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Abstract

Let K be a compact Hausdorff space andC.K / the Banach space of all real-valued continuous functions
on K , with the sup norm. Types overC.K / (in the sense of Krivine and Maurey) are represented here
by pairs.l ;u/ of bounded real-valued functions onK , wherel is lower semicontinuous andu is upper
semicontinuous,l ≤ u andl .x/ = u.x/ for every isolated pointx of K . For each pair the corresponding
type is defined by the equation−.g/ = max{‖l + g‖∞; ‖u + g‖∞} for all g ∈ C.K /, where‖ · ‖∞ is the
sup norm on bounded functions. The correspondence between types and pairs.l ;u/ is bijective.

2000Mathematics subject classification: primary 46B20, 46B25.

1. Statement of the Main Theorem

The concept of type over a Banach spaceE was first introduced by Krivine and
Maurey [5] in the context of separable Banach spaces. The reader is referred to
Garling’s monograph [2] for more details. We consider types over general, not
necessarily separable Banach spaces.

Let E be a Banach space. For everyx ∈ E, we define a function−x : E → R by
letting −x.y/ = ‖x + y‖ for all y ∈ E.

DEFINITION 1.1. A function− : E → R is atype overE if − is in the closure (with
respect to the topology of pointwise convergence) of the set{−x : x ∈ E}.

Throughout we takeK to be a compact Hausdorff topological space. We let`∞.K /
denote the Banach lattice of bounded real-valued functions onK equipped with the
sup-norm. Forf; g ∈ `∞.K / the lattice ordering is defined pointwise.
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DEFINITION 1.2. An sc pair(semicontinuous pair) is a pair of functions.l ;u/ from
`∞.K / such thatl is lower semicontinuous,u is upper semicontinuous,l ≤ u, and
l .x/ = u.x/ for all isolated pointsx of K .

This paper is devoted to proving the following theorem:

THEOREM 1.3 (Characterization of types overC.K /).

(i) Let − be a type overC.K /. There exists an sc pair.l ;u/ such that

−.g/ = max{‖l + g‖; ‖u + g‖} for all g ∈ C.K /:(1.1)

(ii) Let .l ;u/ be an sc pair. Then the function− : C.K / → R defined by(1.1) is a
type overC.K /.

(iii) The correspondence between types overC.K / and sc pairs is bijective.

A special case of (i) was observed by Haydon and Maurey [3]. The proof of
Theorem1.3 is provided in Section4.

2. Preliminaries

The purpose of this section is to introduce the notation and concepts that will be
used in the proof of Theorem1.3.

A special type of nets and their convergence are used to generalize sequences.

DEFINITION 2.1. (i) Let I be a nonempty set which is partially ordered by≤.
In this paper,.I ;≤/ is anet if

(a) .I ;≤/ has no maximal element;
(b) for every elementÞ ∈ I , the set{þ ∈ I : þ ≤ Þ} of predecessorsof Þ is

finite;
(c) for anyÞ; þ ∈ I there exists
 ∈ I such that
 ≥ Þ and
 ≥ þ. Such an

element
 is called asuccessorof Þ (andþ).

(ii) Let .I ;≤/ be a net. For every elementÞ0 ∈ I , define the number of its
predecessors by|Þ0| = card.{Þ ∈ I : Þ ≤ Þ0}/.

(iii) Let .I ;≤/ and.J;≤/ be nets. A functionk : I → J is order-preservingif
Þ ≤ þ ∈ I impliesk.Þ/ ≤ k.þ/. A functionk : I → J is cofinal if for every
 ∈ J
there existsÞ ∈ I such that
 ≤ k.Þ/.

(iv) A subnetof I is a cofinal order-preserving functionj : I → I .
(v) Let .I ;≤/ be a net andK be a topological space. We say that.xÞ/Þ∈ I is anet

in K indexed byI if xÞ ∈ K for all Þ ∈ I . If K is a normed space then.xÞ/Þ∈ I is
boundedif {‖xÞ‖ : Þ ∈ I } is bounded inR.



