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Abstract

The purpose of this paper is to provide a detailed treatment of the behaviour of essential spectra of closer
densely defined linear operators subjected to additive perturbations not necessarily belonging to any idea
of the algebra of bounded linear operators.Alflenotes a closed densely defined linear operator on a
Banach spack, our approach consists principally in considering the clagscibsable operators which,
regarded as operators.tf (Xa, X) (whereX, denotes the domain o equipped with the graph norm),

are contained in the set @tFredholm perturbations (see Definitidr®). Our results are used to describe

the essential spectra of singular neutron transport equations in bounded geometries.

2000Mathematics subject classificatioprimary 47A53, 47A55, 47G20.

1. Introduction and preliminaries

Let X andY be two Banach spaces. By an operakdrom X into Y we mean a linear
operator with domairD (A) € X and range contained M. We denote by’ (X, Y)
(respectivelyZ (X, Y)) the set of all closed, densely defined (respectively bounded)
linear operators fronX into Y. The subset of all compact (respectively weakly
compact) operators o (X, Y) is designated by? (X, Y) (respectively?” (X, Y)).

If Ae %(X,Y), we write N(A) € X andR(A) C Y for the null space and range
of A. We seta := dimN(A), B := codimR(A). Let A € ¥ (X, Y) with a closed
range. TherAis a @ -operator A € @, (X,VY)) if a(A) < oo, andA is ad_-
operator A € ®_(X, Y)) if B(A) < o0; P(X,Y) = & (X, Y)ND_(X,Y) is the
class of Fredholm operators whide. (X, Y) denotes the seb_ (X, Y) U ®_(X,Y).
For A € ®(X,Y), the index ofAis defined byi (A) = a(A) — B(A). If X =Y, then
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ZLXY), HZ(XY), (X Y), (X Y), D.(X,Y), ®.(X,Y), andd(X,Y) are
replaced, respectively, b’ (X), J# (X), # (X), € (X), &, (X), ®.(X) andd(X).

Let A € € (X). The spectrum oA will be denoted by (A). The resolvent set o,

o (A), is the complement of (A) in the complex plane. A complex numbkgiis in

Dop, DP_p, PipOrd,if A — Alisin @ (X), D_(X), D, (X) or &(X) respectively.
For the properties of these sets we referaalp] or [24].

For self-adjoint operators in a Hilbert space, there seems to be only one reasonabli
way of defining the essential spectrum: the set of all points of the spectrum that are
not isolated eigenvalues of finite algebraic multiplicity (see, for examg,30)).

If X is a Banach space amle %' (X), various notions of essential spectrum appear
in the literature, most are enlargement of the continuous spectrum. Define the sets

0e1(A) ;= {1 € C suchthath — A¢ &, (X)} := C\D,,,
0e(A) ;= {1 € C suchthath — A¢ ®_(X)} := C\D_,,
03(A) ;= {1 € C suchthath — A¢ &, (X)} := C\ D,
0ea(A) := {1 € C suchthath — A ¢ ®(X)} := C\ Dy,
0es(A) == C\ps(A),

0es(A) 1= C\ps(A),

whereps(A) = {A € ®ai(A — A) = 0} and pg(A) := {L € ps(A) such that all
scalars neak are inp(A)}. We callog(-) andog(-) the Gustafson and Weidman
essential spectrfil(] ando(-) the Kato essential spectrufi3]. Further,ou(-) is
the Wolf essential spectrufil0, 23, 30], oes(-) is the Schechter essential spectrum
[10, 23, 24], andos(-) is theBrowder essential spectrupih0, 23]. Note that all these
sets are closed and, in general, we have

0e1(A) N0 (A) = 0e3(A) € 0es(A) C 0es(A) C 0es(A) C o (A).

But if X is a Hilbert space anA is self-adjoint, then all these sets coincide.

An operatorT € Z(X,Y) is said to bestrictly singular if, for every infinite
dimensional subspadd of X, the restriction ofT to M is not a homeomorphism.
Let.#(X,Y) denote the set of all strictly singular operators frofrinto Y. For a
detailed study of the properties of strictly singular operators we refetdo Note
that. (X, Y) is a closed subspace &f (X, Y). In general, strictly singular operators
are not compact (se€]) and, if X =Y, . (X) is a closed two-sided ideal & (X)
containing# (X).

If N is a closed subspace of a Banach spacee denote byt the quotient map
Z — Z/N. Thecodimensiorof N, codim(N), is defined to be the dimension of the
vector space /N.

An operatofT € £ (X, Y) is said to bestrictly cosingularif there exists no closed
subspaceN of Y with codim(N) = oo such thatz| T : X — Y/N is surjective. Let
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C.7(X,Y) denote the set of strictly cosingular operators frgnmto Y. This class of
operators was introduced by PelczynsKi][ It forms a closed subspace & (X, Y)
and is a closed two-sided ideal &f (X) if X =Y (see 7).

