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Abstract

Let K be a compact Hausdorff space &K ) the Banach space of all real-valued continuous functions
on K, with the sup norm. Types ové&(K) (in the sense of Krivine and Maurey) are represented here
by pairs(l, u) of bounded real-valued functions &, wherel is lower semicontinuous andis upper
semicontinuoud, < u andl (x) = u(x) for every isolated point of K. For each pair the corresponding
type is defined by the equatiatig) = maX]|l + gl|«. ||U+ gll} for all g € C(K), where| - ||, is the

sup norm on bounded functions. The correspondence between types antl, paiis bijective.

2000Mathematics subject classificatioprimary 46B20, 46B25.

1. Statement of the Main Theorem

The concept of type over a Banach spdtavas first introduced by Krivine and
Maurey p] in the context of separable Banach spaces. The reader is referred to
Garling's monograph?] for more details. We consider types over general, not
necessarily separable Banach spaces.

Let E be a Banach space. For everg E, we define a function, : E — R by
letting 7,(y) = |[x + y|| forall y € E.

DErINITION 1.1. A functiont : E — R is atype overE if t is in the closure (with
respect to the topology of pointwise convergence) of thg¢getx € E}.

Throughout we tak& to be a compact Hausdorff topological space. Wé lgK)
denote the Banach lattice of bounded real-valued functions eguipped with the
sup-norm. Forf, g € ¢,,(K) the lattice ordering is defined pointwise.
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DEFINITION 1.2. An sc pair(semicontinuous pajiis a pair of functionsl, u) from
£, (K) such that is lower semicontinuousj is upper semicontinuous, < u, and
I (x) = u(x) for all isolated pointx of K.

This paper is devoted to proving the following theorem:

THEOREM 1.3 (Characterization of types ove(K)).
(i) Lett be atype ove€(K). There exists an sc pait, u) such that

(1.1) 7(g) = maxX{||l + g, lu+g|l} forall ge C(K).

(i) Let(l,u) be an sc pair. Then the functian: C(K) — R defined by{1.1) is a
type oveiC(K).
(i) The correspondence between types @/@f ) and sc pairs is bijective.

A special case ofif was observed by Haydon and Maured].[ The proof of
Theoreml.3is provided in Sectiod.

2. Preliminaries

The purpose of this section is to introduce the notation and concepts that will be
used in the proof of Theorem3.
A special type of nets and their convergence are used to generalize sequences.

DerFiniTION 2.1, (i) Let | be a nonempty set which is partially orderedby
In this paper(l, <) is anetif
(@) (I, <) has no maximal element;
(b) foreveryelemernt € |, thesef{s €| : B < o} of predecessorsf « is
finite;
(c) foranya, B € | there existy € | suchthatr > « andy > B. Such an
elementy is called asuccessoof o (andg).

(i) Let (I, <) be a net. For every elemeat < |, define the number of its
predecessors by, = card{o € | : a < ag}).

(i) Let (I, <) and(J, <) be nets. A functiork : | — J is order-preservingf
a < B el impliesk(a) < k(B). Afunctionk : | — J is cofinalif for everyy € J
there existsx € | such thaty < k().

(iv) A subnetof | is a cofinal order-preserving functign: | — |I.

(v) Let(l, <) be anetand be atopological space. We say tliaf),., is anet
in K indexed byl if x, € K foralle € I. If K is a normed space them, )., is
boundedf {||x,| : « € |} is bounded irR.
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(vi) Let(l, <) beanetK atopological space and, )..; a hetinK indexed byl .
Letx € K. Then lim,, x, = x if and only if for every neighbourhood of x in K
there existsr € | such that; € U forall 8 > «.

(vii) Let (I, <) beanetandr,)..; a bounded net of real numbers. Then we define

limsupr, = iml‘ suprz : el and B > «a}

a,l
and
lim ilnf r, =supinf{rg: g €| and g > «}.
@, acl
Throughout this pape(), <) will denote a net in the sense of Definiti@riL
The following proposition is immediate from Definitioris1 and?2.1; see p] for
more equivalent conditions and a detailed proof.