[3] Types overC.K / spaces 19

(vi) Let .I ;≤/ be a net,K a topological space and.xÞ/Þ∈ I a net inK indexed byI .
Let x ∈ K . Then limÞ;I xÞ = x if and only if for every neighbourhoodU of x in K
there existsÞ ∈ I such thatxþ ∈ U for all þ ≥ Þ.
(vii) Let .I ;≤/ be a net and.rÞ/Þ∈ I a bounded net of real numbers. Then we define

lim sup
Þ;I

rÞ = inf
Þ∈ I

sup{rþ : þ ∈ I and þ ≥ Þ}
and

lim inf
Þ;I

rÞ = sup
Þ∈ I

inf{rþ : þ ∈ I and þ ≥ Þ}:

Throughout this paper,.I ;≤/ will denote a net in the sense of Definition2.1.
The following proposition is immediate from Definitions1.1 and2.1; see [6] for

more equivalent conditions and a detailed proof.

PROPOSITION2.2. Let E be a Banach space and− : E → R a function. Then the
following are equivalent:

(i) − is a type overE.
(ii) For every finite subsetÞ ⊆ E and every" > 0, there exists an element

x = x.Þ; "/ ∈ E such that|−.y/− ‖x + y‖| < " for all y ∈ Þ.
(iii) There exists a bounded net.xÞ/Þ∈ I in E indexed byI such that for ally ∈ E,

limÞ;I ‖xÞ + y‖ = −.y/.

If − is a type overE and.xÞ/Þ∈ I is as in (iii ) above, we say that.xÞ/Þ∈ I generates
the type− .

A subsetH ⊆ `∞ is calledboundedif sup{‖ f ‖ : f ∈ H } < ∞. Let H be
such a set. The pointwise supremum ofH is the real-valued functionL defined
by L.x/ = sup{h.x/ : h ∈ H } for every x ∈ K . We write L = ∨

H for this
function. Similarly, the pointwise infimum ofH is the real-valued functionU defined
by U .x/ = inf {h.x/ : h ∈ H } for everyx ∈ K . This function is denoted by

∧
H .

Note that both
∨

H and
∧

H are again iǹ ∞.K /.
If H ⊆ `∞.K / is a bounded set of upper semicontinuous (usc) functions, then the

pointwise infimum
∧

H is usc. Similarly the pointwise supremum of a bounded set
of lower semicontinuous (lsc) functions is lsc. Finally, it is clear thatf ∈ `∞.K /
is continuous if and only iff is usc and lsc. Therefore, ifH is a bounded set of
continuous functions onK , then

∧
H is usc and

∨
H is lsc.

3. Lemmas

This section provides lemmas and technical definitions that will be used in the proof
of Theorem1.3.
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DEFINITION 3.1. For any norm-bounded net. fÞ/Þ∈ I in C.K /, define lower semi-
continuous functions onK by setting, for everyÞ ∈ I ,

lÞ =
∨{

f ∈ C.K / : f ≤
∧
þ≥Þ

fþ

}
and l =

∨
Þ

lÞ:

Similarly, define upper semicontinuous functionsu anduÞ on K by setting, for every
Þ ∈ I ,

uÞ =
∧{

f ∈ C.K / : f ≥
∨
þ≥Þ

fþ

}
and u =

∧
Þ

uÞ:

All statements aboutl andlÞ also hold foru anduÞ , provided all inequalities are
reversed, suprema are replaced by infima, minus by plus, etc.

Here are some basic properties of the functionsl andu defined in Definition3.1:

REMARK 3.2. Let . fÞ/Þ∈ I be a bounded net of functions and letlÞ , l , uÞ andu be
as in Definition3.1.

(i) If Þ1; Þ2 ∈ I andÞ1 ≤ Þ2, thenlÞ1 ≤ lÞ2 ≤ l anduÞ1 ≥ uÞ2 ≥ u.
(ii) If x ∈ K and" > 0, then there exists anÞ0 = Þ.x; "/ ∈ I such that, for all

indicesÞ > Þ0, lÞ.x/ ≥ l .x/ − " anduÞ.x/ ≤ u.x/ + ".
(iii) For everyþ ∈ I , everyx ∈ K , everyŽ > 0, and every neighbourhoodU of x,

there existsy ∈ U and
 ≥ þ such thatf
 .y/ ≤ lþ.x/+ Ž.
(iv) For everyþ ∈ I , everyx ∈ K , everyŽ > 0, and every neighbourhoodU of x,

there existsy ∈ U and
 ≥ þ such thatf
 .y/ ≥ uþ.x/− Ž.