Let (X, Y), ®2(X,Y) and®® (X, Y) designate the setd(X,Y) N Z(X,Y),
D, (X, V)N ZL(X,Y)andd_(X,Y) N Z(X,Y), respectively.

DerINITION 1.1. Let F € Z(X,Y). F is called aFredholm perturbationif
U+ F € ®°(X,Y) wheneveld € ®°(X,Y). F is called anupper (respectively
lower) Fredholm perturbationif F + U e ®° (X, Y) (respectivelyd® (X, Y)) when-
everU € (X, Y) (respectivelyd® (X, Y)).

The sets of Fredholm, upper semi-Fredholm and lower semi-Fredholm perturba-
tions are denoted b (X, Y), Z2(X,Y) and.Z"(X, Y), respectively. These classes
of operators were introduced and investigateddj [In particular, it is shown that
ZP(X,Y) and.Z (X, Y) are closed subsets ¢f (X, Y), and if X = Y, then.Z?(X)
and .Z°(X) are closed two-sided ideals ¢ (X). We recall the following useful
result due to Gohberg, Markus and Fel'dm&ngages 69-70].

ProPoOsITIONL.1. Let X, Y and Z be three Banach spaces. If at least one of the
sets®®(X, Y) and ®°(Y, Z) is not empty, then

Fie Z°X.Y), AecZY,Z2) (F,e Z°Y,Z), Be. Z(XY)

imply
AF, € Z°(X,Z) (F,B e Z°(X, 2)).

For A € € (X), the graph norm oA is defined by
IXIla = [IXII+ IAX]l, X € Z(A),

whereZ (A) denotes the domain @. It follows from the closedness & thatZ(A)
endowed with the nornii - || 5 is @ Banach space. In this new space, denoteX hy
the operatoA satisfieg| Ax|| < ||X]la, and consequentlyh € Z(Xa, X). LetJ be

a linear operator oX. If Z(A) ¢ Z(J), thenJ will be called A-defined If J is
A-defined, we will denote by its restriction toZ(A). Moreover, ifJ € Z(Xa, X),
we say that) is A-bounded One checks easily that f is closed (or closable) (see
[13, Remark 1.5, page 191]), thehis A-bounded.

ReMARK 1.1. We say that an operatdris A-closedf x, — X, AX, =y, IJX, — Z
for {x,} € Z(A) implies thatx € Z(J) andJx = z. It will be called A-closable
if X, > 0, Ax, — 0, Jx, — zimpliesz = 0. It is evident that ifJ is closed
(respectively closable), thehis A-closed (respectivel-closable). Note, however,
thatif Ais closed, by 23, Lemma 2.1], we get the equivalence between the following
three concepts: (iJ is A-closed, (ii)J is A-closable and (iii)J is A-bounded.
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DerFINITION 1.2. Let X be a Banach spacéd € % (X) and let F be an A-
defined linear operator oX. We say thatF is an A-Fredholm perturbationif
F € ZP(X,, X). F is called arupper(respectivelyower) A-semi-Fredholm pertur-
bationif F € Z°(Xa, X) (respectivelyF € Z°(Xa, X)).

Let AZ(X), AZ,_(X) and AZ_(X) designate the sets d&-Fredholm, upper
A-semi-Fredholm and loweh-semi-Fredholm perturbations, respectively.

DerFINITION 1.3. Let A € ¥ (X) and letJ be an arbitraryA-defined linear oper-
ator onX. We say thatl is A-compact(respectivelyA-weakly compagctA-strictly
singular, A-strictly cosingula) if J € 7 (Xa, X) (respectivelyd € # (Xa, X),
J e .S (Xa, X), J € C.F(Xa, X)).

Let A7 (X), A% (X), A¥(X) and AC.¥(X) denote, respectively, the setsAf
compact,A-weakly compactA-strictly singular andA-strictly cosingular operators
on X.

ReMARK 1.2. Clearly, if J is bounded, therd is A-bounded,J is compact (re-
spectively weakly compact, strictly singular, strictly cosingular) implies thas
A-compact (respectivelp-weakly compactA-strictly singular, A-strictly cosingu-
lar).

ReEMARK 1.3. Notice that the concept dh-boundednessi-compactnessi-strict
singularity, A-strict cosingularity andA-Fredholmness are not connected with the
operatorA itself, but only with its domain. Note also that an easy consequence of
Definition 1.2 and the inclusions ing, page 69] that

(1.1a) A (X) € AF(X) C AZ,(X) C AZ(X),
(1.1b) A (X) € ACH(X) C AZ (X) C AZ(X).

