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Abstract

The purpose of this paper is to provide a detailed treatment of the behaviour of essential spectra of closed
densely defined linear operators subjected to additive perturbations not necessarily belonging to any ideal
of the algebra of bounded linear operators. IfA denotes a closed densely defined linear operator on a
Banach spaceX, our approach consists principally in considering the class ofA-closable operators which,
regarded as operators inL .XA; X/ (whereXA denotes the domain ofA equipped with the graph norm),
are contained in the set ofA-Fredholm perturbations (see Definition1.2). Our results are used to describe
the essential spectra of singular neutron transport equations in bounded geometries.

2000Mathematics subject classification: primary 47A53, 47A55, 47G20.

1. Introduction and preliminaries

Let X andY be two Banach spaces. By an operatorA from X into Y we mean a linear
operator with domainD.A/ ⊆ X and range contained inY. We denote byC .X;Y/
(respectivelyL .X;Y/) the set of all closed, densely defined (respectively bounded)
linear operators fromX into Y. The subset of all compact (respectively weakly
compact) operators ofL .X;Y/ is designated byK .X;Y/ (respectivelyW .X;Y/).
If A ∈ C .X;Y/, we write N.A/ ⊆ X and R.A/ ⊆ Y for the null space and range
of A. We setÞ := dim N.A/, þ := codimR.A/. Let A ∈ C .X;Y/ with a closed
range. ThenA is a8+-operator (A ∈ 8+.X;Y/) if Þ.A/ < ∞, and A is a8−-
operator (A ∈ 8−.X;Y/) if þ.A/ < ∞; 8.X;Y/ = 8+.X;Y/ ∩ 8−.X;Y/ is the
class of Fredholm operators while8±.X;Y/ denotes the set8+.X;Y/ ∪ 8−.X;Y/.
For A ∈ 8.X;Y/, the index ofA is defined byi .A/ = Þ.A/− þ.A/. If X = Y, then
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L .X;Y/, K .X;Y/, W .X;Y/, C .X;Y/, 8+.X;Y/, 8±.X;Y/, and8.X;Y/ are
replaced, respectively, byL .X/, K .X/, W .X/, C .X/, 8+.X/, 8±.X/ and8.X/.
Let A ∈ C .X/. The spectrum ofA will be denoted by¦.A/. The resolvent set ofA,
².A/, is the complement of¦.A/ in the complex plane. A complex number½ is in
8+A;8−A;8±A or 8A if ½ − A is in 8+.X/;8−.X/;8±.X/ or 8.X/ respectively.
For the properties of these sets we refer to [7, 12] or [24].

For self-adjoint operators in a Hilbert space, there seems to be only one reasonable
way of defining the essential spectrum: the set of all points of the spectrum that are
not isolated eigenvalues of finite algebraic multiplicity (see, for example, [22, 30]).
If X is a Banach space andA ∈ C .X/, various notions of essential spectrum appear
in the literature, most are enlargement of the continuous spectrum. Define the sets

¦e1.A/ := {½ ∈ C such that½− A =∈ 8+.X/} := C\8+A;

¦e2.A/ := {½ ∈ C such that½− A =∈ 8−.X/} := C\8−A;

¦e3.A/ := {½ ∈ C such that½− A =∈ 8±.X/} := C\8±A;

¦e4.A/ := {½ ∈ C such that½− A =∈ 8.X/} := C\8A;

¦e5.A/ := C\²5.A/;

¦e6.A/ := C\²6.A/;

where²5.A/ := {½ ∈ 8A; i .½ − A/ = 0} and²6.A/ := {½ ∈ ²5.A/ such that all
scalars near½ are in².A/}. We call¦e1.·/ and¦e2.·/ the Gustafson and Weidman
essential spectra[10] and¦e3.·/ theKato essential spectrum[13]. Further,¦e4.·/ is
the Wolf essential spectrum[10, 23, 30], ¦e5.·/ is theSchechter essential spectrum
[10, 23, 24], and¦e6.·/ is theBrowder essential spectrum[10, 23]. Note that all these
sets are closed and, in general, we have

¦e1.A/ ∩ ¦e2.A/ = ¦e3.A/ ⊆ ¦e4.A/ ⊆ ¦e5.A/ ⊆ ¦e6.A/ ⊆ ¦.A/:

But if X is a Hilbert space andA is self-adjoint, then all these sets coincide.
An operatorT ∈ L .X;Y/ is said to bestrictly singular if, for every infinite

dimensional subspaceM of X, the restriction ofT to M is not a homeomorphism.
Let S .X;Y/ denote the set of all strictly singular operators fromX into Y. For a
detailed study of the properties of strictly singular operators we refer to [12]. Note
thatS .X;Y/ is a closed subspace ofL .X;Y/. In general, strictly singular operators
are not compact (see [8]) and, if X = Y,S .X/ is a closed two-sided ideal ofL .X/
containingK .X/.

If N is a closed subspace of a Banach spaceZ, we denote by³ Z
N the quotient map

Z → Z=N. Thecodimensionof N, codim.N/, is defined to be the dimension of the
vector spaceZ=N.

An operatorT ∈ L .X;Y/ is said to bestrictly cosingularif there exists no closed
subspaceN of Y with codim.N/ = ∞ such that³Y

N T : X → Y=N is surjective. Let
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CS .X;Y/ denote the set of strictly cosingular operators fromX into Y. This class of
operators was introduced by Pelczynski [21]. It forms a closed subspace ofL .X;Y/
and is a closed two-sided ideal ofL .X/ if X = Y (see [27]).