PROPOSITION2.2. Let E be a Banach space and: E — R a function. Then the
following are equivalent

() tisatypeovelE.
(i) For every finite subsat € E and everys > 0, there exists an element
X = X(a, ¢) € Esuchthatr(y) — [x+ VY||| <eforall y € .
(i) There exists a bounded net, )., in E indexed byl such that for ally € E,

Iima,l ”on + Y|| = T(Y)

If T is atype overE and(x, ). is asin (i) above, we say thak,).., generates
the typer.

A subsetH C ¢, is calledboundedif sup{||f] : f € H} < oo. LetH be
such a set. The pointwise supremumtéfis the real-valued functioh. defined
by L(x) = supth(x) : h € H} for everyx € K. We write L = \/ H for this
function. Similarly, the pointwise infimum dfl is the real-valued functiod defined
by U(x) = inf{h(x) : h € H} for everyx € K. This function is denoted by\ H.
Note that both\/ H and /\ H are again irf,,(K).

If H C ¢..(K) is a bounded set of upper semicontinuous (usc) functions, then the
pointwise infimum/\ H is usc. Similarly the pointwise supremum of a bounded set
of lower semicontinuous (Isc) functions is Isc. Finally, it is clear that ¢..(K)
is continuous if and only iff is usc and Isc. Therefore, H is a bounded set of
continuous functions oK, then /A H is usc andy/ H is Isc.

3. Lemmas

This section provides lemmas and technical definitions that will be used in the proof
of Theoreml.3.
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DEFINITION 3.1. For any norm-bounded néf,),., in C(K), define lower semi-
continuous functions oK by setting, for everw € |,

Iaz\/{feC(K):fg/\fﬂ} and | =\/I,.

p>a

Similarly, define upper semicontinuous functianandu, on K by setting, for every
ael,

ua=/\{feC(K):fz\/fﬂ} and u=/\u,.

p>a

All statements aboudtandl, also hold foru andu,, provided all inequalities are
reversed, suprema are replaced by infima, minus by plus, etc.
Here are some basic properties of the functioasdu defined in Definitior8.1:

REMARK 3.2. Let (f,).c; be a bounded net of functions and llgtl, u, andu be
as in Definition3.1

() If a1, a7 € | andoy < a, thenl,, <1,, <1 andu,, > u,, > u.
(i) If x € K ande > 0, then there exists ay, = @ (X, ¢) € | such that, for all
indicesa > ag, l,(X) > 1(x) — ¢ andu,(X) < u(x) + &.
(i) Foreveryg € 1, everyx € K, everys > 0, and every neighbourhoddl of x,
there existyy € U andy > g such thatf, (y) <lz(x) + 4.
(iv) Foreveryp € |, everyx € K, everys > 0, and every neighbourhoddl of x,
there existyy € U andy > g such thatf, (y) > ug(x) — .

PrROOF. The statements ini)(and (i) are immediate from the definition. We
prove (ii): let g € I, x € K and sets = lz(x); let U be an open neighbourhood
of x ands > 0. Suppose the conclusion does not hold. Then foyalU and all
y > B, we havef,(y) > s+ 4. But for everyy € U, there existsf € C(K) (which
depends ory) such thatf < f, for all y > g and such thatf (y) > s+ 5. Then
lg(y) > s+ s forall y € U, which is a contradiction. The statementiv)(s proved
with an argument dual to the one just given. O

From now on we assume that caryl > «, wherex is the minimum of the
cardinalities of the bases of the topologykof

LEMMA 3.3. Let (f,).c; be a bounded net of continuous functions and kEtdu
be as in Definitior8.1. Giveng € C(K) andx € K,