PROOF. The statements in (i) and (ii ) are immediate from the definition. We
prove (iii ): let þ ∈ I , x ∈ K and sets = lþ.x/; let U be an open neighbourhood
of x andŽ > 0. Suppose the conclusion does not hold. Then for ally ∈ U and all

 ≥ þ, we havef
 .y/ > s + Ž. But for everyy ∈ U , there existsf ∈ C.K / (which
depends ony) such that f ≤ f
 for all 
 ≥ þ and such thatf .y/ ≥ s + Ž. Then
lþ.y/ ≥ s + Ž for all y ∈ U , which is a contradiction. The statement in (iv) is proved
with an argument dual to the one just given.

From now on we assume that card.I / ≥ � , where� is the minimum of the
cardinalities of the bases of the topology ofK .

LEMMA 3.3. Let . fÞ/Þ∈ I be a bounded net of continuous functions and letl andu
be as in Definition3.1. Giveng ∈ C.K / andx ∈ K ,

(i) there exists a subneti : I → I and elements.xi .Þ//Þ∈ I converging tox, such
that l .x/+ g.x/ ≥ limÞ;I

(
fi .Þ/.xi .Þ//+ g.xi .Þ//

)
;
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(ii) there exists a subnetj : I → I and elements.xj .Þ//Þ∈ I converging tox, such
that u.x/+ g.x/ ≤ limÞ;I

(
f j .Þ/.xj .Þ//+ g.xj .Þ//

)
.

PROOF. We show (i). For everyÞ ∈ I , let "Þ = |Þ|−1. By assumption, everyÞ ∈ I
has only finitely many predecessors and infinitely many successors, so every"Þ is
defined and limÞ;I "Þ = 0. Fix a system of open neighbourhoods.UÞ/Þ∈ I of x such
that for allÞ ≤ þ ∈ I we haveUÞ ⊇ Uþ and

⋂
Þ∈ I UÞ = {x}. Furthermore, assume

that|g.x/− g.y/| < "Þ=2 for all y ∈ UÞ.
We proceed by induction onÞ ∈ I . Fix Þ ∈ I and suppose thati .þ/ has been

defined for allþ < Þ. Using the fact that there are only finitely many suchþ ’s we may
findÞ0 ∈ I such thatÞ0 ≥ i .þ/ for all þ < Þ. We may assume (by (ii ) of Remark3.2)
that l .x/ ≥ l
 .x/ ≥ l .x/ − "Þ=2 for all 
 > Þ0. By Remark3.2 (iii ) there exists
i .Þ/ ≥ Þ0 andxi .Þ/ ∈ UÞ such thatfi .Þ/.xi .Þ// ≤ lÞ0.x/+ "Þ=2. Remark3.2(i) gives

fi .Þ/.xi .Þ// ≤ lÞ0.x/+ "Þ=2 ≤ l .x/ + "Þ=2:

By construction,i : I → I is a cofinal order-preserving function. Obviously
.xi .Þ//Þ∈ I converges tox and

fi .Þ/.xi .Þ// + g.xi .Þ// ≤ l .x/ + g.x/+ "Þ:

By passing to a further subnet we may assume that limÞ;I fi .Þ/.xi .Þ// exists and

lim
Þ;I
. fi .Þ/.xi .Þ//+ g.xi .Þ/// ≤ l .x/ + g.x/:

A dual argument proves (ii).

LEMMA 3.4. Let . fÞ/Þ∈ I be a bounded net of continuous functions and letl andu
be as in Definition3.1. If g ∈ C.K / and limÞ;I ‖ fÞ + g‖ exists, then

lim
Þ;I

‖ fÞ + g‖ ≥ max{‖l + g‖; ‖u + g‖}:

PROOF. First observe that for any sc pair.l ;u/ and anyg ∈ C.K /

max{‖l + g‖; ‖u + g‖}(3.1)

= sup.{u.x/ + g.x/ : x ∈ K } ∪ {−l .x/ − g.x/ : x ∈ K }/ :

Let x ∈ K be arbitrary. Applying Lemma3.3 we obtain a cofinal order-preserving
mapi : I → I and elements.xi .Þ//Þ∈ I which converge tox such that

lim
Þ;I

(
fi .Þ/.xi .Þ//+ g.xi .Þ//

) ≤ l .x/ + g.x/:
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Therefore,

lim
Þ;I

‖ fÞ + g‖ = lim
Þ;I

‖ fi .Þ/ + g‖ ≥ lim
Þ;I

(− fi .Þ/.xi .Þ//− g.xi .Þ//
)

≥ −.l .x/ + g.x//:

A dual argument shows that limÞ;I ‖ fÞ + g‖ ≥ u.x/ + g.x/. Applying (3.1) to these
two inequalities gives the conclusion of the lemma.