Let 8b.X;Y/, 8b
+.X;Y/ and8b

−.X;Y/ designate the sets8.X;Y/ ∩ L .X;Y/,
8+.X;Y/ ∩L .X;Y/ and8−.X;Y/ ∩L .X;Y/, respectively.

DEFINITION 1.1. Let F ∈ L .X;Y/. F is called aFredholm perturbationif
U + F ∈ 8b.X;Y/ wheneverU ∈ 8b.X;Y/. F is called anupper (respectively
lower) Fredholm perturbationif F + U ∈ 8b

+.X;Y/ (respectively8b
−.X;Y/) when-

everU ∈ 8b
+.X;Y/ (respectively8b

−.X;Y/).

The sets of Fredholm, upper semi-Fredholm and lower semi-Fredholm perturba-
tions are denoted byF b.X;Y/,F b

+.X;Y/ andF b
−.X;Y/, respectively. These classes

of operators were introduced and investigated in [8]. In particular, it is shown that
F b

+.X;Y/ andF b.X;Y/ are closed subsets ofL .X;Y/, and if X = Y, thenF b
+.X/

andF b.X/ are closed two-sided ideals ofL .X/. We recall the following useful
result due to Gohberg, Markus and Fel’dman [8, pages 69–70].

PROPOSITION1.1. Let X, Y and Z be three Banach spaces. If at least one of the
sets8b.X;Y/ and8b.Y; Z/ is not empty, then

F1 ∈ F b.X;Y/; A ∈ L .Y; Z/ .F2 ∈ F b.Y; Z/; B ∈ L .X;Y//

imply

AF1 ∈ F b.X; Z/ .F2 B ∈ F b.X; Z//:

For A ∈ C .X/, the graph norm ofA is defined by

‖x‖A = ‖x‖ + ‖Ax‖; x ∈ D.A/;
whereD.A/ denotes the domain ofA. It follows from the closedness ofA thatD.A/
endowed with the norm‖ · ‖A is a Banach space. In this new space, denoted byXA,
the operatorA satisfies‖Ax‖ ≤ ‖x‖A; and consequently,A ∈ L .XA; X/. Let J be
a linear operator onX. If D.A/ ⊂ D.J/, then J will be called A-defined. If J is
A-defined, we will denote bŷJ its restriction toD.A/. Moreover, if Ĵ ∈L .XA; X/,
we say thatJ is A-bounded. One checks easily that ifJ is closed (or closable) (see
[13, Remark 1.5, page 191]), thenJ is A-bounded.

REMARK 1.1. We say that an operatorJ is A-closedif xn → x, Axn → y, J xn → z
for {xn} ⊆ D.A/ implies thatx ∈ D.J/ and J x = z. It will be called A-closable
if xn → 0, Axn → 0, J xn → z implies z = 0. It is evident that ifJ is closed
(respectively closable), thenJ is A-closed (respectivelyA-closable). Note, however,
that if A is closed, by [23, Lemma 2.1], we get the equivalence between the following
three concepts: (i)J is A-closed, (ii)J is A-closable and (iii)J is A-bounded.
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DEFINITION 1.2. Let X be a Banach space,A ∈ C .X/ and let F be an A-
defined linear operator onX. We say thatF is an A-Fredholm perturbationif
F̂ ∈ F b.XA; X/. F is called anupper(respectivelylower) A-semi-Fredholm pertur-
bation if F̂ ∈ F b

+.XA; X/ (respectivelyF̂ ∈ F b
−.XA; X/).

Let AF .X/, AF+.X/ and AF−.X/ designate the sets ofA-Fredholm, upper
A-semi-Fredholm and lowerA-semi-Fredholm perturbations, respectively.

DEFINITION 1.3. Let A ∈ C .X/ and let J be an arbitraryA-defined linear oper-
ator onX. We say thatJ is A-compact(respectivelyA-weakly compact, A-strictly
singular, A-strictly cosingular) if Ĵ ∈ K .XA; X/ (respectivelyĴ ∈ W .XA; X/,
Ĵ ∈ S .XA; X/, Ĵ ∈ CS .XA; X/).

Let AK .X/, AW .X/, AS .X/ andACS .X/ denote, respectively, the sets ofA-
compact,A-weakly compact,A-strictly singular andA-strictly cosingular operators
on X.

REMARK 1.2. Clearly, if J is bounded, thenJ is A-bounded,J is compact (re-
spectively weakly compact, strictly singular, strictly cosingular) implies thatJ is
A-compact (respectivelyA-weakly compact,A-strictly singular,A-strictly cosingu-
lar).

REMARK 1.3. Notice that the concept ofA-boundedness,A-compactness,A-strict
singularity, A-strict cosingularity andA-Fredholmness are not connected with the
operatorA itself, but only with its domain. Note also that an easy consequence of
Definition 1.2and the inclusions in [8, page 69] that

AK .X/ ⊆ AS .X/ ⊆ AF+.X/ ⊆ AF .X/;(1.1a)

AK .X/ ⊆ ACS .X/ ⊆ AF−.X/ ⊆ AF .X/:(1.1b)

The inclusionAS .X/ ⊆ AF+.X/ (respectivelyACS .X/ ⊆ AF−.X/) was estab-
lished in [12] (respectively [27]).