(i) there exists a subnet: | — | and element$x; ). converging tox, such
thatl (x) + g(x) > lim,, (fi(a)(xi @) T 9% (a))) ;
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(i) there exists a subngt: | — | and elementsx;)).c; CONVerging tox, such
thatu(x) + g(x) < lim,, (fj(ot)(xj @) + 9Xj@))-

PrROOF. We show (i). For every € |, lete, = |a|~1. By assumption, every < |
has only finitely many predecessors and infinitely many successors, sosgvsry
defined and lim, ¢, = 0. Fix a system of open neighbourhoadl$,),.; of x such
that for alle < g € | we haveU, 2 Uy and(),., U, = {x}. Furthermore, assume
that|g(x) — g(y)| < &, /2 forally € U,.

We proceed by induction ot € 1. Fix @ € | and suppose that{s) has been
defined for all3 < «. Using the factthat there are only finitely many si¢hwe may
findag € | suchthatyy > i(B) forall 8 < «. We may assume (byi{ of Remark3.2)
thatl(x) > I,(x) > I(x) —¢g,/2 for all y > «g. By Remark3.2 (iii) there exists
i () > ap andxi, € U, such thatf; ,, (X @) <ls,(X) + &,/2. Remark3.2(i) gives

ael

fi(a)(Xi(a)) < Iao(X) + 801/2 < I(X) + 801/2'

By construction,i : | — 1 is a cofinal order-preserving function. Obviously
(Xi(@))acl CONVerges tx and

fie Xite) + 9K (@) < 1(X) + 9X) + &,
By passing to a further subnet we may assume thatlif,, (X)) exists and
|pr( fitey Xite) + IXi(@)) < 1(X) + g(X).
A dual argument proves (ii). O

LEMMA 3.4. Let (f,).c; be a bounded net of continuous functions and kEtdu
be as in Definitior8.1 If g € C(K) andlim,, || f, + g|| exists, then

ILﬂg Il fo + gl = max|l + gll, lu+ gll}.

PrOOF. First observe that for any sc palr u) and anyg € C(K)

(3.1) max([Il + gl lu+gll}
=sup({u(x) + g(x) : x € K}U{—I(x) —g(x) : x € K}).

Let x € K be arbitrary. Applying Lemm&.3 we obtain a cofinal order-preserving
mapi : | — | and element$x;,,),c; Which converge tx such that

|L|1n|1 (fi(a)(xi (oz)) + g(Xi (oz))) =< I(X) + g(X)
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Therefore,
lim [, + gll = lim | fic, + gll = lim (— fiw K@) — 9K @)
> —(1(x) +g(x)).

A dual argument shows that lim || f, + gl = u(x) + g(x). Applying 3.1) to these
two inequalities gives the conclusion of the lemma. O

The next lemma shows that the reverse inequality also holds:

LEMMA 3.5. Let (f,).c; be a bounded net of continuous functions and kEtdu
be as in Definitior8.1 Letg € C(K), and suppose thdim, , || f, 4+ g|| exists. Then

ILﬂg Il fo + gl < max|l +gll, lu+ g}

PrOOF. Letr = lim,, || f, + g||. For eachw € |, choosex, € K ands, = +1
such that| f, + gl = s,(f.(X,) + g(X,)). Using the compactness Kf there exists a
cofinal order-preserving majp: | — | and a constarg = 41, such that

Iin|1 Xjo =X and sj, =s foralla el.
Thenr = lim, S(fj e (Xj@) + 9(Xj«)). We distinguish between two cases:
Case l:s=1. Fixp e |l. Then
r= |L”|1(fj(a)(xj @) T I9Xj@)) = 3 |-|,-i[?)>ﬁ( fiowXjw) +9Xw))

< ”:'U SUP(Ug(Xj @) + 9(Xj@))) =< Ug(X) + g(X).
a1 j(e)=p

The last inequalities follow sincé; ) (Xjw) < Us(Xj«) for B < j(a) and sinceu,
is usc. We obtain, using Remask? (ii),

r<u+9x) = llu+gl.
Case 2:s = —1. Using the same ideas as in Case 1, we show that
r=—0)+9x) =l +4gl,
which gives lim,; [ f. + gl = max{ll + gll. [lu + glf}. O

We will need the following theorem.