The inclusionA.¥ (X) € AZ,(X) (respectivelyAC.¥ (X) € AZ_(X)) was estab-
lished in [L2] (respectively 27]).

When dealing with essential spectra of closed densely defined linear operators or
Banach spaces, one of the main problems consists in studying the invariance of the
essential spectra of these operators subjected to various kinds of perturbations. Amon
the works in this direction we quote, for exampl&Q[15, 16, 17, 22, 24, 30] (see
also the references therein). This work is a continuatiorLdf, where we can find
a detailed treatment of the behaviour of essential spectra of such operators subjecte
to additive perturbations belonging to arbitrary closed two-sided ideal&’ 6X)
contained in the set of Riesz operators (SEg page 281]). It is inspired by the
work published in 15 and [16], where A-weakly compact and-strictly singular
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perturbations A denotes a closed densely defined linear operator) were considered
on Banach spaces which possess the DunfottisPeroperty, and orl, spaces,
respectively. Our main objective here is to extend the results obtaines iB¢ction 4]
and [L6, Section 2] to arbitrary Banach spaces and to fit them into a more general
framework. The extension consists principally in the possibility of considering the
class ofA-bounded operators which, regarded as operatd?q X, X), are contained
in one of the set®\.Z_ (X), AZ_(X), AZ,_.(X)N AZ_(X) or AZ (X). Accordingly,
using the same strategy as itv], we find conditions which generalize previous ones
discussed in15, 16]. In contrast to the proofs of the results obtainedlifj and [16],
which use the geometric properties of Banach spaces considered, our analysis applie
to all Banach spaces regardless of their specific properties and to a wmiilg ¢
operators including, in particular, the séts? (X), A% (X), A7 (X) andAC.¥ (X).
Note also that our results provide a natural extension to those obtain&d.in [

In the last section we consider the following singular neutron transport operator

Ay (X, &) = —vaa—])/z(x, v) — o (V)Y (X, v) +/ K (v, V)Y (x, v)dv
[Rﬂ

=Ty X, v) + Ky (X, v),

where(x,v) € D x R". HereD is an open bounded subsetRf anddu(-) is a
positive Radon measure dd". This operator describes the transport of particles
(neutrons, photons, molecules of ga&;) in the domainD. The functiony (x, v)
represents the number (or probability) density of gas particles having the position
and the velocity. The functionsr (-) andk (-, -) are called, respectively, thwllision
frequencyand thescattering kernel The operatoiA is supplemented with vacuum
boundary conditions that ig = 0 with T'_ = {(X,v) € dD x R", v.v, < 0},
wherev, stands for the outer unit normal vectonat 9 D.

Here the functionss () and « (-, -) will be assumed to be unbounded. More
precisely, we will assume that there exist a closed suliset R" with zerodu
measure and a constant> 0 such that

(1.2) o() e LE(RND), o) >0y a.e.

loc

Y q 1/q
(1.3) |:/[R (:((v’/)vl/)p> d,u(v/)} € Lp(RM),

whereq denotes the conjugate exponentpf These assumptions were motivated

by free gas models (sed,[25]) and were already used by Chabi and Mokhtar-
Kharroubi ] in L, spaces and by Lod4§] in the case ofL, spaces (see alsa9,
Chapter 9] or 29]). The first part of the conditionl(2) means that the singularities of

the collision frequency are contained in a set of z&romeasure. In fact, unbounded
and nonnegative collision frequencies act as strong absorbers which allow the un-
boundedness of the collision operator. We also deal with abstract velocity measures
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du(-), hence our analysis works for continuous models (Lebesgue measure on oper
subsets oR"), multigroup models (surface Lebesgue measures on spheres) as well as
discrete ones (finite sum of Dirac measures).

In [2, 18, 19 the authors discussed essentially the asymptotic spectrum of
The main goal of this paper is to apply the results of Secfidio describe the
essential spectra of the operafosubjected to assumptions.p) and (L.3). The main
result of Sectiot is Theoremd.1 It asserts that if conditionsl(2) and (.3) are
satisfied, the hyperplanes &' have zeradu-measure (that is, for eaghe S'2,
dufv € R"; v.e = 0} = 0, whereS"~! denotes the unit sphere &f'); and if further
the collision operatoK is compact fromL ,(R", o (v) du(v)) into L,(R", du(v)),
thenoei(A) = {» € Csuchthat Ré& < —ag} fori = 1,...,5. Our analysis is based
essentially on Propositiofi.1, Proposition4.1 and the knowledge of the essential
spectra of the streaming operaior

2. Main results

Let X be a Banach space ade %' (X). In what follows we shall be concerned
with A-bounded perturbations belonging 467 (X). It is a wide class of operators
which contains all the classical perturbation classes considered in the literature (se¢
Remarksl.2-1.3). It is worth remarking that, according to RemdrH, operators in
AZ (X) need not be closed.