When dealing with essential spectra of closed densely defined linear operators on
Banach spaces, one of the main problems consists in studying the invariance of the
essential spectra of these operators subjected to various kinds of perturbations. Among
the works in this direction we quote, for example, [10, 15, 16, 17, 22, 24, 30] (see
also the references therein). This work is a continuation of [17], where we can find
a detailed treatment of the behaviour of essential spectra of such operators subjected
to additive perturbations belonging to arbitrary closed two-sided ideals ofL .X/
contained in the set of Riesz operators (see [17, page 281]). It is inspired by the
work published in [15] and [16], where A-weakly compact andA-strictly singular
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perturbations (A denotes a closed densely defined linear operator) were considered
on Banach spaces which possess the Dunford-Pettis property, and onL p spaces,
respectively. Our main objective here is to extend the results obtained in [15, Section 4]
and [16, Section 2] to arbitrary Banach spaces and to fit them into a more general
framework. The extension consists principally in the possibility of considering the
class ofA-bounded operatorswhich, regarded as operators inL .XA; X/, are contained
in one of the setsAF+.X/, AF−.X/, AF+.X/∩ AF−.X/ or AF .X/. Accordingly,
using the same strategy as in [17], we find conditions which generalize previous ones
discussed in [15, 16]. In contrast to the proofs of the results obtained in [15] and [16],
which use the geometric properties of Banach spaces considered, our analysis applies
to all Banach spaces regardless of their specific properties and to a wide family of
operators including, in particular, the setsAK .X/, AW .X/, AS .X/ andACS .X/.
Note also that our results provide a natural extension to those obtained in [17].

In the last section we consider the following singular neutron transport operator

A .x; ¾ / = −v @ 
@x
.x; v/− ¦.v/ .x; v/ +

∫
Rn

�.v; v′/ .x; v′/dv′

= T .x; v/+ K .x; v/;

where.x; v/ ∈ D × R
n. Here D is an open bounded subset ofRn andd¼.·/ is a

positive Radon measure onRN. This operator describes the transport of particles
(neutrons, photons, molecules of gas,etc.) in the domainD. The function .x; v/
represents the number (or probability) density of gas particles having the positionx
and the velocityv. The functions¦.·/ and�.·; ·/ are called, respectively, thecollision
frequencyand thescattering kernel. The operatorA is supplemented with vacuum
boundary conditions that is 0− = 0 with 0− = {.x; v/ ∈ @D × R

n; v:¹x < 0},
where¹x stands for the outer unit normal vector atx ∈ @D.

Here the functions¦.·/ and �.·; ·/ will be assumed to be unbounded. More
precisely, we will assume that there exist a closed subsetO ⊆ R

n with zero d¼
measure and a constant¦0 > 0 such that

¦.·/ ∈ L∞
loc.R

n\O/; ¦ .v/ > ¦0 a.e.(1.2) [∫
Rn

(
�.·; v′/
¦ .v′/1=p

)q

d¼.v′/
]1=q

∈ L p.R
n/;(1.3)

whereq denotes the conjugate exponent ofp. These assumptions were motivated
by free gas models (see [4, 25]) and were already used by Chabi and Mokhtar-
Kharroubi [2] in L1 spaces and by Lods [18] in the case ofL p spaces (see also [19,
Chapter 9] or [28]). The first part of the condition (1.2) means that the singularities of
the collision frequency are contained in a set of zerod¼ measure. In fact, unbounded
and nonnegative collision frequencies act as strong absorbers which allow the un-
boundedness of the collision operator. We also deal with abstract velocity measures
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d¼.·/, hence our analysis works for continuous models (Lebesgue measure on open
subsets ofRn), multigroup models (surface Lebesgue measures on spheres) as well as
discrete ones (finite sum of Dirac measures).

In [2, 18, 19] the authors discussed essentially the asymptotic spectrum ofA.
The main goal of this paper is to apply the results of Section2 to describe the
essential spectra of the operatorA subjected to assumptions (1.2) and (1.3). The main
result of Section4 is Theorem4.1. It asserts that if conditions (1.2) and (1.3) are
satisfied, the hyperplanes ofRn have zerod¼-measure (that is, for eache ∈ Sn−1,
d¼{v ∈ Rn; v:e = 0} = 0, whereSn−1 denotes the unit sphere ofRn); and if further
the collision operatorK is compact fromL p.R

n; ¦ .v/d¼.v// into Lp.R
n;d¼.v//,

then¦ei.A/ = {½ ∈ C such that Re½ ≤ −¦0} for i = 1; : : : ;5. Our analysis is based
essentially on Proposition2.1, Proposition4.1 and the knowledge of the essential
spectra of the streaming operatorT .

2. Main results

Let X be a Banach space andA ∈ C .X/. In what follows we shall be concerned
with A-bounded perturbations belonging toAF .X/. It is a wide class of operators
which contains all the classical perturbation classes considered in the literature (see
Remarks1.2–1.3). It is worth remarking that, according to Remark1.1, operators in
AF .X/ need not be closed.

We are now ready to state the main result of this paper which generalizes [17,
Theorem 3.1].

THEOREM 2.1. Let A ∈ C .X/ and let J be an operator onX. The following
statements are satisfied.

(i) If J ∈ AF .X/, then¦ei.A/ = ¦ei.A + J/, i = 4;5. Moreover, ifC¦e5.A/
(the complement of¦e5.A/) is connected and neither².A/ nor ².A + J/ is empty,
then¦e6.A/ = ¦e6.A + J/. Further,

(ii) if J ∈ AF+.X/, then¦e1.A/ = ¦e1.A + J/;
(iii) if J ∈ AF−.X/ or J∗ ∈ AF+.X∗/, then¦e2.A/ = ¦e2.A + J/;
(iv) if J ∈ AF+.X/

⋂
AF−.X/, then¦e3.A/ = ¦e3.A + J/.