The next lemma shows that the reverse inequality also holds:

LEMMA 3.5. Let . fÞ/Þ∈ I be a bounded net of continuous functions and letl andu
be as in Definition3.1. Letg ∈ C.K /, and suppose thatlimÞ;I ‖ fÞ + g‖ exists. Then

lim
Þ;I

‖ fÞ + g‖ ≤ max{‖l + g‖; ‖u + g‖}:

PROOF. Let r = limÞ;I ‖ fÞ + g‖. For eachÞ ∈ I , choosexÞ ∈ K andsÞ = ±1
such that‖ fÞ + g‖ = sÞ. fÞ.xÞ/+ g.xÞ//. Using the compactness ofK there exists a
cofinal order-preserving mapj : I → I and a constants = ±1, such that

lim
Þ;I

x j .Þ/ = x and sj .Þ/ = s for all Þ ∈ I :

Thenr = limÞ;I s. f j .Þ/.xj .Þ//+ g.xj .Þ///. We distinguish between two cases:

Case 1:s = 1. Fixþ ∈ I . Then

r = lim
Þ;I
. f j .Þ/.xj .Þ//+ g.xj .Þ/// = lim

Þ;I ; j .Þ/≥þ
. f j .Þ/.xj .Þ//+ g.xj .Þ///

≤ lim sup
Þ;I ; j .Þ/≥þ

.uþ.xj .Þ//+ g.xj .Þ/// ≤ uþ.x/+ g.x/:

The last inequalities follow sincef j .Þ/.xj .Þ// ≤ uþ .xj .Þ// for þ ≤ j .Þ/ and sinceuþ
is usc. We obtain, using Remark3.2(ii ),

r ≤ u.x/+ g.x/ ≤ ‖u + g‖:
Case 2:s = −1. Using the same ideas as in Case 1, we show that

r ≤ −.l .x/ + g.x// ≤ ‖l + g‖;
which gives limÞ;I ‖ fÞ + g‖ ≤ max{‖l + g‖; ‖u + g‖}.

We will need the following theorem.

THEOREM 3.6 (Edwards [1]). Let U be a usc function andL an lsc function on
a compact Hausdorff spaceK , such thatU ≤ L. Then there exists a continuous
functionF such thatU ≤ F ≤ L.
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A proof of this theorem can be found in Kaplan [4, (48.5)].
As a consequence, we obtain the following lemma:

LEMMA 3.7. Let K be a compact Hausdorff topological space, and letW be a
finite open cover ofK . Letu : K → R be any bounded function. ThenL : K → R

defined by

L.y/ = sup


u.z/ : z ∈

⋂
y∈W;W∈W

SW



for all y ∈ K is lsc andL ≥ u. Similarly, if l : K → R is any bounded function and
U : K → R is defined by

U .y/ = inf


l .z/ : z ∈

⋂
y∈W;W∈W

SW



for all y ∈ K , thenU is usc andU ≤ l .

PROOF. We only show the first statement. Observe thatL.y/ ≥ L.w/ for all
w ∈ ⋂

y∈W;W∈W SW. Observe that there are only finitely many sets of the form⋂
x∈W;W∈W SW. Therefore

{y ∈ K : L.y/ ≤ r } =
⋃

x∈K ;L.x/≤r

( ⋂
x∈W;W∈W

SW
)

is a finite union of closed sets, hence closed. SoL is lsc. It is immediate from the
definition of L that L ≥ u.

4. Proof of Theorem1.3

The statement of Theorem1.3 is repeated in the form of propositions for the
convenience of the reader.

PROPOSITION4.1. Let − be a type overC.K /. Then there exists an sc pair.l ;u/
such that

−.g/ = max{‖l + g‖; ‖u + g‖} for every g ∈ C.K /:(4.1)
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PROOF. Given a type− over C.K / fix a net . fÞ/Þ∈ I which generates− as in
Proposition2.2 (iii ). Let l and u be obtained from this net as in Definition3.1.
Lemmas3.4–3.5prove (4.1).