We are now ready to state the main result of this paper which generaliZes |
Theorem 3.1].

THEOREM2.1. Let A € 4 (X) and let J be an operator onX. The following
statements are satisfied.

i) IfJ e AZ(X), theno,i(A) = osi(A+ J),i = 4,5. Moreover, ifCogs(A)
(the complement afe(A)) is connected and neithgr(A) nor p(A + J) is empty,
thenog(A) = os(A+ J). Further,

(i) if J e AZ_ (X), thenog(A) = o (A+ J);

(i) ifJe AZ_(X)or J* € AZ, (X*), thenog(A) = oe(A+ J);
(iv) if J e AZ (X)) AZ_(X), thenows(A) = oe(A+ J).

Let X be a Banach space. We say thapossesses theunford-Pettis property
(for short, property DP) if, for each Banach spaGesvery weakly compact operator
T : X — Y takes weakly compact sets ¥iinto norm compact sets of. It is well
known that anyL; space has the property DP. AlsoSifis a compact Hausdorff space
thenC(€2) has the property DP. For further examples we refebtof [6, pages 494,
497, 508 and 511].
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ReEmMARK 2.1. Item (i) was first proved in the particular case where A7 (X)
in [23, Theorems 2.1 and 2.6]. This is due to the fact tha#t (X) € AZ,.(X) N
AZ_(X). If Xis anlL, space, 1< p < oo, and A € %' (X), then assertions (i)
and (ii) are valid for alld € A (X) [16, Theorem 2.1]. The same is true for the
spaces,, 1 < p < oo, ¢, andC(2), where2 is a compact Hausdorff space. Also,
using A-weakly compact perturbations, statements (i) and (iii) were established in
[15, Theorem 4.1] for Banach spaces which possess the property DP.

Notice that in most applications (transport operators, &tihger operators, opera-
tors arising in dynamic populatioesc see B, 9, 17, 22, 24]), we deal with operatorA
andB such thatB = A+ J, whereA € 4 (X) (often is the generator of a strongly
continuous semigroup) antis, in general, a closed (or closabi)defined operator
not necessarily bounded. The next proposition provides a practical criterion for the
invariance of essential spectra for such operators, which is useful in applications (see
Sectiord).

ProPOSITION2.1. Let A € %(X) and letJ be an A-bounded operator orX.
Let.# (X) be any nonzero closed two-sided ideak6tX) satisfying.# (X) € .Z (X),
where.Z (X) denotes the ideal of Fredholm perturbations, and assume that there is a
complex numbex € p(A) such that,(J(A — A1) < 1.

(i) I — At e 7(X), thenosi(A+ J) = oei(A),i =4,5.
Moreover,

(i) if S (X) € F(X), thenog (A + J) = oe(A);

(iiiy if £ (X) € Z_(X), thenog(A) = o(A+ J);

(iv) if Z(X) S .Z. (X)) Z_(X), thenog(A) = oes(A+ J).

PROOF. Let & € p(A). SinceJ is A-bounded, according t®2B, Lemma 2.1],
J(» — A)~tis aclosed linear operator defined onland therefore bounded by the
closed graph theorem. On the other hand, the assumptidw. — A)~!) < 1implies
thath € p(A+ J) and

A—A-DT—(G-AT=D0-ATIC- AT

n>1

Clearly, if J(A — A"t € #(X), then the closedness of (X) implies that
A—=A-D1T—0—-A"1ec #(X). Nowitems (i)—(iv) follow immediately from
[17, Theorem 3.2]. O

Let us now recall another defifon of the Schechter essential spectrum (see, for
example, P3, 24]). It asserts that ifA € %' (X), thenos(A) is the largest subset
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of o (A) which remains invariant under compact perturbations, that is,

(2.1) os(A) = (] o(A+K).

Ke# (X)

The equivalence betweep.() and the definition ofi(+) given in the Introduction was
established ing4, Theorem 5.4, page 180]. 14T, Theorem 3.4],%.1) is somewhat
relaxed. Actually, it is proved that

(2.2) os(A) = [ o(A+J),
Je 7 (X)

where _# (X) is a two sided ideal ofZ(X) satisfying-# (X) € _#(X) € Z(X).
Nevertheless, a careful examination of the proof of Theorem 5.24ndage 180]
shows that2.1) remains valid if we replace? (X) by Z,(X) (the ideal of finite rank
operators). SaZ,(X) is the minimal subset af’(X) (in the sense of inclusion) for
which (2.2) holds true.

