one in the proof of Theorem1.2, we can show that� is not of the
form (1.1).

4. Related results and questions

Motivated by Theorem1.1 and the example constructed in its proof, we have the
following.

PROPOSITION4.1. SupposeP and Q are n.p + q/× m matrices such that

I − P P∗ ≥ 0; I − Q Q∗ ≥ 0;

andrank.I − P P∗/+ rank.I − Q Q∗/ < p + q. LetW1;W2 ∈ Mk be unitary, and let
f : Mn → Mk−m be a contractive linear map. If� : Mn → Mk is defined by

�.X/ = W1{P∗[.X ⊗ I p/⊕ .Xt ⊗ Iq/]Q ⊕ f .X/}W2;

then‖�.X/‖ = ‖X‖ for all X ∈ Mn.
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PROOF. It is clear that‖�.X/‖ ≤ ‖X‖. To prove the reverse inequality, supposeP
has singular value decompositionU DV, whereU ∈ Mn.p+q/ andV ∈ Mm are unitary,
and the singular values ofP lie in the.1;1/; .2;2/; : : : positions ofD in descending
order. Let D̃ be obtained fromD by setting all the entries in.0;1/ to 0, and let
P̃ = U D̃V . Apply a similar construction toQ to getQ̃. Then

rank.I − P̃ P̃∗/+ rank.I − Q̃Q̃∗/(4.1)

= rank.I − P P∗/ + rank.I − Q Q∗/ < p + q:

If the largest singular value ofX is s1 = ‖X‖, thens1 is a singular value of.X ⊗ I p/⊕
.Xt ⊗ Iq/ with multiplicity at leastp + q. By (4.1) and a result of Thompson [7], the
matrix P̃∗[.X ⊗ I p/⊕ .Xt ⊗ Iq/]Q̃ has largest singular value equal tos1 also. Thus,
we have‖X‖ = s1 = ‖P̃∗[.X ⊗ I p/⊕ .Xt ⊗ Iq/]Q̃‖ ≤ ‖�.X/‖.

Using a similar argument as in the proof of Proposition4.1 and the interlacing
inequalities on Hermitian matrices (see [4, Theorem 4.3.6]), we have the following.

PROPOSITION4.2. SupposeP is an n.p + q/ × m matrix such thatP∗ P = Im,
where0 ≤ n.p + q/ − m < p + q. LetU ∈ Mk be unitary, andf : Mn → Mk−m be
a unital positive linear map. If� : Mn → Mk is defined by

�.X/ = U∗{P∗[.X ⊗ I p/⊕ .Xt ⊗ Iq/]P ⊕ f .X/}U;

then‖�.X/‖ = ‖X‖ for all essentially HermitianX ∈ Mn.

Recall that thenumerical rangeof a matrixA ∈ Mn is the set

W.A/ = {x∗ Ax : x ∈ Cn; x∗x = 1};

which is a useful concept in matrix and operator theory, and has been studied exten-
sively; see [5, Chapter 1]. We have the following proposition.

PROPOSITION4.3. Let Vm = Mm orHm. Suppose� : Vn → Vk is linear. If � has
the form given in Proposition4.2, then

W.�.X// = W.X/ for all X ∈ Vn:(4.2)

Whenk ≤ 2n − 2, (4.2) holds if and only if� has the form(1.2) in Theorem1.2.

PROOF. Suppose� has the form in Proposition4.2. If X ∈ Hn, thenX and�.X/
have the same largest and smallest eigenvalues; sinceW.X/ is the convex hull of the
largest and smallest eigenvalues ofX, it follows thatW.�.X// = W.X/.
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SupposeVn = Mn and X ∈ Mn is not Hermitian. ThenX = H + iG for some
Hermitian H andG. Now, �.cost H + sintG/ and cost H + sintG have the same
largest and smallest eigenvalues for allt ∈ [0;2³/, we see that the two convex sets
W.X/ andW.�.X// have the same support lines; see [5, Theorem 1.5.11]. Thus, the
two sets are equal.

Supposek ≤ 2n − 2. If Vn = Hn, the result follows readily from Theorem2.3.
If Vn = Mn, one can use the fact thatW.X/ ⊆ R if and only if X is Hermitian to
conclude that�.Hn/ ⊆Hk. Then the result follows from the Hermitian case.

There are several related problems that deserve further investigation.

(1) If � : Mn → Mk has the form in Proposition4.1, then‖�.A/‖ = ‖A‖ for all
A ∈ Mn. It would be nice to know whether the converse is true.
(2) If � : Mn → Mk has the form in Proposition4.2, then‖�.A/‖ = ‖A‖ for

all essentially HermitianA ∈ Mn. It would be nice to know whether the converse
is true. Note that by Theorem2.1 and Theorem2.3 (b), the problem is equivalent
to studying positive linear maps� such thatA is positive definite whenever�.A/ is
positive definite.
(3) One can ask whether the converse of the first statement in Proposition4.3is true.
(4) One can study the above problems under the additional assumption that� is a

decomposable or completely positive linear map.
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