We now show that.l ;u/ is an sc pair. It is immediate from Definition3.1that l is
lsc,u is usc andl ≤ u. Suppose thatx is isolated. By Remark3.2(iii )–(iv) applied to
U = {x} we obtain

lim inf
Þ;I

fÞ.x/ ≤ l .x/ ≤ u.x/ ≤ lim sup
Þ;I

fÞ.x/:(4.2)

Let r = 3 sup{‖ fÞ‖ : Þ ∈ I } and defineg ∈ C.K / by setting

g.y/ =
{

0 if y 6= x

r if y = x:

Then−.g/ = limÞ;I ‖ fÞ + g‖ = limÞ;I fÞ.x/+ r . Thus limÞ;I fÞ.x/ exists. Therefore,
(4.2) yieldsl .x/ = u.x/.

PROPOSITION4.2. Let .l ;u/ be an sc pair. Then the function− : C.K / → R

defined by(4.1) is a type overC.K /.

PROOF. Let .l ;u/ be an sc pair onK and let− : C.K / → R be defined by
−.g/ = max{‖l + g‖; ‖u + g‖} for all g ∈ C.K /.

We use Proposition2.2to prove that− is a type overC.K /. It suffices to show that
for all n ∈ N, all g1; : : : ; gn ∈ C.K / and all" > 0 there existsF ∈ C.K / such that
|−.gi /− ‖F + gi ‖| ≤ " for all 1 ≤ i ≤ n.

Fix g1; : : : ; gn ∈ C.K / and" > 0. Choose a finite open coverW of K , such that
for all W ∈W, all x; y ∈ W and all 1≤ i ≤ n we have|gi .x/− gi .y/| < "=2.

DefineL : K → R andU : K → R by setting for ally ∈ K

L.y/ = sup


u.z/ : z ∈

⋂
y∈W;W∈W

SW

 and U .y/ = inf


l .z/ : z ∈

⋂
y∈W;W∈W

SW

 :

The functionL is lsc andU is usc by Lemma3.7. By Theorem3.6 there exists a
continuous functionf ∈ C.K / such thatU ≤ f ≤ L. Using (3.1) we may choose a
finite setS⊆ K such that for all 1≤ i ≤ n

max{‖l + gi ‖; ‖u + gi ‖} = max{−[l .z/ + gi .z/]; .u.z/ + gi .z// : z ∈ S}:

We write S = {zp; : : : ; zq}, where p;q ∈ Z, p ≤ 0 ≤ q, the points.zj /
q
j =p are

pairwise distinct and for allp ≤ j ≤ q, zj is isolated inK if and only if p ≤ j < 0.
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For each 0≤ j ≤ q, we choose disjoint setsV2 j ;V2 j +1 ⊆ ⋂
zj ∈W;W∈WW such that

x ∈ V2 j ∪ V2 j +1 implies | f .x/ − f .zj /| < "=2. Further, we may assume that for all
0 ≤ k ≤ 2q + 1 and allx; y ∈ Vk we have| f .x/− f .y/| < "=2.

Using Urysohn’s Lemma we now choose continuous functions. fk/
2q+1
k=p satisfying

the following conditions: For allp ≤ j < 0, choosef j such that

f j |K\{zj } = 0 and f j .zj / = u.zj /− f .zj / = l .zj /− f .zj /:

For all 0≤ j ≤ q, choosef2 j ≥ 0 and f2 j +1 ≤ 0 such that

f2 j |K\V2 j
= 0; ‖ f2 j ‖ = L.zj /− f .zj /

and

f2 j +1|K\V2 j+1 = 0; ‖ f2 j +1‖ = f .zj /− U .zj /:

We setF = f +∑2q+1
k=p fk. We would like to show that for all 1≤ i ≤ n,

|max{‖l + gi ‖; ‖u + gi ‖} − ‖F + gi ‖| ≤ ";

namely

max{‖l + gi ‖; ‖u + gi ‖} − " ≤ ‖F + gi ‖ ≤ max{‖l + gi ‖; ‖u + gi ‖} + ":