In the next theorem we will give a sharper form ¢f.2) which extends it to
A-bounded perturbations containedAr# (X). To do so, we will assume that

(2.3) Zo(X) € _F(X) S AF(X).

THEOREM2.2. Let A € € (X) and let_# (X) be any subset of operators satisfy-
ing (2.3. Thenoes(A) = ﬂJej(x)o(A+ J).

REMARK 2.2. This theorem may be viewed as an extensionléf Theorem 4.2]
and [L6, Theorem 2.2]. In fact, in16] (respectively 19]) it is proved that in the case
whenX is anL , space (respectively has the property DP), the definitioof) can be
stated in terms ofA-strictly singular (respectivelA-weakly compact) perturbations.
Since A7 (L,) € AZ(Lp) (1 < p < o0) and A7 (X) € AZ(X), if X has the
property DP, then these two results are particular cases of our theorem. Their proofs
depend in a crucial way on the properties and the structure of both the families of
operators and the classes of spaces considered, and are different from the proof of th
Theorenm?.2 given below.

Finally, we have the following analogue of Proposition 3.2 [which extends
it to the case ofA-Fredholm perturbations.

PROPOSITION2.2. Let A € G (X). If 05(A) = o5(A), then, for eachl € AZ (X),
there is at most a countable sét of complex numbers such that

0es(A+¢J) = 0es(A)

for¢ ¢ .. If Coe(A) consists of a finite number of components, ti¥éis discrete.



[9] Relatively compact-like perturbations 81

PrROOF. It is verbatim the proof of17, Proposition 3.2]. It suffices only to replace
in the text Proposition 3.1 by Lemngal below. O

REMARKS 2.3. (1) Let(£2, X, u) be a positive measure space anddgtdenote
the spaces$ (2, du) with 1 < p < oco. Recall that, ifX = X, or X = C(E) (the
Banach space of continuous scalar-valued functiong avith the supremum norm
whereE is a compact Hausdorff space), thefi X) = C.¥(X) = .Z(X) (see 16,
(2.9) and (2.10)]). So, for these spaces we hawé(X) = AC.¥(X) = AZ (X).

(2) Recall that, following Calking], if X is a separable Hilbert space, thefi(X)
is the unique proper nonzero closed two-sided ide&’@). This result also holds
true for the spacds, 1 < p < oo andc, [8]. Hence if X is one of these spaces, then
2 (X) = Z(X), and thereforéd. ¢ (X) is largest class of operators which permits to
derive the results stated above.

(3) ABanachspacK is an hspacef each closed infinite dimensional subspac&of
contains a complemented subspace isomorphXc tAny Banach space isomorphic to
an h-space is an h-spa@gg, andl, (1 < p < oo) are h-spaces. Let be an h-space,
according to 29, Theorem 6.2],7(X) is the greatest proper ideal &f(X). Hence,
since.# (X) € Z(X) we conclude that”(X) = Z(X). Next, letA € % (X), then
it follows from Definition1.3and Remark.3that A% (X) = AZ (X). Accordingly,
for h-spacesA.¥ (X) is the largest family of operators for which the results of this
section are valid.

3. Proofs

To establish the results stated above we will make use of the following perturbation
lemma which is fundamental to our purpose. It generalizes many known perturbation
results in the literature.

LEMMA 3.1. Let A € ¥(X) and let J be an operator onX. Assume that
J e AZ(X).
@) If Ae ®d(X),thenA+J e &(X)andi(A+ J)=i(A).
Moreover,
(i) if Ae d (X)andJ € AZ,_(X), thenA+ J € &, (X);
(i) fFAed_(X)andJ e AZ_(X)or J* € AZ, (X*),thenA+ J € ®_(X);
(iv) if Aed.(X)andJ € AZ.(X) N AZ_(X),thenA+ J € ®.(X).

ReEMARK 3.1. During the last decades, perturbation theory has experienced great
developments motivated by concrete problems arising in different branches of physics
and biology see, for example, the workg B, 10, 12, 13, 20, 22, 23, 24, 27, 30Q].
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When dealing withA-bounded perturbations, wheie € % (X), many results in
the spirit of the assertions of Lemn#l concerning special classes of operators
and particular Banach spaces may be encountered ilitéha&ture. In fact, the first
result in the spirit of Lemma.1 (i) for A-compact operators was established by
Nagy [20]. Using Nagy’s idea, Gohberg and Krein have obtained items (ii) and (iii)
(and consequently (iv)) stated above for the same class of oper&lorsr [12]
Kato proved assertion (ii) foA-strictly singular operators. X has the property DP
andJ € A% (X), then Lemma3.1 (i) and (iii) hold true (seel5)). Recently, itis
proved that ifX is anL, space (1< p < o) andJ € A (X), then statements (i)
and (ii) are valid (seellf]). Note that in our case, Vladimirskii's result (se27[
Corollary 1]) writesAC.¥(X) € AZ_(X), and therefore (i) and (iii) hold true for
A-strictly cosingular perturbations.