THEOREM 3.6 (Edwards]]). Let U be a usc function and. an Isc function on
a compact Hausdorff spack, such thatU < L. Then there exists a continuous
functionF suchthaty < F < L.
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A proof of this theorem can be found in Kaplat) [48.5)].
As a consequence, we obtain the following lemma:

LEMMA 3.7. Let K be a compact Hausdorff topological space, and8tbe a
finite open cover oK. Letu : K — R be any bounded function. Thén: K — R
defined by

L(y) =supju@:ze (] W
yeW;Weld

forall y € K islIsc andL > u. Similarly, ifl : K — R is any bounded function and
U : K — Ris defined by

Uy) =infll@:ze ﬂ W
yeW;Wed

forall y € K, thenU is usc andJ <.

ProOF. We only show the first statement. Observe thay) > L(w) for all
w € Nyewwess W. Observe that there are only finitely many sets of the form

Myew-wezn W. Therefore

yekK:Ly=r= {J (ﬂ v‘v)

xeK;L(X)<r \xeW,We2J

is a finite union of closed sets, hence closed.LSs Isc. It is immediate from the
definition of L thatL > u. O

4. Proof of Theorem1.3

The statement of Theorem3 is repeated in the form of propositions for the
convenience of the reader.

ProPOSITION4. 1. Let T be a type ove€(K). Then there exists an sc pair, u)
such that

(4.1) 7(g) = maX{|l +gll, lu+ g|l} foreveryg e C(K).
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PrOOF. Given a typet over C(K) fix a net (f,),c; which generates as in
Proposition2.2 (iii). Letl| andu be obtained from this net as in Definitidhl
Lemmas3.4-3.5prove @.1).

We now show thatl, u) is an sc pair. It is immediate from Definiticgh1thatl is
Isc,uis uscand < u. Suppose that is isolated. By RemarR.2 (iii )—(iv) applied to
U = {x} we obtain

(4.2) lim ilnf f,(X) < 1(X) < ux) < limsupf,(x).
a, a,l

Letr = 3suf|| f,|l : « € |} and defingg € C(K) by setting

0 Iif X
mw={ "y

r ify=x
Thenz(g) = lim,, || f, +4gl| =lim, f,(X)+r. Thuslim,, f,(x) exists. Therefore,
(4.2) yieldsl (x) = u(x). O

ProPOSITION4.2. Let (I, u) be an sc pair. Then the function: C(K) — R
defined by(4.1) is a type oveC(K).

PrOOF. Let (I, u) be an sc pair orK and lett : C(K) — R be defined by
7(9) = maxX{||l +gl, lu +gll} forall g € C(K).

We use Propositio.2to prove that is a type ovelC(K). It suffices to show that
forallne N,allgy,...,0, € C(K)andalle > 0 there existd € C(K) such that
[7(g) — IF+glll <eforalll<i <n.

Fix g1, ... ,0, € C(K) ande > 0. Choose a finite open cov@¥ of K, such that
forall W e 20, allx,y e Wand all 1< i < nwe havelg;(x) — g (y)| < ¢/2.

DefinelL : K — R andU : K — R by setting for ally € K

L(y)=supju@:ze [ W¢ and U(y)=infilz:ze () W¢.
yeW;WeJ yeW;WeJ
The functionL is Isc andU is usc by Lemm&.7. By Theorem3.6 there exists a
continuous functionf € C(K) suchthaty < f < L. Using 3.1) we may choose a
finite setSC K suchthatforall 1<i <n

max|/l + g, lu+gll} = max{—[l(2) + g (2], (U2 + G(2) :z€ S}

We write S = {z,, ... ,z}, wherep,q € Z, p < 0 < q, the points(z ‘f:p are

pairwise distinct and for alp < j < q, z; is isolated inK ifand only if p < j < O.
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For each O< j < q, we choose disjoint set;, Vi1 C [, cw.wean W sUch that
X € Vo U Vs implies| f(x) — f(z;)| < /2. Further, we may assume that for all
O0<k=<2g+1landallx,y e Vi we havel f (X) — f(y)| < ¢&/2.