We first show the right inequality: fix 1≤ i ≤ n. Fix x ∈ K arbitrary and observe
that−[F.x/ + gi .x/] ≤ ‖F + gi ‖ and F.x/ + gi .x/ ≤ ‖F + gi ‖. We distinguish
among four cases:
Case 1: x 6∈ {zp; : : : ; z−1} ∪ ⋃2q+1

k=0 Vk. Then F.x/ = f .x/. We may choose
y1; y2 ∈ ⋂x∈W;W∈W SW such thatl .y1/ = U .x/ andu.y2/ = L.x/. These choices are
possible becausel is lsc (u is usc, respectively) and by definition ofU (L, respectively).
Then

−[F.x/+ gi .x/] = − f .x/− gi .x/ ≤ −U .x/ − gi .x/

≤ −l .y1/− gi .y1/+ "=2 ≤ ‖l + gi ‖ + "=2

and

F.x/ + gi .x/ = f .x/ + gi .x/ ≤ L.x/ + gi .x/

≤ u.y2/+ gi .y2/+ "=2 ≤ ‖u + gi ‖ + "=2:

Thus,|F.x/+ gi .x/| ≤ max{‖l + gi ‖; ‖u + gi ‖} + ".
Case 2: x = zj for some p ≤ j < 0. Then F.x/ + gi .x/ = u.x/ + gi .x/ =
l .x/ + gi .x/. Therefore|F.x/+ gi .x/| ≤ max{‖l + gi ‖; ‖u + gi ‖} + ".
Case 3: x ∈ V2 j for some 0≤ j ≤ q. Observe thatF |V2 j

= f |V2 j
+ f2 j |V2 j

and
F |V2 j

≥ f |V2 j
. There existsy1 ∈ V2 j such thatf2 j .y1/ = L.zj /− f .zj /. Further, there
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exist y2 ∈ ⋂
x∈W;W∈W SW such thatl .y2/ = U .x/ and y3 ∈ ⋂

zj ∈W;W∈W SW such that
u.y3/ = L.zj /. Then

−F.x/ − gi .x/ ≤ − f .x/− gi .x/ ≤ −U .x/ − gi .x/

≤ −l .y2/ − gi .y2/ + "=2 ≤ ‖l + gi ‖ + "=2

and

F.x/+ gi .x/ = f .x/ + f2 j .x/ + gi .x/ ≤ f .x/+ f2 j .y1/+ gi .x/

= f .x/ + L.zj /− f .zj /+ gi .x/

≤ u.y3/+ gi .y3/+ " ≤ ‖u + gi ‖ + ":

In this last inequality, we use the assumption thatf .x/ − f .zj / ≤ "=2 because
x; zj ∈ V2 j , andgi .x/− gi .y3/ ≤ "=2 becausex; y3 ∈ ⋂zj ∈W;W∈W SW.

Therefore,|F.x/+ gi .x/| ≤ max{‖l + gi ‖; ‖u + gi ‖} + ".
Case 4:x ∈ V2 j +1 for some 0≤ j ≤ q. This case is handled similar to the treatment
of Case 3.

Combining the results from Cases 1–4 we obtain

|F.x/+ gi .x/| ≤ max{‖l + gi ‖; ‖u + gi ‖} + "

for all x ∈ K and all 1≤ i ≤ n. Therefore,‖F + gi ‖ ≤ max{‖l + gi ‖; ‖u + gi ‖} + "
for all 1 ≤ i ≤ n.

We now show that‖F + gi ‖ ≥ max{‖l + gi ‖; ‖u + gi ‖} − ". Fix 1 ≤ i ≤ n. By
construction there existsz ∈ S such that

max{−[l .z/ + gi .z/]; .u.z/ + gi .z//} = max{‖l + gi ‖; ‖u + gi ‖}:
For this choice ofz we distinguish between two cases:
Case 1′: z = zj for somep ≤ j < 0. Then

u.zj /+ gi .zj / = l .zj /+ gi .zj / = F.zj /+ g.zj /:

Therefore, max{‖l + gi ‖; ‖u + gi ‖} = |F.zj /+ gi .zj /| ≤ ‖F + gi ‖.
Case 2′: z = zj for some 0≤ j ≤ q. Then there existy0 ∈ V2 j andy1 ∈ V2 j +1 such
that f2 j .y0/ = L.zj /− f .zj / and f2 j +1.y1/ = − f .zj /+ U .zj /. We then obtain

‖F + gi ‖ ≥ F.y0/+ gi .y0/ ≥ f .y0/+ L.zj /− f .zj /+ gi .zj /− "=2

≥ L.zj /+ gi .zj /− " ≥ u.zj /+ gi .zj /− "

and

‖F + gi ‖ ≥ −[F.y1/+ gi .y1/] ≥ −[ f .y1/− f .zj /+ U .zj / + gi .zj /] − "=2

≥ −[U .zj /+ gi .zj /] − " ≥ −[l .zj /+ gi .zj /] − ":

We therefore obtain‖F + gi ‖ ≥ max{‖l + gi ‖; ‖u + gi ‖}.