ProOF OFLEMMA 3.1 Since A € % (X) andJ ¢ AZ(X), hence as mentioned
above we can regar8l andJ as operators fronX , into X. They will be denoted by
A andJ respectively. These belong 18 (X, X) and we have

a(B)y =a(A), B(A)=pB(A), R(A) =R(A),
(3.1) a(A+J) =a(A+ ),
B(A+J)=B(A+J) and RA+J)=RA+J).

Observe that assertion (ii), the first part of (iii) and (iv) are immediate. To prove
the second part of (iii) we paeed as follows. LeA € & _(X). Applying [13,
Theorem 5.13, page 234] we infer that € &, (X*). Moreover,J* € AZ (X*)
impliesthatA*+J* € & (X*). Thistogether with the factthai A*+J*) = S(A+J)
(use againl3, Theorem 5.13, page 234]) gives the result.

(i) Assume thatA € ®(X). Then using3.1) we infer thatA e ®°(X,, X). Hence,
it follows from [24, Theorem 1.4, page 108] that there exdgt € .2 (X, X,) and
K e 2# (X) such that

(3.2) AA =1 —-K, onX.
This leads to
(3.3) A+DHA =1 —K+IA=1-2 onX

Next, it follows from (3.2) that AA, € ®*(X) andi(AA) = 0. Hence, the use of
[24, Theorem 3.4, page 117] together with the Atkinson theor2inTheorem 2.3,
page 111] implies tha#, € ®°(X, X,) and

(3.9 i(A) = —i(Ay).
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On the other hand, sincke AZ (X) andA, € .Z (X, X,»), applying Propositior.1
we getJ A, € .ZP(X). Using the fact thatZ®(X) is a closed two-sided ideal of
Z(X) containing.# (X) [8] we infer that2 € Z°(X). Therefore applyingl7,
Proposition p:3.1 (i)] to 3.9 we get(A + J)A; € ®*(X) andi[(A+ J)A)] = 0.
SinceAy € ®°(X, Xa4), it follows from [24, Theorem 3.4, page 117] and the Atkinson
theorem thath + J € ®°(X,, X) and

(3.5) i(A+J) = —i(Ay.

Now using @.4), (3.5 and @.1) we find thati (A + J) = i (A) which completes the
proof. O

PrROOF OFTHEOREM 2.1 The proofs of items (ii), (iii), (iv) and the first part of (i)
fori = 4 use Lemma.1and are immediate. So, they are omitted.

Next, we prove (i) foi = 5. If L ¢ 05(A), theni € ps(A) thatisi € ®, and
i(A —A) =0. Sinced € AZ(X), applying Lemma.1 (i) we infer thath € P4, ,
andi(A — A—J) = 0, and therefore ¢ oss(A+ J). Thusos(A + J) C o5(A).
Similarly, if A ¢ o5(A+ J), then using Lemma.1(i) and arguing as above we derive
the opposite inclusiones(A) C os(A+ J).

To prove the statement for= 6, we first observe that the preceding step implies that
Coes(A+J) = Coes(A). This set contains points ofl A) andp (A+J). Accordingly,
sincea(x — A) andB(x — A) (respectivelyw(h — A — J) and(» — A — J)) are
constant on any component &f, (respectively® . ;) except possibly on a discrete
set of points at which they have larger values (S&& heorem 3.3]), it cannot contain
points ofoe(A) or oes(A + J). This together with the inclusiongs(A) C oe(A)
andogs(A+ J) C o(A+ J) leads taes(A) = 0(A) andos(A+J) = og(A+J)
and the result follows. O

PROOF OFTHEOREM 2.2 Setd := (. x, 0 (A+ J).

Clearly, .1) and .3 show thatd C o(A). So, we have only to prove that
oes(A) C 0. If g ¢ O, then there existd € _# (X) such that, € p(A+ J). Let
X € X and puty = (A, — A — J)~x. It follows from the estimate

IYlacs = Y1+ 1A+ Dyl = Iyl + 1X — Aoyl
= [ (ho — A= I)X|| + IX — 2o(ho — A= I) x|

= (14 @+ oDl Go— A= 3)721) IxI

that (hg — A — J) 1 € 2(X, Xa+3). Moreover, sincel € #(X) € AZ(X),
applying Propositiori..1we conclude thath, — A— J)™*J € ZP(Xa, Xays). Lets
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denote the imbedding operator which maps everg X, onto the same element
X € Xayj. Clearly we haveN (.#) = {0} andR(.#) = X, ;. S0, the estimate