Let X be a Banach space. We say thatX possesses theDunford-Pettis property
(for short, property DP) if, for each Banach spaceY, every weakly compact operator
T : X → Y takes weakly compact sets inX into norm compact sets ofY. It is well
known that anyL1 space has the property DP. Also, if� is a compact Hausdorff space
thenC.�/ has the property DP. For further examples we refer to [5] or [6, pages 494,
497, 508 and 511].
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REMARK 2.1. Item (i) was first proved in the particular case whenJ ∈ AK .X/
in [23, Theorems 2.1 and 2.6]. This is due to the fact thatAK .X/ ⊆ AF+.X/ ∩
AF−.X/. If X is an L p space, 1≤ p ≤ ∞, and A ∈ C .X/, then assertions (i)
and (ii) are valid for allJ ∈ AS .X/ [16, Theorem 2.1]. The same is true for the
spacesl p, 1 ≤ p < ∞, c0 andC.�/, where� is a compact Hausdorff space. Also,
using A-weakly compact perturbations, statements (i) and (iii) were established in
[15, Theorem 4.1] for Banach spaces which possess the property DP.

Notice that in most applications (transport operators, Schr¨odinger operators, opera-
tors arising in dynamic populationsetc. see [3, 9,17, 22, 24]), we deal with operatorsA
and B such thatB = A + J, whereA ∈ C .X/ (often is the generator of a strongly
continuous semigroup) andJ is, in general, a closed (or closable)A-defined operator
not necessarily bounded. The next proposition provides a practical criterion for the
invariance of essential spectra for such operators, which is useful in applications (see
Section4).

PROPOSITION2.1. Let A ∈ C .X/ and let J be an A-bounded operator onX.
LetI .X/ be any nonzero closed two-sided ideal ofL .X/ satisfyingI .X/ ⊆ F .X/,
whereF .X/ denotes the ideal of Fredholm perturbations, and assume that there is a
complex number½ ∈ ².A/ such thatr¦ .J.½ − A/−1/ < 1.

(i) If J.½ − A/−1 ∈ I .X/, then¦ei.A + J/ = ¦ei.A/, i = 4;5.
Moreover,

(ii) if I .X/ ⊆F+.X/, then¦e1.A + J/ = ¦e1.A/;
(iii) if I .X/ ⊆F−.X/, then¦e2.A/ = ¦e2.A + J/;
(iv) if I .X/ ⊆F+.X/

⋂
F−.X/, then¦e3.A/ = ¦e3.A + J/.

PROOF. Let ½ ∈ ².A/. Since J is A-bounded, according to [23, Lemma 2.1],
J.½− A/−1 is a closed linear operator defined on allX and therefore bounded by the
closed graph theorem. On the other hand, the assumptionr¦ .J.½− A/−1/ < 1 implies
that½ ∈ ².A + J/ and

.½ − A − J/−1 − .½− A/−1 =
∑
n≥1

.½− A/−1[J.½− A/−1]n:

Clearly, if J.½ − A/−1 ∈ I .X/, then the closedness ofI .X/ implies that
.½ − A − J/−1 − .½ − A/−1 ∈ I .X/. Now items (i)–(iv) follow immediately from
[17, Theorem 3.2].

Let us now recall another definition of the Schechter essential spectrum (see, for
example, [23, 24]). It asserts that ifA ∈ C .X/, then¦e5.A/ is the largest subset
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of ¦.A/ which remains invariant under compact perturbations, that is,

¦e5.A/ =
⋂

K∈K .X/

¦ .A + K /:(2.1)

The equivalence between (2.1) and the definition of¦e5.·/ given in the Introduction was
established in [24, Theorem 5.4, page 180]. In [17, Theorem 3.4], (2.1) is somewhat
relaxed. Actually, it is proved that

¦e5.A/ =
⋂

J∈J .X/

¦ .A + J/;(2.2)

whereJ .X/ is a two sided ideal ofL .X/ satisfyingK .X/ ⊆ J .X/ ⊆ F .X/.
Nevertheless, a careful examination of the proof of Theorem 5.4 in [24, page 180]
shows that (2.1) remains valid if we replaceK .X/ byF0.X/ (the ideal of finite rank
operators). So,F0.X/ is the minimal subset ofL .X/ (in the sense of inclusion) for
which (2.2) holds true.

In the next theorem we will give a sharper form of (2.2) which extends it to
A-bounded perturbations contained inAF .X/. To do so, we will assume that

F0.X/ ⊆J .X/ ⊆ AF .X/:(2.3)

THEOREM 2.2. Let A ∈ C .X/ and letJ .X/ be any subset of operators satisfy-
ing (2.3). Then¦e5.A/ = ⋂

J∈J .X/ ¦ .A + J/.

REMARK 2.2. This theorem may be viewed as an extension of [15, Theorem 4.2]
and [16, Theorem 2.2]. In fact, in [16] (respectively [15]) it is proved that in the case
whenX is anL p space (respectively has the property DP), the definition of¦e5.·/ can be
stated in terms ofA-strictly singular (respectivelyA-weakly compact) perturbations.
Since AS .L p/ ⊆ AF .L p/ (1 ≤ p ≤ ∞) and AW .X/ ⊆ AF .X/, if X has the
property DP, then these two results are particular cases of our theorem. Their proofs
depend in a crucial way on the properties and the structure of both the families of
operators and the classes of spaces considered, and are different from the proof of the
Theorem2.2given below.