Using Urysohn’s Lemma we now choose continuous funct'(cﬂzl}ffpl satisfying
the following conditions: For alp < j < 0, choosef; such that

filkuzy =0 and fi(z) =u(z) - f(z) =1(z) — f(z).
Forall0O< j <q, choosef,; > 0 andf,;,; < 0 such that

failkww, =0, I f251l = L(z) — f(z)
and
foiralkivgn =0, I foall = f(z) —U(z).

We setF = f 4+ Y 2%t f,. We would like to show that for all & i <n,
Imax{|ll + gill, lu+ g} —IIF+gll <e,
namely

max{||l + g, lu+agll} —e < IF+gl <maxX|l + gl lu+gl} +e.

We first show the right inequality: fix ¥ i < n. Fix x € K arbitrary and observe
that —[F(x) + g ()] < [IF + gl andF(x) + g (x) < |IF + g|. We distinguish
among four cases:

Case 1: X ¢ {Zp,...,z1) U Vi, ThenF(x) = f(x). We may choose
Vi, Yo € ﬂer;WEwV_\/ such that (y;) = U(x) andu(y,) = L(x). These choices are
possible becausés Isc [ is usc, respectively) and by definitiondf(L, respectively).

Then

—[FOO)O+gX¥)]=—-f(X) =g <= -UX —gX)
<—l(y)—g) +e/2=<|l +gl+¢&/2
and
FOO+ag(X) =X +g(Xx <LX +gX)
<SU(Y2) +0(Y2) +e/2<u+gl +e/2

Thus,|F(x) + g ()| < maxX|il + gll, [u+ g} +e.

Case 2: x = z; forsomep < j < 0. ThenF(x) + g(X) = u(X) + g(x) =

I(X) + g (x). ThereforgF(x) + g (x)| < maxX||l + g [u+ g} +e.

Case 3: x € V,; for some O0< j < q. Observe thaF|y, = f|, + fsly, and

Flv, = flv,. There existy, € V,; such thatf,;(y1) = L(z) — f(z). Further, there
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existys € (N,wweay W such that (y,) = U(x) andys € N, .w.weaw W such that
u(ys) = L(z). Then

—FX) =g < —f(X) —g(Xx) <-UX —gX)
<—1(Y2) —g(Y2) +e/2=< Il + gl +¢/2
and
FOX) 4+ a0 = T + ;) + g (X) < F(X)+ f(y1) + G (%)
=fx) +LEz) - f(z)+gX
<SUu(Ys) +6i(Ya) +¢ < [lu+gl +e.
In this last inequality, we use the assumption thHak) — f(zj)_s ¢/2 because
X, Zj € V,j, andg; (X) — gi(ys) < ¢/2 because, y; € ﬂzjew;WEw W.
Therefore]F(x) + g ()| < max{|ll + g, [u+ g} +e.
Case 4:x € V,j,, for some 0< j < g. This case is handled similar to the treatment

of Case 3.
Combining the results from Cases 1-4 we obtain

IFCO+g 00l =max|l +gll, lu+gl}+e

forallx e Kandall1<i < n. Therefore||F + g/|| < maX||l + g, lu+gl}+e
foralll<i <n.

We now show tha F + g/|| = maxX||l + g, lu+ g} —e. Fix1<i <n. By
construction there exisise Ssuch that

max—[1(2) + g (2], U2 + g (@)} = max|l + gl lu+ g}

For this choice of we distinguish between two cases:
Case L. z=z; forsomep < j < 0. Then

uiz) +a(z) =1zZ) +9(z) =F@) +9Z).