17 O M xars = Xlxaes < IXNx + TAXIx + 113X x
< (1+ ||J||3(XA,X)) [IXlIx,s VX € Xa

leads ta? € ®°(Xa, Xa,y) andi (&) = 0.
Next, remembering thak,— A—J)"1J € ZP(X,a, Xa,y) and using Lemma.1(i)
we get

(3.6) 7 + (ho— A—J)1J € ®°(Xp, Xary) @nd i (F + (o — A— ) L) =0.
On the other hand, sincg € p(A + J), it follows from (3.1) that
(3.7) (Ao — A—=J) € ®°(Xpa 3, X) and i(hg— A—J)=0.
Thus, writingxo — Ain the form
ro—A=0o—A-I(I+ - A=)

and using 8.6), (3.7) and the Atkinson theorem we ge§ — A € ®°(X,, X) and
i (ko — A) = 0. Now using 8.1) we infer that(xo — A) € ®(X) andi(3y — A) =0,
that is,os(A) C 7. O

4. Application to singular transport equations

The aim of this section is to apply Propositidri to study the essential spectra of
the following singular neutron transport operator (S8€lB, 19))

Ay (X, §) = —v. V¥ (X, v) — o (V)Y (X, v) +/

R

K, V)Y (X, v) du (),

where(x,v) € D x R", D is an open bounded subsetRf, du(-) is a bounded
positive Radon measure @& andK denotes the integral part &. This operator
describes the transport of particles (neutrons, photons, molecules @tghan the
domainD. The functiony (x, v) represents the number (or probability) density of
gas particles having the positionand the velocity. The functionss (-) and« (-, -)
are called, respectively, the collision frequency and the scattering kernel.

The main feature is that the collision frequemay) and the collision operatdf
are unbounded. Actually, an unbounded collision frequenGy acts as a strong
absorption which allows the unboundednessof We assume that the scattering
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kernelx (-, -) is nonnegative and there exist a closed sulsset R" with zerodu
measure and a constant> 0 such that

(4.1) o() € Lps(R"\O), o(v) >0 a.e.
and

K(U,U/) q ) 1/q .
(4.2) v — |:/[Rn (0(1)/)1/’)) du(v )] € Lp(R™)

whereq denotes the conjugate exponentoof
We denote byK the following collision operator

KIdf—)KW(U):=/

Kk (0, V)P (X, ) du(v’) € Lp(RY,
RH

whereL ,(R") := L,(R", du(v)) and we introduce the following weighted space
LY(R"Y) := Lp(R", 0 (v) du(v)).

It follows from the assumption4(2) thatK € £ (L{(R"); L,(R™) and

K(', U/) q , l/q
1K1 2wg @y Loy@m) < H |:/[Rn (0(1)/)1/’)) du(v )]

We also define the spac€ := L,(D x R", o(v)dxdu(v)). Using the boundedness
of D we find thatk e .Z(X%; X,) with

Y q 1/q
(1K ||3(x;;;xp) =< H |:/W ((I;((v’/)vl/)p> d,u(v/)]

whereX, := L,(D x R"; dx du(v)).

Before going further we first recall the relevant functiondtieg of the problem.
Let W, = {y» € X, such thav.V,y € X,} and define the sdt_ by I'_ = {(X,v) €
aD x R", v.v, < 0}, wherev, stands for the outer unit normal vectona& 9D.

Next we introduce the following subspaceWf,

Lp(RM)

’

Lp(RM)

WS := { € W, such thatj;-_ = 0}.
Now we are in a position to define the streaming oper#tor

Ty (X, v) = —v.Vi (X, v) —o (W)Y (X, v), ¥ € D(T);
D(T) = WoN X3,
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Note that a simple calculation using the assumptibf) (shows thaiX? is a subset of
Xp and the embeddin¥; < X, is continuous.
Let A € C and consider the following boundary value problem

AP (X, v) + 0.V (X, v) + o ()P (X, v) = @(X, v),
V/IF, = 0’
whereg is an assigned function iX,, and the unknown functiott must be sought
in D(T).
For Rex + oy > 0, (4.3) can be solved formally to give

“3) {

Y (X, v) = Y (X —t7(X, v)v, v)g HrTey
t=(X,v)
+ / e W%y (x — sv, v) ds,
0

wheret~(x, v) = supt > 0, x—sv € D, 0 < s < t}. Sincey must belong td(T),
then it follows thaty (x — t= (X, v)v, v) = 0 for any(x, v) € D x R". Accordingly,
the solution of 4.3) is given by

t=(x.v)
Y(X,v) = / g WISy (x — sy, v)ds.
0

An immediate consequence of these facts is th@) C {» € C : Rer < —op}.
Since o (-) is bounded below by, a similar reasoning tolfl, Corollary 12.11,

page 272] shows that(T) = {» € C : Rer < —op}. In fact, we can easily check
thato (T) isreduced te C(T) (the continuous spectrum®f), thatis,o (T) = o C(T)