Finally, we have the following analogue of Proposition 3.2 in [17] which extends
it to the case ofA-Fredholm perturbations.

PROPOSITION2.2. Let A ∈ C .X/. If ¦e6.A/ = ¦e5.A/, then, for eachJ ∈ AF .X/,
there is at most a countable setS of complex numbers such that

¦e6.A + � J/ = ¦e6.A/

for � =∈ S . If C¦e6.A/ consists of a finite number of components, thenS is discrete.
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PROOF. It is verbatim the proof of [17, Proposition 3.2]. It suffices only to replace
in the text Proposition 3.1 by Lemma3.1below.

REMARKS 2.3. (1) Let .�;6;¼/ be a positive measure space and letXp denote
the spacesL p.�;d¼/ with 1 ≤ p < ∞. Recall that, ifX = Xp or X = C.4/ (the
Banach space of continuous scalar-valued functions on4 with the supremum norm
where4 is a compact Hausdorff space), thenS .X/ = CS .X/ = F .X/ (see [16,
(2.9) and (2.10)]). So, for these spaces we haveAS .X/ = ACS .X/ = AF .X/.
(2) Recall that, following Calkin [1], if X is a separable Hilbert space, thenK .X/

is the unique proper nonzero closed two-sided ideal ofL .X/. This result also holds
true for the spacesl p, 1 ≤ p < ∞ andc0 [8]. Hence if X is one of these spaces, then
K .X/ = F .X/, and thereforeAK .X/ is largest class of operators which permits to
derive the results stated above.
(3) A Banach spaceX is an h-spaceif each closed infinite dimensional subspace ofX

contains a complemented subspace isomorphic toX. Any Banach space isomorphic to
an h-space is an h-space;c, c0 andl p .1 ≤ p < ∞/ are h-spaces. LetX be an h-space,
according to [29, Theorem 6.2],S .X/ is the greatest proper ideal ofL .X/. Hence,
sinceS .X/ ⊆ F .X/ we conclude thatS .X/ = F .X/. Next, let A ∈ C .X/, then
it follows from Definition1.3and Remark1.3that AS .X/ = AF .X/. Accordingly,
for h-spaces,AS .X/ is the largest family of operators for which the results of this
section are valid.

3. Proofs

To establish the results stated above we will make use of the following perturbation
lemma which is fundamental to our purpose. It generalizes many known perturbation
results in the literature.

LEMMA 3.1. Let A ∈ C .X/ and let J be an operator onX. Assume that
J ∈ AF .X/.

(i) If A ∈ 8.X/, thenA + J ∈ 8.X/ andi .A + J/ = i .A/.
Moreover,

(ii) if A ∈ 8+.X/ and J ∈ AF+.X/; thenA + J ∈ 8+.X/;
(iii) if A ∈ 8−.X/ and J ∈ AF−.X/ or J∗ ∈ AF+.X∗/, thenA + J ∈ 8−.X/;
(iv) if A ∈ 8±.X/ and J ∈ AF+.X/ ∩ AF−.X/, thenA + J ∈ 8±.X/.

REMARK 3.1. During the last decades, perturbation theory has experienced great
developments motivated by concrete problems arising in different branches of physics
and biology see, for example, the works [7, 8, 10, 12, 13, 20, 22, 23, 24, 27, 30].
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When dealing withA-bounded perturbations, whereA ∈ C .X/, many results in
the spirit of the assertions of Lemma3.1 concerning special classes of operators
and particular Banach spaces may be encountered in theliterature. In fact, the first
result in the spirit of Lemma3.1 (i) for A-compact operators was established by
Nagy [20]. Using Nagy’s idea, Gohberg and Krein have obtained items (ii) and (iii)
(and consequently (iv)) stated above for the same class of operators [8]. In [12]
Kato proved assertion (ii) forA-strictly singular operators. IfX has the property DP
and J ∈ AW .X/, then Lemma3.1 (i) and (iii) hold true (see [15]). Recently, it is
proved that ifX is anL p space (1≤ p ≤ ∞) and J ∈ AS .X/, then statements (i)
and (ii) are valid (see [16]). Note that in our case, Vladimirskii’s result (see [27,
Corollary 1]) writesACS .X/ ⊆ AF−.X/, and therefore (i) and (iii) hold true for
A-strictly cosingular perturbations.

PROOF OFLEMMA 3.1. Since A ∈ C .X/ and J ∈ AF .X/, hence as mentioned
above we can regardA andJ as operators fromXA into X. They will be denoted by
Â and Ĵ respectively. These belong toL .XA; X/ and we have


Þ.Â/ = Þ.A/; þ.Â/ = þ.A/; R.Â/ = R.A/;

Þ.Â + Ĵ/ = Þ.A + J/;

þ.Â + Ĵ/ = þ.A + J/ and R.Â + Ĵ/ = R.A + J/:

(3.1)

Observe that assertion (ii), the first part of (iii) and (iv) are immediate. To prove
the second part of (iii) we proceed as follows. LetA ∈ 8−.X/. Applying [13,
Theorem 5.13, page 234] we infer thatA∗ ∈ 8+.X∗/. Moreover,J∗ ∈ AF+.X∗/
implies thatA∗+J∗ ∈ 8+.X∗/. This together with the fact thatÞ.A∗+J∗/ = þ.A+J/
(use again [13, Theorem 5.13, page 234]) gives the result.