Therefore, majll + g |, [u+gll} = F(z) +a@Z)| < IF+ gl
Case 2. z=z; forsome 0< j <. Then there exisy, € V,; andy; € V;j;; such
that f5; (o) = L(z) — f(z) and f51(y1) = — f(z;) + U (7). We then obtain

IF+agll = Fo)+9(M) = f(yo)+ Lz - f(z)+a((z) —¢/2
>L(Z)+9(@FZ)—e>uz)+0((z) —¢
and
IF+gll = —[F(y)+a(ynDl=—-[f(y) — f(z)+U(z) +6(z)] —¢/2
>—-[Uz)+0@)]—e=>—-[l(z)+0(z)] —e.
We therefore obtaifiF + g || > maxX{|/l + g, lu+ g} O
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The following proposition establishes the third part of Theofe®n

ProPoOsITION4.3. Let (I, u;) and (5, u,) be sc pairs associated with typesand
7, respectively as in Theorein3. Then the following are equivalent

(|) T, = To,
(i) 1, =1, andu; = Us.

ProOF. The implication {i) = (i) is trivial. We prove the contrapositive af) (=
(i) and distinguish between two cases:

Case 1:u; # U,. Then there existg € K such thau;(x) # u,(x). We may assume
without loss of generality that; (X) > u,(x). Then there exists > 0 such that
U1 (X) > Ux(X) + 2.

LetU = {y € K : ux(y) < Ux(X) + ¢}. Becauseu, is usc,U is an open
neighbourhood ofk. By Urysohn’s Lemma there exists a nonnegative continu-
ous functiongy with [|go]l = 2r such thatgo|x,u = 0 andgy(x) = 2r, where
r = max|u.l, |uz]l}. Lets = max{||l.]l, |ll.||}; then fori = 1, 2 we have

U+ T +91+g=>li+T+51+9=>0
and
i+ 0 +9)1+ gl < llu + (¢ + 91+ goll.

Therefore, foi = 1, 2,
max||u; + (r + )1+ goll, Ili + (r +9)1+ Goll} = lui + (r +S)1+ Goll.
Furthermore

lur+ (r +8) 1+ goll =1 +s+2r +U(X)
and
luz+ (T +9)1+ gl <r +S+2r + Uy(X) +¢.

Becausei;(x) > u,(X) + 2¢, we obtain

lu; + (r +2)1+ Goll < lug + (r +2)1+ ol
and so
max{|[u; + (r + )1+ Qoll, ll2 + (r +9)1+ gll}

<maxX]|juy + @ + 951+ gll, Il + T +51+ goll}.

Case 2:1; # |,. This case is handled using an argument parallel to the one in the
previous case. U
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5. Problems

This section contains suggestions for further work on this topic:

ProBLEM 5.1. Provide a characterization of types ov@(¢K, €), the Banach space
of all complex-valued continuous functionsidn

The following concept provides a generalization of type:
Let E be a Banach space. Fixe R. For everyn-tupleX = (Xq,... ,X,) € E"
define a functiony : R" x E — R by settingrx(&, ... ,an. Y) = | Y1 ax + Y.

DeFINITION 5.2. A function T : R" x E — R is ann-type overE if it is in the
closure with respectto the topology of pointwise convergence of tHe;sek € E"}.

Let E be a Banach space. There is 1-1 correspondence between typds @wver
the sense of Definitioft.1) and 1-types oveE (in the sense of DefinitioB.2):

Indeed, letr : R x E — R is a 1-type. Then the function : E — R defined by
settingo (y) = 7(1, y) forall y € E is a type ovelE.

Conversely, suppose : E — R is a type overE. Definer : R x E — R by
settingz(a,y) = |alo((1/a)x) if a # 0 andz(0,y) = |lyll. Thent is a 1-type
overE.

PrOBLEM 5.3. Provide a characterization af-types over the Banach spaCe&K)
that generalizes the characterizationbtypes oveC(K).
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