(see [L1, Chapter 12]). Since all essential spectra are enlargement of the continuous
spectrum we infer that

(4.4) 06i(T) = {1 € C suchthat Re < —0p}, i=1,...,6.
From now on, we will assume that the meastiresatisfies

the hyperplanes have zedpi-measure, that is, for eache S™*,

@s) {
du{v € R", v.e=0} =0,

whereS"~! denotes the unit sphere Bf'. Note that condition4.5) is not restrictive.
Itis, in particular, satisfied by the usual continuous, multigroup and discrete models.
Now we are in position to state the main result of this section.

THEOREM4.1. Let D be a bounded subset &' and1 < p < oo. If hypotheses
(4.1), (4.2 and(4.5) are satisfied and the collision operatér : L7 (R") — L,(R")
is compact, then,

0ei(A) = {L € C suchthat Rex < —op}, i=1,...,5.
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To establish Theorerh.1the following result is required.

ProPOsITION4.1. Assume that the hypotheses of Theofetrare satisfied. Then,
for any A satisfyingRer > —oy, the operatorK(x — T)™* is compact onX,,
1< p<oo.

ReEmMARK 4.1. (i) Note that the statement of Propositidri excludes the case
p = 1. This is due to the fact that our proof uses an averaging resgjltThe-
orem 3.2 (ii)], which is valid only for 1< p < co. However, in the case where
K:L7(R") — L;(R") is positive and weakly compact, adg satisfies the follow-
ing geometrical property

/ d,u(X)/ xatx)dt - 0 as|A|— 0
a1<|X|<a2 0

for everya; < a, < oo andas < oo, where|A| is the Lebesgue measure Afand
xa(-) denotes the characteristic function Af Lods [L8, Corollary 2.1] proved that
K —T) 'K : X7 — X is weakly compact.

(ii) Itshould be noticed that Propositighl contains also information concerning
the asymptotic spectrum @&. In particular, it tells us that

o(A)N{r e C:Reir > —op}

consists of at most a countable set of isolated eigenvalues with finite algebraic multi-
plicity. This follows from [26, Theorem II].

PROOF OFPROPOSITION4.1 Since K is compact fromL{(R") into L,(R"), by
using linearity and approximation arguments we may restrict ourselves to the case
when the scattering kernel has the fariw, v') = f(v)g(v'), wheref(-) € L(R"),
g(-)o ()% € Ly(R" andq denotes the exponent conjugate @f Again, the use
of a density argument allows us to assume thaj € %.(R"), g(-)o (V9 € €.(R")
(continuous functions with compact support). Inthese conditions, opé€aior T)*
maps X, into itself for all n € [1, +oo]. Using interpolation arguments (se®4|
Theorem 3.10, pager 57]) we can restrict ourselves to thegase.

Let «; be the averaging operator

g p € X5 —> /(ﬂ(X, v)g(v)du(v') € L(D).
It suffices to show that/y (% — T,y) ! is a compact operator frod, into L,(D). This

amounts toezg : D(T) = W N X3 — L,(D) is compact.
Note thatD(T) equipped with the norm

I llom = 1¥lwe + 1¥llxg V¥ € D(T),
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where||¥[lwe = [[¥lIx, + lv.Vx¥ |, is @ Banach space.

If U is a bounded subset @i (T), then there existp > 0 such thaf|y/|lpr), < p
for everyy € U. This implies, in particular, thd# is bounded as a set ®2. Now
applying [19, Theorem 3.2 (ii)] one sees that,U is relatively compact irL,(D).
This shows the compactness@§ which ends the proof. O

PROOF OFTHEOREM 4.1 Let A € p(T). Since the collision operatdk is T-
defined, by the closed graph theorem we hev@ — T)™* € £ (X,). On the other
hand, in [L8, Proposition 3.3], itis proved th&(T) is continuously embedded X{
and, for anyr > 0, we have| (1 — T)*1||3(Xp;xg) < (1/Aq)¥9(1/p)"/P. So, sinceX;,
is continuously embedded iX,, we infer that lim_, ., [|[K( — T)*1||3(Xp) = 0.
Therefore, there exists € p(T) such thatr,(K(A — T)™}) < 1. Next, using
Proposition4.1one sees thak (A, — T)™! € 7 (X,) C .7(X,). SinceZ,(X,) =
FZ_(Xp) = Z(X,) = F(X,) (see, for example, 1B, (2.9)]), the result follows
from (4.4) and Propositior2.1 O
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