[11] Types overC.K / spaces 27

The following proposition establishes the third part of Theorem1.3.

PROPOSITION4.3. Let .l1;u1/ and.l2;u2/ be sc pairs associated with types−1 and
−2 respectively as in Theorem1.3. Then the following are equivalent

(i) −1 = −2;
(ii) l1 = l2 andu1 = u2.

PROOF. The implication (ii ) ⇒ (i) is trivial. We prove the contrapositive of (i) ⇒
(ii ) and distinguish between two cases:
Case 1:u1 6= u2. Then there existsx ∈ K such thatu1.x/ 6= u2.x/. We may assume
without loss of generality thatu1.x/ > u2.x/. Then there exists" > 0 such that
u1.x/ > u2.x/+ 2".

Let U = {y ∈ K : u2.y/ < u2.x/ + "}. Becauseu2 is usc, U is an open
neighbourhood ofx. By Urysohn’s Lemma there exists a nonnegative continu-
ous functiong0 with ‖g0‖ = 2r such thatg0|K\U = 0 and g0.x/ = 2r , where
r = max{‖u1‖; ‖u2‖}. Let s = max{‖l1‖; ‖l2‖}; then fori = 1;2 we have

ui + .r + s/1 + g0 ≥ l i + .r + s/1 + g0 ≥ 0

and

‖l i + .r + s/1 + g0‖ ≤ ‖ui + .r + s/1 + g0‖:

Therefore, fori = 1;2,

max{‖ui + .r + s/1 + g0‖; ‖l i + .r + s/1 + g0‖} = ‖ui + .r + s/1 + g0‖:

Furthermore

‖u1 + .r + s/1+ g0‖ ≥ r + s + 2r + u1.x/

and

‖u2 + .r + s/1+ g0‖ ≤ r + s + 2r + u2.x/+ ":

Becauseu1.x/ > u2.x/+ 2", we obtain

‖u2 + .r + 2/1 + g0‖ < ‖u1 + .r + 2/1 + g0‖
and so

max{‖u2 + .r + s/1 + g0‖; ‖l2 + .r + s/1 + g0‖}
< max{‖u1 + .r + s/1 + g0‖; ‖l1 + .r + s/1 + g0‖}:

Case 2: l1 6= l2. This case is handled using an argument parallel to the one in the
previous case.
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5. Problems

This section contains suggestions for further work on this topic:

PROBLEM 5.1. Provide a characterization of types overC.K ;C/, the Banach space
of all complex-valued continuous functions onK .

The following concept provides a generalization of type:
Let E be a Banach space. Fixn ∈ R. For everyn-tuple x̄ = .x1; : : : ; xn/ ∈ En

define a function−x̄ : Rn × E → R by setting−x̄.a1; : : : ;an; y/ = ∥∥∑n
i =1 ai xi + y

∥∥.

DEFINITION 5.2. A function − : Rn × E → R is ann-type overE if it is in the
closure with respect to the topology of pointwise convergence of the set{−x̄ : x̄ ∈ En}.

Let E be a Banach space. There is 1-1 correspondence between types overE (in
the sense of Definition1.1) and 1-types overE (in the sense of Definition5.2):

Indeed, let− : R× E → R is a 1-type. Then the function¦ : E → R defined by
setting¦.y/ = −.1; y/ for all y ∈ E is a type overE.

Conversely, suppose¦ : E → R is a type overE. Define− : R × E → R by
setting−.a; y/ = |a|¦..1=a/x/ if a 6= 0 and−.0; y/ = ‖y‖. Then− is a 1-type
over E.

PROBLEM 5.3. Provide a characterization ofn-types over the Banach spaceC.K /
that generalizes the characterization of1-types overC.K /.
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