(i) Assume thatA ∈ 8.X/. Then using (3.1) we infer thatÂ ∈ 8b.XA; X/. Hence,
it follows from [24, Theorem 1.4, page 108] that there existA0 ∈ L .X; XA/ and
K ∈K .X/ such that

ÂA0 = I − K ; on X:(3.2)

This leads to

.Â + Ĵ/A0 = I − K + Ĵ A0 = I −Q on X:(3.3)

Next, it follows from (3.2) that ÂA0 ∈ 8b.X/ andi .ÂA0/ = 0. Hence, the use of
[24, Theorem 3.4, page 117] together with the Atkinson theorem [24, Theorem 2.3,
page 111] implies thatA0 ∈ 8b.X; XA/ and

i .Â/ = −i .A0/:(3.4)
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On the other hand, sincêJ ∈ AF .X/ andA0 ∈ L .X; XA/, applying Proposition1.1
we get Ĵ A0 ∈ F b.X/. Using the fact thatF b.X/ is a closed two-sided ideal of
L .X/ containingK .X/ [8] we infer thatQ ∈ F b.X/. Therefore applying [17,
Proposition p:3.1 (i)] to (3.3) we get.Â + Ĵ/A0 ∈ 8b.X/ and i

[
.Â + Ĵ/A0

] = 0.
SinceA0 ∈ 8b.X; XA/, it follows from [24, Theorem 3.4, page 117] and the Atkinson
theorem thatÂ + Ĵ ∈ 8b.XA; X/ and

i .Â + Ĵ/ = −i .A0/:(3.5)

Now using (3.4), (3.5) and (3.1) we find thati .A + J/ = i .A/ which completes the
proof.

PROOF OFTHEOREM 2.1. The proofs of items (ii), (iii), (iv) and the first part of (i)
for i = 4 use Lemma3.1and are immediate. So, they are omitted.

Next, we prove (i) fori = 5. If ½ =∈ ¦e5.A/, then½ ∈ ²5.A/ that is½ ∈ 8A and
i .½ − A/ = 0. SinceJ ∈ AF .X/, applying Lemma3.1 (i) we infer that½ ∈ 8A+J

andi .½− A − J/ = 0, and therefore½ =∈ ¦e5.A + J/. Thus¦e5.A + J/ ⊆ ¦e5.A/.
Similarly, if ½ =∈ ¦e5.A+ J/, then using Lemma3.1(i) and arguing as above we derive
the opposite inclusion¦e5.A/ ⊆ ¦e5.A + J/.

To prove the statement fori = 6, we first observe that the preceding step implies that
C¦e5.A+J/ = C¦e5.A/. This set contains points of².A/ and².A+J/. Accordingly,
sinceÞ.½ − A/ andþ.½ − A/ (respectivelyÞ.½ − A − J/ andþ.½ − A − J/) are
constant on any component of8A (respectively8A+J) except possibly on a discrete
set of points at which they have larger values (see [7, Theorem 3.3]), it cannot contain
points of¦e6.A/ or ¦e6.A + J/. This together with the inclusions¦e5.A/ ⊆ ¦e6.A/
and¦e5.A+ J/ ⊆ ¦e6.A+ J/ leads to¦e5.A/ = ¦e6.A/ and¦e5.A+ J/ = ¦e6.A+ J/
and the result follows.

PROOF OFTHEOREM 2.2. SetO := ⋂
J∈J .X/ ¦ .A + J/.

Clearly, (2.1) and (2.3) show thatO ⊆ ¦e5.A/. So, we have only to prove that
¦e5.A/ ⊆ O . If ½0 =∈ O , then there existsJ ∈ J .X/ such that½0 ∈ ².A + J/. Let
x ∈ X and puty = .½0 − A − J/−1x. It follows from the estimate

‖y‖A+J = ‖y‖ + ‖.Â + Ĵ/y‖ = ‖y‖ + ‖x − ½0y‖
= ‖.½0 − Â − Ĵ/−1x‖ + ‖x − ½0.½0 − Â − Ĵ/−1x‖
≤

(
1 + .1 + |½0|/‖.½0 − Â − Ĵ/−1‖

)
‖x‖

that .½0 − Â − Ĵ/−1 ∈ L .X; XA+J /. Moreover, sinceJ ∈ J .X/ ⊆ AF .X/,
applying Proposition1.1we conclude that.½0 − Â− Ĵ/−1 Ĵ ∈ F b.XA; XA+J/. LetI



84 Khalid Latrach and J. Martin Paoli [12]

denote the imbedding operator which maps everyx ∈ XA onto the same element
x ∈ XA+J . Clearly we haveN.I / = {0} andR.I / = XA+J . So, the estimate

‖I .x/‖XA+J
= ‖x‖XA+J

≤ ‖x‖X + ‖Ax‖X + ‖J x‖X

≤ (
1 + ‖J‖L .XA;X/

) ‖x‖XA
; ∀x ∈ XA

leads toI ∈ 8b.XA; XA+J/ andi .I / = 0.
Next, remembering that.½0− Â− Ĵ/−1 Ĵ ∈ F b.XA; XA+J/ and using Lemma3.1(i)

we get

I + .½0 − Â − Ĵ/−1 Ĵ ∈ 8b.XA; XA+J/ and i .I + .½0 − Â − Ĵ/−1 Ĵ/ = 0:(3.6)

On the other hand, since½0 ∈ ².A + J/, it follows from (3.1) that

.½0 − Â − Ĵ/ ∈ 8b.XA+J ; X/ and i .½0 − Â − Ĵ/ = 0:(3.7)

Thus, writing½0 − Â in the form

½0 − Â = .½0 − Â − Ĵ/
(
I + .½0 − Â − Ĵ/−1 Ĵ

)
and using (3.6), (3.7) and the Atkinson theorem we get½0 − Â ∈ 8b.XA; X/ and
i .½0 − Â/ = 0. Now using (3.1) we infer that.½0 − A/ ∈ 8.X/ andi .½0 − A/ = 0,
that is,¦e5.A/ ⊆ O .

4. Application to singular transport equations

The aim of this section is to apply Proposition2.1to study the essential spectra of
the following singular neutron transport operator (see [2, 18, 19])

A .x; ¾ / = −v:∇x .x; v/− ¦.v/ .x; v/ +
∫
Rn

�.v; v′/ .x; v′/d¼.v′/;

where.x; v/ ∈ D × R
n, D is an open bounded subset ofRn, d¼.·/ is a bounded

positive Radon measure onRN and K denotes the integral part ofA. This operator
describes the transport of particles (neutrons, photons, molecules of gas,etc.) in the
domain D. The function .x; v/ represents the number (or probability) density of
gas particles having the positionx and the velocityv. The functions¦.·/ and�.·; ·/
are called, respectively, the collision frequency and the scattering kernel.

The main feature is that the collision frequency¦.·/ and the collision operatorK
are unbounded. Actually, an unbounded collision frequency¦.·/ acts as a strong
absorption which allows the unboundedness ofK . We assume that the scattering
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kernel�.·; ·/ is nonnegative and there exist a closed subsetO ⊂ R
n with zerod¼

measure and a constant¦0 > 0 such that

¦.·/ ∈ L∞
loc.R

n\O/; ¦ .v/ > ¦0 a.e.(4.1)

and

v →
[∫

Rn

(
�.v; v′/
¦ .v′/1=p

)q

d¼.v′/
]1=q

∈ L p.R
n/(4.2)

whereq denotes the conjugate exponent ofp.
We denote byK the following collision operator

K :  → K .v/ :=
∫
Rn

�.v; v′/ .x; v′/d¼.v′/ ∈ L p.R
n/;

whereL p.R
n/ := L p.R

n;d¼.v// and we introduce the following weighted space

L¦
p.R

n/ := L p.R
n; ¦ .v/d¼.v//:

It follows from the assumption (4.2) that K ∈ L .L¦
p.R

n/; L p.R
n// and

‖K ‖L.L¦p.Rn/; L p.Rn// ≤
∥∥∥∥∥
[∫

Rn

(
�.·; v′/
¦ .v′/1=p

)q

d¼.v′/
]1=q

∥∥∥∥∥
L p.Rn/

:

We also define the spaceX¦
p := L p.D ×R

n; ¦ .v/dxd¼.v//. Using the boundedness
of D we find thatK ∈ L .X¦

p ; Xp/ with

‖K ‖L .X¦
p ;Xp/ ≤

∥∥∥∥∥
[∫

Rn

(
�.·; v′/
¦ .v′/1=p

)q

d¼.v′/
]1=q

∥∥∥∥∥
L p.Rn/

;

whereXp := L p.D ×R
n; dx d¼.v//.

Before going further we first recall the relevant functional setting of the problem.
Let Wp = { ∈ Xp such thatv:∇x ∈ Xp} and define the set0− by 0− = {.x; v/ ∈
@D ×R

n; v:¹x < 0}, where¹x stands for the outer unit normal vector atx ∈ @D.
Next we introduce the following subspace ofWp

W0
p := { ∈ Wp such that |0− = 0}:

Now we are in a position to define the streaming operatorT{
T .x; v/ = −v:∇x .x; v/ − ¦.v/ .x; v/;  ∈ D.T/;

D.T/ = W0
p ∩ X¦

p:
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Note that a simple calculation using the assumption (4.1) shows thatX¦
p is a subset of

Xp and the embeddingX¦
p ,→ Xp is continuous.

Let ½ ∈ C and consider the following boundary value problem{
½ .x; v/+ v:∇x .x; v/ + ¦.v/ .x; v/ = '.x; v/;

 |0− = 0;
(4.3)

where' is an assigned function inXp, and the unknown function must be sought
in D.T/.

For Re½+ ¦0 > 0, (4.3) can be solved formally to give

 .x; v/ =  .x − t−.x; v/v; v/e−.½+¦ .v//t−.x;v/

+
∫ t−.x;v/

0

e−.½+¦ .v//s'.x − sv; v/ds;

wheret−.x; v/ = sup{t > 0; x−sv ∈ D; 0 < s< t}. Since must belong toD.T/,
then it follows that .x − t−.x; v/v; v/ = 0 for any.x; v/ ∈ D ×R

n. Accordingly,
the solution of (4.3) is given by

 .x; v/ =
∫ t−.x;v/

0

e−.½+¦ .v//s'.x − sv; v/ds:

An immediate consequence of these facts is that¦.T/ ⊆ {½ ∈ C : Re½ ≤ −¦0}.
Since ¦.·/ is bounded below by¦0, a similar reasoning to [11, Corollary 12.11,
page 272] shows that¦.T/ = {½ ∈ C : Re½ ≤ −¦0}. In fact, we can easily check
that¦.T/ is reduced to¦C.T/ (the continuous spectrum ofT), that is,¦.T/ = ¦C.T/
(see [11, Chapter 12]). Since all essential spectra are enlargement of the continuous
spectrum we infer that

¦ei.T/ = {½ ∈ C such that Re½ ≤ −¦0}; i = 1; : : : ;6:(4.4)

From now on, we will assume that the measured¼ satisfies{
the hyperplanes have zerod¼-measure, that is, for eache ∈ Sn−1,

d¼{v ∈ Rn; v:e = 0} = 0;
(4.5)

whereSn−1 denotes the unit sphere ofRn. Note that condition (4.5) is not restrictive.
It is, in particular, satisfied by the usual continuous, multigroup and discrete models.

Now we are in position to state the main result of this section.

THEOREM 4.1. Let D be a bounded subset ofRn and1 < p < ∞. If hypotheses
(4.1), (4.2) and (4.5) are satisfied and the collision operatorK : L¦

p.R
n/ → L p.R

n/

is compact, then,

¦ei.A/ = {½ ∈ C such that Re½ ≤ −¦0}; i = 1; : : : ;5:
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To establish Theorem4.1the following result is required.

PROPOSITION4.1. Assume that the hypotheses of Theorem4.1are satisfied. Then,
for any ½ satisfyingRe½ > −¦0, the operatorK .½ − T/−1 is compact onXp,
1< p < ∞.

REMARK 4.1. (i) Note that the statement of Proposition4.1excludes the case
p = 1. This is due to the fact that our proof uses an averaging result [19, The-
orem 3.2 (ii)], which is valid only for 1< p < ∞. However, in the case where
K : L¦

1 .R
n/ → L1.R

n/ is positive and weakly compact, andd¼ satisfies the follow-
ing geometrical property∫

Þ1≤|x|≤Þ2

d¼.x/
∫ Þ3

0

�A.t x/dt → 0 as |A| → 0

for everyÞ1 < Þ2 < ∞ andÞ3 < ∞, where|A| is the Lebesgue measure ofA and
�A.·/ denotes the characteristic function ofA, Lods [18, Corollary 2.1] proved that
K .½− T/−1K : X¦

1 → X1 is weakly compact.
(ii) It should be noticed that Proposition4.1contains also information concerning

the asymptotic spectrum ofA. In particular, it tells us that

¦.A/ ∩ {½ ∈ C : Re½ > −¦0}
consists of at most a countable set of isolated eigenvalues with finite algebraic multi-
plicity. This follows from [26, Theorem II].

PROOF OFPROPOSITION4.1. Since K is compact fromL¦
p.R

n/ into L p.R
n/, by

using linearity and approximation arguments we may restrict ourselves to the case
when the scattering kernel has the form�.v; v′/ = f .v/g.v′/, where f .·/ ∈ L p.R

n/,
g.·/¦ .·/1=q ∈ Lq.R

n/ and q denotes the exponent conjugate ofp. Again, the use
of a density argument allows us to assume thatf .·/ ∈ Cc.R

n/, g.·/¦ .·/1=q ∈ Cc.R
n/

(continuous functions with compact support). In these conditions, operatorK .½−T/−1

mapsX� into itself for all � ∈ [1;+∞]. Using interpolation arguments (see [14,
Theorem 3.10, pager 57]) we can restrict ourselves to the casep = 2.

LetAg be the averaging operator

Ag : ' ∈ X¦
2 →

∫
'.x; v′/g.v′/d¼.v′/ ∈ L2.D/:

It suffices to show thatAg.½− TH /
−1 is a compact operator fromX2 into L2.D/. This

amounts toAg : D.T/ = W0
2 ∩ X¦

2 → L2.D/ is compact.
Note thatD.T/ equipped with the norm

‖ ‖D.T / = ‖ ‖W0
2
+ ‖ ‖X¦

2
∀ ∈ D.T/;
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where‖ ‖W0
2
= ‖ ‖X2 + ‖v:∇x ‖X2 is a Banach space.

If U is a bounded subset ofD.T/, then there exists² > 0 such that‖ ‖D.T / ≤ ²

for every ∈ U . This implies, in particular, thatU is bounded as a set ofW0
2 . Now

applying [19, Theorem 3.2 (ii)] one sees thatAgU is relatively compact inL2.D/.
This shows the compactness ofAg which ends the proof.

PROOF OFTHEOREM 4.1. Let ½ ∈ ².T/. Since the collision operatorK is T-
defined, by the closed graph theorem we haveK .½ − T/−1 ∈ L .Xp/. On the other
hand, in [18, Proposition 3.3], it is proved thatD.T/ is continuously embedded inX¦

p

and, for any½ > 0, we have‖.½− T/−1‖L .Xp ;X¦
p/

≤ .1=½q/1=q.1=p/1=p. So, sinceX¦
p

is continuously embedded inXp, we infer that lim½→∞ ‖K .½ − T/−1‖L .Xp/ = 0.
Therefore, there exists½ ∈ ².T/ such thatr¦ .K .½ − T/−1/ < 1. Next, using
Proposition4.1 one sees thatK .½ − T/−1 ∈ K .Xp/ ⊂ S .Xp/. SinceF+.Xp/ =
F−.Xp/ = F .Xp/ = S .Xp/ (see, for example, [16, (2.9)]), the result follows
from (4.4) and Proposition2.1.
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Université de Corse
Quartier Grossetti, BP. 52
20250 Corte
France
e-mail: latrach@univ-corse.fr

mailto:latrach@univ-corse.fr

